This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

RACOON++: A Semi-Automatic Framework for the
Selfishness-aware Design of Cooperative Systems

1.4

Guido Lena Cota!, Sonia Ben Mokhtar?, Gabriele Gianini!, Ernesto Damiani'*,
Julia Lawall®, Gilles Muller, and Lionel Brunie?

Universita degli Studi di Milano, 2LIRIS-CNRS-INSA Lyon, >Sorbonne Universités, Inria, CNRS, UPMC, LIP6
4EBTIC/Khalifa University, Abu Dhabi, UAE

A challenge in designing cooperative distributed systems is to develop feasible and cost-effective mechanisms to foster cooperation
among selfish nodes, i.e., nodes that strategically deviate from the intended specification to increase their individual utility. Finding
a satisfactory solution to this challenge may be complicated by the intrinsic characteristics of each system, as well as by the
particular objectives set by the system designer. Our previous work addressed this challenge by proposing RACOON, a general
and semi-automatic framework for designing selfishness-resilient cooperative systems. RACOON relies on classical game theory and
a custom built simulator to predict the impact of a fixed set of selfish behaviours on the designer’s objectives. In this paper, we
present RACOON++, which extends the previous framework with a declarative model for defining the utility function and the static
behaviour of selfish nodes, along with a new model for reasoning on the dynamic interactions of nodes, based on evolutionary game
theory. We illustrate the benefits of using RACOON++ by designing three cooperative systems: a peer-to-peer live streaming system, a
load balancing protocol, and an anonymous communication system. Extensive experimental results using the state-of-the-art PeerSim
simulator verify that the systems designed using RACOON++ achieve both selfishness-resilience and high performance.

I. INTRODUCTION

In recent years, the importance of cooperative systems such
as peer-to-peer (P2P) networks and collaborative computing
has rapidly grown, driven by multiple factors. First, the ever-
increasing demand for video content [1] poses serious chal-
lenges to the operational and economic sustainability of tradi-
tional content delivery networks [2], paving the way for more
scalable, robust and cost-effective P2P-assisted solutions [3].
Second, cooperative systems are the key enablers of new and
emerging technologies, including the blockchain ecosystem [4]
and the Internet of Things [5]. Finally, the decentralised nature
of cooperative systems can address the increasing privacy
concerns of their users [6], by avoiding control and potential
misuse of sensitive data by a centralised server.

Crucial to the success of cooperative systems is that nodes
are willing to collaborate with each other by sharing part
of their resources — e.g., network bandwidth, storage space,
CPU time. However, in practice [7]-[9], real systems often
suffer from selfish nodes that strategically withdraw from
cooperation to satisfy their individual interests at the expense
of the system reliability and efficiency. In fact, several studies
have shown that selfishness in cooperative systems results in
substantial degradation of performance, unpredictable or lim-
ited availability of resources, and may even lead to a complete
disruption of the system functionalities [13], [23], [25]. For
example, Guerraoui et al. [14] observed experimentally that
if 25% of nodes in a P2P live streaming system download a
given video file without sharing it with other nodes, then half
of the remaining nodes are not able to view a clear stream.

Different solutions have been proposed to deal with selfish-
ness in cooperative systems [22]-[28]. Most of these solutions
rely on Game Theory (GT), a theoretical framework to model
and study selfish behaviours [31]. The typical approach to

Corresponding author: G. Lena Cota (email: guido.lena@unimi.it).

design selfishness-resilient systems using GT requires first
creating an analytical model of the system (the game) and
then proving mathematically that the cooperative behaviour is
the best strategy for selfish nodes (a Nash Equilibrium), with
respect to a known utility function. However, carrying out this
process is complex, error-prone, and time-consuming [30].

Detecting and punishing selfish behaviours at runtime is
an alternative, more practical approach. Diarra et al. [13]
showed that making nodes accountable for their actions can
be a strong incentive for selfish nodes to cooperate. In an
accountable system, each node maintains a secure log to record
its interactions with other nodes. Also, each node is associated
with a set of witness nodes that periodically check whether the
log entries correspond to a correct execution of the system. If
any deviation is detected, then the witnesses build a proof
of misbehaviour that can be verified by any correct node,
and punishment is inflicted on the misbehaving one. Although
accountability mechanisms have been successfully applied to
cooperative systems [12]-[14], the additional work required
at each node (e.g., cryptographic operations, log auditing) can
significantly increase computation, bandwidth, and storage re-
quirements. Moreover, the fine tuning of these mechanisms for
building a selfishness-resilient and cost-effective cooperative
system could be a challenging task [19].

Configuring accountability mechanisms requires that a sys-
tem designer select values for a number of parameters (e.g.,
number of witnesses, audit frequency) that directly affect the
system performance (e.g., bandwidth usage, delay). In the
literature [12]-[14], no indication is provided for the setting
of these parameters, leaving entirely to designers to find a
configuration that achieves the desired level of resilience to
selfish behaviours while imposing minimal overhead. Finding
this critical trade-off involves the systematic evaluation of a
large number of experiments, to investigate the impact of the
value of each parameter on the system performance. Moreover,

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

such experiments require the ability to create and inject
selfish behaviours, which is not supported by state-of-the-art
experimental environments, such as Splay [41], NS-3 [39], and
PeerSim [10].

To address the design challenges discussed above, our
previous work [19] proposed RACOON, a general framework
for designing efficient P2P systems resilient to selfish nodes
in a semi-automatic manner. To begin, the designer provides
the functional specification of the system (i.e., communication
protocols) and a set of performance objectives. RACOON
uses this information to mostly automate the following steps:
(i) enforce practical mechanisms to foster cooperation (i.e.,
distributed accountability and reputation mechanisms), (ii)
identify possible selfish deviations from the functional specifi-
cation; (iii) develop a behavioural model of the system partic-
ipants as a non-cooperative game [31], to predict the strategic
choices of selfish nodes; and (iv) tune the accountability and
reputation parameters to meet the designer’s objectives, using
GT-based simulations. Each step is carried out by a distinct
module of the framework, which can be replaced or extended
with a new definition (e.g., different models for selfishness).
RACOON results in a complete design of the system, which in-
cludes finely tuned mechanisms to meet selfishness-resilience
and performance objectives. This output serves as a reference
to developers for the eventual implementation of the system.

In this paper, we describe RACOON++, which extends the
previous version of our framework by addressing a number
of limitations and introducing new features. First, we provide
the designers with a simple yet expressive specification model
to define the utility function and the behaviour of selfish
nodes, which in RACOON were predefined and fixed for all
application scenarios. This model shapes the utility function
of a node by assigning costs and benefits to specific actions of
the communication protocols, and parametrises some aspects
of selfish behaviours (who deviates, from which action, with
what type of deviation). Second, we model the behaviour of
selfish nodes using Evolutionary Game Theory (EGT) [32]
instead of the classical GT used in RACOON. Using EGT, we
can relax the assumption of perfect rationality of the nodes,
and consider them as active learners who adjust their strategy
over time in response to repeated observations of their own
and others’ utilities. Such learning and adaptation processes
better reflect with the computational and decisional capabilities
of real nodes [28], [29]. Furthermore, as noted by Palomar
et al. [27], an evolutionary approach is more appropriate
for modelling the dynamic behaviour of cooperative systems.
Third, we integrate the RACOON++ functionalities with the
P2P simulator PeerSim [10]. To the best of our knowledge,
the simulator we developed in RACOON was the first tool able
to dynamically simulate selfish strategic behaviours. However,
like all custom built simulators, it had neither the maturity nor
the acceptance of state-of-the-art tools like PeerSim [39].

In summary, we present the following contributions:

o Selfishness-aware design of cooperative systems. We
define simple declarative models for specifying coopera-
tive protocols as well as for describing nodes’ selfishness.

« Automatic (evolutionary) game-theoretic reasoning.
We define the system under design as an evolutionary

game, in order to describe how successful behaviours
spread in a population of selfish individuals. We also
provide an automatic methodology to generate the game
using the information contained in the declarative models.
Finally, we extend the PeerSim simulator with the ability
to conduct EGT analysis to simulate selfish behaviours.

o Objective-oriented configuration. We propose an au-
tomatic configuration method for an accountability and
reputation mechanism in a cooperative system, which can
meet the resilience and performance objectives set by a
system designer in a reasonable time for a design-time
activity (18 minutes on average).

« Generality, simplicity and performance. We assess the
design effort and effectiveness of using RACOON++ on
three use cases: a P2P live streaming system [14], a
P2P load balancing protocol [10], and an anonymous
communication system based on Onion Routing [15].

The rest of the paper is organised as follows. Section II
reviews the related work. Section III presents an overview
of RACOON++, followed by a detailed description of its
two phases: the design phase (Section IV) and the tuning
phase (Section V). Section VI summarises the operation of
the framework from the designer’s point of view. Section VII
presents a performance evaluation of RACOON++. Finally,
the paper concludes in Section VIIIL

II. RELATED WORK

Game Theory (GT) is a mathematical framework to model
and predict the interactions among selfish and strategic individ-
uvals [31]. Much work on GT as a tool for system designers has
been carried out in the context of content dissemination [24]—
[27], wireless and mobile networking [20], [21], cryptography,
anonymity and privacy mechanisms [16]-[18], [23]. The ob-
jective of these works is to make cooperation the best choice
for all nodes, i.e. a Nash Equilibrium. Most of the GT solutions
are not readily applicable to cooperative systems [30], mainly
due to simplifying assumptions to make the model tractable,
e.g., assuming that nodes have perfect rationality [18]-[20] or
are risk averse [23]-[25]. Evolutionary Game Theory (EGT)
relaxes these assumptions by considering nodes with limited
rationality that adapt their behaviours dynamically, by learning
from experience [32]. However, most applications of EGT to
system design are only suitable for toy systems [27]-[29],
because of the difficulty of modelling a complex system in
a formal way. RACOON++ provides means for transforming
models familiar to system designers (state machines) into
games, thus making the power of EGT reasoning accessible
to non-game theory experts.

