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APPROXIMATION, REGULARITY AND POSITIVITY PRESERVATION

ON RIEMANNIAN MANIFOLDS

STEFANO PIGOLA, DANIELE VALTORTA, AND GIONA VERONELLI

Abstract. The paper focuses on the Lp-Positivity Preservation property (Lp-PP for short)
on a Riemannian manifold (M, g). It states that any Lp function u with 1 < p < +∞,
which solves (−∆+ 1)u ≥ 0 on M in the sense of distributions must be non-negative. Our
main result is that the Lp-PP holds if (the possibly incomplete) M has a finite number of
ends with respect to some compact domain, each of which is q-parabolic for some, possibly
different, values 2p/(p − 1) < q ≤ +∞. When p = 2, since ∞-parabolicity coincides with
geodesic completeness, our result settles in the affirmative a conjecture by M. Braverman, O.
Milatovic and M. Shubin in 2002. On the other hand, we also show that the Lp-PP is stable
by removing from a complete manifold a possibly singular set with Hausdorff co-dimension
strictly larger than 2p/(p − 1) or with a uniform Minkowski-type upper estimate of order
2p/(p − 1). The threshold value 2p/(p − 1) is sharp as we show that when the Hausdorff
co-dimension of the removed set is strictly smaller, then the Lp-PP fails. This gives a
rather complete picture. The tools developed to carry out our investigations include smooth
monotonic approximation and consequent regularity results for subharmonic distributions,
a manifold version of the Brezis-Kato inequality, Liouville-type theorems in low regularity,
removable singularities results for Lp-subharmonic distributions and a Frostman-type lemma.

Since the seminal works by T. Kato, the Lp-PP has been linked to the spectral theory of
Schrödinger operators with singular potentials ∆ − V . Here we present some applications
of the main results of this paper to the case where V ∈ Lp

loc, addressing the essential self-
adjointness of the operator when p = 2 and whether or not C∞

c (M) is an operator core for
∆− V in Lp.
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1. Introduction and main results

1.1. Basic notation. Let (M,g) be a connected, possibly incomplete, n-dimensional Rie-
mannian manifold, n ≥ 2, endowed with its Riemannian measure dv. Unless otherwise
specified, integration will be always performed with respect to this measure. The Riemann-
ian metric g gives rise to the intrinsic distance dist(x, y) between a couple of points x, y ∈M .
The corresponding open metric ball centered at o ∈ M and of radius R > 0 is denoted by
BR(o). The Riem and Ric symbols are used to denote, respectively, the Riemann and the
Ricci curvature tensors of (M,g). Finally, the Laplace-Beltrami operator of (M,g) is denoted
by ∆ = traceHess = div∇. We stress that we are using the sign convention according to

which, on the real line, ∆ = + d2

dx2 .

This paper deals with sub-solutions of elliptic PDEs involving the Schrödinger operator

L = ∆− λ(x)

where λ(x) is a smooth function.
We say that u ∈ L1

loc(M) is a distributional solution of Lu ≥ f ∈ L1
loc(M) if, for every

0 ≤ ϕ ∈ C∞
c (M),

∫

M
uLϕ ≥

∫

M
fϕ.

Sometimes, we will call such a u a distributional subsolution of the equation Lu = f . The
notion of distributional supersolution is defined by reversing the inequalities and we say that
u ∈ L1

loc(M) is a distributional solution of Lu = f if it is a subsolution and a supersolution
at the same time.

In the presence of more local regularity of the function involved we can also speak of a weak
solution of the same inequality. Namely, u ∈W 1,1

loc (M) is a weak solution of Lu ≥ f ∈ L1
loc(M)

if, for every 0 ≤ ϕ ∈ C∞
c (M), it holds

−
∫

M
g(∇u,∇ϕ) ≥

∫

M
(λ+ f)ϕ

By a density argument, the inequality can be extended to test functions 0 ≤ ϕ ∈ W 1,∞
c (M).

If the regularity of u is increased to W 1,2
loc (M) then test functions can be taken in W 1,2

c (M).

Finally, we need to recall that a function u ∈ W 1,1
loc (M) is a distributional solution of

Lu ≥ f ∈ L1
loc if and only if it is a weak solution of the same inequality.

1.2. The BMS conjecture. This paper and its companion [GPSV] originate from the un-
published preprint [PV21] by two of the authors. The main goal of the present paper is to
expand the investigation of the BMS conjecture on possibly incomplete Riemannian mani-
folds. In [GPSV] a generalization of the BMS conjecture, that relies on a completely new
notion of distributional subsolutions, is obtained in the much broader setting of complete
metric measure spaces.

BMS conjecture was introduced in [BMS02, Appendix B], and it is concerned with the
Lp-positivity preserving property for Riemannian manifolds. We recall the definition of this
property by B. Güneysu, [Gün16]:
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Definition 1.1. Let 1 ≤ p ≤ +∞. The Riemannian manifold (M,g) is said to be Lp-
Positivity Preserving (Lp-PP for short) if the following implication holds true:

{
(−∆+ 1)u ≥ 0 distributionally on M

u ∈ Lp(M)
=⇒ u ≥ 0 a.e. on M.(Lp−PP)

More generally, one can consider any family of functions C ⊆ L1
loc(M) and say that (M,g)

is C -Positivity Preserving if the above implication holds when Lp(M) is replaced by C .

The following conjecture, motivated by the study of self-adjointness of covariant Schrödinger
operators (see the discussions in [Gün17, G17] and Section 7 below) was formulated by M.
Braverman, O. Milatovic and M. Shubin in [BMS02, Appendix B].

Conjecture 1.2 (BMS conjecture). Assume that (M,g) is geodesically complete. Then (M,g)
is L2-positivity preserving.

The validity of the BMS conjecture has been verified under additional restrictions on the
geometry of the complete Riemannian manifold (M,g). More precisely:

• In the seminal paper [Kat72, p.140], T. Kato proved that Rn is L2-PP.
• In [BMS02, Proposition B.2] it is assumed that (M,g) has C∞-bounded geometry,

i.e., it satisfies ‖∇(j)Riem ‖L∞ < +∞ for any j ∈ N and inj(M) > 0.
• In [Gün16], B. Güneysu showed that Ric ≥ 0 is sufficient for Conjecture 1.2 to be
true. Subsequently, in [G17, Theorem XIV.31], he proved that if Ric ≥ −K2 then
(M,g) is Lp-PP on the whole scale p ∈ [1,+∞].

• In [BS18], D. Bianchi and A.G. Setti observed that the BMS conjecture is true even
if the Ricci curvature condition is relaxed to

Ric ≥ −C(1 + r(x))2

where r(x) = dist(x, o) for some origin o ∈M . Under the same curvature assumptions,
the Lp-PP can be extended almost directly to any p ∈ [2,∞), and with a little more
effort to any p ∈ [1,+∞], [G17, MV21].

• In the very recent [MV21], L. Marini and the third author considered the case of a
Cartan-Hadamard manifold (complete, simply connected with Riem ≤ 0). In this
setting it is proved that (M,g) is Lp-PP for any p ∈ [2,+∞) provided

−(m− 1)B2(1 + r(x))α+2 ≤ Ric ≤ −(m− 1)2A2(1 + r(x))α

for some α > 0 and B >
√
2(m− 1)A > 0.

Kato’s argument in R
n relies on the positivity of the operator (−∆ + 1)−1 acting on the

space of tempered distributions, which in turn is proved using the explicit expression of its
kernel. Instead, in all the above quoted works on Riemannian manifolds, the proofs stem
from an argument by B. Davies, [BMS02, Proposition B.3] that relies on the existence of
good cut-off functions with controlled gradient and Laplacian. Obviously, the construction of
these cut-offs requires some assumption on the curvature.

1.3. Riemannian manifolds and Lp-Positivity Preservation. In this paper we prove
some results on the Lp positivity-preserving property for a Riemannian manifold M and its
link to completeness of M , the p-parabolicity of M , and the validity of the property onM \K
in relation to the size of K.

The approach we use is somewhat different from the other results available in literature. In
particular, our approach is based on a new a priori regularity result for positive subharmonic
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distributions (see Section 3), which permits to prove a Liouville type theorem and on a Brezis-
Kato inequality on Riemannian manifolds (see Section 4). Both these results, in turn, rely
on a smooth monotonic approximation of distributional solutions of Lu ≥ 0 (see Section 2).
This approximation can be proved using general potential-theoretic arguments, but in this
paper we also present an explicit construction that uses the Riemannian Green’s function as
a sort of mollifier to smoothen any L1 subsolution u.

This approach avoids any curvature restrictions on the manifold M , and allows us to prove
that

Theorem 1.3. Let (M,g) be a complete Riemannian manifold. Then M is Lp-Positivity
Preserving for every p ∈ (1,+∞). In particular, the BMS conjecture is true.

As a matter of fact, a by-product of our approach is that a complete manifold is C -Positivity
Preserving where

C = {u ∈ L1
loc(M) : ‖u‖Lp(B2R\BR) = o(R2/p) as R→ +∞},

where p ∈ (1,+∞) (see Remark 5.3).

Remark 1.4. We note explicitly that, in the statement of Theorem 1.3, the endpoint cases
p = 1 and p = +∞ are excluded. This is because, in general, the corresponding property may
fail. Indeed, it is well known that there are complete Riemannian manifolds which are not L∞-
Positivity Preserving (since stochastically incomplete). On the other hand, [BM22] contains
an example of complete manifold whose sectional curvature decays more than quadratically
to −∞ and such that the L1-Positivity Preservation is not satisfied.

1.4. Lp-Positivity Preservation, parabolicity, capacity and removable sets. A nat-
ural problem is to understand to which extent geodesic completeness is a necessary condition
for the (Lp−PP) property to hold. We present two families of results in this direction:

(1) Theorem 5.1 states that a not necessarily complete Riemannian manifold M still
enjoys the (Lp−PP) property if it has a finite number of ends, all of which are q-

parabolic for possibly different values of q > 2p
p−1 .

