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Abstract
Consider a Hodge manifold and assume that a torus acts on it in a Hamiltonian and holo-
morphic manner and that this action linearizes on a given quantizing line bundle. Inside the
dual of the line bundle one can define the circle bundle, which is a strictly pseudoconvex
CR manifold. Then, there is an associated unitary representation on the Hardy space of the
circle bundle. Under suitable assumptions on the moment map, we consider certain loci in
unit circle bundle, naturally associated to a ray through an irreducible weight. Their quotients
are called conic transforms. We introduce maps which are asymptotic embeddings of conic
transforms making use of the corresponding equivariant Szegő projector.

Keywords Symplectic manifold · Group action · Embedding theorem · Conic transform ·
Torus action

Mathematics Subject Classification 53D20 · 32Q40

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2513
2 Motivations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2516

2.1 Definitions concerning orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2517
2.2 Conic transforms for torus actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2519
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1 Introduction

Let (M, ω) be a compact connected Hodge manifold of complex dimension d with complex
structure J and quantum line bundle (L, h) whose curvature form of the unique compatible
and holomorphic connection ∇ is −2i ω; we shall denote by g the Riemannian structure
ω(·, J ·). The volume form ω∧d/d! is denoted by dVM . Let X ⊂ L∨ the unit circle bundle,
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2514 A. Galasso

with projection π : X → M and connection contact form α such that dα = 2π∗(ω). Then
(X , α) is a CR manifold and α is the contact form, see [22]. There is a natural volume form
on X given by dVX = (2π)−1α∧π∗(dVM ). The Hardy space H(X) represents the quantum
space and under some suitable hypothesis classical symmetries on M of a Lie group G give
rise to a quantum representation of G on H(X). Fix a coprime weight ν labeling a unitary
irreducible representation in g∨. The ladder L is the set of unitary irreducible representations
labeled by integer elements of the ray iR+ · ν. In the setting of ladder representations, see
[13], one is led to consider spaces Hkν(X) for a fixed unitary irreducible representation ν as
k →+∞ and the corresponding projectors on it. The aim of this paper is to study geometric
properties of these projectors.

More precisely, we shall consider the Abelian case: given a torus T of dimension n
and a holomorphic and Hamiltonian action μ : T × M → M , denote the moment map
by � : M → t∨ (where t and t∨ is the Lie algebra and co-algebra, respectively and we
shall equivariantly identify t ∼= t∨ ∼= i Rn). The Hamiltonian action μ naturally induces an
infinitesimal contact action of t on X (see [14]); explicitly, if ξ ∈ t and

ξ M (m) := dIdμm(ξ)

is the corresponding Hamiltonian vector field on M (here μm : T → M is given by fixing
m ∈ M and its differential at the identity Id ∈ T is denoted by dIdμm : t→ Tm M) then its
contact lift ξ X is

ξ X := dIdμ̃ ·(ξ) = ξ
�
M − 〈� ◦ π, ξ〉 ∂θ , (1)

where ξ
�
M denotes the horizontal lift on X of a vector field ξ M on M , and ∂θ is the generator of

the structure circle action on X (similarly as before dIdμ̃x : t→ Tx X denotes the differential
of the map μ̃x : T → X at the identity).

Furthermore, suppose that the infinitesimal action (1) can be integrated to an action

μ̃ : T × X → X

acting via contact and CR automorphism on X . We recall that, since X is the boundary of
the strictly pseudoconvex domain

D = {x ∈ L∨ : |x |h < 1} ⊂ L∨

it has a Szegő kernel 	(x, y) which projects L2(X) to the Hardy space H(X) of square
summable functions which are boundary values of holomorphic functions in D. Under these
assumptions, there is a naturally induced unitary representation of T on the Hardy space
H(X) ⊂ L2(X) given by

μ̂t (s)(x) := s(μ̃t−1(x)), s ∈ H(X), x ∈ X and t ∈ T .

Hence H(X) can be equivariantly decomposed over the irreducible representations of T :

H(X) =
⊕

ν∈̂T

H(X)ν,

where ̂T is the collection of all irreducible representations of T which can be identified
with Z

n . If �(m) �= 0 for every m ∈ M , then each isotypical component H(X)ν is finite
dimensional, see [16]. For each ν ∈ ̂T we denote by

χν(t) := tν = ei 〈ν, θ〉, t ∈ T , θ ∈ R
n and ν ∈ Z

n
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Remarks on asymptotic isometric embeddings... 2515

the corresponding character; 〈·, ·〉 denotes the standard scalar product on i Rn ∼= t. Here, we
write t the matrix exponential ei θ , where θ ∈ R

n .
Fix ν ∈ ̂T , let 	ν : L2(X) → H(X)ν be the corresponding equivariant Szegő projection;

we also denote by 	ν ∈ C∞(X × X) its distributional kernel:

