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A B S T R A C T   

Approaches of high-level data fusion, also known as consensus, combine predictions of individual models to increase reliability and overcome limitations of single 
models. Consensus strategies are frequently applied in the framework of Quantitative Structure - Activity Relationships (QSARs) to reduce the uncertainties in the 
prediction of molecular activities and provide better accuracy of the model outcomes. However, specific regions of the chemical space may systematically be 
associated with low accuracy and even consensus modelling cannot improve prediction reliability through the multiple outcomes of individual models. 

In this study, a new heuristic metric to assess the degree of accuracy of consensus predictions in the chemical space is proposed. This metric can assist the mapping 
of reliability in prediction and enhance the delineation of a safe zone, where consensus predictions are expected to have better accuracy. The new metric is calculated 
by kernel-based potential functions and it can be used in the framework of both classification and regression consensus modelling. Four case studies, including 
extensive datasets for consensus modelling, were used to test the proposed approach. 

Results demonstrated that a potential can be associated with regions of the chemical space as a function of accuracy of consensus modelling and it can be used to 
enable the mapping of reliability in prediction and the definition of specific regions where predictions are expected to be more reliable.   

1. Introduction 

Chemometrics strategies for the integration of heterogeneous infor
mation from diverse data sources allow to increase the reliability of 
predictions, overcome limitations of single approaches and enable the 
extraction of relevant information content [1–3]. Information sources 
can be defined as data blocks in the case of low-level data fusion, fea
tures when dealing with mid-level strategies or predictions of individual 
models when dealing with high-level approaches [4,5]. 

In the framework of Quantitative Structure - Activity Relationships 
(QSARs), fusion strategies are commonly applied as valuable tools to 
reduce the uncertainty in the prediction of molecular activities [6,7]. 
The high-level approach (also known as decision level or consensus 
modelling) is the most common fusion method. For a given biological 
activity or molecular property, individual models are trained on a 
shared training pool of chemicals, but using different molecular de
scriptors and/or different learning algorithms. Then, the different 
modelling outcomes for the same chemical are combined to obtain the 
final property predictions. 

The fundamental assumption of consensus modelling in QSAR is that 
the individual models reflect limited structure–activity information, 
which depends on the specific set of molecular descriptors in the model 
and the specific modelling algorithm. As a consequence, the combina
tion of multiple QSAR predictions may provide better accuracy and 
reliability with the predictions, compared to single models [8]. In fact, 

the effects of contradictory outcomes can be reduced by merging the 
diverse model predictions: their integration can enhance the minimi
zation of the overall uncertainty due to a compensation effect [9]. 

It is often required in research and regulatory applications of QSAR 
to estimate the reliability of predictions. When dealing with individual 
models, this is primarily addressed through the definition of the appli
cability domain (AD), that is, the chemical space where predictions can 
be considered as reliable [10]. AD is calculated on the basis of the 
structural features of the molecules used to train the model: compounds 
which are not similar enough to the training chemicals fall outside the 
AD and their predictions are considered as model extrapolations and 
most likely to be unreliable. When dealing with data fusion and 
consensus modelling, the prediction reliability can be estimated looking 
at the degree of agreement among the predictions provided by the 
models included in the consensus strategy. For example, these measures 
can be based on the posterior probability when using Bayesian 
consensus [11] or belief and plausibility with Dempster-Shafter theory 
of evidence [9]. 

It is noteworthy that in most of the real QSAR case studies, the dis
tribution of the prediction reliability in the chemical space is not uni
form. In fact, recent studies have highlighted that specific regions of the 
chemical space may be systematically associated with incorrect pre
dictions [12–14]. To the best of our knowledge, the chemical space 
mapping on the basis of prediction reliability has never been proposed in 
the framework of consensus modelling. Thus, we propose a novel metric, 
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which is used to map regions of the chemical space where models are 
likely not accurate and could assist the evaluation of prediction reli
ability. More specifically, we propose a measure to assess the extent to 
how each point of the chemical space is associated with prediction 
reliability. This mapping also allows an easier delineation of a sort of 
comfort zone in the chemical space, where models are supposed to have a 
steady level of performance and thus operate with higher accuracy and 
consequently reduced uncertainty. The proposed measure of reliability 
is based on the calculation of kernel-based potentials in the chemical 
space, defined in terms of molecular fingerprints. We tested and vali
dated the approach on four different case studies, which included 
extensive consensus datasets related to the modelling of both qualitative 
and quantitative properties. 