(2) Corollary 5.6, Proposition 5.8 and Section 6 deal with manifolds of the form M \K,
where M is a complete Riemannian manifold and K is a compact subset with either
capacity or Minkowski-type upper bounds.

We refer the reader to [Mat95, DL08, Gri99] for a background on capacity and parabolicity.
The relevant definitions will be also recalled in Section 5.

The main idea for these results is that sets that are sufficiently “small” in a suitable sense
do not influence the behavior of solutions to (−∆+ 1)u ≥ 0, and parabolicity of a manifold
guarantees the same property for the boundary at infinity of M .

To be more precise, we prove the following results:

Proposition 1.5. Let 1 < p < +∞ and let M = N \K, where (N,h) is an n-dimensional
complete Riemannian manifold and K ⊂ N is a compact set. Suppose that the Hausdorff
dimension of K satisfies

dimH(K) < n− 2p

p− 1
.(1.1)

Then M is Lp-Positivity Preserving.
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As a matter of fact the conclusion of Proposition 1.5 holds if K is q-polar for some 2p
p−1 <

q ≤ +∞, a condition that is implied by the smallness of Hausdorff dimension.
With a stronger assumption on the size of K, it is possible to deal with the threshold

dimension as well. In particular, we have the following result. Here, and in the subsequent
parts of the paper, given a subset E of a complete Riemannian manifold (N,h), we denote
by Br(E) = ∪x∈EBr(x) its open tubular neighborhood.

Proposition 1.6. Let 1 < p < +∞ and let M = N \K, where (N,h) is an n-dimensional
complete Riemannian manifold and K ⊂ N is a bounded set. If the tubular neighborhoods of
K have uniform volume bounds of the form

vol (Br (K)) ≤ Cr
2p
p−1(1.2)

for some C independent of r, then M is Lp-Positivity Preserving.

On the other hand, it is possible to build explicit examples of complete manifolds (M,h)
that lose the (Lp−PP) property when a set K of “big size” is removed from them. In
particular, Proposition 6.2 shows that if the set K has Hausdorff dimension

dimH(K) > n− 2p

p− 1
,(1.3)

then the (Lp−PP) property does not hold onM \K, so that the dimensional threshold n− 2p
p−1

is essentially sharp.
As alluded to above, the (Lp−PP) property has strong consequences on the spectral theory

of Schrödinger operators of the form ∆ − V with singular potential V ∈ Lp
loc. In the final

Section 7 we will apply our main results to exhibit assumptions ensuring that the Schrödinger
operator is essential self-adjoint (when p = 2) or that C∞

c (M) is an Lp-core for ∆− V .

2. Smooth approximation of distributional subsolutions

In the classical potential theory for the Euclidean Laplacian in R
n (and therefore on any

2-dimensional manifold in isothermal local coordinates) it is known that subharmonic dis-
tributions are the monotone limit of smooth subharmonic functions. In particular, given
a subharmonic function u : Rn → R, u ∈ L1

loc (R
n), we can consider a C∞

c (Rn) mollifier
φr(x) = r−nφ(x/r) and the one-parameter family of functions u(x, r) = φr ∗ u. Using stan-
dard estimates, one can show that for all r > 0, u(x, r) are smooth subharmonic functions
that, as r → 0, converge monotonically from above to u(x) in the L1

loc sense.
We need to extend this property to the locally uniformly elliptic operator

L = ∆− λ(x)

on a Riemannian manifold, λ(x) being a smooth function.

Theorem 2.1. Let (M,g) be an open manifold. For any 0 ≤ λ ∈ C∞(M), the operator
L = ∆−λ(x) has the property of local smooth monotonic approximation of L1

loc-subsolutions,
i.e the following holds.
For every Ω ⋐M relatively compact open domain with smooth boundary, there exists Ω′ ⋐ Ω ⋐

M such that , if u ∈ L1(Ω) solves Lu ≥ 0 in Ω, then there exists a sequence {uk} ⊆ C∞(Ω
′
)

satisfying the following properties:

a) u ≤ uk+1 ≤ uk for all k ∈ N;
b) uk(x) → u(x) as k → +∞ for a.e. x ∈ Ω′;
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c) Luk ≥ 0 in Ω′ for all k ∈ N;
d) ‖u− uk‖L1(Ω′) → 0 as k → +∞.

We preliminary observe that, in order to prove the monotonic approximation, we can
replace the Schrödinger operator L by an operator of the form ∆α = α−2 div(α2∇·) for a
suitable smooth function α > 0. Indeed, given a smooth neighborhood Ω ⋐ M of x0, let
α ∈ C∞(M) be a solution of the problem

{
Lα = 0,

α > 0,
on Ω.

Thanks to the maximum principle, such an α can be obtained for instance as a solution of the
Dirichlet problem Lα = 0 with positive constant boundary data on ∂Ω. We use the following
trick introduced by M.H. Protter and H.F. Weinberger in [PW67].

Remark 2.2. The assumption λ ≥ 0 in Theorem 2.1 can be avoided up to taking a small
enough neighborhood of x0. Indeed, suppose that λ(x0) < 0. Since the M is asymptotically
Euclidean in x0, the constant in the Poincaré inequality can be made arbitrarily small on
small domain. Namely, there exists a small enough neighborhood U of x0 so that

∫

U
−λϕ2 dv ≤ −λ(x0)

2

∫

U
ϕ2 dv ≤

∫

U
|∇ϕ|2 dv, ∀ϕ ∈ C∞

c (U),

i.e., the bottom of the spectrum λU1 (−L) of −L = −∆ + λ on U is non-negative. By the
monotonicity of λU1 (−L) with respect to the domain, we thus obtain that λΩ1 (−L) > 0 on
some smaller domain Ω ⋐ U . Accordingly, there exists a strictly positive solution of Lα = 0
on Ω.

Lemma 2.3. The function w ∈ L1
loc(M) is a distributional solution of Lw ≥ 0 on Ω if and

only if w/α is a distributional solution of ∆α(w/α) := α−2 div(α2∇(w/α)) ≥ 0 on Ω.

Proof. Let 0 ≤ ϕ ∈ C∞
c (Ω). Since ∆α = λα, we have

α∆α(ϕ/α) = α−1 div(α2∇(ϕ/α))

= α−1 div(α∇ϕ− ϕ∇α)
= α−1(α∆ϕ− ϕ∆α)

= Lϕ.
Noticing that the operator ∆α is symmetric with respect to the smooth weighted measure
α2 dv, we get

(∆α
w

α
,αϕ) =

∫

M

w

α
∆α

ϕ

α
α2 dv =

∫

M

w

α
α2Lϕ

α
dv =

∫

M
wLϕdv = (Lw,ϕ).

Since 0 ≤ αϕ ∈ C∞
c (Ω), this concludes the proof of the lemma. �

According to this lemma, setting v = α−1u, we can infer the conclusion of the theorem
from the equivalent statement for the operator ∆α. Indeed, since v ∈ L1

loc(Ω) solves ∆αv ≥ 0

distributionally in Ω, if we prove that then there exists Ω′ ⋐ Ω and a sequence {vk} ⊆ C∞(Ω
′
)

satisfying the following properties:

a’) v ≤ vk+1 ≤ vk for all k ∈ N;
b’) vk(x) → v(x) as k → +∞ for a.e. x ∈ Ω′;
c’) ∆αvk ≥ 0 in Ω′ for all k ∈ N.
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d’) ‖v − vk‖L1(Ω′) → 0 as k → +∞.

then the sequence uk = αvk satisfies a), b), c) and d) as desired.

With this preparation, Theorem 2.1 could be proved by exploiting the powerful machinery
developed in the axiomatic potential theory. Indeed, according to [Sj73, Theorem 1], v is a
∆α-subharmonic function in the sense of Hervé, [Her62]. Hence, to conclude, we can apply a
slightly modified version of [BL13, Theorem 7.1]. Namely, one can verify that Theorem 7.1
in [BL13] works without any change if one uses in its proof the Green function of Ω with null
boundary conditions on ∂Ω. The existence of this Green function, in turn, can be deduced
using different methods. For instance, from the PDE viewpoint, we can appeal to the fact
that the Dirichlet problem on smooth relatively compact domains is uniquely solvable; see
the classical [LSW63]. A similar approach is used to obtain the monotonic approximation in
[BM22].

It is apparent that this kind of argument is quite involved. Therefore for the reader’s
convenience, we present a self-contained proof of Theorem 2.1 that does not rely on any
abstract potential theory. Instead, it involves a rather different family of approximating
functions with a convolution like flavor that, we feel, could be of independent interest.

Proof of Theorem 2.1. Given the existence of local isothermal coordinates, and given that the
Laplacian is conformally invariant in dimension 2, the theorem follows easily in this case from
the Euclidean case.

If (M,g) has dimension ≥ 3, by Lemma 2.3 we can focus on the approximation prob-
lem for ∆α, which is proportional to the Laplace-Beltrami operator relative to the metric

g̃ij = α
4

n−2 gij. Thus, up to changing metric, we can simply study the approximation for the
standard Laplace-Beltrami operator on the manifold M .

Let Ω be any relatively compact neighborhood of x0, and let Ω′ ⋐ Ω′′ ⋐ Ω, with d(Ω′,Ω′′C) ≥
ǫ > 0. Assume for simplicity that Ω has smooth boundary. Let GΩ(x, y) = G(x, y) be the
Green’s function of the operator ∆ on Ω with Dirichlet boundary conditions, where the signs
are chosen so that ∆G = −δ. We recall some standard facts about the Green’s function (see
for example [Aub82, theorem 4.13]):

G(x, y) is smooth on Ω× Ω \D , where D = {(x, x) x ∈ Ω} is the diagonal(2.1)

G(x, y) > 0(2.2)

G(x, y) ≤ Cd(x, y)2−n(2.3)

|∇G(x, y)| ≤ Cd(x, y)1−n(2.4)

G(x, y) = G(y, x)(2.5)

∆xG(x, y) = ∆yG(x, y) = −δx=y(2.6)

In the following, we will denote Gx(y) = G(x, y) when x is fixed. Thus we can also define
the level sets G−1

x (t) = {y ∈M s.t. Gx(y) = t} ⊂ M . Moreover, ∇yGx(y) = ∇yG(x, y) de-
notes the gradient of G w.r.t. y. We will drop the subscript when there is no risk of confusion
1. It can be convenient sometimes to extend the definition of G to M ×M by setting it to be
0 outside Ω×Ω. This however turns G into a non C1 function over ∂Ω, and (2.4), (2.6) hold

1it is worth mentioning that while G(x, y) is symmetric in x and y, this does not mean that ∇xG(x, y) =
±∇yG(x, y). Consider for example the symmetric function f : R2 → R given by f(x, y) = xy. However, since
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only on Ω× Ω.