	ν(x, y) :=
dν

∑

j=1
sν

j (x) · sν
j (y)

where {sν
j }dν

j=1 is an orthonormal basis of H(X)ν . It is given explicitly by the formula:

	ν(x, y) =
∫

T
χν(t) 	(μ̃t−1(x), y) dVT (t)

where 	 is the Szegő kernel, dVT is the Haar measure and χν is the character of the rep-
resentation ν. In [16], the dimensions of isotypes H(X)kν and the behavior of 	kν(x, x)

are studied as k → +∞. In particular if 0 /∈ �(M) and � is transversal to the ray iR+ · ν
the asymptotic of 	kν(x, x) is rapidly decreasing whenever x /∈ Xν := π−1(Mν), where
Mν := �−1(i R+ · ν), as k goes to infinity. In [16, Theorem 2] point-wise expansions and
scaling asymptotics are considered at x ∈ Xν .

If 0 /∈ �(M) then the dimension of isotype H(X)kν is finite. There is a canonical map

ϕ̃kν : X → Hkν(X)∨

given by

x �→ ϕ̃kν(x) = 	kν(x, ·).
Let us consider an orthonormal basis of Hkν(X) given by skν

1 , . . . , skν
dkν

with respect to the

standard L2 product. Now, as a consequence of the scaling asymptotics of the equivariant
Szegő kernel we can investigate geometric properties of the map

ϕ̃kν : Xν → Hkν(X)∨, x �→ 	kν(x, ·) =
(

skν
1 (x), . . . , skν

dkν
(x)

)

,

as k goes to infinity, where we write the image ϕ̃kν(x) in components with respect to the dual
basis.

An equivariantmap R → S between two T -spaces descends to amap R/T → S/T . Thus,
ϕ̃kν is T -equivariant and it descends to a map ϕkν between the corresponding quotients:

ϕkν : Nν → CP
dkν−1
χkν

,

here we denote by Nν the conic transform Xν/T , see [19]. Furthermore we shall recall in
Sect. 2.2 from [19] that it has a Kähler structure ην . The target space is given by taking the
quotient of Hkν(X)∨ \ {0} with respect to the action induced by the representation

s
(

μ̃t−1(x)
) = χkν(t) s(x)

where χkν : T → S1 is the character. Consider the symplectic form on C
dk\{0} ∼=

Hkν(X)∨\{0}:

ω̃dk :=
i

2
∂∂ log|ζ |2.

The restriction of the action of T on the unit sphere in (Cdk\{0}, ω̃dk ) has the same orbit of
the standard S1 action on Sdk−1, ω̃dk descends to the Fubini Study form ωF S, k on CPdkν−1

χkν
.

123



2516 A. Galasso

Let us denote by Tx the stabilizer of a point x ∈ Xν . The cardinality |Tx | need not be
constant on Xν , but it does attain a generic minimal value |T ν

min| on some dense open subset
X ′ν , where T ν

min ⊆ T is the stabilizer of each point in X ′ν (Corollary B.47 of [12]). Then T ν
min

stabilizes every x ∈ Xν . Suppose that x ∈ Xν\X ′ν and consider the projection p : Xν → Nν ,
then p(x) is a singular point in (Nν)sing ⊆ Nν .

If k is sufficiently large, we shall prove that ϕkν is a asymptotically rescaled Kähler
embedding, in a sense specified below. By making use of a variant of [16, Theorem 4] we
can prove the following theorem, which is an analogue of embedding theorems in Kähler
geometry, see [22]. For terminology concerning orbifolds, see Sect. 2.1.

Theorem 1.1 Assume that ν �= 0 is coprime, 0 /∈ �(M), T ν
min is trivial and � is transversal

to i R+ · ν. Then there exists a subsequence kn such that the maps ϕknν form an asymptotic
sequence of Kähler embeddings of the Kähler orbifold (Nν, ην) into (CPdkν−1

χkν
, ωF S,k) in

the following sense:

(1) ϕknν is an orbifold embedding if n is sufficiently large.
(2) Uniformly on compact subsets of the smooth locus Nν \ (Nν)sing, there exists ε > 0 such

that ϕknν satisfies:

ϕkν
∗(ωF S,k) = ην + O(k−ε).

Theorem 2.1 is based onmicro-local techniques that work in the almost complex symplec-
tic setting, see [2] and [21]. Following similar idea as in [21], we study off-locus asymptotic
of the projector 	kν for arbitrary displacement as k goes to infinity, we refer to [16] and
Sect. 2.3.