2. Material and methods 

2.1. Kernel-based reliability potential for consensus prediction 

In this study, we use potential functions to calculate the degree of 
reliability in accurate prediction in each point of the chemical space and, 
thus, for each virtual compound located in that point: the higher the 
potential, the higher the belief the compound is located in a specific 
region of the chemical space where chemicals are predicted with higher 
accuracy. 

Let X (n x p) be a training dataset, arranged in a p-dimensional ma
trix, where n is the number of chemicals (samples) and p the number of 
molecular descriptors (variables), and let a virtual compound t be 
associated to the point t (1 x p) of the p-dimensional chemical space, 
then the density estimate (reliability potential) Pt in the point t of the 
chemical space is defined on the basis of the following equation [15,16]: 

Pt =
1
hp ⋅

∑n

i=1
wi⋅
∏p

j=1
k
(
tj, xij

)
(1)  

where k(tj, xij) is the kernel smoothing function (eq. (2)) that accounts 
for the dissimilarity between the virtual compound t and the i-th training 
sample considering the j-th variable (eq. (3)), h is the bandwidth of the 
kernel-smoothing function, wi is the weight for the i-th training sample 
(defined later for both qualitative and quantitative modelling), xij and tj 
are the value of the j-th variable for the i-th training sample and the 
virtual compound t, respectively. 

We considered only the most common kernel smoothing functions 
and specifically Gaussian (a), Epanechnikov (b), and triangular (c) 
kernel smoothing functions have been taken into account [17]: 
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where u(tj, xij) is the distance measure defined as 

u
(
tj, xij

)
=

tj − xij

h
(3) 

In this study, the chemical space was built as the 2D dimensional 
space defined by the first two scores of MultiDimensional Scaling (MDS) 
calculated on the molecular fingerprints of the training molecules [18]. 
Thus, tj and xij refer specifically to the j-th MDS score of the t-th point and 
the i-th training sample, respectively. 

2.2. Weighting for qualitative and quantitative modelling 

Different weightings w can be associated to training samples to 
define the entity of potential in order to tune and adapt the reliability 

measure on the basis of the model prediction accuracy. In particular, 
different weighting schemes have been defined for qualitative (classifi
cation) and quantitative modelling (regression). 

In the case of an ensemble of M classification models to be used for 
consensus prediction, the weight wi for the i-th training sample is 
defined in the following way: 

wi =
(

1 −
ng(i)

n

)
⋅
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0 if ĉim ∕= ci

(4)  

where ng(i) is the number of training samples in the g-th class to which the 
i-th training sample belongs, M is the number of predictions provided by 
the individual models and used for the consensus and δim is the classi
fication score of the i-th training sample for the m-th prediction, which is 
defined as: δim = 1 if the i-th sample is correctly predicted by the m-th 
individual model (the predicted class ĉim corresponds to the experi
mental class ci) and δim = 0 when the i-th sample is erroneously pre
dicted. Predictions outside the applicability domain of the models are 
not considered in the score calculation to avoid the use of unreliable 
information in the weight calculation. The first term of Equation (4) 
allows compensating the weights of objects belonging for underrepre
sented classes (unbalanced cases). On the other side, in the case of bi
nary balanced classes (ng/n = 0.5), each weight wi is therefore bounded 
between − 0.5 (the training sample is misclassified by all models) and 
0.5 (all models predict correctly the training sample). 

In the case of M regression models, the weight wi for the i-th training 
sample is defined in the following way: 

wi = 2⋅

∑M

m=1
e−

|ŷim − yi |
RMSEm

M
− 1 (5)  

where yi is the experimental response for the i-th training sample, ŷim is 
the response predicted by the m-th individual model and RMSEm is the 
root mean squared error of the m-th model. Weights are therefore 
bounded between − 1 (high residuals) and 1 (no residuals). 

Therefore, coming back to the definition of the reliability potential Pt 
(eq. (1)) in the point t of the chemical space, the training compounds 
that contribute more to the positive potential value are those with small 
prediction errors. 

2.3. Univariate example of reliability potential 

A graphical representation of the reliability potential in the frame
work of classification modelling is provided in Fig. 1. As an example, 10 
training samples are taken into account in a one-dimensional space to 
enhance the graphical demonstration, where X1 represents any quanti
tative variable or score used as coordinate to map samples in the space. 
Each sample is coloured in a grey scale: the darkness is proportional to 
the number of wrong predictions provided by the models participating 
in the consensus. Thus, the black point represents a sample which was 
erroneously predicted by all models, the dark grey point a sample with 
few correct predictions, the light grey points denote samples with 
several correct predictions and finally white points represent samples 
which were correctly predicted by all models. 