Following a similar approach to the one in [BL13], see also [Ni07] for a relevant represen-
tation formula for smooth functions, we can use the Green’s function to construct explicitly
the approximating sequence vk. Let ψ : R → [0, 1] be a smooth function such that

ψ̇ ≥ 0 supp
(
ψ̇
)
⊆ [−1; 1] ,

∫

R

ψ̇ = 1 .(2.7)

Define the one parameter family of functions

v(x, r) =

∫

M
ψ̇ (G(x, y)− r)u(y) |∇yG(x, y)|2 dv(y) .(2.8)

For convenience, we will drop the integration symbol dv(y) when there is no risk of confusion.

Since supp
(
ψ̇
)
⊆ [−1; 1], and since G(x, y) is smooth as long as x 6= y ⇐⇒ G(x, y) 6= ∞,

the function v(x, r) is smooth in x for all r < ∞ fixed. Using the coarea formula, we can
re-write v(x, r) as

v(x, r) =

∫

M
ψ̇ (G(x, y) − r)u(y) |∇G(x, y)|2 =(2.9)

=

∫ ∞

−∞
ds ψ̇(s− r)

∫

G−1
x (s)

u(y) |∇G(x, y)| .

Philosophically, v(x, r) plays the role of a mollified u(x) on the ball Br2−n (x) as r → ∞.

Staying away from the boundary of Ω. A technical point needed for the proof of all
the properties that we want to show is that we need to “stay away from the boundary of Ω”.
What this means will become clear in the computations below, but for the moment let us
mention that we can fix r0 ≫ 0 in such a way that for all r ≥ r0:

∀x ∈ Ω′ , ∀y ∈ Ω′′C ψ(G(x, y) − r) = 0 .(2.10)

This is possible because of the definition of ψ and the upper bounds in (2.4).
Our final approximating sequence will be defined by

vk(x) = v(x, r0 + k) .(2.11)

the usual Green’s function in R
n is translation invariant, G(x, y) = |x− y|2−n, then in this case ∇xG(x, y) =

−∇yG(x, y). This is not the case on a Riemannian manifold.
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Proof of monotonicity. Assuming that u is smooth, and denoting n the outward normal
to the level sets G−1

x (t), we compute the derivative of v(x, r) wrt the parameter r by:

∂

∂r
v(x, r) =

∫

R

ds− ψ̈(s− r)

∫

G−1
x (s)

u(y) |∇G| =(2.12)

=

∫

R

ds− ψ̈(s− r)

∫

Gx=s
u(y)g (∇G,−n) =

=

∫
ds ψ̈(s− r)

∫

Gx≥s
g (∇u,∇G) +

∫
ds ψ̈(s− r)

︸ ︷︷ ︸
=0

∫

Gx≥s
u(y)∆yGx

︸ ︷︷ ︸
=u(x) indep. of s

=

=

∫
ds ψ̈(s− r)

∫ ∞

s
dt

∫

Gx=t
g

(
∇u, ∇G

|∇G|

)
=

integrating by parts, since ψ̇ has compact support the boundary term vanishes and we’re left
with:

= +

∫
ds ψ̇(s− r)

∫

Gx=s
g

(
∇u, ∇G

|∇G|

)
= −

∫
ds ψ̇(s− r)

∫

Gx=s
g (∇u, n) =

= −
∫
ds ψ̇(s− r)

∫

Gx≥s
∆u = −

∫

M
∆u

∫
ds ψ̇(s − r)χGx≥s =

=

∫

M
∆u

∫ Gx(y)

−∞
ds ψ̇(s− r) = −

∫

M
∆u · ψ(Gx(y)− r) .

We can conclude that

∂

∂r
v(x, r) = −

∫

M
∆u · ψ(Gx(y)− r) .(2.13)

Now by the definition of r0 in (2.10), if r ≥ r0 then for all x ∈ Ω′ the support of ψ(Gx(y)− r)
is contained in Ω′′, and so ψ(Gx(y) − r) is a non-negative smooth function of y 2. Since

ψ(s) =
∫ s
−∞ ψ̇(s) ≥ 0, we can use the distributional subharmonicity of u to conclude that

∂

∂r
v(x, r) = −

∫

M
∆u · ψ(Gx(y)− r) = −

∫

M
u ·∆ [ψ(Gx(y)− r)] ≤ 0(2.14)

Since both the first and the third term in the last chain of equality pass to the limit as
uj → u in L1

loc, this last inequality holds for all u ∈ L1 that are distributionally subharmonic,
smoothness of u is not necessary here.

Proof of subharmonicity. We proceed in a similar way for the proof of subharmonicity
of v(x, r) (here r is fixed, and we study the subharmonicity in x ∈ M). Assuming as above
that u is smooth, we can compute

v(x, r) =

∫

R

ds ψ̇(s− r)

∫

Gx=s
u |∇G| = −

∫

R

ds ψ̇(s− r)

∫

Gx=s
u g (∇G,−n) =(2.15)

= u(x)−
∫

R

ds ψ̇(s− r)

∫

G≥s
g (∇u,∇G) .

2the problem is that G(x, y) is the Green’s function of Ω, so it is C0 but not C1 over ∂Ω



10 STEFANO PIGOLA, DANIELE VALTORTA, AND GIONA VERONELLI

Thus, rearranging the terms, we get

v(x, r)− u(x) = −
∫

R

ds ψ̇(s − r)

∫

G≥s
g (∇u,∇G) =(2.16)

= −
∫

R

ds ψ̇(s− r)

[∫

G=s
G g (∇u, n)−

∫

Gx≥s
G∆u

]
=

= −
∫

R

ds ψ̇(s− r)

∫

Gx≥s
(s −G)∆u =

= −
∫

Ω
∆u

∫
ds (s−G(x, y))ψ̇(s− r)χGx≥s

Let ψ̂(t) =
∫ t
−∞ dsψ(s) be the primitive of ψ. Notice that

∫
ds (s−G(x, y))ψ̇(s− r)χGx≥s =(2.17)

=

∫ G(x,y)

−∞
ds sψ̇(s− r)−G(x, y)

∫ G(x,y)

−∞
ds ψ̇(s− r) =

= Gψ(G − r)− ψ̂(G− r)−Gψ(G − r) = −ψ̂(G(x, y) − r) .

Summing up, we have that, if u is smooth,

v(x, r)− u(x) =

∫

Ω
ψ̂(G(x, y) − r)∆u(y) .(2.18)

We can compute the Laplacian of v(x, r) by

∆xv(x, r)−∆xu(x) =

∫

M
∆x(ψ̂(G(x, y) − r))∆yu(y) dv(y) .(2.19)

By direct computation:

∆
[
ψ̂(G(x, y) − r)

]
= ∇i [ψ(G(x, y) − r)∇iG(x, y)] =(2.20)

= ψ̇(G(x, y)− r) |∇G(x, y)|2 + ψ(G(x, y) − r)∆G(x, y) =

= ψ̇(G(x, y) − r) |∇G(x, y)|2 − ψ(G(x, y) − r)δx=y = ψ̇(G(x, y) − r) |∇G(x, y)|2 − δx=y .

Thus we obtain that

∆xv(x, r)−∆xu(x) = −∆xu(x) +

∫

Ω
ψ̇(G(x, y) − r) |∇xG|2 ∆u(y) dv(y) ,(2.21)

∆xv(x, r) =

∫

Ω
ψ̇(G(x, y) − r) |∇xG|2∆udv(y) =

∫

Ω
u ∆y

[
ψ̇(G(x, y) − r) |∇xG|2

]
dv(y) .

The last equality makes sense also if u is simply in L1
loc and not smooth.

Arguing as in the proof of monotonicity, if r ≥ r0 and x ∈ Ω′, G(x, y) is smooth in this
integral, and the distributional subharmonicity of u allows us to conclude that

∆xv(x, r) ≥ 0 ,(2.22)

as desired.
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Proof of L1 convergence. In order to show that v(x, r) → v(x) in the L1(Ω′) sense as
r → ∞, we will use the equality (2.18) and the fact that, in the distributional sense, ∆u is a
finite (non-negative) measure on the set Ω′′.

Observe that if u is a smooth subharmonic function, then by (2.18):

v(x, r)− u(x) =

∫

Ω
ψ̂(G− r)∆u .(2.23)

Thus the L1(Ω′) norm of v(x, r)− u(x) is
∫

Ω′

|v(x, r)− u(x)| dv(x) =
∫

Ω′

v(x, r)− u(x) dv(x) =(2.24)

=

∫∫

Ω′×Ω
ψ̂(G(x, y) − r)∆u(y) dv(x) dv(y) =

∫

Ω
∆u(y)

∫

Ω′

ψ̂(G(x, y) − r) dv(x)

︸ ︷︷ ︸
:=h(y,r)

dv(y) .

By the choice of r0 in (2.10), the support of h is contained in Ω′′.
We claim that h is a Lipschitz function and limr→∞ |h(y, r)|L∞(Ω′′) = 0. Indeed, we observe

that

∇h =

∫
dx ψ(G(x, y) − r)∇G(x, y) ,(2.25)

and as long as r ≥ r0 and x ∈ Ω′, ψ(G(x, y)− r)∇G(x, y) is a smooth function of y away from
x and supported in Ω′′ and the estimates in (2.4) hold. Thus we obtain that h is a Lipschitz
function.