2 Motivations and preliminaries

Given a compact Hodge manifold (M, ω) the sections of the quantizing line bundle L can
be used to define an embedding φk : M → CP

dk−1 into the complex projective space
(CPdk−1, ωF S) for k large, where ωF S,k is the Fubini-Study form and dk is the dimension of
the space of holomorphic sections of the k-th tensor power of the line bundle L . These spaces
of sections can be naturally identified with spaces of functions on X lying in the k-th Fourier
component of the Hardy space. The map φk can be studied by using the Szegő kernel, in fact
its k-th Fourier component defines, for k sufficiently large, a map

˜φk : X → Hk(X)∗ \ {0}, x �→ 	k(x, ·),
which in turn define a map

φk : M → P(Hk(X)∗).

It is natural to ask how the pull-back of ωF S on M is related to ω. S. Zelditch and D. Catlin
strengthen a previous result of Tian by proving that (1/k) φk

∗(ωF S) converges to ω in the
smooth topology, see [3], [6] and [22]. Furthermore, B. Shiffman and S. Zelditch generalize
this picture in the symplectic setting in [21]. In this setting, small displacements from a fixed
x ∈ X are conveniently expressed in Heisenberg local coordinates on X centered at x . A
choice of Heisenberg local coordinates at x gives a meaning to the expression x + v, where
v ∈ Tπ(x)M has sufficiently small norm. By using re-scaling asymptotic expansion

k−d 	k

(

x + v√
k
, x + w√

k

)

∼ 1

πd
ev·w−

1
2 (‖v‖2+‖w‖2)

⎡

⎣1+
∑

j≥1
k− j/2a j (x, v, w)

⎤

⎦
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Remarks on asymptotic isometric embeddings... 2517

where a j (x, v, w) are polynomial functions in v and w and v, w ∈ Tmx M , they prove the
convergence of the rescaled pull-backs of the Fubini Study forms.Here,∼means “as the same
asymptotic as”. Furthermore in [9], we obtain an analogue Kodaira embedding theorem and
Tian’s almost-isometry theorem for compact quantizable pseudo-Kähler manifold making
use of the asymptotic expansion of the Bergman kernels for L⊗k-valued (0, q)-forms.

In this paper we shall focus on Szegő kernel asymptotics along rays in weight space and
we aim to obtain analogue of results we have discussed in this section, we shall now briefly
review the literature. In [16] the author focuses on asymptotic expansions locally reflecting the
equivariant decomposition of H(X) over the irreducible representations of a compact torus.
In [10] and [11] the focus was on respectively the case G = U (2) and G = SU (2) making
use of theWeyl integration formula; in [18] local scaling asymptotics were generalized to the
case of a connected compact Lie group G. Furthermore, we refer to [17] where asymptotics of
the associated Szegő and Toeplitz operators were studied in detail for the case of Hamiltonian
circle action lifting to the quantizing line bundle, see [7] for some related results concerning
the torus action case. It is important to notice that, in general, the spaces H(X)kν are not
contained in any space of global sections H0(M, A⊗k).

The analog of “quantization commutes with reduction” for torus action in this frame-
work was first studied in [19]. In [8] we generalize the main theorem in [19] to compact
“quantizable” pseudo-Kähler manifolds.

2.1 Definitions concerning orbifolds

We recall basic definitionswe need about orbifolds, for amore precise discussion see [20], [1],
[15] and references therein. We define the categoryMs in the following way. The objects are
pairs (U , G), whereU is a connected smoothmanifold andG is a finite group acting smoothly
on U . A morphism � : (U , G) → (U ′, G ′) is family of open embeddings ϕ : U → U ′
such that:

i) For each ϕ ∈ � there exists an injective group homomorphism λϕ : G → G ′ satisfying

ϕ(g · x) = λϕ(g) · ϕ(x), x ∈ U , g ∈ G.

ii) For g ∈ G ′, ϕ ∈ �, if (g ϕ)(U ) ∩ ϕ(U ) �= ∅, then g ∈ λϕ(G).
iii) For ϕ ∈ �, we have � = {g ϕ, g ∈ G ′}.

Let X be a paracompact Hausdorff space and let U be a covering of X consisting of
connected open subsets. We assume U satisfies the condition: for any x ∈ U ∩V , U , V ∈ U ,
there is W ∈ U such that x ∈ W ⊂ U ∩ V . Then we say that the topological space X has an
orbifold structure if

i) for eachU ∈ U there exists (˜U , GU ) ∈Ms and a ramified covering (˜U , GU )→ U such
thatU is homeomorphic to ˜U/GU , where ˜U/GU is endowed with the quotient topology;

ii) for any U , V ∈ U , U ⊂ V , there exists a morphism ϕV ,U : (˜U , GU )→ (˜V , GV ) which
covers the inclusion U ⊂ V and satisfies ϕWU = ϕW V ◦ ϕV U for any U , V , W ∈ U
such that U ⊂ V ⊂ W .