Another common limitation of GT models is that they are
tailored to a specific system problem and are difficult to adapt
to a changing environment. A notable example is the BAR
Model for designing systems robust to selfish and Byzantine
participants [22]. Besides the difficulties in the manual design
of a BAR-tolerant system [22]-[25], the resulting solution
suffers from poor flexibility and maintainability. Every change
to the system parameters requires a full revision of the design,
hindering the reuse of a successful solution in other systems.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

On the contrary, the general approach of RACOON++, as well
as its application-independent mechanisms to enforce cooper-
ation, are reusable by construction. Furthermore, RACOON++
supports a semi-automatic design flow that greatly facilitates
the refinement of system requirements and specification.

Yumerefendi and Chase [34] advocate accountability as a vi-
able solution for dealing with non-cooperative behaviours. Dis-
tributed accountability mechanisms [12]-[14], notably FullRe-
view [13], have been proven effective in systems populated by
selfish nodes, making them an ideal and general component for
supporting cooperation in RACOON++. However, enforcing
accountability incurs a substantial cost on the system, mainly
due to the high message overhead and the intensive use of
cryptography. This poses a significant configuration problem,
requiring designers to carefully look for a trade-off between
performance and selfishness-resilience. Since no guidelines
are given in the studies cited above, tuning the accountabil-
ity mechanisms is manual and time-consuming. In contrast,
RACOON++ mostly automates this task.

Accountability systems usually address selfishness by iso-
lating or evicting selfish nodes [13], [14]. A complementary
approach is to introduce incentives to make cooperation more
profitable for selfish nodes. The vast body of literature on
incentives for cooperative systems can broadly be divided into
trust-based and trade-based incentive schemes. A trust-based
scheme associates each node with a level of trust, which can
serve as a guide for distributing incentives. For example, nodes
with a high trust level can benefit from a higher quality of
service. Reputation is the principal mechanism to evaluate
and maintain trust in dynamic large-scale environments like
cooperative systems [37]. Reputation mechanisms offer high
flexibility and scalability, and can be implemented in a fully
decentralised manner. Because of these features, RACOON++
uses a distributed reputation mechanism to foster coopera-
tion, which complements the trust-enabling approach of its
accountability system. Specifically, the reputation of nodes is
updated based on verifiable evidence and linked to a unique
and permanent identity, thereby inhibiting the dissemination
of false information (e.g., bad mouthing, unfair praise) [38].!

In trade-based incentive schemes, nodes pay for obtaining
services or resources (as consumers) and get paid for sharing
(as providers). In schemes such as barter and tit-for-tat [11],
[20], [25], the trade is direct and symmetric: each unit of
resource is reciprocated with a unit of resource. Although
very robust and easy to implement, these schemes require that
trading nodes need something from each other (a condition
known as double coincidence of wants) and that they establish
long duration relationships to ensure adequate opportunities
for reciprocation. These requirements can be too restrictive or
inefficient in some cooperative systems, such as opportunistic
networks [20] and real-time constrained applications [24]. To
overcome this limitation, credit-based mechanisms [35], [36]
use virtual currency as the commodity for trading resources
and allowing its later expenditure. On the downside, these
approaches introduce economic issues in the system (e.g., price

! Although out of the scope of our present work, it is worth noting that strong
identities are the prerequisite for preventing other strategic misbehaviours
against reputation systems, such as whitewashing and Sybil attacks [34], [38].

negotiation, inflation, deflation) [36], and may require a trusted
authority (bank) to issue and certify the currency [35]. By
contrast, RACOON++ uses fully distributed mechanisms that
are not affected by economic factors.

Several frameworks and domain-specific languages have
been proposed to ease the task of designing and evaluating de-
pendable distributed systems (e.g., [40], [41]). Although these
solutions yield good results in terms of system performance
and designer effort, none of them addresses the specific threat
of selfish deviations in cooperative distributed systems.

III. RACOON++: OVERVIEW

RACOON++ is a design and simulation framework aimed at
supporting system designers in building a selfishness-resilient
cooperative system that meets desired performance objectives.
As depicted in Fig. 1, the operation of RACOON++ consists of
two phases: the assisted design of the system and the objective-
oriented funing of its parameters. The dark boxes in Fig. 1 are
the input provided by the designer. We give an overview of
these phases here, and more details in Sections IV and V.

The design phase is initiated by the system designer (here-
after “Designer”, for brevity), who provides a state-machine
specification of the communication protocols composing the
cooperative system. In Step (1) of Fig 1, RACOON++ inte-
grates the system specification with mechanisms to encourage
nodes to cooperate. Specifically, RACOON++ uses two gen-
eral and configurable Cooperation Enforcement Mechanisms
(CEM): an accountability system to audit nodes’ behaviour
and a reputation system to assign rewards or punishments
depending on the audit results. Then, the framework extends
the state machine representation of the system by adding new
states and transitions that represent selfish behaviours (Step
(2)). For a better control over the process, the Designer can
describe the preferences and capabilities of selfish nodes using
the Selfishness Model. The result is an Extended Specification
of the cooperative system, which includes selfish behaviours
and cooperation enforcement mechanisms.

The goal of the tuning phase is to find a configuration setting
for the CEM that makes the Extended Specification meet a
list of Design Objectives set by the Designer. Tuning is an
iterative refinement process consisting of a sequence of two
steps: game-based evaluation and configuration exploration
(Steps (3) and (4) in Fig. 1). The evaluation is done using
game theory-driven simulations, carried out automatically by
our framework. More precisely, RACOON++ transforms the
Extended Specification into a game model, which it uses to
simulate the strategic behaviour of selfish nodes given an
implementation of the system specification by the Designer.
The framework uses the results of the evaluation to traverse the
configuration space and evaluate new configuration candidates
for the CEM. The output of RACOON++ is a new specification
of the cooperative system that includes finely tuned account-
ability and reputation mechanisms to achieve the selfishness-
resilience and performance objectives set by the Designer. This
output provides a reference guide for developers to use when
implementing the system.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

DESIGN

3)

1 .
(g 0? peratlont Selfishness Extended
nforcemen . - ¢
t
with accountability and Generation Specification

reputation Mechanisms

(CEM) :
I

AN
System

Specification

Selfishness
Model

————

I

I

AN
il Objectives

System

4
TUNING OUTPUT
Game—Ba}sed System
Evaluation Specification
4 +
' ? ! : —
| >
I
I
I

—-—-- CEM Config

Implementation

Fig. 1: Overview of the RACOON++ framework.

IV. RACOON++ DESIGN PHASE

The design phase helps the Designer in specifying a coop-
erative system that embeds mechanisms for fostering cooper-
ation as well as in defining a behavioural model of the system
participants. The output is a new artefact called the Extended
Specification of the system.

In this section, we introduce the inputs of the phase, we
describe the accountability and reputation mechanisms used
in RACOON++, and, finally, we present the algorithm used
to generate selfish deviations. To support the description of
the framework, we use the simple communication protocol
Search, Request & Response (S-R-R) shown in Fig. 2. In the
S-R-R protocol, a node ry queries other nodes for some desired
resources (e.g., files). To this end, 7o sends a query message
go to a set of nodes collectively named R; (the capital letter
denotes a set of nodes). Each node in I?; processes the query
and replies with the list of available resources (message g1).
Upon receiving the list, 7o sends a new message g2 to Ry,
requesting (a subset of) the resources listed in g;. Finally,
each node in R; sends the requested data (message gs).

A. Input of the Design phase

The inputs of the design phase are the functional specifica-
tion of the protocols of the system that should be made resilient
to selfish behaviours, and the selfishness model adopted by
selfish nodes.

1) Functional specification

The functional specification describes the correct, coopera-
tive behaviour of nodes by means of communication protocols.
Like many other approaches [12], [22], [40], notably the
accountability system [13] that we plan to adapt for our
framework, each communication protocol is specified using
a notation based on deterministic finite state machines, called
a Protocol Automaton. A Protocol Automaton PA is a tuple
(R,S,T,M,G,C), with each component described below.

Roles (R): the parties involved in the protocol execution. A
role determines the responsibilities of a party (a node or a
group of nodes) and constrains the actions that the party is
allowed to execute in a protocol run. Every PA has at least two
types of roles: the requester of a resource or service, and the
provider. Other types are also possible (e.g., brokers, auditors,
recommenders). For example, the S-R-R protocol has two
roles: the requester rg and the set of potential providers R;.
Formally, a role » € R is a tuple (rld, cardinality, r Type),
where cardinality denotes the number of nodes represented
by r, and rType is either requester, provider, or other.

States (S): the set of states that the system goes through when
implementing the communication protocol. A state s € S is
a tuple (sld, roleld, sType), where roleld identifies the role
r € R that triggers a change of state or terminates the protocol
execution, and sType is either initial, final, or intermediate.

Transitions (T): a transition represents a protocol step, i.e.,
the set of method calls that determine the next protocol state.
The PA supports three types of transition: abstract, com-
munication, and computation. An abstract transition groups
many method calls into a single “black box” transition,
which may simplify the protocol representation by hiding
some implementation details. The remaining transition types
allow to define the (communication or computation) method
that triggers the transition. Formally, a transition t € T is
a tuple (tId, statelld, state2ld, methodld), where statelld
and state2ld identify the source and target states in .S, and
methodld identifies the method executed in ¢ (null, for abstract
transitions). In the S-R-R protocol, the transitions are search
(abstract), request and response (communication).

Methods (M): the set of actions that can trigger a protocol
transition. A communication method represents the delivery of
a message from one role to another, whereas a computation
method performs local computations. A method m € M is
a tuple (mlId, messageld), where messageld is defined only
for communication methods, and null otherwise. For instance,
request is the communication method of the S-R-R protocol
that sends a message g» to R;. Note that the methods called
during an abstract transition (e.g., search) are not in M.
Messages (G): a message ¢ € (G sent by a communica-
tion method is a tuple (gld, senderld, receiverld, contentld),
where senderld and receiverld identify the interacting roles
in R, and contentld refers to the content ¢ € C' carried by g.

Contents (C): a content ¢ € C is a collection of data
units (e.g., integers, binary files), formalised as the tuple
(cId, cType, cLength), which defines the data type cType?
and the number cLength of data units comprising the content.