Moreover, note that

ψ̂(G(x, y) − r) ≤ max {G(x, y) − r + 1; 0} ≤ max
{
Cd(x, y)2−n − r + 1; 0

}
(2.26)

Now, for a subharmonic function u ∈ L1, we can use this fact to prove that the sequence
v(x, r) is an L1 Cauchy sequence as r → ∞. Indeed, for R > r > 0,

∫

Ω′

|v(x, r) − v(x,R)| dv(x) =
∫

Ω′

v(x, r)− v(x,R) dv(x) =(2.27)

=

∫∫

Ω′×Ω

[
ψ̂(G(x, y)− r)− ψ̂(G(x, y) −R)

]
∆u(y) dv(x) dv(y) =

=

∫

Ω
∆u(y)

∫

Ω′

[
ψ̂(G(x, y) − r)− ψ̂(G(x, y) −R)

]
dv(x)

︸ ︷︷ ︸
:=h(y,r,R)

dv(y) .

h(y, r,R) is a smooth function, so this equality makes sense distributionally. Moreover,
h(y, r,R) is a uniformly bounded sequence in C0, that converges to 0 as r → ∞. Thus
v(x, r) is an L1 Cauchy sequence in r.

In order to prove that v(x, r) → u(x) as r → ∞, we will prove that a convex combination
of v(x, r) for some r ≥ r0 converges to u(x). This and the L1 convergence of v(x, r) prove the
original convergence.

In particular, for all r0 fix some function αr0(r) such that

• αr0 ∈ C∞
c ([0;∞))

•
∫
αr0(r) dr = 1

• ∀r, 0 ≤ αr0(r) ≤ 1
r
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• if r ≤ r0 or r ≥ 10r0, αr0(r) = 0

Since
∫ 10r0
r0

dr
r = ln(10) > 1, this is possible. Consider the convex combinations

w(x, r0) :=

∫
αr0(r)v(x, r)dr =

∫ ∞

0
ds

∫

G(x,y)=s
u(y) |∇G|

∫
drαr0(r)ψ̇(s− r) =(2.28)

=

∫

M
u(y) |∇G|2

∫
drαr0(r)ψ̇(G(x, y) − r) dv(y) .

Notice that by Cheng-Yau gradient estimates applied on a ball Bd(x,y)/3 (x), the positive
harmonic function G satisfies

|∇G|
G

≤ c(d(x, y)−1 + 1) ,(2.29)

and since G(x, y) ≤ Cd(x, y)2−n, for r̄ ≫ 1 we have

|w(x, r̄)− u(x)| ≤
∫

M
|u(y)− u(x)| |∇G|2

∫
drαr̄(r)ψ̇(G(x, y) − r) dv(y) ≤(2.30)

≤
∫

M
|u(y)− u(x)| d(x, y)−2G2(x, y)

C

G(x, y) − 1
1{r̄−1≤G(x,y)≤10r̄+1} dv(y) ≤

≤ C

∫

Ar̄(x)

1

d(x, y)n
|u(y)− u(x)| dv(y) ,

where Ar̄(x) =
{
(c−1(10r̄ + 1))1/(2−n) ≤ d(x, y) ≤ (C−1(r̄ − 1))1/(2−n)

}
. The last inequality

is due to the local estimate G(x, y) ≥ c d(x, y)2−n on Ω′; see for instance [MRS22, Theo-
rem 2.4]. Let x be a Lebesgue point for u, then |w(x, r̄)− u(x)| → 0, and this proves a.e.
convergence to u(x) for the convex combination w(x, r̄), and thus also for the original v(x, r).

�

In the following, we will assume that either λ(x) ≡ 0 or λ(x) = λ is a positive constant.
For each of these choices of λ, the existence of a smooth local monotone approximation has
striking consequences in the regularity theory of subharmonic distributions or on the validity
of a variant of the traditional Kato inequality.

In the next two sections we are going to analyze separately these applications.

3. Improved regularity of positive subharmonic distributions

By a subharmonic distribution on a domain Ω ⊆ M we mean a function u ∈ L1
loc(Ω)

satisfying the inequality ∆u ≥ 0 in the sense of distributions. Note that, in this case, ∆u is
a positive Radon measure.

Using the fact that a local monotone approximation exists, positive subharmonic distribu-
tions are necessarily inW 1,2

loc . Indeed an even stronger property can be proved, i.e., up/2 ∈W 1,2
loc

for all p ∈ (1,∞). This is the content of the next Theorem. To the best of our knowledge, in
this generality the result is new also in the Euclidean setting.

Theorem 3.1. Let (M,g) be a Riemannian manifold. Let u ≥ 0 be an L1
loc(M)-subharmonic

distribution. Then, u ∈ L∞
loc and us/2 ∈W 1,2

loc for any s ∈ (1,∞).
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Moreover, for all ϕ ∈ C∞
c (M) and 1 < s ≤ p, we have the estimate

(s− 1)2

s2

∫

{ϕ≥1}
|∇us/2|2 ≤

∫

M
us|∇ϕ|2 ≤

(∫

supp(∇φ)
up

)s/p(∫

M
|∇ϕ|

2p
p−s

)(p−s)/p

,(3.1)

Proof. Fix 1 < s ≤ p < +∞ and let ϕ ∈ C∞
c (Ω) to be a cut-off function such that 0 ≤ ϕ ≤ 1

and ϕ ≡ 1 on some bounded open set Ω1 6= ∅. Fix a bounded open set Ω such that supp(ϕ) ⋐
Ω ⋐M . According to Theorem 2.1 there is a smooth approximation of u

uk ≥ uk+1 ≥ u ≥ 0

by (classical) solutions of ∆uk ≥ 0 on Ω. Note that, up to replacing uk with uk +1/k, we can
suppose that uk > 0. Now, define ψ = us−1

k ϕ2. Since the uk’s are smooth, strictly positive
and subharmonic, we obtain

0 ≥ −
∫

M
∆ukψ(3.2)

=

∫

M
g(∇uk,∇ψ)

= (s− 1)

∫

M
ϕ2us−2

k |∇uk|2 + 2

∫

M
ϕus−1

k g(∇uk,∇ϕ)

≥ (s− 1− ε)

∫

M
ϕ2us−2

k |∇uk|2 − ε−1

∫

M
usk|∇ϕ|2,

for any ε ∈ (0, s − 1). Elaborating, we get the Caccioppoli inequality

ε(s − 1− ε)

∫

Ω1

us−2
k |∇uk|2 ≤ ε(s − 1− ε)

∫

M
ϕ2us−2

k |∇uk|2(3.3)

≤
∫

M
usk|∇ϕ|2

≤ ‖∇ϕ‖2∞
∫

Ω
ups.

Choosing ǫ = (s− 1)/2 and using the fact that uk ≥ uk+1 > 0, this latter implies
∫

Ω1

|∇us/2k |2 = s2

4

∫

Ω1

us−2
k |∇uk|2 ≤

s2

(s − 1)2

∫

Ω
usk|∇ϕ|2 ≤ s2‖∇ϕ‖2∞

(s − 1)2

∫

Ω
us1,(3.4)

Noticing also that ‖us/2k ‖L2(Ω1) ≤ ‖us/21 ‖L2(Ω1), we have thus obtained that the sequence {us/2k }
is bounded inW 1,2(Ω1), hence weakly converges inW 1,2(Ω1) (up to extract a subsequence) to

some v ∈W 1,2(Ω1). Since u
s/2
k converges point-wise a.e. to us/2, it holds necessarily v = us/2

a.e. on Ω1. In particular, us/2 ∈ W 1,2 in a neighborhood in Ω1. Moreover, letting k → ∞
(along the subsequence) in (3.4), we obtain

∫

Ω1

|∇us/2|2 ≤ s2

(s− 1)2

∫

Ω
us|∇ϕ|2 ≤ s2

(s− 1)2

(∫

supp(∇φ)
up

)s/p(∫

M
|∇ϕ|

2p
p−s

)(p−s)/p

,

(3.5)

where we used the Hölder inequality in the last step.

�
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4. A variant of the Kato inequality

The original inequality by T. Kato, [Kat72, Lemma A], states that if u ∈ L1
loc(M) satisfies

∆u ∈ L1
loc(M) then

∆|u| ≥ sgn(u)∆u

or, equivalently, if we set u+ = max(u, 0) = (u+ |u|)/2, it holds
∆u+ ≥ 1{u>0}∆u.

Note that, in these assumptions, |∇u| ∈ L1
loc(M) (see [Kat72, Lemma 1]) and, therefore,

u ∈W 1,1
loc (M).

Under the sole requirement that u ∈ W 1,1
loc (M) is such that ∆u = µ is a (signed) Radon

measure, a precise form of the Kato inequality was proved by A. Ancona in [Anc09, Theorem
5.1] elaborating on ideas contained in the paper [Fug92] by B. Fuglede.

In the special case where M = R
n and ∆ is the Euclidean Laplacian, H. Brezis, [Bre84,

Lemma A.1] and [Pon16, Proposition 6.9], observed that the local regularity of the function
can be replaced by the condition that u satisfies a differential inequality of the form ∆u ≥ f in
the sense of distributions, where f ∈ L1

loc. The proof uses standard mollifiers to approximate u
by smooth solutions of the same inequality and, in particular, it works locally on 2-dimensional
Riemannian manifolds thanks to the existence of isothermal local coordinates. In the next
result, we extend its validity to higher dimensional manifolds by using the existence of a
sequence of smooth subharmonic approximations.

Proposition 4.1 (Brezis-Kato inequality). Let (M,g) be a Riemannian manifold. If u ∈
L1
loc(M) satisfies ∆u ≥ f in the sense of distributions, for some f ∈ L1

loc(M), then u+ ∈
L1
loc(M) is a distributional solution of ∆u+ ≥ 1{u>0}f .

We shall use the following approximation Lemma, see [Kat72, Lemma 2].

Lemma 4.2. Let u ∈ L1
loc(M) satisfy ∆u ∈ L1

loc(M). Then, for any fixed compact coordinate
domain Ω ⋐M , there exists a sequence of functions uk ∈ C∞(Ω) such that

uk
L1(Ω)−→ u and ∆uk

L1(Ω)−→ ∆u.