Let us denote by πU : (˜U , GU ) → U the ramified covering. We recall that for each
p ∈ X one can always find local coordinates x = (x1, . . . , xn) on (˜U , GU ), ˜U ⊆ R

n , and
p̃ with πU ( p̃) = p such that x( p̃) ≡ 0 ∈ R

n is a fixed point of GU and GU acts linearly on
R

n . We call these coordinates standard coordinates at p. If |GU | > 1 then we say that p is
a singular point, otherwise we say that p is regular.
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2518 A. Galasso

A vector orbibundle (E, p) on an orbifold X is an orbifold E together with a continuous
projection p : E → X such that for U ∈ U there exists a GU -equivariant lift p̃ : ˜EU → ˜U
defining a trivial vector bundle such that the diagram

(˜EU ,G E
U )

p̃−→ (˜U , GU )

↓ ↓
EU

p−→ U

commutes. As before, when we say that p̃ : ˜EU → ˜U is GU -equivariant we mean that there
exists an injective group homomorphism λp : G E

U → GU such that

p̃(g · e) = λp(g) · p̃(e) e ∈ ˜EU , g ∈ G E
U ;

if λp is a group isomorphism, we say that the vector orbibundle is proper.
A smooth section of a vector orbibundle (E, p) over X is a smooth map s : X → E such

that p◦s = 1X , we denote the space of smooth sections as C∞(X , E).We recall that a smooth
map f : X → Y between orbifolds is a continuous map between the underlying topological
spaces such that for each U ∈ U there exists a local lift ( ˜fU , f U ) such that ˜fU : ˜U → ˜V is
smooth, f U : GU → GV is a group homomorphism, the diagram

(˜U ,GU )
˜f−→ (˜V , GV )

↓ ↓
U

f−→ V

commutes and ˜fU is f U -equivariant:

˜fU (g · x) = f U (g) ˜fU (x), g ∈ GU , x ∈ ˜U .

The tangent orbibundle T X is defined by gluing together the bundles defined over the
charts

(T ˜U , GU ) → (˜U , GU ),

where the action of GU on T̃x ˜U is induced by differentiating the action on ˜U , dg. It has
a natural structure of proper vector orbibundle. The smooth sections of it are called vector
fields.

We can then define the differential of a smooth map f : X → Y to be the smooth map
d f : T X → T Y such that locally for a given x ∈ U , f (x) ∈ V , and standard coordinates
at x we have a commutative diagram

(T̃x ˜U ,GU )
dx̃ ˜f−−→ (T

˜f (̃x)
˜V , GV )

↓ ↓
TxU

dx f−−→ T f (x)V

where dx̃ ˜f is f U -equivariant. We say that f is an immersion at x ∈ X if d f is injective, so
this means that there is a local lift ˜fU : ˜U → ˜V such that both dx̃ ˜f and f U are injective.

123



Remarks on asymptotic isometric embeddings... 2519

2.2 Conic transforms for torus actions

We work with the same assumptions as in [19, Basic Assumption 1.1]. Let us recall that
Mν = �−1(iR+ · ν) and for each m ∈ Mν we have

�(m) = ς(m) i ν,

where ς : M → R is a suitable smooth positive function. Here, we always assume that the
action of T on Xν is locally free. By [19], transversality is tantamount to T acting locally
freely on Xν so that Nν is an orbifold.

In [19, Section 5.3] a Kähler orbifold structure for Nν is defined in the following way.
Let us denote by i ν0 the annihilator of i ν in t. Consider the quotient Yν := Xν/ expT (i ν0),
then Yν is as principal S1 orbibundle over Nν , let πν be the projection. Adopting the same
notation as in [19, Section 5.3], � ◦ π descends to a smooth function � : Yν → t∨; hence
�ν = 〈�, i ν〉 descends to a smooth function �

ν : Yν → R.
Let αXν := j∗ν (α), where jν : Xν → X is the inclusion. Then, αXν is T -invariant, and

by definition of Xν for any ξ ∈ ν0 we have ι((i ξ)Xν )α
Xν = 0, see [19]. Hence αXν is the

pullback of an orbifold 1-form αYν on Yν . Let us define

βν := ‖ν‖2
�

ν αYν .

By [19, Equation (46)], we see that

dβν = ‖ν‖2
[

1

�
ν dαYν − 1

(�
ν
)2

d�
ν ∧ αYν

]

.

By [19, Corollary 16] and [19, Lemma 11]:

Proposition 2.1 There exists a 2-form ην on Nν such that dβν = 2π∗ν (ην) and a complex
structure J Nν so that (Nν, J ν, ην) is a Kähler orbifold.