Fig. 3 shows the state diagram of the S-R-R protocol. The
labels on each transition indicate the role and the method that
trigger the transition, along with the message sent (if any).
For example, the label between states s; and s, indicates that
role 7o invokes the communication method request to send the
message g to ;. The label of an abstract transition indicates
the role that executes the first method encapsulated in it.

2Defined by the XML Schema type system.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

search request response
t, = — Unicast message
request = Multicast message
query(g,) processQuery() sendResult(g,) quest(g,) response(g;) &
R, D Protocol step

Fig. 2: The S-R-R protocol between nodes ry and R;.

r,.search r,request(g,, R)) R, .response(g,, r,)

Fig. 3: The Protocol Automaton of the S-R-R protocol.

2) Selfishness Model

The selfishness model carries the information about the
economic drivers of a party, by specifying the utility that a
node obtains in participating in the system. Also, it defines the
possible deviations from the functional specification. Formally,
a selfishness model is a tuple (V, D), detailed below.

Valuations (V): the set of contributions to the overall utility
of a certain behaviour. The utility that a node receives by
participating in the system is given by the benefit obtained
by consuming resources and the cost of sharing resources. A
valuation v € V specifies this information at the granularity of
transitions and messages of a Protocol Automaton. Formally,
v is a tuple (vld, vScope, roleld, benefit, cost), where vScope
is the identifier of the PA element (transition or message) that
brings some benefit and cost (numeric values) to the role in
R identified by roleld.

If the vScope of a valuation v; refers to a transition ¢ € T,
then v, defines the utility that the role with identifier v;.roleld
obtains by executing ¢. We denote by v(v;) the function to
evaluate the contribution of v; to the overall utility, and we
define it as: v(vy) = vi.benefit — vi.cost. As an example,
consider the search transition of the S-R-R protocol. It is rea-
sonable to expect that role r(receives more benefit than cost
from the transition, because the node will eventually receive
useful information. This consideration can be expressed by the
valuation (vg, search, rg, 10, 1), which results in a contribution
to the utility of v(vp) = 9. Note that another system designer
may value the same transition differently, according to her
expertise and knowledge of the system.

Conversely, if the vScope of a valuation v, refers to a
message g € G, then v, defines the utility obtained by the role
identified in v, when g is sent or received. The contribution
of v, to the overall utility accounts for the cardinality of
the receiver role of the message as well as the number of
data units comprising the delivered content. This is based on
the observation that the costs and benefits of a message are
typically proportional to the number of data units transmitted
or received (e.g., the communication costs of a message
depends on its length and number of recipients). Consider, for
instance, the request transition of the S-R-R protocol, which
involves the transmission of a message g to role R;. Let ¢
be the content transmitted by go, and let (vy, g2,70,5,1) be
the valuation associated with g». In this case, the contribution
that v; makes to the utility of the node playing the role of
ro is given by: v(vy) = (5 — 1) - co.cLength - Ry.cardinality.
Note that it is also possible to define a valuation associated to

go that specifies benefits and costs of the receiver R; of the
message; for instance, vo = (va, g2, R1, 1,0).

Selfish Deviations (D): the set of deviations from the correct
execution of the system, made by selfish nodes to increase
their utility. In the context of a cooperative system, a selfish
node can increase its utility by reducing the cost of sharing
resources. Concretely, a deviation can reduce the bandwidth
consumption by sending fewer and shorter messages [7], [8],
[14], [23], or interrupt resource contribution by refusing to
execute some methods [9], [13], [23]. Based on the study
of these and other examples from the literature, we have
selected the three generic types of selfish deviation supported
by RACOON++, namely: (1) timeout deviation: a node does
not implement the prescribed transition within the time limit;
(2) subset deviation: a node sends a subset of the correct
message content; and (3) multicast deviation: a node sends a
message to a random subset of the legitimate recipients. Some
other types of selfishness, notably collusion and provision of
false or misleading information, have been investigated in our
recent work [42].

Formally, a selfish deviation d € D from a transition
t € T is a tuple (dId, dScope, dType, degree), where dScope
identifies ¢, dType indicates whether d is a timeout, subset
or multicast deviation, and degree € [0,1] specifies the
intensity of the deviation. Note that the fimeout deviation
can affect all types of transitions, whereas the subset and
multicast deviations affect only communication transitions, as
they interfere with the delivery of a message. For instance,
(dy, response, timeout, 1) describes selfish nodes that never
reply to a request. Note that timeout deviations only occur
to the maximum degree. As another example, suppose the
Designer wants to account for selfish nodes that only send half
of the content in any message exchange of the S-R-R protocol
(e.g., half of the requested resources). The selfish deviation
(dy, *, subset, 0.5) represents this behaviour, where the wild-
card value “*” indicates that all communication transitions in
the PA are subject to d;.

B. Cooperation Enforcement

The first automatic step of the design phase of RACOON++
is the integration of the Cooperation Enforcement Mechanisms
into the functional specification provided by the Designer.
The CEM includes accountability and reputation protocols
to make cooperation the most profitable behaviour for all
nodes. In practice, the quality of service received by nodes
depends on their reputation values, which are updated based
on accountability audits. To this end, the CEM imposes an
allocation regime such that the probability of a node receiving
a service or a resource in the future is proportional to its
current reputation. If the reputation of a node hits the lower
bound, no other node will accept its requests, thus preventing

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

the node from receiving any benefit from the system. The
advantage of such a flexible incentive scheme is twofold. First,
and with respect to rigid punishment strategies such as direct
eviction [13], it alleviates the impact of false-positive detection
of selfish nodes [19]. Second, all nodes are evaluated based
on the quality of their contribution (cooperative or selfish)
rather than on the quantity of the shared resources, so as not
to penalise nodes suffering from persistent resource shortage
(e.g., battery-powered devices).

The CEM is a key component for the Designer, as it
provides general and off-the-shelf mechanisms for fostering
cooperation in a wide range of settings, without the need to
devise ad-hoc solutions for the particular system at hand.

Hereafter, we discuss the CEM used in RACOON++.

1) Accountability Mechanism

RACOON++ uses accountability techniques for detecting
misbehaviours and assigning nodes non-repudiable responsi-
bility for their actions. Specifically, we propose the R-acc
mechanism, based on the FullReview [13] protocols and archi-
tecture. R-acc also shares some assumptions with FullReview
about nodes’ behaviours (i.e., no collusion) and the system
(i.e., a Public Key Infrastructure is available to create trusted
identities by means of digital signatures), whereas it differs on
other assumptions (e.g., nodes are not risk averse).

RACOON++ can automatically integrate R-acc into the
functional specification provided by the Designer. To begin,
R-acc requires each node to maintain a tamper-evident record
of all its observable actions (i.e., message exchanges). Further,
each node is assigned to a set of other nodes, called its
witness set. A witness is in charge of auditing the log of
its monitored nodes, generating provable evidence of their
behaviours and assigning punishments or rewards accordingly.
Such operations are defined by the protocols described below.

Commitment protocol: ensures that the sender and the re-
ceiver of a message have provable evidence that the other
party has logged the exchange. Fig. 4 shows the integration
between the PA of the S-R-R protocol and the commitment
protocol. Consider for example the node with role 7y in state
s1. Before sending the request message g to Rj, 1y records
the action in its local log, creating a new entry e,,. Then,
ro generates a signed statement a;?, called an authenticator,
indicating that it has logged e,,. Next, 7o sends a9 to R;
along with the message. Upon receiving the message (state
fo in Fig. 4), each node in R; logs this event in a new log
entry e., and generates the corresponding authenticator a1,
Finally, R; sends this authenticator to 7o to acknowledge the
reception of go.

Audit protocol: a proactive and periodic inspection of a node’s
behaviour, based on the examination of its log. In contrast
with FullReview, R-acc introduces the probability of audit
parameter, which allows more control over the number of
audits, instead of auditing at every audit period. Fig. 5 shows
the PA of the audit protocol between a monitored node r,, and
one of its witnesses r,,. Upon receiving the audit request g,
the witness requests and obtains a portion of the log of 7,,
(messages g,1 and g,2). Then, r,, verifies if 7,,,’s log conforms
to the correct behaviour making up the functional specification

of the system (transition audit in Fig. 5). The witness sends
the audit result back to the monitored node (message g,3).
Finally, r,,, checks the correctness of its audit by forwarding
the collected results to the witness set of each of its witnesses
(indicated as w(r,,) in the figure). If the witness does not
receive the requested log from r,, (state f7 in Fig. 5), then it
will address the issue by using the challenge/response protocol.

Consistency protocol: ensures that each node maintains a
single and consistent linear log [13].

Challenge/response protocols: deal with nodes that do not
respond to messages as provided in PA or in R-acc, allowing
certain tolerance for correct nodes that are slow or suffering
from network problems (e.g., message loss). Specifically, if a
node i has been waiting too long for a given message from
another node j, i indicates the suspect state for j, and creates a
challenge for it. In FullReview, nodes communicate only with
non-suspected nodes. R-acc adopts a more tolerant approach:
while in the suspect state, the probability of j to communicate
with i is locally decreased by a fixed amount, until j responds
to the challenge and gets trusted again.

R-acc does not include the evidence transfer protocol used
in FullReview [13]. The same goal of ensuring that faulty
nodes are eventually exposed by all correct nodes in the system
is accomplished by the reputation mechanism described next.

The commitment protocol is the only R-acc protocol that
modifies the functional specification of the system. The re-
maining protocols run in separate threads, scheduled to execute
periodically. RACOON++ includes a PA specification for
each protocol. The Designer can refer to these specifications
when writing the selfishness model, to define valuations and
deviations also for R-acc, and test whether accountability still
holds when this mechanism is enforced by selfish nodes.

2) Reputation Mechanism

The reputation of a node is the summary of its history
of behaviours, which is used to assist nodes in choosing a
cooperative partner with which to interact. Cooperation leads
to a good reputation, whereas selfish behaviours lead to a bad
reputation. To provide this information, the CEM includes a
distributed reputation mechanism (R-rep) to form, aggregate,
and disseminate reputation values.