Proof (of Proposition 4.1). We fix a smooth coordinate domain Ω ⋐ M where subharmonic
distributions posses a monotone approximation by smooth subharmonic functions. We con-
sider the Dirichlet problem {

∆g = f in Ω

g = 0 on ∂Ω

and we note that, since f ∈ L1(Ω), then it has a unique solution g ∈ W 1,1
0 (Ω); see [LSW63,

Theorem 5.1]. The new function

w = u− g ∈ L1(Ω)

is a subharmonic distribution, namely, ∆w ≥ 0.
Let wk ≥ wk+1 ≥ w be a monotonic approximation of w by smooth solutions of ∆wk ≥ 0

and define
uk = wk + g.

Note that, by construction,

(4.1) i)uk ց u a.e. in Ω, ii)uk → u in L1(Ω), iii)∆uk ≥ f in Ω.
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Moreover, since the wk are smooth,

uk ∈ L1(Ω) and ∆uk ∈ L1(Ω).

According to Lemma 4.2, for each fixed k, let {unk}n∈N be a sequence of smooth functions
satisfying

unk
L1(Ω)−→ uk and ∆unk

L1(Ω)−→ ∆uk, as n→ +∞.

Now, let H : R → R be a smooth function satisfying H ′(t),H ′′(t) ≥ 0. For any n ≥ 1,

∆(H(unk )) ≥ H ′(unk)∆u
n
k .

For every 0 ≤ ϕ ∈ C∞
c (Ω),

(4.2)

∫

Ω
H(unk)∆ϕdx =

∫

Ω
∆(H(unk))ϕdx ≥

∫

Ω
∆unkH

′(unk)ϕdx.

We apply this latter with H(t) = Hε(t) = (t +
√
t2 + ε)/2. First, we let n → ∞. Using the

dominated convergence theorem we get
∣∣∣∣
∫

Ω
(Hε(u

n
k)−Hε(uk))∆ϕdx

∣∣∣∣ ≤ ‖H ′
ε‖L∞‖∆ϕ‖L∞

∫

Ω
|unk − uk|dx −→ 0,

and
∣∣∣∣
∫

Ω
∆unkH

′
ε(u

n
k)ϕdx−

∫

Ω
∆ukH

′
ε(uk)ϕdx

∣∣∣∣

≤
∣∣∣∣
∫

Ω
(∆unk −∆uk)H

′
ε(u

n
k)ϕdx

∣∣∣∣+
∣∣∣∣
∫

Ω
∆uk(H

′
ε(u

n
k )−H ′

ε(uk))ϕdx

∣∣∣∣

≤‖H ′
ε‖L∞‖ϕ‖L∞

∫

Ω
|∆unk −∆uk|dx+

∫

Ω
∆uk|H ′

ε(u
n
k)−H ′

ε(uk)| |ϕ|dx −→ 0.

Therefore, (4.1), (4.2) and the fact that H ′
ε, ϕ ≥ 0, yield

(4.3)

∫

Ω
Hε(uk)∆ϕdx ≥

∫

Ω
H ′

ε(uk)∆ukϕdx ≥
∫

Ω
H ′

ε(uk)fϕdx.

Next we recall that f ∈ L1 and, by (4.1) ii), uk → u in L1(Ω). Thus, repeating the above
estimates we can take the limit as k → +∞ in (4.3) and get

∫

Ω
Hε(u)∆ϕdx ≥

∫

Ω
H ′

ε(u)fϕdx.

Finally, we note that Hε(t) → t+ uniformly on R. Moreover the H ′
ε(t) are uniformly bounded

both in ε and in t, and converge pointwise a.e. as ε → 0 to the characteristic function
1(0,+∞)(t). Letting ε→ 0 and applying again the dominated convergence theorem gives

∫

Ω
u+∆ϕdx ≥

∫

Ω
1{u>0}fϕdx,

i.e.

∆u ≥ 1{u>0}f distributionally in Ω.
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In order to conclude the proof, take a covering of M by coordinate domains Ωj ⋐ M where
the monotone approximation exists and consider a subordinated partition of unity {ηk} such

that ηj ∈ C∞
c (Ω̃j) and

∑
j ηj = 1. Given ψ ∈ C∞

c (M), one has
∫

M
u+∆ψ dv =

∑

j

∫

M
u+∆(ηjψ) dv ≥

∑

j

∫

Ω̃j

1{u>0}fηjψ dv =

∫

M
1{u>0}fψ dv.

�

A direct application of Theorem 3.1 and Proposition 4.1 gives the following

Corollary 4.3. Let (M,g) be a Riemannian manifold. If u ∈ L1
loc(M) satisfies Lu = ∆u−

λu ≥ 0, with λ ≥ 0, then u+ ∈ L1
loc(M) is a non-negative subharmonic distribution, i.e.,

∆u+ ≥ 0. In particular, u+ ∈ L∞
loc(M) and, for any p ∈ (1,+∞), u

p/2
+ ∈W 1,2

loc (M).

Remark 4.4. It is also possible to prove Corollary 4.3 by adapting the proof in [Bre84,
Lemma A.1] and [Pon16, Proposition 6.9] to the Riemannian setting, up to replacing the
approximation by convolution used therein with the monotone approximation provided by
Theorem 2.1. However, this latter strategy seems not to work for general f ∈ L1

loc (i.e. not of
the form λu), as in Proposition 4.1. Although the special case f = λu would be enough for
what needed in this article, we decided to state and prove the general form of the Brezis-Kato
inequality as we feel that it can be useful to study more general PDEs on manifolds.

Once we have a Brezis-Kato inequality, the Lp-PP property enters in the realm of Liouville-
type theorems for Lp-subharmonic distributions. This is explained in the next

Lemma 4.5. Let (M,g) be any Riemannian manifold. Consider the following Lp-Liouville
property for subharmonic distributions, with p ∈ (1,∞):

(L− Subp)





∆u ≥ 0 on M

u ≥ 0 a.e. on M

u ∈ Lp(M),

=⇒ u ≡ const a.e. on M.

Then
(L− Subp) =⇒ (Lp−PP).

Proof. Suppose u ∈ Lp(M) satisfies ∆u ≤ u. By Proposition 4.1,

∆(−u)+ ≥ (−u)+ ≥ 0 on M,

i.e. (−u)+ ≥ 0 is a subharmonic distribution. Obviously, (−u)+ ∈ Lp(M). It follows from
(L− Subp) that (−u)+ = 0 a.e. on M . This means precisely that u ≥ 0 a.e. on M , thus
proving the validity of (Lp−PP). �

5. Parabolicity, capacity and (Lp−PP) property

Recall that, given Ω ⊂ M a connected domain in M and D ⊂ Ω a compact set, for
1 ≤ p < ∞, the p-capacity of D in Ω is defined by Capp(D,Ω) := inf

∫
Ω |dϕ|p, where the

infimum is among all Lipschitz functions compactly supported in Ω such that ϕ ≥ 1 on D.
Moreover, D is said to be p-polar if Capp(D,Ω) = 0 for every Ω ⋑ D. Finally,M is p-parabolic
if there exists a compact set D ⊂ M with non empty interior such that Capp(D,M) = 0. In
case M has nonempty compact boundary ∂M 6= ∅, we call M p-parabolic if its Riemannian
double D(M) is p-parabolic. This, in particular, applies to the ends of a manifold with respect
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to a given smooth compact domain. These are understood in the wide sense of non-compact
components obtained by removing the smooth compact set. Note also that any compact
manifold with (or without) boundary is p-parabolic for every 1 < q < +∞.

Theorem 5.1. Let p ∈ (1,∞). Let M be an open connected (not necessarily complete)
manifold with a finite number of ends E1, . . . , EN . If each end Ej is qj parabolic for some
2p
p−1 < qj ≤ ∞, then (L− Subp) holds on M , so that in particular M is Lp-PP.

Proof. Let U be a compact set disconnectingM , so thatM = U∪(∪N
j=1Ej) and let u ∈ Lp(M)

be a non-negative subharmonic function. Since u ∈ L∞
loc, we have that ‖u‖L∞(U) < ∞. Fix

an end EJ and define the new function

uJ :=

{
(u− ‖u‖L∞(U))+, in EJ ,

0, elsewhere.

Note that also uJ is non-negative, subharmonic and in Lp(M). Let {Mk} be an exhaustion
of M , i.e. Mk ⋐ Mk+1 are compact and M = ∪kMk, and assume wlog that M1 ⊃ U . By
definition of qJ -parabolicity of the end EJ , we can find a sequence of smooth compactly
supported cut-offs {ϕk} = {ϕJ,k} such that ϕk ≡ 1 on Mk ∪ EC

J and ‖∇ϕk‖LqJ (EJ ) → 0 as

k → ∞. Applying (3.1) to uJ with ϕ = ϕk and 2p/(p − s) = qJ , i.e. s =
qJ−2
qJ

p, we get that

for all k:

∫

{ϕk≥1}
|∇us/2J |2 ≤ C

(∫

supp(∇φk)
upJ

)s/p(∫

M
|∇ϕk|qJ

) 2
qJ

,(5.1)

Taking the limit as k → ∞, we deduce that uJ is constant, hence null, on EJ . In particular

u is bounded on EJ , so that u ∈ L
pqJ
qJ−2 (EJ ).

Now, by (3.1) we get

(p− 1)2

p2

∫

{ϕ≥1}
|∇up/2|2 ≤

∫

M
up|∇ϕ|2

=

∫

U
up|∇ϕ|2 +

N∑

j=1

∫

Ej

up|∇ϕ|2

for any ϕ ∈ C∞
c (M). Insert in this latter ϕ = ϕk, where {ϕk} is a family of cut-offs such that

ϕk ≡ 1 on Mk and, for any j = 1, . . . , N , ‖∇ϕk‖Lqj (Ej) → 0 as k → ∞. Thus,

∫

{ϕk≥1}
|∇up/2|2 ≤ p2

(p− 1)2

N∑

j=1

(∫

Ej

u
pqj

qj−2

)(qj−2)/qj (∫

Ej

|∇ϕk|qj
)2/qj

(5.2)

goes to 0 as k → ∞. Hence u is constant, and Lemma 4.5 concludes the proof. �

Here we point out some immediate consequences of the previous theorem. First, we can
interpret the ∞-parabolicity of the whole manifold as the geodesic completeness; see e.g.
[PS14] and also [AMP21]. This implies the following

Corollary 5.2. Let p ∈ (1,∞). Let (M,g) be a complete Riemannian manifold. Then
(L− Subp) holds, so that in particular M is Lp-PP.
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Remark 5.3. As it is clear from the proof of Corollary 5.2, on any given complete Riemannian
manifold and for any p ∈ (1,∞), the Liouville property (L− Subp) holds in the stronger form:





∆u ≥ 0 on M

u ≥ 0 a.e. on M

u ∈ Lp
loc(M) and ‖u‖pLp(B2k(o)\Bk(o))

= o(k2),

=⇒ u ≡ c a.e. on M.