First, we introduce a decomposition of Tm M when m ∈ Mν , as in [16]. We adopt the
following notation. Let l ≤ t be a Lie subalgebra of t, we denote by lM (m) the space of
infinitesimal vector fields ξ M (m) on M at m, ξ ∈ l. Explicitly,

lM (m) = {ξ M (m) ∈ Tm M : ξ ∈ l}.
Similarly we denote by lX (x) the space of infinitesimal vector fields ξ X (x) on X at x , ξ ∈ l.
Under the transversality assumption, for each m ∈ Mν we have

Tm M = T t
m M ⊕ T v

m M ⊕ T hor
m M, (2)

where

T t
m M := Jm (iν0)M (m), T v

m M := (iν0)M (m)

and

T hor
m M := (

T v
m M ⊕ T t

m M
)⊥g

.

By the proof of [19, Lemma 11], see [19, Equation (48)], we have the following lemma.

Lemma 2.1 Let Qν : Xν → Yν be the projection. For each x ∈ Xν , with π(x) = m, and for
each v,w ∈ T hor

m M, we have

Q∗ν(dβν)x (v�, w�) = 2

ς(m)
π∗ωm(v�, w�).

123



2520 A. Galasso

2.3 Equivariant Szego kernels

Let 	 : L2(X) → H(X) be the Szegő projector, 	(·, ·) its kernel. By [4], 	 is a Fourier
integral operator with complex phase:

	(x, y) =
∫ +∞

0
eiuψ(x,y) s(x, y, u) du,

where the imaginary part of the phase satisfies �(ψ) ≥ 0 and

s(x, y, u) ∼
∑

j≥0
ud− j s j (x, y).

We shall also make use of the description of the phase ψ in Heisenberg local coordinates
(see §3 of [21]).

TheHeisenberg coordinates for the unit circle bundle X at a given point x , withπ(x) = m,
are defined in Section §1.2 in [21]. The Heisenberg coordinates play a crucial role in the
description of the scaling asymptotics of the Szegő kernel in [21]. Here, we will only recall
that to define them one needs to choose preferred local coordinates z = (z1, . . . , zd) centered
at a point m ∈ M and choose a preferred local frame for the line bundle L . Recall that the
coordinates (z1, . . . , zd) are preferred at m ∈ M if and only if

d
∑

j=1
dz j ⊗ dz j = (g − i ω)|m,

where g is the Riemannian metric ω(·, J ·). Furthermore, a preferred frame for L → M at a
point m ∈ M is a local frame eL in a neighborhood of m such that

(‖eL‖hL )|m = 1, ∇(eL)|m = 0,

and

∇2(eL)|m = −(g + i ω)⊗ (eL)|m .

The preferred frame and preferred coordinates together give us the Heisenberg local coor-
dinates on the circle bundle X : a Heisenberg coordinate chart at a point x (m = π(x)) is a
coordinate chart ρ : U ≈ V with 0 ∈ U ⊂ C

d × R (denote by pCd : Cd × R → C
d the

projection) and ρ(0) = x ∈ V ⊂ X of the form

ρ(θ, z1, . . . , zd) = eiθ a(z)−
1
2 e∗L(z),

where a is a real-valued smooth function on pCd (U ), eL is a preferred local frame at m and
(z1, . . . , zd) are preferred coordinates centered at m.

For ease of notation, on a Heisenberg local chart, we write x + (θ, v); here θ ∈ (−π, π)

and v ∈ B2d(0, δ), the open ball of center the origin and radius δ > 0 in C
d ∼= R

2d . If
v ∈ Tm M and ‖v‖ < ε, we write x + (0, v) = x + v. Furthermore, accordingly with the
decomposition (2), we write v = vt + vv + vhor.

Now, we need to state a variant, Theorem 2.1 below, of the main result concerning off-
diagonal asymptotics of the equivariant Szegő kernel obtained in [16] and [5]. In fact, [16,
Theorem 4] concerns off-locus asymptotics expansions along directions in the normal bundle
T tM but one can generalize them for arbitrary displacements as in [5]. More precisely, in [5],
the author considers that a compact and connected Lie group G and a compact torus T act
on M in a holomorphic and Hamiltonian manner, that the actions commute, and linearize to
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Remarks on asymptotic isometric embeddings... 2521

L . Given a nonzero integral weight ν for T , the author considers the isotypical components
associated to the multiples k νT , k →+∞, and focuses on how their structure as G-modules
is reflected by certain local scaling asymptotics on X . Thus, [5, Theorem 1.6] reduces to
Theorem 2.1 below for trivial G.

Choose ξ1 ∈ span(ν) so that ‖ξ1‖ = 1 and 〈ξ1, ν〉 = ‖ν‖. Hence, if v j = (θ j , v j ) ∈
Tx X , set

A(v1, v2) := θ2 − θ1

‖�(m)‖ ξ1, M (m).