In order to reduce design complexity and to reuse avail-
able knowledge, R-rep shares some features with the R-acc
accountability mechanism described above. First, a witness
node plays the role of recommender in R-rep, as it can form
an opinion of a monitored node based on the audit result. This
solution keeps the computational overhead of the CEM under
control, as it avoids performing the same operation twice (that
is, the evaluation of a certain behaviour). Furthermore, basing
feedback on provable evidence offers an effective defence
against false feedback (e.g., bad mouthing, false praising) [38].
Second, R-rep relies on R-acc for storing the reputation data
in a reliable manner. More precisely, nodes store their own
reputation locally. To prevent manipulations, only witnesses
— in their role of recommenders — can update the reputation
value. Also, the update must be recorded in the R-acc secure
log, so that any tampering can be detected.

In R-rep, the reputation p of a node is an integer value

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

@ r,.search Q r,.-request(g, + al, R) »@ R].ack(aZR,‘ r,) R,.response(g, + a:{_

L) »@ r,.ack(a,,R,)

Fig. 4: The integration between the commitment protocol of R-acc with the S-R-R protocol shown in Fig. 3.

r_timeout

r_.aud_req(g,, 1)

rw.logireq(ga] ,T)
-

r_.audit_chal(g, ,, w(r,))

r_log resp(g,,, 1) r_.audit r,.aud_resp(g,,, T,) r fwd_aud_resp(g,,, w(r,))

Fig. 5: The Protocol Automaton of the R-Acc audit protocol.

between 0 and an upper limit p,,.. The value of p is estimated
after every audit, and can be calculated as:

max {poid — fp(potd,dp,dq),0}, if positive audit

min {pold + fr(pold7 dr); pmaaj};

where p,;q is the old reputation value, f,, and f; are the update
functions in case of punishment or rewards, d,, and d,. are two
R-rep parameters that control the degree of punishment and
of reward, and d; is the degree of the deviations detected by
the audit. A punishment comes in the form of a reputation
decrease. The decrease value is proportional to d,, and to the
degree d of the detected deviation, and indirectly proportional
to the old reputation value p,;q4, in such a way as to punish
with greater severity nodes that already have a bad reputation,
in order to inhibit recidivism. In the case of a negative audit,
function f, rewards the cooperative node by assigning a
reputation increase, which is proportional to the degree of
reward d,. and to the old reputation value.

Consider for example the following setting of R-rep: p,q4 18
10, the d,. is 0.2, and d,, is 2. Also, let a currently cooperative
node have the reputation value 5. After being audited, the
node’s reputation value will be p = min{5+(5-0.2),10} = 6.
Given the same R-rep setting, consider a selfish node that has
deviated with degree 1 from the correct specification of the
protocol. Assuming the current reputation of the node be 6,
then its new reputation after the audit will be: p = max{6—2-
1-(10—6),0} = 0. Note that the set up of the R-rep parameters
can yield different results, with varying effects on the nodes’
behaviour. In Section V-D, we will show how the tuning phase
of RACOON++ can support the automatic configuration of
these parameters to induce the desired behaviour.

if negative audit

C. Selfishness Generation

The last step of the design phase is the automatic generation
of selfish deviations from both the functional specification
of the system and the CEM. This is implemented by the
Selfish Deviation Generation (SDG) algorithm given in Alg. 1.
The algorithm takes as input a Protocol Automaton and the
Selfishness Model SM. Then, it extends the PA with new
elements (states, transitions, roles, etc.) representing devia-
tions. Note that the SDG algorithm can generate the deviation
types introduced in Section IV-A2, namely, timeout, subset,
and multicast deviations. For brevity, in the pseudo-code we
use the notation get(elementld) to refer to the element of the
PA to which the elementld identifier is associated.

Alg. 1: The Selfish Deviation Generation algorithm.

R W N -

e e 9

10
11
12

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37

Data: A Protocol Automaton PA, the selfishness model SM.

Algorithm sSDG (PA,SM)
origl :=T // original transitions in PA
foreach ¢t € orig1 do
if 3d € D | d.dScope = {t.tId, “*”} then
if d.dType = “timeout” then
‘ InjectTimeoutDev(?)
/* only for communication transitions x/
if get(t.methodld).messageld # null then
c := get(t.methodld.messageld.contentld)
if d.dType = “subset’ and c.cLength > 1 then
‘ InjectSubsetDev(t, ¢, d)
r = get(t.state2ld.roleld)
if d.dType = “multicast’ and r.cardinality >1 then
‘ InjectMulticastDev(t, r, d)

// recipient role

Procedure InjectTimeoutDev (t)

s := (new_sld, null, final)

sourceState := get(t.statelld)

t' := (new_tld, sourceState.sld, s'.sId, null)
add s’ and t’ to PA

Procedure InjectSubsetDev (¢, ¢, d)
length' := |c.cLength(1 — d.degree) |
¢ = (new_cld, c.cType, length')
g := get(t.methodld.messageld)
g = (new_gld, g.senderld, g.receiverld, c .cId)
m’ := (new_mld, g’.gId)
targetState := get(t.state2Id)
s’ := (new_sld, targetState.roleld, targetState.s Type)
t' := (new_tld,t.statelld, s".sId, m' .mId)
add ¢/, ¢', m/, s’, and ¢’ to PA
foreach ot € T' | ot.state1ld = targetState.sId do
ot := (new_otld, s', ot.state2Id, ot. methodId);
add ot’ to PA;

Procedure InjectMulticastDev (t, 1, d)
cardinality’ := |r.cardinality(1 — d.degree) |
r' := (new_rld, cardinality’)

s' = (new_sId,r'.rId, s.s Type)

message = get(t.methodld.messageld)

g’ = (new_gld, message.contentld)

m' := (new_mld, g’'.gId)

t' := (new_tld, t.statelld, s".sId, m'.mId)
add ', s', ¢', m’, and ¢’ to PA

add out-transitions of s' > as in lines 26-28

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

T, R‘
. r,.search :sl r,.request(g, + o, R)) > @ R,.ack(a,, 1))

R .timeout

R,.response(g, + ai{,“ .1y »@ rpack(ey, R)
1

R
"ot ')
R, .response'(g,’ + o/, 1) rU.ack((l'” ,»R)
.

RO

Fig. 6: The Protocol Automaton of the S-R-R protocol, extended with selfish deviations.

A deviation point is a transition of the PA in which a
deviation can take place. To determine if a transition ¢t € T
is a deviation point, the SDG algorithm first checks if the
SM contains a selfish deviation d that affects ¢ (line 3 in
Alg. 1). Then, it looks for deviation points in lines 4 (timeout),
8 (subset), and 11 (multicast).

Timeout Deviations. For each deviation point ¢ € T, the al-
gorithm generates a timeout deviation by calling the procedure
InjectTimeoutDev (line 5 in Alg. 1). This procedure creates a
new final state s’ and a new abstract transition connecting the
source state of ¢ with s'.

Subset Deviations. For each deviation point ¢t € T triggered
by a communication method, SDG checks if the message
content c is a collection of data units (line 8). If so, line 9 calls
the procedure InjectSubsetDev, which creates new elements to
represent the deviation. In particular, the procedure creates a
new content ¢’ (line 18) that shares the same data type as c,
but has a shorter length, calculated using d.degree (line 17).

Multicast Deviations. For each deviation point ¢t € T' trig-
gered by a communication method, the algorithm checks if
the receiver of the message sent during ¢ has a cardinality
greater than 1 (line 11). If so, line 12 calls the procedure
InjectMulticastDev to create the role 7’ (line 30) with a smaller
cardinality than the correct one (calculated in line 29).

Fig. 6 shows the result of executing the SDG algorithm on
the Protocol Automaton of Fig. 3. Consider for example state
so. In the correct execution of the PA, the role R; sends a
response message (gs) to ro. However, if R is selfish, it may
also timeout the protocol or send a message with a smaller
payload (g5).

V. RACOON++ TUNING PHASE

The tuning phase of RACOON++ aims at configuring the
accountability and reputation mechanisms according to a list of
design objectives provided by the Designer. Tuning involves an
iterative two-step refinement process, which alternates evalua-
tion with the tuning of the configuration parameters. The eval-
uation involves EGT analysis to study the system dynamics in
a given configuration setting. This task is performed by the R-
sim simulator integrated into the framework. We have chosen
EGT simulations as a modelling tool because in many practical
settings the populations of individuals participating in a system
evolve towards states of statistical equilibrium. After the
evaluation, an exploration algorithm uses the evaluation results
to optimise the parameters of the CEM. The tuning process
ends after a number of iterations, or when a configuration that
satisfies the Designer’s objectives is found.

A. Input of the Tuning phase

RACOON++ provides a set of selfish-resilience and perfor-
mance objectives for the cooperative systems designed within
its framework. Each objective defines a predicate over a system
metric, which can be evaluated by the RACOON++ evaluation
tool, i.e., the R-sim simulator. The possible predicates are at
most and at least. Hereafter, we list some of the application-
independent objectives natively supported by RACOON++.

o Cooperation level: the fraction of cooperative nodes in
the system;

o Audit precision: the number of correct positive audits
divided by the total number of positive audits;

o Audit recall: the number of correct positive audits divided
by the number of audits that should have been positive;

o CEM bandwidth overhead: the additional bandwidth con-
sumed by the accountability and reputation mechanisms;

o CEM message overhead: the costs of the accountability
and reputation mechanisms in terms of extra messages.

Examples of design objectives are “cooperation level at least
0.8” and “CEM message overhead at most 0.6 RACOON++
allows specifying further objectives on application-specific
metrics (e.g., throughput, jitter, anonymity). For each custom
objective, the Designer needs to implement the methods to
collect and evaluate the related metrics in the evaluation tool.

The second input of the tuning phase is an implementation
of the functional specification for the R-sim simulator.

B. Evolutionary game model

EGT models how strategic individuals evolve their be-
haviours by learning and imitating [32]. Similarly to several
recent works [27]-[29], RACOON++ applies this theoretical
framework to model the dynamic behaviour of selfish nodes
in a P2P system. The components of an evolutionary game
are: (i) a static representation of the system interactions, i.e.,
the Stage Game; (ii) one or more populations of players; (iii)
a function to calculate the utility of a given behaviour; and
(iv) the dynamics of the learning and imitation processes. We
describe each component separately below.