Accordingly, also the Positivity Preserving property holds in this class of functions larger
than Lp(M).

Remark 5.4. The endpoint cases p = 1 and p = +∞ must be excluded. The failure
of (L− Subp) for these values of p is well known. Namely, the hyperbolic space supports
infinitely many bounded (hence positive) harmonic functions whereas, on the opposite side,
positive, non-constant, L1-harmonic functions on complete Riemann surfaces with (finite
volume and) super-quadratic curvature decay to −∞ was constructed by P. Li and R. Schoen
in [LS84]. While the existence of these functions tells us nothing about the failure of the
Lp-PP property, counterexamples also to this latter have been provided in [BM22].

Similarly, restating Theorem 5.1 in the simplest case, we have:

Corollary 5.5. Let p ∈ (1,∞). Let M be an open (possibly incomplete) q-parabolic manifold

for some 2p
p−1 < q ≤ ∞. Then M is Lp-PP.

The third corollary deals with manifolds of the form (N \K,h), where (N,h) is a complete
Riemannian manifold and K is a compact set. Indeed, p-parabolicity of N \K is naturally
related to the capacity of K in N .

Corollary 5.6. Let p ∈ (1,∞). Let N be a complete Riemannian manifold and K ⊂ N a

compact set. Suppose that K is q-polar for some q > 2p
p−1 . Then M = N \K is Lp-PP.

Proof. Take a smooth relatively compact domain U ⋐ N , with K ⊂ U . Note that Ū is
q-parabolic as a compact manifold with smooth boundary. Removing interior q-polar sets
does not affect the q-parabolicity of the space. Therefore, the end E0 = D̄ \K of the open
Riemannian manifoldM = N \K is still q-parabolic. On the other hand, since N is complete,
N \D has a finite number of unbounded connected components E1, · · · , Ek. Each of them is
a complete, hence ∞-parabolic, end of M . A direct application of Theorem 5.1 yields that
M is Lp-PP. �

Suppose now that dimH(K) < q < n − 2p
p−1 . Hence Hq(K) = 0. By standard potential

theory this implies that K is (n−q)-polar; see for instance [HKM93] or [Tro99, Theorem 3.5].
Accordingly, we have the following straightforward consequence of Corollary 5.6.

Corollary 5.7. Let p ∈ (1,∞), let N be an n-dimensional complete Riemannian manifold

and let K be compact set of N such that dimH(K) < n− 2p
p−1 . Then N \K is Lp-PP.

A natural question arising from Corollary 5.7 is what happens in the threshold case 2p
p−1 = q

and below the threshold. In this case Hausdorff co-dimension 2p
p−1 is not enough to preserve

the (Lp−PP) property, but uniform Minkowski control is. We start by proving the latter
statement, and give an example of failure for Hausdorff co-dimension in example 5.12.
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Proposition 5.8. Let (N,h) be a complete Riemannian manifold, and let E satisfy a uniform
Minkowski-type estimate of the form

vol (Br (E)) ≤ Cr
2p
p−1 for some p > 1 .(5.3)

The N \ E is an open manifold that satisfies the (L− Subp) property, and hence also the
(Lp−PP) property.

Remark 5.9. In the assumptions of Proposition 1.6 we have in particular that all L2 harmonic
functions on N \E are necessarily constant. In the very special case where E is a point, this
result has been recently proved in [HMW21, Theorem 8].

Remark 5.10. For several significant examples of sets with non-integer Hausdorff dimension
the Minkowski content is controlled at the right dimensional scale (this is the case for instance
for auto-similar fractal sets). Accordingly, in all these cases Proposition 5.8 gives also a simpler
and more direct proof of Corollary 5.7. Moreover, a recursive application of (the proof of)
Proposition 5.8 permits also to deal with sets K whose Minkowski content is not finite at
the right dimension, yet suitably controlled. For instance, this occurs whenever K = ∪N

j=0Kj

can be decomposed as the union of a finite increasing family of compact sets Kj ⊂ Kj+1

such that K0 and Kj+1 \Kj, j = 0, . . . , N − 1, have finite (n− 2p
p−1)-dimensional Minkowski

content, as in the toy example K = {0} ∪ {1/j}j≥1 ⊂ R ⊂ R
n. However, there exist compact

sets for which the local Minkowski dimension is larger than the Hausdorff dimension around
any point of K, so that they satisfy the Lp-PP property, but this latter can not be deduced
though the technique introduced in Proposition 5.8. Examples presenting this feature are
auto-affine sets, [Bed84, McM84, Bar07], i.e., roughly speaking auto-similar type fractal sets
of Rn whose auto-similarity factor changes according to the direction.

The proof of Proposition 5.8 is a direct consequence of the following possibly standard
removable singularity lemma for Lp functions.

Lemma 5.11. Let (N,h) be a complete Riemannian manifold, and let E satisfy a uniform
Minkowski-type estimate of the form

vol (Br (E)) ≤ C r
2p
p−1 for some p > 1 and all r ∈ (0; 1] .(5.4)

If u ∈ Lp(N \ E) = Lp(N) and the distributional Laplacian of u on N \ E is non-negative,
then the distributional Laplacian of u on N is non-negative.

Proof. Notice that the uniform volume estimates imply that E is a bounded set, and the
estimates are stable under closure, meaning that vol (Br (E)) = vol

(
Br

(
E
))
.

Let ψk be a sequence of cutoff functions with supp (ψk) ⊆ B2k−1 (E) and

• ψk = 1 on Bk−1 (E)
• |∇ψk|∞ ≤ ck
•
∣∣∇2ψk

∣∣
∞

≤ ck2.

For instance, the ψk’s can be obtained by smoothing out the (Lip) distance function from E.
Let also ϕ ∈ C∞

c (N) be any non-negative test function. We have the distributional identity
∫

N
ϕ∆u =

∫

N
ϕ(1− ψk)∆u+

∫

N
ϕψk∆u .(5.5)
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Since ϕ(1 − ψk) ∈ C∞
c (N \ E) and it is non-negative, by hypothesis

∫
N ϕ(1 − ψk)∆u ≥ 0.

Moreover, we can estimate (here Ak = B2k−1 (E) \Bk−1 (E)):
∣∣∣∣
∫

N
ϕψk∆u

∣∣∣∣ ≤
∫
u [|ψk| |∆ϕ|∞ + 2 |∇ψk| |∇ϕ|∞ + |∆ψk| |ϕ|∞] ≤(5.6)

≤ c

∫
u [|ψk|+ |∇ψk|+ |∆ψk|] ≤ c

∫

B2k−1 (E)
u+ c

∫

Ak

ku+ k2u ≤

≤ c

∫

B2k−1 (E)
u+ c

(∫

Ak

up
) 1

p (
k2qvol (Ak)

) 1
q

︸ ︷︷ ︸
≤C

≤ c

[∫

B2k−1 (E)
u+ C

(∫

Ak

up
) 1

p

]

where q is the Hölder exponent q = p
p−1 . Since u ∈ Lp,

∣∣∫
N ϕψk∆u

∣∣→ 0 as k → ∞, and this

concludes the proof. �

Example 5.12. We note that a control on the Hausdorff dimension in the threshold case is
not enough. Namely, there exists a compact K ⊂ R

4 such that dimH(K) = 0 but R4 \K is
not Lp-PP.

Such a K can be constructed as a generalized Cantor set. Let {αj}∞j=1 be a sequence

bounded between 0 and 1, and consider the generalized Cantor set Cα constructed by starting
with K0 = [0, 1] and removing open middle α1-th of K0 to produce K1 and so on.

Define Cα = ∩∞
j=0Kj and K = Cα × {0}R3 ⊂ R

4. We choose αj = 10j−2
10j

. 3 Clearly, the

dimH(Cα) = 0 as it is smaller than log10j 2 = j−1 log10 2 for every j ∈ N. Now, let µ be a
Borel measure supported on K such that µ(R4) = µ(K) = 1 and µ(I × {0}R3) = 2−j for

every connected component I of Kj . The measure µ can be constructed as follow. Let H̃log23

be the normalized log3 2-dimensional Hausdorff measure restricted to the standard mid-third

Cantor set C1/3, so that H̃log23(C1/3) = 1. Namely, C1/3 = Cα′ with α′
j = 1/3 for all j, and

we name K ′
j the iterative steps in the construction of C1/3. Consider a continuous increasing

bijective function f : [0, 1] → [0, 1] constructed recursively as follows: for every j ∈ N, f maps

K ′
j+1 \ K ′

j to Kj+1 \ Kj . Define µ|Cα as the push-forward measure of H̃log23 through f and

extend it as zero to obtain a measure µ on the whole R
4.

An easy computation shows that diam(I) =
∏j

k=1 10
−k = 10−

j2+j

2 for every connected
component I of Kj , while any two such components have distance at least 8 times larger.

Thus, for every x ∈ R
4, one has µ(Bǫ(x)) ≤ 2−j as soon as ǫ ≤ 4 · 10− j2+j

2 , i.e. 2 log10(1/ǫ) ≥
j2 + j − 2 log10(4) ≥ j2, so that

µ(Bǫ(x)) ≤ 2−
√

log10(1/ǫ
2) ≤ (log2(1/ǫ))−2

for ǫ small enough. Applying a modified version of Lemma 6.3 (see Remark 6.4) we deduce
that R4 \K is not L2-PP.