Define E : Tx Xν × Tx Xν → C by setting

E(v1, v2) := i ωm(A(v1, v2), v1 h)+ ψ2(v1h − A(v1, v2), v2 h)

where

ψ2 (v1, v2) = −i ωm(v1, v2)− 1

2
‖v1 − v2‖2.

Given v = (θ, v) ∈ Tx X , for every t ∈ Tx , we write

v(t) = dx μ̃t (v) = (θ, dmx μt (v)).

Now, we can state the theorem concerning off diagonal scaling asymptotics for directions
tangent to Xν .

Theorem 2.1 For each x ∈ Xν , with π(x) = m, and v j = (θ j , v j ) ∈ Tx Xν , j = 1, 2, such
that v j ∈ T hor

m M and ‖vi‖ ≤ C kε , for sufficiently small ε, we have

	kν

(

x + v1√
k
, x + v2√

k

)

∼ ei
√

k (θ1−θ2)/ς(m)

(
√
2π)n−1 D(m)

(

‖ν‖ · k

π

)d+(1−n)/2

·
(

1

‖�(m)‖
)d+1+(1−n)/2

·
⎛

⎝

∑

t∈Tx

χν(t)
k e

1
ς(m)

E
(

v
(t)
1 , v2

)

⎞

⎠ ·
⎛

⎝1+
∑

j≥1
R j (m, v1, v2) k− j/2

⎞

⎠ , (3)

where D is a smooth positive function on Mν , R j is polynomial in the vi ’s of degree ≤ 3 j
and parity j .

The re-scaled asymptotic expansions (3) of Theorem 2.1 will be the main tool for proving
Theorem 1.1.

Let us compare the exponent E (v1, v2) with the standard one appearing in [21]. For ease
of notation, we set

Fμ
k

((

θ1√
k
,
v1√

k

)

,

(

θ2√
k
,
v2√

k

))

:= i
√

k (θ1 − θ2)+ E (v1, v2)

= i
√

k

[

θ1

(

1− ω

(

ξ1, M

‖�(m)‖ , v1,h

))

− θ2

(

1− ω

(

ξ1, M

‖�(m)‖ , v2, h

))]

+ ψ2

(

v1, h + θ1 · ξ1, M

‖�(m)‖ , v2, h + θ2 · ξ1, M

‖�(m)‖
)
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and we note that, when T = T 1 acts trivially on M , with constant moment map equal to 1,
we recover the exponent of [21]:

F SZ
k

((

θ1√
k
,
v1√

k

)

,

(

θ2√
k
,
v2√

k

))

= i
√

k (θ1 − θ2)+ ψ2 (v1, v2) .

Given θ sufficiently small, x ∈ Xν and v ∈ Tx Xν , we note that by Corollary 2.2 in [16]
we get

μ̃
expT

(

−θ ξ̃1

) (x + v) = x +
(

θ + θ · ω
(

ξ1, M

‖�(m)‖ , v
)

, v − θ · ξ1, M

‖�(m)‖
)

+ O
(‖(θ, v)‖2)

and eventually, we note that

Fμ
k

((

θ1√
k
,
v1√

k

)

,

(

θ2√
k
,
v2√

k

))

= F SZ
k

(

μ̃
expT

(

− θ1√
k

ξ̃1

)

(

x − v1√
k

)

, μ̃
expT

(

− θ2√
k

ξ̃1

)

(

x − v2√
k

))

+ O
(

1/
√

k
)

where

ξ̃1 =
ν

‖ν‖ · ‖�(m)‖ .

3 Proof of Theorem 1.1

Let us denote the dimension of Hkν(X) by dkν and consider an orthonormal basis of Hkν(X)

given by skν
1 , . . . , skν

dkν
with respect to the standard L2 product.

We distinguish two cases: the stabilizer of x is trivial or its cardinality is finite and equals
|Tx | > 1. First, let us consider a neighborhood of a point x with |Tx | = 1.

Now, by definition, we can write in coordinates with respect to the dual basis

ϕ̃kν : Xν → Hkν(X)∨, x �→
(

skν
1 (x), . . . , skν

dkν
(x)

)

,

and we note that

	kν(x, y) := ϕ̃kν(x) · ϕ̃kν(y). (4)

We shall follow [21] and we consider the 2-form � on a sufficiently small neighborhood
of the diagonal (Cdkν\{0})× (Cdkν\{0}) given by

� = i

2
d(1)d(2) log ζ · η

where ζ and η are the variables respectively on the first and second component of

(Cdkν \ {0})× (Cdkν \ {0})
and the formal differentials d(1) and d(2) denote the exterior differentiation on the first and
second factors, respectively. On the diagonal of (Cdk\{0})× (Cdk\{0}), we have

j∗(�) = ω̃dk :=
i

2
∂∂ log|ζ |2

where j is the diagonal embedding.
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Furthermore define

�kν = ϕ̃kν × ϕ̃kν : Xν × Xν → C
dkν × C

dkν , �kν(x, y) := (ϕ̃kν(x), ϕ̃kν(y)).