1) Stage game

Evolutionary games involve the repetition of strategic inter-
action between self-interested individuals. We model this inter-
action as a sequential game called the Stage Game (SG), which
we represent using the extensive form (or game tree) [31].
Fig. 7 shows the game tree of the stage game derived from
the S-R-R protocol illustrated in Fig. 6. RACOON++ provides
an automatic tool to create the SG using the information
contained in the Extended Specification resulting from the
design phase. Specifically, the tool translates the PA included

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

a :search
a request

a,:ack

a:response a_:timeout

Fig. 7: The SG derived from the S-R-R protocol in Fig. 4.
The label besides each decision node indicates the player that
takes action at that node. The label on each edge denotes an
action along with its corresponding method in the PA. The
labels beside each leaf denote the strategy profile of that play.

Player ‘ Strategy
ro {ao:search, a:request, as:ack}
21 {az:ack, az:response}

TABLE I: The strategies of the strategy profile sy, implement-
ing the cooperative execution of the stage game in Fig. 7.

in the Extended Specification into the elements of a stage game
as described hereafter.

Players. A player p represents a role of the PA. For example,
players py and p; in Fig. 7 map to roles vy and R; of the
S-R-R protocol, respectively. For ease of notation, let pg.type
refer to the rType of the role mapped by player py.

Nodes. A node of the stage game is derived from a state in the
PA, and is labelled with the player who has to take action. A
leaf node of the SG corresponds to a final state of the PA, and
represents a possible outcome of the stage game. In Fig. 7,
each leaf k is labelled with the corresponding outcome of.

Actions. An action is a move of the player in the SG, and is
derived from a method in the PA. Note that an edge of the
game tree in Fig. 7 corresponds to a transition in the PA.

Strategies. A play is a path through the game tree from the
root to a leaf. It describes a particular interaction between
two (or more) players. The ordered sequence of actions that a
player takes in a certain play constitutes her strategy. Consider
for instance the left-most play in Fig. 7, which represents the
cooperative execution of the S-R-R protocol: Table I reports
the strategies of players pp and p; to implement it.

2) Population of players

A population is a group of individuals with common
economic and behavioural characteristics. Because of the
symmetric nature of cooperative systems, in RACOON++ we
consider a single population of nodes, who can play the
strategies in the strategy space defined by the stage game.
In conformity with the previous works [27] and [28], we
divide the strategy space into non-overlapping subsets, each
representing a distinct combination of behaviours for the nodes
(i.e., cooperative, selfishness of a certain type). We call these
subsets strategy profiles s € S. RACOON++ creates a strategy
profile s; for each play k of the SG, such that s, includes the
strategies carried out by all players participating in that play.

9

Player ‘ Strategy profile ‘ Strategy

{ao:search, ai:request, as:ack}

7o s1
P 52

TABLE II: The strategies implemented in the SG of Figure 7
when players pg and p; are from sub-populations w; and ws.

{az:ack, as:timeout}

Thus, for example, and with reference to Fig. 7, the strategy
profile sy represents the behaviour of cooperative nodes and
includes the strategies presented in Table 1.

We partition the overall population into sub-populations, so
as to establish a one-to-one mapping with the strategy profiles.
A sub-population wy, represents the group of nodes that adopt
the behaviour defined by s;. In accordance with the EGT
model, a member of w; participates in the system by repeatedly
playing what specified by her strategy profile, regardless of
the outcome of the play. However, a member of w,; can
join another sub-population w; if she expects to increase
his utility by playing s;. Thus, the size of a sub-population
reflects the success of the associated strategy profile. As the
system evolves, the distribution of members across the sub-
populations can vary. We call this information the population
state of the system.

3) Utility function

The utility function of a player assigns a value (i.e., the
utility) to each outcome of a game. An outcome of the SG
depends on the sub-populations of the interacting players,
whose strategies determine the particular play that leads to o.
For example, consider the stage game in Fig. 7, and let players
po and p; be played by members of sub-population w; and ws,
respectively. Table II lists the planned sequence of actions of
the two players. The interaction starts with player py executing
the search transition and then sending a request message to
the other player. Player p; will first acknowledge the reception
of the message, and then she will terminate the protocol. The
interaction described above corresponds to the play {ag:search,
ay:request, ay:ack, as:timeout} in Fig. 7, which leads to the
outcome induced by the strategy profile s,. The outcomes of
a stage game describe the interaction between every possible
combination of players from different sub-populations.

In RACOON++, the utility received from playing a stage
game has two terms: the protocol payoff, and the incentives
introduced by the CEM. The protocol payoff «y; evaluates the
costs and benefits of a player when the outcome of SG is o;.
To calculate this value, RACOON++ evaluates the valuation
elements defined in the selfishness model by the Designer (see
Section IV-A2). Let us illustrate the procedure to evaluate
the protocol payoff -y in the stage game of Fig. 7, in the
case of interaction between members of the cooperative sub-
population wy. Consider the following valuations associated
to role ro and, thus, to player po: (vg, search,rq,10,1) and
(v1, 93, 70,3, 1), which refer to the ay:search and az:response
edges in Fig. 7, respectively. Let the content ¢ € C' carried
by message g3 be a list of 10 data units. Then, the protocol
payoff of player py is:

Yo(po) = v(vo) +v(v1)
=94 2 rg.cardinality - c.cLength = 29.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

The protocol payoff is the expected utility that would be
received if no incentives for cooperation were attached to the
system. However, the CEM used in RACOON++ establishes
that the ability of a player to obtain a requested service is
proportional to her reputation value (see Section IV-B). Thus,
the utility u; € R obtained by a player p; depends on whether
she plays as a service requester in the stage game. Formally:

uj(Pi) _ {’77(P1) : Q(Pz)
5 (pi)

where the function ¢ : P — [0, 1] determines the probability
that player p; € P will receive the protocol payoff, calculated
as the reputation of p; divided by the upper bound p,,q. of
reputation values. Following on the previous example, let the
reputation mechanism allow values between 0 and 10, and let
the requester player py have reputation 6. Then, her utility can
be calculated as:

’LL()(pU) = ’Yo(po) -p(po) =29-06~174.

4) Evolutionary dynamics

A common assumption in classical game theory is that
players have the information and skills to assess and choose
the best strategy to play in the current system’s state [31].
However, as other works have highlighted [27]-[29], this as-
sumption places a heavy burden on nodes’ computational and
communication capabilities, which is infeasible in most real-
world cooperative systems. On the contrary, EGT assumes that
players are neither perfectly rational nor fully informed about
all the possible strategies, but tend to implement the most
remunerative strategy through learning and imitation [32].

In RACOON++, each node monitors the utility it has
obtained for playing the strategy profile of its sub-population.
If the utility decreases for more than a given number of
consecutive observations, or if a specified time has elapsed,
then the node will look for a fitter sub-population to join. The
accountability audits of R-acc provide the means to learn what
are the fittest sub-populations in the system. More precisely,
we assume that a witness can infer the sub-population and
the utility of a node by auditing its logs, as the recorded
actions can be traced back to a particular strategy profile (the
space of strategy profiles, as well as the costs and benefits
of each action, are common knowledge to all nodes, because
we assume a single population). After an audit, the witness
compares its own utility against that of the monitored node. If
the witness has a lower utility, it will join the sub-population
of the monitored node with a given probability [29]. This
probability determines the evolution rate: the smaller its value,
the slower the fittest sub-population in the system increases.

if p;.type = “requester”
otherwise

C. Game-based evaluation

The game-based evaluation step evaluates a configuration
setting for the CEM. To this end, RACOON+ + first creates an
evolutionary game model of the system and then it simulates
the game dynamics using the RACOON++ evaluation tool
R-sim. The simulation results indicate whether the evaluated
CEM configuration has satisfied the list of design objectives
set by the Designer or not.

10

The RACOON++ simulation framework, R-sim, uses the
evolutionary game model of the cooperative system to simulate
the system dynamics in the candidate configuration setting.
The networking environment of R-sim consists of independent
nodes that are able to send a message to any other node,
provided that the address of the target node is known. Com-
munication is assumed to be subject to arbitrary message loss,
controlled by a probability parameter. Nodes can leave and
join the network at any time. The simulation engine of R-sim
supports a cycle-based model, in which time is structured into
rounds. At each round, each node plays a certain strategy of
the SG, according to the evolutionary dynamics described in
Section V-B. During the simulation R-sim collects statistics
about such dynamics, to evaluate the design objectives.

In contrast with RACOON, which includes a custom-
built simulator for cooperative systems [19], RACOON++
relies on the state-of-the-art PeerSim simulator [10], thereby
improving the usability, accuracy and performance of the
framework. We have chosen PeerSim among other simulation
tools (see [39] for a comprehensive review) because: (1) it
meets the requirements of scalability and dynamicity imposed
by the evolutionary model; (2) it supports integration with
RACOON++ thanks to its modular architecture; (3) it is
an active project, with a good developer community and
support. R-sim exploits the modular architecture of PeerSim
extending it with new components to develop, simulate and
evaluate the cooperative system resulting from the design
phase of the RACOON++ framework. Also, R-sim includes a
reference implementation of the accountability and reputation
systems used by RACOON++, along with an intuitive API
to simulate their calls. The Designer can use these facilities
to implement the functional specification of his system for
PeerSim. To the best of our knowledge, R-sim is the only
available software tool for the dynamic simulation of selfish
and strategic behaviours in distributed systems.

Other important R-sim parameters are listed below:

o Network: the network size; the message loss rate.

e Evolutionary game model: the initial population state
(e.g., equal-sized sub-populations, majority of coopera-
tive nodes); the probability to join a fitter sub-population.

o Monitoring: the duration of a simulation; the frequency
and the types of statistics to collect (e.g., nodes’ payoffs,
amount of messages exchanged, audit results).