Note that, in this example, H0(K) = ∞. We do not know if there exists examples of
compact sets of Rn of finite (n − 2p/(p − 1))-dimensional Hausdorff measure which are not
Lp-PP.

3The resulting set is a perfect set formed by all the numbers x in [0, 1] such that in the decimal development
of x the digits between the 2j-th and the (2j+1 − 1)-th are either all 0 or all 9.
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In conclusion of this section we would like to point out how the proof of Lemma 5.11 can
be adapted to get straightforwardly an extension of [GP19, Theorem 5] to the case where a
set of small size is removed.

Proposition 5.13. Let (N,h) be a complete Riemannian manifold. Fix p > 1 and let E
satisfy a uniform Minkowski-type estimate of the form

vol (Br (E)) ≤ C rq for some q > p and all r ∈ (0; 1] .(5.7)

Then the space C∞
c (N \E) is dense in the space

W̃ 2,p(N \ E) := {u ∈ Lp(N \E) : ∆u ∈ Lp(N \E)}
with respect to its canonical norm ‖f‖p

W̃ 2,p(N\E)
= ‖f‖pLp(N\E) + ‖∆f‖pLp(N\E).

Proof. Let f ∈ W̃ 2,p(N \ E). Then f ∈ Lp(N), and by the proof of Lemma 5.11 it is clear
that the distributional Laplacian of f on N , denoted again by ∆f is in Lp(N). By a result
due to O. Milatovic, there exists a sequence of functions ηj in C∞

c (N) which converges to

f in W̃ 2,p(N) as j → ∞; see [GP19, Theorem 5]. Fix j and let ψk be the cut-off functions
introduced in the proof of Lemma 5.11. To conclude the proof, it suffices to show that ψkηj
converges to ηj in W̃ 2,p(N \ E) as k → ∞. To this end, compute

‖ηj − ψkηj‖W̃ 2,p(N\E)
= ‖ηj(1− ψk)‖Lp(N\E) + ‖(1− ψk)∆ηj‖Lp(N\E)

+ ‖ηj∆ψk‖Lp(N\E) + 2‖|∇ηj ||∇ψk|‖Lp(N\E)

The first two terms on the RHS vanish by the dominated convergence theorem. Moreover,

‖ηj∆ψk‖Lp(N\E) ≤ ‖ηj‖L∞‖∆ψk‖Lp(N\E) ≤ c‖ηj‖L∞k2−2q/p → 0,

‖|∇ηj ||∇ψk|‖Lp(N\E) ≤ ‖|∇ηj |‖L∞‖|∇ψk|‖Lp(N\E) ≤ c‖|∇ηj |‖L∞k1−2q/p → 0,

as k → ∞.
�

6. Removing sets of large size

As one might expect, Corollary 5.7 doesn’t hold if the set K is too big. Counterexamples
can be easily built by looking at solutions of ∆f = µ, where µ is the right dimensional
Hausdorff measure restricted to K.

Example 6.1. As a model example, consider R
n with n ≥ 3 and a subset K of the form

K = P ∩B1 (0), where P is a k-dimensional plane passing through the origin. If we focus on
the manifold R

n \K, by Proposition 5.8 the (Lp−PP) and (L− Subp) properties hold as long

as k ≤ n− 2p
p−1 .

In the other cases, we can consider the measure µK = Hk|K and consider the fundamental
solutions of

∆u1 = −µK , −∆u2 + u2 = µK .(6.1)

These solutions u1 and u2 can be easily written in terms of the Green’s function |x− y|2−n

and the Bessel potential J2(x− y):

u1(x) =

∫

Rn

dµK(y) |x− y|2−n , u2(x) =

∫

Rn

dµK(y) J2(x− y)(6.2)
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By the estimates in [Ada71] (see also [Pon16, Lemma 10.12]), the functions u1 and u2
belong to Lp(Rn \K) = Lp(Rn), and they are clearly solutions of

∆u1 = 0 on R
n \K(6.3)

∆u2 − u2 = 0 on R
n \K(6.4)

However, u1 is not a constant, and u2 is not non-negative (for example u2(x) → −∞ as
x → 0). Thus u1 is a counterexample to property (L− Subp) on R

n \K, and similarly u2 is
a counterexample to property (Lp−PP) on R

n \K.

In general, we have the following.

Proposition 6.2. Let (N,h) be a complete Riemannian manifold of dimension n ≥ 2, and

∅ 6= K ⋐ N have Hausdorff dimension k. If k > n− 2p
p−1 for some p ∈ (1,∞), then the open

manifold (N \K,h) does not enjoy either the (L− Subp) or the (Lp−PP) property.

Proof. The proof of this proposition is fairly standard, and follows the ideas laid out in the
previous example.

First, we remark that the result is trivial if n = 2, as in this case for a fixed y0 ∈ K the
Bessel potential J2(x, y0) is in L

p and thus gives a counterexample to the (Lp−PP) property.
Similarly, the Green’s function of a 2 dimensional manifold is in Lp for all p ∈ (1,∞), and
can be used to produce a counterexample to the (L− Subp) property.

Moreover, if k ≥ n−2, then we can replace K with a subsetK ′ ⊂ K of Hausdorff dimension
k′ ∈ (n− 2p

p−1 , n− 2). If N \K ′ does not enjoy the Lp-PP property, than a fortiori also N \K
does not enjoy it. Hence, in the following we can thus assume that

n ≥ 3 and n− 2 > k > n− 2p

p− 1
.(6.5)

Since all the ideas involved in the proof are local, it is convenient to assume that K ⋐

Ω′ ⋐ Ω, where Ω is a relatively compact coordinate neighborhood and has smooth boundary.
Thus we have at our disposal the fundamental solutions of ∆ and ∆− 1 that are the Green’s
function G(x, y) (with Dirichlet boundary conditions) on Ω and the Bessel potential J2(x, y)
(with Dirichlet boundary conditions) on Ω. For convenience, we choose the signs such that
G(x, y) ∼ +cd(x, y)2−n, and similarly J2(x, y) ∼ +cd(x, y)2−n, i.e.

∆G(x, y) = −δx−y , ∆J2(x, y) − J2(x, y) = −δx=y .(6.6)

Recall that the Bessel potential can be defined for example with the Heat Kernel (see
[Str83, eq 4.2]) by:

J2(x, y) =

∫ ∞

0
dt e−tHt(x, y) .(6.7)

We recall the comparison with the Green’s function:

G(x, y) =

∫ ∞

0
dtHt(x, y) .(6.8)

J2 converges absolutely for almost all x, y to a positive function, symmetric in x, y, and it is
easy to see that, similarly to the Green’s function, we have for all x, y ∈ Ω′

cd(x, y)2−n ≤ J2(x, y) ≤ Cd(x, y)2−n .(6.9)

Notice that the second inequality is valid also globally on N , see e.g. [LSW63, theorem 7.1].
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Measure estimates. If dim(K) > k, then the k-dimensional Hausdorff measure Hk of K
is infinity. We want to show that there is a subset S ⊂ K and a (potentially big) constant
C > 1 such that

∀ r, x : Hk(Br (x) ∩ S) ≤ Crk ,(6.10)

∃x s.t. lim sup
r→0

r−kHk(Br (x) ∩ S) ≥ C−1

By the standard [Mat95, theorem 8.19] applied to K, there exists a compact subset S1 ⊂ K
with positive and finite k-dimensional Hausdorff measure. If we consider the upper density
of the measure Hk|S1 , i.e. the limit

Θ∗,k(x) = lim sup
r→0

Hk(S1 ∩Br (x))

ωkrk
,(6.11)

we have by [Mat95, theorem 6.2] that for Hk-almost all x ∈ S1

2−k ≤ Θ∗,k(x) ≤ 1(6.12)

and Θ∗,k(x) = 0 for Hk-almost all x 6∈ S1.
Let S2 ⊆ S1 be the subset where (6.12) holds, and let ru : S2 → (0,∞) be defined by

ru(x) = sup
{
r > 0 s.t. ∀s ≤ r : Hk(S ∩Bs (x)) ≤ 7ωks

k
}
.(6.13)

Since ru(x) > 0 for all x ∈ S2, then the measurable subsets S̃i ⊂ S2 defined by

S̃i =
{
x ∈ S2 s.t. ru(x) > i−1

}
(6.14)

constitute a monotone sequence converging to S2, and thus there exists some î such that

Hk(S̃î) > Hk(S1)/2 > 0 .(6.15)

Now if we consider the subset S = S̃î, we have that for all x ∈ Bî−1 (S):

Hk(Br (x) ∩ S) ≤
{
7ωk(2r)

k if r ≤ î−1/2 ,

Hk(S1) <∞ if r ≥ î−1/2 .
(6.16)

Thus we can conclude that there exists a constant C (depending on î) such that Hk(Br (x)∩
S) ≤ Crk for all x, r. Moreover, since Hk(S) > 0, by [Mat95, theorem 6.2], Θ∗,k(S, x) > 2−k

for Hk-almost all x ∈ S, and thus there exists a point x̄ ∈ S such that

lim sup
r→0

r−kHk(Br (x̄) ∩ S) ≥ 2−k .(6.17)

Thus we have proved all the desired properties in (6.10). For convenience, from now on we
will use the notation

µK(E) := Hk(S ∩ E)(6.18)

to indicate a measure satisfying (6.10).