The proof of the following Lemma is left to the reader.

Lemma 3.1 �∗kν commutes with d(1) and d(2).

Thus we can pullback � via �kν , by (4) and Lemma 3.1 we can easily obtain

1

k
�∗kν� =

i

2k
�∗kνd

(1)d(2) log ζ · η = i

2k
d(1)d(2)�∗kν log ζ · η = i

2k
d(1)d(2) log	kν .

Consider a small open neighborhood U ⊂ Yν = Xν/ expT (i ν0) of a point y in Yν and
Q−1ν (U ) ⊂ Xν . Let x ∈ Xν such that Qν(x) = y. Since Qν : Xν → Yν is a principal
expT (iν0)-bundle over Yν , we can assume U to be sufficiently small so that there exists a
trivializing section s : U → Q−1ν (U ) with V := s(U ) ⊆ Q−1ν (U ). Let us denote by T t

m M�

the space of vectors in Tx X which are the horizontal lift of vectors in T t
m M . By (2), where

x ∈ Xν with π(x) = m we have

Tx X = T t
m M� ⊕ Tx Xν

since, by formula (1), for every ξ ∈ iν0, we have ξ X (x) = ξ
�
M (m). Since the vectors

in T v
m M = (iν)0M (m) are tangent to the fibers of the principal bundle Qν : Xν → Yν

in Xν ⊆ X , then s can be chosen so that a basis for Tx V consists of a basis for T hor
m M

and ξ1, X (x). Note that that T hor
x M� projects isomorphically to Tn Nν where x is such that

p(x) = n and p : Xν → Nν is the projection.
Thus, let us consider y ∈ U ⊆ Yν with Qν(x) = y. We compose with the diagonal map

diag and we make use of Theorem 2.1, using Heisenberg coordinate, for v1, v2 ∈ T hor
m M we

get

1

k
ϕ̃kν

∗ωdk

∣

∣

V =
i

2k
diag∗d(1)d(2) log	kν

(

x +
(

θ1√
k
,
v1√

k

)

, x +
(

θ2√
k
,
v2√

k

))

= i

2k
diag∗d(1)d(2)

[

1

ς(mx )
Fμ

k

((

θ1√
k
,
v1√

k

)

,

(

θ2√
k
,
v2√

k

))]

+ O
(

1/
√

k
)

.

Thus, by the description of local coordinates on V ⊂ Xν for the circle bundle πν : Yν → Nν

at the end of Sect. 2.3, we obtain

1

k
ϕ̃kν

∗ωdk

∣

∣

V =
i

2k
diag∗d(1)d(2)

[

1

ς(mx )
ψ2 (v1, v2)

]

+ O
(

1/
√

k
)

= 1

ς(mx )
π∗ω|V + O

(

1/
√

k
)

.

Since in Heisenberg local coordinates ω is the standard form on C
d−r+1 (where r is the

dimension of the torus T ), see [21], and by the discussion in Sect. 2.2, see Lemma 2.1, we
get (2) in Theorem 1.1. Thus, we also get (1) since, as a consequence of (2) we get that dϕkν

is injective for k large.
Now, suppose that the stabilizer |Tx | > 1, hence n is a singular point in Nν and fix x such

that p(x) = n where p : Xν → Nν is the projection. Since Nν is an orbifold there exists
a local chart (Tx , ˜Un). By the Slice Theorem, see Appendix B in [12], a neighborhood of
the orbit of x is equivariantly diffeomorphic to a neighborhood of the zero section of the
associated principal bundle T ×Tx D where D is a sufficiently small neighborhood of the
origin in T hor

m Mν with π(x) = m.
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Now, 	kν(x, x) can be zero for some k even when k is large. To solve this problem, we
note that there exists a subsequence kn such that for each x ∈ Xν

∑

t∈Tx

χknν(t) �= 0.

In fact, we can choose kn to be divisible by the least common multiple of |Tx |, for x ∈ Xν ,
(there are only finitely many possible stabilizers). As a consequence of

ϕ̃kν(μ̃t−1(x)) = χkν(t)
dkν
∑

j=1
skν

j (x)(skν
j ) = μ̂t (ϕ̃kν(x)) ,

we note ϕkν is a Tx -equivariant map from an open neighborhood ˜Un ∼= D of ñx to CPdkν−1
χkν

,
where in the orbifold local chart πUn : (˜Un, GUn ) → Un we have that πUn (̃nx ) = nx .