D. Design Space Exploration

The output of the RACOON++ framework is the design
and configuration of a cooperative system that achieves the
design objectives set by the Designer. Thus far, we have
described how RACOON++ fosters cooperation using ac-
countability and reputation mechanisms (Section IV-B), and
how it evaluates the system performance using EGT and
simulation (Section V-C). The last step of the framework relies
on the evaluation results to tune the configuration parameters
of the CEM, aiming to achieve the desired design objectives.
A configuration candidate is an assignment of the R-acc and
R-rep parameters, i.e., the size of the witness set, the audit
period, the audit probability, the degree of punishment, and
the degree of reward.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

The exploration is an iterative process, which generates
new candidates based on the evaluation of the previous ones
until a configuration is found that satisfies all the Designer’s
objectives. If no feasible solution is found after a pre-defined
number of iterations (e.g., because the objectives were con-
tradictory or too demanding), the framework stops the search,
asking the Designer to improve the design manually or to relax
the design objectives.

RACOON++ explores the configuration space using a
greedy constraint-satisfaction algorithm, which is guided by
a set of observations derived from an empirical analysis of
the CEM parameters and their impact on the design ob-
jectives natively supported by RACOON++.> For instance,
we observed that the higher the number of witnesses, the
higher the CEM bandwidth overhead, because each witness
increases the amount of log transmissions and checking. As
another example, we observed that the shorter the audit period,
the higher the cooperation level, because selfish nodes are
detected earlier and punished more often. The exploration
algorithm relies on these observations to generate the next
configuration candidate. For instance, if the evaluation of a
given configuration results in a bandwidth overhead larger
than what required by a design objective, the exploration
algorithm will not generate configuration candidates with a
greater number of witnesses. If no guidelines are available for
updating a particular configuration, the exploration algorithm
will create a random configuration candidate. In order to avoid
the re-exploration of the regions of the configuration space, the
algorithm records the previously generated candidates.

VI. USING THE RACOON++ FRAMEWORK

RACOON++ is provided as a Java program, which is
released under a free software licence and is publicly avail-
able [33]. In the previous sections, we described the main
steps and building blocks of the framework. Now we turn our
attention to how RACOON++ is used by the Designer.

The first step for the Designer is to decide what parts of
the system should be included in the RACOON++ functional
specification (i.e., the Protocol Automata). The selected parts
should fulfil two criteria. On the one hand, these parts should
represent system functionalities that are sensitive to selfish
behaviours — specifically, to the deviation types described
in Section IV-A2. On the other hand, the selected parts should
involve actions that can be observed by other nodes (e.g., a
message exchange), to allow accountability audits [12], [13].

Then, the Designer inputs the functional specification, along
with the selfishness model to study (Section IV-A2) and the
design objectives to achieve (Section V-A), to the framework.
In RACOON++, these specifications are encoded in an XML-
based format, and are provided as a single XML document.*

To evaluate a configuration setting for the CEM,
RACOON++ simulates the system behaviour using the inte-
grated simulation framework R-sim, based on the PeerSim sim-

3The analysis involved the systematic evaluation of 250 configuration can-
didates in three cooperative systems (i.e., the ones considered for evaluating
our work) for a total of 750 experiments.

4The XML Schema for this document can be found in [33].

11

ulator. To this end, the Designer has to produce a Java imple-
mentation of the cooperative system, notably of its functional
specification. R-sim facilitates this task by providing a set of
ready-to-use components and an intuitive API for interfacing
a standard PeerSim protocol with the RACOON++ models
and functionalities. In particular, the framework includes an
implementation of the CEM, the algorithms to simulate the
behaviour of selfish nodes, and monitors to assess application-
independent system performance (e.g., audit precision and
recall, bandwidth overhead). These software facilities reduce
the number of functionalities to code, allowing the Designer
to focus only on implementing the application specific parts
of her system, such as the code to implement the correct
execution of the protocol and the selfish deviations from it.

Once all the inputs have been defined, the Designer can
run the RACOON++ framework and wait for the result of its
design and tuning phases (Fig. 1).

VII. EVALUATION

In this section, we demonstrate the benefits of using
RACOON++ to design selfishness-resilient cooperative sys-
tems. First, we introduce the three use cases considered in the
evaluation, namely, a live-streaming protocol, a load balancing
protocol, and an anonymous communication system. Second,
we assess the effort required by a Designer to specify and
implement the use cases. Third, we evaluate the capability
of RACOON++ to auto-configure the CEM, by measuring
the time needed to find a satisfactory configuration in 90
different scenarios. Then, we evaluate the effectiveness of the
RACOON++ cooperation enforcement mechanisms in with-
standing the impact of selfish nodes on a set of performance
objectives. Finally, we compare the performance of the CEM’s
accountability mechanism with FullReview, showing that R-
acc achieves better results while imposing less overhead.

The implementation of the use cases, as well as the config-
uration files related to the experiments reported in this section,
can be downloaded from the project website [33].

A. Use cases
We consider the following use cases.

Live Streaming. A P2P live streaming system consists of a
source node that disseminates video chunks to a set of nodes
over a network. Periodically, each node sends the chunks it has
received to a set of randomly chosen partners and asks them
for the chunks they are missing. Each chunk is associated
with a playback deadline, which, if missed, would render a
chunk unusable and the corresponding portion of the video
unplayable. For the chunk exchange, we use the gossip-based
live streaming protocol studied by Guerraoui et al. [14].

Load Balancing. The heterogeneity of nodes and the high
dynamics of P2P systems can lead to a load imbalance.’ We
assume a P2P system in which nodes are allowed to transfer all
or a portion of their load among themselves. The goal of a load
balancing protocol is to regulate these transfers in a way that

5The load can be measured in terms of different metrics, such as the number
of queries received per time unit.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

evenly distributes the load among nodes, to optimise the use
of node capabilities. The load balancing protocol considered
as a use case is the one proposed by Jelasity et al. [10].

Anonymous Communication. This system is based on a
simplified version of the Onion Routing protocol for com-
munication channel anonymity [15]. In Onion Routing, when
a source node wants to send a message to a destination node,
the source node builds a circuit of voluntary relay nodes.
Circuits are updated periodically, and relays can participate
in multiple circuits at the same time. To protect a message,
the source encrypts it with the public key of the destination.
Furthermore, to protect the communication channel, the source
uses the public key of each relay node in the circuit to encrypt
the address of the next relay node. The resulting message
is called an onion. A relay uses its private key to decrypt
one layer of the onion and contributes some of its bandwidth
to forward the resulting message to the next relay until the
message eventually reaches its destination.

B. Design and development effort

To show the benefits of using RACOON++ in terms of
design and development effort, we present the operations that
allow the Designer to specify, develop, and test the use cases.

To begin, the Designer specifies the communication proto-
cols (i.e., Protocol Automata) to be included in the functional
specification of the system. Fig.s 8-10 illustrate the Protocol
Automata defined for our use cases. The live streaming pro-
tocol (see Fig. 8) involves two roles and three protocol steps:
the provider r, proposes the set of chunks it has received
to a set of consumers r¢, which in turn request the chunks
they need. The protocol ends when 7, sends the requested
chunks to r¢. In the load balancing protocol (see Fig. 9)
each node starts with a certain amount of load. Periodically,
each node ro is allowed to transfer all or a portion of its
load to one of its neighbours R, after a negotiation step. The
negotiation is based on locally available information, obtained
from past interactions or sample observations [10]. Lastly, in
the anonymous communication protocol, every time a relay
r, receives an onion message from its predecessors (rp) in
the circuit, 7, decrypts the external layer of the onion, and
forwards the resulting onion to the next hops r in the circuit.
If r,. is the final destination of the onion, then the protocol will
end after the decrypt transition (state sy of Fig. 10).

Once the Designer has provided the functional specification
of the system, she defines the selfishness model. For example,
consider the anonymous communication protocol. A selfish
relay 7, that wants to save bandwidth may strategically avoid
to forward onions that are not intended for itself. Concretely,
r could avoid to relay any onion to its successors (timeout
deviation) or relay onions only to a subset of them (multicast
deviation). As another example, consider a selfish provider
rp that wants to participate in the live streaming protocol
but limits its bandwidth consumption. A possible strategy for
rp 1S to propose fewer chunks than it has available (subset
deviation), or send proposals to only a subset of its neighbours
(muticast deviation), in such a way as to reduce the number
of chunks that could be requested.

12

rp.propose(go, rc) rc.request(gl, rp) rp.serve(gz, rc)
o))

Fig. 8: The PA of the live streaming protocol [14].

0
artn® (Req(%o e‘\{ew(; ottt
2y

Ty R, P £, 0080 £, W02
o e
Fig. 9: The PA of the load balancing protocol [10].

r,.sendToRelay(g,, r) r .decrypt() r.relay(g,, r,)

Fig. 10: The PA of the anonymous communication protocol.

. . R-sim Program ?

Specification Std RS TOT

Live Streaming protocol 51 384 28 444
Load Balancing protocol 48 232 28 290
Anonymous Comm. protocol 48 212 23 289

2 Std = standard operation, RS = R-sim functionalities, TOT = Std + RS.
TABLE III: Lines of Code needed for the use cases.

Finally, the Designer provides RACOON++ with a list of
design objectives that the system must satisfy. Recall from
Section V-C that an objective can be application-independent
or application-specific. Examples of application-specific objec-
tives related to our use cases are (i) a load distribution with a
Coefficient of Variation (CoV) close to zero, (ii) a low fraction
of onions that do not reach their final destination, or (iii) a low
fraction of video chunks that are not played in time.

The Designer provides the RACOON++ specification inputs
as an XML document. The “Specification” column of Table III
illustrates the conciseness of the XML representation of the
inputs, showing that the full specification of a use case does
not require many Lines of Code (LoC).

The RACOON++ framework requires the Designer to im-
plement the functional specification of the system in the R-sim
simulator. The “R-sim Program” columns of Table III shows
the LoC of the use cases’ implementations, distinguishing the
LoC needed to implement the standard operation (“Std” col-
umn) from those introduced to invoke the R-sim functionalities
(“RS” column). The results show that the software facilities
provided by R-sim allow adapting a system implementation
to be used in RACOON++ without significant coding effort.
More precisely, the RS LoC are in the range 6.3%-9.6% of
the total implementation code, which appears reasonable as it
corresponds to only 28 additional LoC, at most.