Counterexamples to the L− Subp and Lp−PP properties. We will prove that the
fundamental solutions of

∆u1 = −µK , −∆u2 + u2 = −µK .(6.19)

with Dirichlet boundary conditions satisfy u1, u2 ∈ Lp, u1(x) is positive but not constant and
u2(x) is not bounded from below.
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Lower bounds. First of all, we notice that if x is a point of density for µK , i.e. if
lim supr→0 r

−kµ(Br (x)) ≥ c > 0, then

lim sup
y→x

u1(y) = lim sup
y→x

∫
G(z, y)dµK(z) ≥ lim sup

y→x

∫

Br(x)
G(z, y)dµK(z) .(6.20)

Given that there are infinitely many radia ri → 0 such that µK(Bri (x)) ≥ crki , we have that
if d(x, y) ∼ ri:

u1(x) ≥ cr2−n
i rki → +∞ ,(6.21)

where we used (6.5). In a similar way, we obtain that around a density point x we have

lim sup
y→x

u2(x) = −∞ .(6.22)

The most complicated part of the proof are the Lp estimates, but, up to trivial adaptation
to the Riemannian setting, these are contained in [Ada71] (see also [Pon16, Lemma 10.12]).
For the reader’s convenience, we report a proof in the following lemma, which will conclude
the proof of this proposition. �

Lemma 6.3. Let 0 < s < n− 2 and µ be a positive measure with support in B1 (P ) for some
P , and suppose that

µ(Br (x)) ≤ Crs , ∀x, r .(6.23)

Suppose also that Vol(Br (x)) ≤ Crn for all x ∈ Ω′ and r ≤ 2. Then
∫
G(x, y)dµ(y) ∈ Lp , p ∈

(
n

n− 2
,

n− s

n− 2− s

)
,(6.24)

∫
J2(x, y)dµ(y) ∈ Lp , p ∈

(
n

n− 2
,

n− s

n− 2− s

)
.(6.25)

Proof. We consider the Green’s function case, since the Bessel potential estimates are com-
pletely analogous. We have that
∫
G(x, y)dµ(y) ≤ C

∫
d(x, y)2−ndµ(y) = C

∫ ∞

0
dt µ

{
d2−n > r

}
= C

∫ ∞

0
dr µ

{
d < r

1
2−n

}
=

= C(n− 2)

∫ ∞

0
dr̂ r̂1−n µ {d < r̂} = C

∫ ∞

0

dr

r

1

rn−2
µ(Br (x)) .(6.26)

Let 1 < q < ∞ and q′ be its conjugate exponent. By (the continuous version of) Minkowski
inequality

∥∥∥∥
∫
G(x, y)dµ(y)

∥∥∥∥
q′
≤ C

∫ ∞

0

dr

rn−1
‖µ(Br (x))‖Lq′ (x) .(6.27)

We estimate very simply

(µ (Br (x)))
q

q−1 = (µ (Br (x)))
1

q−1 µ (Br (x)) ≤ min (Crs, µ(M))
1

q−1 µ (Br (x)) .(6.28)

Notice also that∫

M
dx µ(Br (x)) =

∫

M
dx

∫

Br(x)
dµ(y) =

∫

M
dµ(y)

∫

Br(y)
dy ≤ Crnµ(M) .(6.29)
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Putting these two together we get

‖µ‖q′q′ =
∫

M
dx µ (Br (x))

q

q−1 ≤ min (Crs, µ(M))
1

q−1

∫

M
µ (Br (x)) ≤(6.30)

≤ Cmin
(
Cµ(M)r

s
q−1

+n, µ(M)q
′

rn
)
,

‖µ‖q′ ≤ Cmin

(
Cµ(M)

q−1
q r

s
q
+n(q−1)

q , µ(M)r
n(q−1)

q

)

Thus, if

2q − n < 0 , s+ 2q − n > 0 ,(6.31)

we get ∀κ > 0:
∥∥∥∥
∫
G(x, y)dµ(y)

∥∥∥∥
q′
≤ Cµ(M)

q−1
q

∫ κ

0
r

s−n
q

+1 + Cµ(M)

∫ ∞

κ
r1−

n
q =(6.32)

= Cµ(M)
q−1
q

∫ κ

0
r

s+q−n

q +Cµ(M)

∫ ∞

κ
r

q−n

q = Cµ(M)
q−1
q κ

s+2q−n

q + Cµ(M)κ
2q−n

q

By choosing the “best” k, the one which minimizes this last expression, which is k = cµ(M)
1
s ,

we get
∥∥∥∥
∫
G(x, y)dµ(y)

∥∥∥∥
q′
≤ Cµ(M)

q−1
q κ

s+2q−n

q + Cµ(M)κ
2q−n

q = Cµ(M)1−
n−2q
sq .(6.33)

Choosing q′ = p, we get the result. Notice that since q must satisfy (6.31), i.e., q ∈
(
n−s
2 , n2

)

we have that p ∈
(

n
n−2 ,

n−s
n−s−2

)
.

Notice also that the exponent 1− n−2q
sq > 0 if q > n−s

2 . �

Remark 6.4. Note that Lemma 6.3 remains true also for p = n−s
n−2−s if one assume instead

of (6.23) the strongest condition

µ(Br (x)) ≤ Crs(1 + |log(r)|)−2 , ∀x, r, 0 ≤ s < n− 2 .(6.34)

Indeed, under this assumption one can choose κ = ∞ in (6.32).

7. Essential self-adjointness and Lp-operator cores for Schrödinger

operators

The Lp-PP property first appeared, in a somewhat implicit form, in the seminal paper
[Kat72] where T. Kato addressed the problem of the self-adjointness of Schödinger operators
with singular potentials in Euclidean spaces. Its validity on Riemannian manifolds was later
systematically investigated with the aim of extending Kato’s results to covariant Schödinger
operators with singular potentials on vector bundles; see e.g. [BMS02, Gün16] and references
therein. More generally, a basic problem in the Lp spectral theory of Schrödinger opeators is
to understand under which conditions on the potential and on the underlying manifold, the
space of smooth compactly supported functions is an Lp core of the operator, namely, it is
dense in the domain of its maximal realization. Again, in Euclidean space this is a classical
result of Kato (see [Kat86]), in the Riemannian case (under bounded geometry hypothesis)
see [Mil06], and in the case of geodesically complete manifolds with lower bounded Ricci
curvature see [GP19, Appendix A].
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When considered in this framework, the results in our paper can be exploited to prove Lp

spectral properties for a class of Schrödinger operators on possibly incomplete manifolds. As
we shall see in a moment, what we get looks relevant even for the Laplace-Beltrami operator.

Assuming that V ∈ Lp
loc(M) and V ≥ 0, we define (∆ − V )min,p as the closure of (∆ −

V )|C∞

c (M) in L
p(M). Furthermore, (∆− V )max,p is defined as

(∆− V )max,pu := (∆− V )u, ∀u ∈ {w ∈ Lp(M) : V w ∈ L1
loc(M) and (∆ − V )w ∈ Lp(M)}.

Proposition 7.1. Let M satisfy the assumptions of either Proposition 1.5 or Proposition
1.6. Assume that p ∈ (1,+∞), V ≥ 0 and V ∈ Lp

loc(M).

(a) Then the operator (∆− V )min,p generates a contraction semigroup in Lp(M).
(b) Furthermore, (∆−V )min,p = (∆−V )max,p or, in other words, C∞

c (M) is an operator
core for (∆− V )max,p.

(c) In particular, if p = 2, then the operator ∆−V is essentially self-adjoint on C∞
c (M).

Proof. (c) Follows from [Gün16, Proposition 2.9 (a)] together with the L2-PP property of
Proposition 1.5 or Proposition 1.6 above.

(a) Follows from [Gün16, Proposition 2.9 (b)] together with the Lp-PP property of Propo-
sition 1.5 or Proposition 1.6 above.

(b) Note that (a) with V ≡ 0 tells us that ∆min,q generates a contraction semigroup in
Lq(M), where q is the Hölder conjugate of p. Now, we can repeat the argument in the proof
of [GP19, Theorem 5] to show that ∆min,p = ∆max,p. Having established (a) and having
∆min,p = ∆max,p at our disposal, it remains to remember the Lp-PP property of Proposition
1.5 or Proposition 1.6 and observe that the argument of Sections 2 and 3 of [Mil06] are
applicable in our context. This proves property (b). �

A quick comparison with the current literature permits to put our result in perspective
and highlight its novelties.

In [CdV82], the essential self-adjointness of the Laplace-Beltrami operator is proved on a
punctured manifold and in [Mas99] the study is extended to incomplete Riemannian manifolds
of the form M = N \K where the removed set K is a smooth closed submanifold K of co-
dimension greater than 3. In the very recent [HMS22] (see also [HKM17]) the case of singular
removed sets K (in the general setting of metric measure spaces) is considered. The authors
show that for a closed (possibly non-compact) set K with dimH(K) < n − 2p, the space
C∞
c (M) is an Lp-operator core of the Laplacian on M (and, hence, when p = 2 the Laplacian

is essentially self-adjoint). It is also shown that this property fails if the singular set K has
zero-Riemannian measure and Hausdorff dimension dimH(K) > n − 2p. The treshold case
n− 2p is included in the picture by using a suitably log-correction in the Hausdorff measure.
Thus, in a rather precise sense, our result completes those in [HMS22]. Indeed, for a fixed
dimension, in that paper the Lp-operator core property for the Laplacian is established for
small values of p whereas we are able to deal with large values p ≥ 2. It should be also pointed
out that combining [HMS22] with our Proposition 7.1 yields that, as somehow expected, Lp-
positivity preservation and Lp-operator core properties for the Laplacian are distinct concepts.

In a different but related direction, in [Mas99, GM13] the authors investigate spectral prop-
erties of the Gaffney Laplacian ∆G : W 1,2(M) → L2(M) on incomplete manifolds, obtaining
conditions for its self-adjointness in terms of probabilistic properties like parabolicity and
stochastic completeness and related to the Minkowski content of the removed part, somehow
in the spirit of our Proposition 1.6.
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In the context of Schrödinger operators, under our assumptions on V and for p 6= 2,
Proposition 7.1 is new even in the case when M is geodesically complete. Indeed, note that
properties (a) and (b) for a geodesically complete manifold were also obtained in [Mil19], but
under the more stringent hypothesis 0 ≤ V ∈ L∞

loc(M). When M is geodesically complete,
Proposition 7.1 (iii) is contained in (various) known self-adjointness results; see for instance
the main result of [GP13], where the authors allow V to have a negative part belonging to
the Kato class on M .

Schrödinger operators on geodesically incomplete manifolds were also considered in [MT16]
where the authors require no assumptions on the geometry of M , but ask for a controlled
behaviour of the potential V near the Cauchy boundary of M .
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