Eventually, we shall prove that the maps ϕkν are embeddings for k sufficiently large. In
order to prove it, we study long-range and short-range injectivity as in [21]. Thus, given
x, y ∈ Xν in the range where

√
k distX (T · x, y) tends to infinity as k →+∞, it follows in

a similar way as in [21] that ϕkν(nx ) �= ϕkν(ny) as an easy consequence of [16].
For short-range injectivity we consider vk ∈ T hor

m M�, where m = π(x) and x ∈ Xν , such
that 0 �= ‖vk‖ ≤ C and assume

ϕkν

(

nx+vk/
√

k

)

= ϕkν(nx ) (5)

where recall that T hor
x M� projects isomorphically to Tn Nν where x is such that p(x) = nx

and p : Xν → Nν is the projection. Thus, (5) is equivalent to

ϕ̃kν(x)

‖ϕ̃kν(x)‖ ∧
ϕ̃kν(x + vk/

√
k)

‖ϕ̃kν(x + vk/
√

k)‖ = 0. (6)

Thus, by (4), Eq. (6) is equivalent to
∣

∣

∣

∣

∣

∣

	kν(x, x + vk/
√

k)

√
	kν(x, x) ·

√

	kν(x + vk/
√

k, x + vk/
√

k)

∣

∣

∣

∣

∣

∣

= 1. (7)

Define, for a sufficiently small ε, f : [−ε, 1+ ε] → R

fk(τ ) = |	kν(x, x + τ vk/
√

k)|2
	kν(x, x) ·	kν(x + τ vk/

√
k, x + τ vk/

√
k)

and note that fk(0) = 1 and, by (7), fk(1) = 1 (the denominator is non-zero providedwe pass
to a subsequence). Furthermore, by (4) and the Cauchy-Schwartz inequality, 0 ≤ fk ≤ 1.
Hencewehave f ′k(0) = 0 (note that f is defined on [−ε, 1+ε]). Thus, there exists τk ∈ (0, 1)
such that f ′′k (τk) = 0.

Eventually, starting with (7) and expanding in decreasing half-integer powers of k,

fk(τ ) =
∑

t∈Tx

χkν(t) · e−
τ2

2 ς(m)
‖vk‖2 [

1+ k−1/2R(τ, vk)
]

where R3(τ, vk) = O(1). Note that, since fk(1) = 1, we get ‖vk‖2 = O(k−1/2). Thus, we
obtain

f ′′k (τ ) = (−1+ O(1))
∑

t∈Tx

χkν(t) · ‖vk‖2.
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By evaluating at τk , we get vk = 0.
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5. Camosso, S.: Scaling asymptotics of Szegő kernels under commuting Hamiltonian actions. Ann. Mat.
Pura Appl. (4) 195(6), 2027–2059 (2016)

6. Catlin,D.: TheBergmankernel and a theoremofTian,Analysis andgeometry in several complexvariables.
Katata: Trends Math. Birkhäuser Boston, Boston, 1999, 1–23 (1997)

7. Galasso, A.: Equivariant fixed point formulae and Toeplitz operators under Hamiltonian torus actions and
remarks on equivariant asymptotic expansions. Int. J. Math. 33, 2 (2022)

8. Galasso, A.: Commutativity of quantization with conic reduction for torus actions on compact CR mani-
folds. Ann. Glob. Anal. Geom. 65, 4 (2024)

9. Galasso, A., Hsiao, C.-Y.: Embedding theorems for quantizable pseudo-Kähler manifolds.
arXiv:2209.10269

10. Galasso, A., Paoletti, R.: Equivariant asymptotics of Szegö kernels under HamiltonianU (2) actions. Ann.
Mat. Pura Appl. (4) 198(2), 639–683 (2019)

11. Galasso, A., Paoletti, R.: Equivariant asymptotics of Szegö kernels under Hamiltonian SU (2) actions.
Asian J. Math. 24, 3 (2020)

12. Guillemin, V., Ginzburg, V., Karshon, Y.: Moment Maps, Cobordisms, and Hamiltonian Group Actions,
appendix J by M. Braverman, Mathematical Surveys and Monographs 98. American Mathematical Soci-
ety, Providence (2002)

13. Guillemin, V., Sternberg, S.: Homogeneous quantization and multiplicities of group representations. J.
Funct. Anal. 47(3), 344–380 (1982)

14. Kostant, B.: Quantization and Unitary Representations. I. Prequantization, Lectures in Modern Analysis
and Applications, III. Lecture Notes in Mathematics, Vol. 170, , pp. 87–208. Springer, Berlin (1970)

15. Ma, X., Marinescu, G.: Holomorphic morse inequalities and Bergman kernels. Prog. Math. 254 (2007)
16. Paoletti, R.: Asymptotics of Szegö kernels under Hamiltonian torus actions. Israel J. Math. 191(1), 363–

403 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2209.10269


2526 A. Galasso
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