C. Meeting design objectives using RACOON++

To evaluate the capability of RACOON++ to find a satis-
factory configuration for its cooperation enforcement mech-
anisms, we performed the following experiment. First, we
defined 30 different scenarios for each use case, for a total
of 90 scenarios, where a scenario is a unique combina-
tion of design objectives, system parameters (e.g., number
of nodes, message loss rate), application-specific parameters
(e.g., playback deadline, length of a circuit of relays, initial

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

distribution of loads), and fraction of selfish nodes in the
system.® Second, we used RACOON++ to find a satisfactory
configuration for each scenario, while measuring the number
of tested configurations and the duration of the process. In the
experiment, RACOON++ tests an average of 7 configurations
before finding a satisfactory one (median 4, range 1-56). The
process takes less than 18 min on average to complete (median
6 min, range 10 s—208 min),” which we consider reasonable,
as RACOON++ runs offline at design time.

Overall, the tuning process failed to meet all the design
objectives in only three scenarios out of 90, which we consider
as an acceptable result. The failures were due to too hard con-
straints on the efficiency and effectiveness of the CEM, which
were expressed as cost overhead and custom performance
objectives (such as low video chunk loss rate), respectively.
In these cases, RACOON++ returns to the Designer the tested
configuration that has obtained the best performance in terms
of the design objectives. If not satisfied with this outcome,
the Designer can either relax the performance requirements or
optimise some application-specific operation or parameter.

D. RACOON++ effectiveness

In this section, we show that the cooperative systems de-
signed using RACOON++ can effectively achieve cooperation
as well as application-specific objectives in the presence of an
increasing proportion of selfish nodes. To this end, we evalu-
ated 3 scenarios per use case, which were randomly selected
from the scenarios generated for the previous experiment.

In the first experiment, we assess the effectiveness of the
CEM in fostering cooperation in the tested systems. The
experiment consists of a set of simulations, which monitor
the dynamics of 2,000 nodes for 3,000 simulation cycles.
We initialize each simulation with an increasing proportion
of cooperative nodes (from 0.1 to 1), and we measure the
cooperation level achieved at the end of the simulation. For
each use case, we calculated the median result from the 3
scenarios. Results in Fig. 11(a) show that the CEM succeeds
in making the nodes behave cooperatively in all use cases.
Even the worst result (in the live streaming use case) shows a
dramatic increase of the cooperation level, from 0.1 to 0.94.

We now focus on the correlation between cooperation
level and application-specific performance. Fig.s 11(b-c-d)
present the median results of our evaluation for the three
use cases. The figures display a curve showing the impact
of selfish nodes when no cooperation enforcement mechanism
is adopted (curve no CEM), and another curve for the results
obtained when using RACOON++ (curve CEM). For example,
Fig. 11(d) shows that without any mechanism to prevent
selfishness the fraction of onions that do not reach destination
in the anonymous communication use case increases linearly
with the number of selfish nodes in the system and reaches
very high values (e.g., 40% of selfish nodes leads to a loss
of almost half of the transmitted onions, thereby making the
system ineffective in practice). Similar conclusions hold for the

SFor reasons of space, the full setting for this and the following experiments
is not reported here, but have been made available on the project website [33].
"Measures made on a 2.8 GHz machine with 8 GB of RAM.

13

number of chunks in the live streaming use case Fig. 11(b).
The initial cooperation level also has an impact on the per-
formance of the load balancing protocol, which we measured
in terms of CoV of the load distribution (the lower the CoV,
the better the performance). As we can observe in Fig. 11(b),
when no mechanism to foster cooperation is in place the CoV
increases with the number of nodes that refuse to participate
in the balancing protocol. In contrast, the results achieved by
the systems designed using RACOON++ show that the CEM
can withstand the impact of large populations of selfish nodes.

E. RACOON++ vs FullReview

In this section, we present the benefits of using the
RACOON++ CEM instead of the original FullReview proto-
cols [13]. The main differences between these mechanisms,
already discussed in Section IV-B, are (i) the approach to
punishing selfish and suspect nodes, which is more tolerant in
the CEM, (ii) the possibility in R-acc to control the probability
of auditing other nodes, (iii) the dissemination of proofs of
misbehaviour in the system, which in RACOON+ + is realized
by R-rep. To compare the performance of the RACOON++
CEM and of FullReview in our use cases, we initialized the
tested systems with a scenario randomly chosen from the set
created for the previous experiment. Then, we performed two
sets of simulations for each system. In one set we used the
RACOON++ CEM to foster cooperation, and in the other
set we used FullReview. Both the CEM and FullReview
were optimised for the scenario. In particular, the CEM was
automatically configured by the RACOON++ tuning phase,
whereas FullReview was tuned manually.

The first important benefit of using CEM is shown in
Fig. 12(a), which represents the fraction of nodes that are
participating in the cooperative system at the end of the
simulation. This figure readily illustrates the opposite ap-
proaches adopted by RACOON++ and FullReview to deal
with selfishness: RACOON++ aims to motivate selfish nodes
to change their strategy and behave cooperatively, while
FullReview operates by isolating non-cooperative nodes. We
advocate our approach as the most appropriate for cooperative
systems, for two reasons. First, it takes into account the
high heterogeneity of nodes and allows low-resource nodes
to occasionally behave selfishly because of resource shortages
(e.g., low battery in mobile devices). Second, it fits better
with the cooperative design principles, which are based on
participation and inclusion rather than on punitive restrictions.

On the performance side, Fig. 12(b) shows that the CEM
of RACOON++ can decrease the bandwidth overhead in the
tested system, notably by 22% in the live streaming use case.
This is mainly due to the replacement of the evidence transfer
protocol of FullReview with a lightweight reputation system,
in which reputation values are exchanged by piggybacking
on the accountability protocols messages. Also, R-acc allows
probabilistic audits, which further reduces the traffic and
computation overhead associated with the audit activities.

As shown in earlier work [19], FullReview is very sensitive
to message loss, which can significantly increase the num-
ber of suspect nodes, and might even lead to the wrongful

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

] OLS OLB MWAC % > CEM
_ =08 | ——no CEM r
o) <
> 09 g
3 6 0.6
g, 08 P
o © 0.4
[} =
O 0.7)
= 06 go2 !
ol t3 i

0.5 0

01 02 03 04 =05 0 02 04 06 0809

Initial Coop. Level Fraction of selfish nodes

(a) Cooperation Level (b) Chunk Loss in LS

14

—e— CEM 2 —e— CEM L
0.8 | —— no CEM — 0.8 | —— no CEM
> 8
> S
§os6 g 0.6
= G
S04 04
- g
+ =
0.2 5 0.2
4 E .,0—0——#/’/./
0 * i — o—9 0 -

0 0.2 04 0.6 0.80.9 0 0.2 0.4 0.6 0809
Fraction of selfish nodes Fraction of selfish nodes

(c) Load CoV in LB (d) Onion Loss in AC

Fig. 11: Cooperation levels (a) and application-specific performance of the Live Streaming (LS) (b), Load Balancing (LB) (c),
and Anonymous Communication (AC) (c) use cases, when varying the initial fraction of selfish nodes.

% 2000 g I
£ 2
2 1500 5 075
o S
£ 1000 = 05
Q =
< 3
S 500 £ 025
z 5

0 @0

LS LB AC LS LB AC
OFullReview B Racoon++ O FullReview M Racoon++

(a) Active Nodes (b) Bandwidth Overhead

Fig. 12: Performance comparisons between FullReview and
RACOON++ CEM in the Live Streaming (LS), Load Balanc-
ing (LB), and Anonymous Communication (AC) use cases.

eviction of a correct node. We evaluated the robustness of
the RACOON++ CEM against message loss by assessing
the performance of the tested systems when running over an
unreliable network with up to 20% message loss. Fig.s 13(a)
illustrates the cooperation levels achieved by the tested sys-
tems at the end of the simulations when using the RACOON++
CEM and FullReview. The curves show that message loss has a
small impact on the cooperation, due to the mitigating effect of
the challenge/response protocol used by both mechanisms (see
Section IV-B). Notice that the FullReview curves in Fig. 13(a)
confirm what already discussed for Fig. 12(a), that is the
dramatic decrease of active nodes because of the extreme
punishment enforced by the accountability mechanism. Such
performance degradation is much more severe for application-
specific objectives, as can be observed in Fig.s 13(b-c-d).
The main reason is the FullReview suspicion mechanism,
which prevents a suspect node from interacting with others.
Because temporary message loss can trigger node suspicion,
the larger the message loss rate, the longer a node could be
stuck in a suspect state. Conversely, in the RACOON++ CEM,
a suspect node can continue to interact with other nodes,
though with a lower probability. This gives the suspect node
more opportunities to get out of the suspect state by behaving
cooperatively, which is also beneficial for the system. The
Racoon++ curves in Fig.s 13(b-c-d) demonstrate that this
simple strategy is enough to guarantee resilience from selfish
nodes while being tolerant to message loss.

VIII. CONCLUSIONS

In this paper we presented RACOON++, a model-based
framework for designing, configuring, and testing coopera-
tive systems that are resilient to selfish nodes. RACOON++
relies on accountability and reputation mechanisms to en-
force cooperation among selfish nodes. Using a combination
of simulation and Evolutionary Game Theory, RACOON++
automatically configures these mechanisms in a way that
meets a set of design objectives specified by the system
designer. We illustrated the benefits of using RACOON++
by designing a P2P live streaming system, a load balancing
protocol, and an anonymous communication system. The
evaluation of the use cases, performed using the state-of-the-
art simulator PeerSim, shows that the cooperative systems
designed using RACOON++ achieve selfishness-resilience and
high performance. The RACOON++ framework is provided as
a Java program, and is freely available for download [33].

Our future work includes the integration of a domain-
specific language into RACOON++ to specify more complex
selfish behaviours, such as the one we proposed in [42], and
the investigation of other mechanisms to foster cooperation
(e.g., decentralised credit-based systems).

REFERENCES

[1] Cisco Systems. “Cisco Visual Networking Index: Forecast and Method-
ology, 2015-2020.” A Cisco White Paper, 2016.

[2] X. Liu et al. “A case for a coordinated internet video control plane.” In
SIGCOMM, 2012.

[3] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, N. Sastry. “Survey on
Peer-assisted Content Delivery Networks.” Computer Networks, 2017.

[4] M. Swan. “Blockchain: Blueprint for a new economy.” O’Reilly Media,
Inc., 2015.

[51 R. Want, B. N. Schilit, S. Jenson. “Enabling the internet of things.” In
IEEE Computer, 48(1), 2015.

[6] G. Ziccardi. “Resistance, liberation technology and human rights in the
digital age.” Springer Science & Business Media, 2012.

[7]1 1. Cunha, E. C. Miguel, M. V. Rocha, et al. “Can peer-to-peer live
streaming systems coexist with free riders?” In P2P, 2013.

[8] M. Zghaibeh, H. C. Fotios. “Revisiting free riding and the Tit-for-
Tat in BitTorrent: A measurement study.” Peer-to-Peer Networking and
Applications, 1(2), 2008.

[91 D. Hughes, G. Coulson, J. Walkerdine. “Free riding on Gnutella

revisited: the bell tolls?” Distributed Systems Online, IEEE, 6(6), 2005.

M. Jelasity, A. Montresor, O. Babaoglu. “A modular paradigm for build-

ing self-organizing peer-to-peer applications.” In Internation Workshop

on Engineering Self-Organizing Applications, 2003.

B. Cohen. “Incentives build robustness in BitTorrent.” Workshop on

Economics of Peer-to-Peer systems, 2003.

[10]

[11]

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE

Cooperation Level

=1

[12]
[13]
[14]
[15]

[16]

(17]
[18]

[19]

[20]

(21]

[22]
[23]
[24]
[25]

[26]

(271

(28]

(291

(30]
[31]
(32]
[33]
[34]
[35]
[36]
(371

[38]

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

o

o

o

Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222

15

0.2 9000
—®&— Racoon++ § 8000
>0.15 | —* FullReview 3 7000
3 £ 6000
25000
E o e 4000
3 3 3000 1 —&— Racoon++
0.05 Z 2000 FullReview
¢ 1000
A ——eo—o o —0
0 0
0 0.05 0.1 015 02 0 005 01 015 02

Message Loss
(c) CoV of load in LB

Message Loss
(d) Onion Loss in AC

Fig. 13: Experiment results with different proportions of message loss.

1 . . 2]
S 09
g | —@— LS, LB, AC - Racoon++ ~ 08
—+— LS - FullReview g 0.7
6 —>— LB - FullReview = 0.6
—A— AC - FullReview o -
cs 0.5
4 = 04 —@— Racoon++
7 ¥ S S 03 .
o] § 02 —4&— FullReview
= ool -~
0 0
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 02
Message Loss Message Loss
(a) Cooperation Level (b) Chunk Loss in LS
A. Haeberlen, P. Kouznetsov, P. Druschel. ‘PeerReview: Practical

accountability for distributed systems.” In SOSP, 2007.

A. Diarra, S. Ben Mokhtar, P. L. Aublin, V. Quéma. “FullReview:
Practical accountability in presence of selfish nodes.” In SRDS, 2014.
R. Guerraoui, K. Huguenin, A-M. Kermarrec, et al. “LiFTinG:
Lightweight freerider-tracking in gossip.” In Middleware, 2010.

D. Goldschlag, M. Reed, P. Syverson. “Onion routing.” Commun. of
the ACM, 42(2), 1999.

I. Abraham, D. Dolev, R. Gonen, J. Halpern. “Distributed computing
meets game theory: robust mechanisms for rational secret sharing and
multiparty computation.” In PODC, 2006.

J. Kats. “Bridging game theory and cryptography: Recent results and
future directions.” In Theory of Cryptography, Springer, 2008.

J. Freudiger, M. H. Manshaei, J-P. Hubaux, D. C. Parkes. “On non-
cooperative location privacy: a game-theoretic analysis.” In CCS, 2009.
G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini,
E. Damiani, L. Brunie. “A framework for the design configuration of
accountable selfish-resilient peer-to-peer systems.” In SRDS, 2015.

L. Buttydn, et al. “Barter trade improves message delivery in oppor-
tunistic networks.” Ad Hoc Networks, 8(1), 2010.

R. Trestian, O. Ormond, G.M. Muntean. “Game theory-based network
selection: solutions and challenges.” IEEE Commun. Surveys and
Tutorials, 14(4), 2012.

A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. P. Martin, C. Porth.
“BAR fault tolerance for cooperative services.” In SOSP, 2005.

S. Ben Mokhtar, G. Berthou, A. Diarra, et al. “RAC: a freerider-resilient,
scalable, anonymous communication protocol.” In ICDCS, 2013.

H. C. Li, A. Clement, M. Marchetti, et al. “FlightPath: Obedience vs.
choice in cooperative services.” In OSDI, 2008.

H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi,
M. Dahlin. “BAR gossip.” In OSDI, 2006.

R.T.Ma, S. Lee, J. Lui, D. K. Yau. “Incentive and service differentiation
in P2P networks: a game theoretic approach.” IEEE/ACM Transactions
on Networking, 14(5), 2006.

E. Palomar, A. Alcaide, A. Ribagorda, Y. Zhang. “The peers dilemma:
A general framework to examine cooperation in pure peer-to-peer
systems.” Computer Networks, 56(17), 2012.

Y. Wang, et al. “P2P soft security: On evolutionary dynamics of P2P
incentive mechanism.” Computer Communications, 34(3), 2011.

B. Q. Zhao, J. Lui, D-M. Chiu. “A mathematical framework for
analyzing adaptive incentive protocols in P2P networks.” In Networking,
IEEE/ACM Transactions on, 20(2), 2012.

R. Mahajan, M. Rodrig, D. Wetherall, J. Zahorjan. “Experiences
applying game theory to system design.” In SIGCOMM, 2004.

R. B. Myerson. “Game theory.” Harvard University press, 2013.

J. Weibull. “Evolutionary game theory.” MIT press, 1997.

“The RACOON++ Framework.” “https://github.com/glenacota/racoon”
A. Yumerefendi, J. S. Chase. “The role of accountability in dependable
distributed systems.” In HotDep, 2005.

M. Belenkiy, ef al. “Making P2P accountable without losing privacy.”
Proc. of the ACM Workshop on Privacy in Electronic Society, 2007.

F. D. Garcia, J. H. Hoepman. “Off-line karma: a decentralized currency
for peer-to-peer and grid applications.” ACNS, 2005.

S. Marti, H. Garcia-Molina. “Taxonomy of trust: Categorizing P2P
reputation systems.” Computer Networks, 50(4), 2006.

K. Hoffman, D. Zage, C. Nita-Rotaru. “A survey of attack and defense
techniques for reputation systems.”” ACM Computing Surveys, 42(1),
2009.

[39]
[40]

[41]

[42]

S. Naicken, B. Livingston, A. Basu, et al. “The state of peer-to-peer
simulators and simulations.” In SIGCOMM, 2007.

C-E. Killian, J. W. Anderson, R. Braud, R. Jhala, A. M. Vahdat. “Mace:
Language support for building distributed systems.” In PLDI, 2007.

L. Leonini, E. Riviere, P. Felber. “SPLAY: Distributed Systems Eval-
uation Made Simple (or How to Turn Ideas into Live Systems in a
Breeze).” In NSDI, 2009.

G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini,
E. Damiani, L. Brunie. “Analysing selfishness flooding with SEINE.”
Accepted for publication in DSN, 2017.

Guido Lena Cota Guido Lena Cota is a Ph.D. in
computer science, co-supervised by Universita degli
Studi di Milano (Italy) and INSA Lyon (France). His
research interests are in the areas of dependable and
selfishness-resilient cooperative distributed systems.
Lena Cota is member of the IRIXYS Int. Research
and Innovation Center.

Sonia Ben Mokhtar Sonia Ben Mokhtar is a CNRS
researcher at the LIRIS lab, in the DRIM group,
since October 2009. Before that, she was a research
associate at University College London (UCL) for
two years, working with Licia Capra. She received
her Ph.D. in 2007 from University Pierre et Marie
Curie (Paris 6), which she did under the super-
vision of Valrie Issarny and Nikolaos Georgantas
in the INRIA ARLES project-team. Her research
interests include Reliable Distributed Systems and
Middleware for Mobile Environments. Ben Mokhtar

is member of the IRIXYS Int. Research and Innovation Center.

Gabriele Gianini Gabriele Gianini is an assistant
professor in the Department of Computer Science
of Universita degli Studi di Milano. His research
interests include game theoretic applications to net-
working and security, quantitative modeling of pro-
cesses, and statistical and soft computing techniques.
Gianini received a PhD in physics from Universita
degli Studi di Pavia. Gianini is a coordinator of the
IRIXYS Int. Research and Innovation Center.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2706286, IEEE
Transactions on Dependable and Secure Computing

JOURNAL OF KTEX CLASS FILES, VOL. 22, NO. 2, SEPTEMBER 2222 16

Ernesto Damiani Ernesto Damiani is a full Profes-
sor at Universita degli Studi di Milano and the Direc-
tor of the Information Security Research Center at
Khalifa University, Abu Dhabi. His research interests
include cloud assurance, Web services and business
process security, and Big Data processing. Damiani
received a PhD in Computer Science from Universita
degli Studi di Milano, and a doctorate honoris causa
from INSA Lyon. Damiani is a leading scientist of
the IRIXYS Int. Research and Innovation Center.

Julia Lawall Julia Lawall is a Senior Researcher at
Inria. Her research interests include program anal-
ysis and language design, applied to systems code.
She received a PhD in Coputer Science at Indiana
University and was previously on the faculty of the
University of Copenhagen.

Gilles Muller Gilles Muller received the Ph.D.
degree in 1988 from the University of Rennes I,
and the Habilitation a Diriger des Recherches degree
in 1997 from the University of Rennes I. He is
currently a senior research scientist at Inria Paris and
the head of the Whisper group. His research interests
include the development of methodologies based
on domain-specific languages for the structuring of
infrastructure software.

Lionel Brunie Lionel Brunie is a Professor at the
National Institute of Applied Sciences of Lyon,
France. His main research interests include data
management and resilience in distributed systems,
and information privacy and security. Brunie is a
leading scientist of the IRIXYS Int. Research and
Innovation Center.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