The grey curves represent the individual potentials, which were 
calculated with a Gaussian kernel in this example. Individual potentials 
are related to each sample and proportional to their classification score: 
white samples have high positive potential, black samples negative 
potentials, while grey samples have intermediate potential values. The 
blue line defines the cumulative potential, which is the sum of all the 
individual contributions (eq. (1)). The chemical space is therefore 
characterised by higher reliability for low values of X1, where the ma
jority of training samples associated with high accuracy are located 
(white and light grey points). On the contrary, the reliability in 
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prediction accuracy decreases as X1 increases, since in this region of the 
chemical space there are some training samples with not accurate 
predictions. 

New samples can be projected in the chemical space (on the basis of 
their X1 coordinate) and according to the projection point the reliability 
degree associated with their prediction can be easily derived. 

2.4. Case studies 

Four case studies from collaborative projects based on consensus 
modelling were taken into account (Table 1) and briefly described 
below. 

The CoMPARA dataset was distributed in the framework of the 
Collaborative Modelling Project of Androgen Receptor Activity [19], 
which was coordinated by the National Center of Computational Toxi
cology (U.S. Environmental Protection Agency) and aimed to provide 
in-silico predictions for the identification of potential androgen receptor 
modulators. The project coordinators provided a calibration set of 
molecules and the corresponding experimental annotations on binding 
activity (in the form of qualitative labels, active: positive/inactive: 
negative) to several research groups worldwide. The research groups 
were then asked to calibrate their own QSAR models and the predictive 

ability of each of the 34 final QSAR models was assessed by a blinded 
validation set including 3540 chemicals [20]. 

The CATMoS datasets were taken from the Collaborative Acute 
Toxicity Modelling Suite, which was again the outcome of a collabora
tive project [21]. The project coordinators collected and curated a 
database of rat acute oral toxicity, that is Lethal Dose 50 (LD50), which 
is the concentration needed to cause lethality in 50 % of the tested an
imals. Along with the acute oral toxicity in logarithmic scale (logLD50), 
two additional qualitative endpoints were taken into account: (a) very 
toxic, labelling molecules as positive (very toxic) if their experimental 
LD50 was lower than 50 mg/kg; (b) nontoxic, labelling molecules pos
itive (nontoxic) if their experimental LD50 was greater than or equal to 
2000 mg/kg. The datasets were distributed to the project participants 
for training of QSAR models, while the validation sets (including 2,894, 
2,890, and 2195 chemicals for the very toxic, nontoxic and logLD50 
endpoints, respectively) were used to carry out blinded validation of the 
QSAR models calibrated by the participants (30, 23 and 20 for the very 
toxic, nontoxic and logLD50 datasets, respectively). 

The validation sets of both CoMPARA and CATMoS collaborative 
projects, including the predictions provided by all individual mdoels, 
were used in this study as the datasets for both defining and validating 
the kernel-based mapping. 

When dealing with the CoMPARA case study, it is important to 
highlight the different nature between validation and training sets with 
respect to the type of assay which was used to define the classes (com
bination of multiple ToxCast in vitro assays from the same source for the 
training, different literature sources from single in vitro assays for the 
validation). However, literature data can be used to provide quality 
assessment, as done in the original CoMPARA study [19,20]. Moreover, 
since in this study all calculations have been performed on the validation 
set data, results can be considered as self-consistent for the set itself and 
therefore we can exclude that the difference in the assays between 
training and validation can affect the results of the analysis. 

Finally, the validation sets provide comprehensive case studies to 
test the proposed method both in terms of the number of samples (higher 
than 2000 for all case studies) and the number of available predictions 
provided by the individual models and to be integrated in the consensus 
approach (ranging between 20 and 34). 

For each case study, we randomly divided the molecules of these sets 
into two groups: training (70%) and test (30%), as reported in Table 1. 
Since the class proportion was unbalanced, the same proportion was 
maintained while splitting the data in the two sets. The density estimate 
(potential) for each test chemical was calculated with respect to the 
training molecules. This simulates the real application of the proposed 
uncertainty measure, which is supposed to be calculated for new 
chemicals, with unknown experimental class, once these are predicted 
through a number of classification models included in a consensus 
framework. Training molecules were also used to select the type of 

Fig. 1. Graphical representation of the reliability potential in the univariate 
space. Individual potentials are represented in grey, the cumulative potential in 
blue. Points are coloured on the basis of their classification score in a grey scale 
from black (low accuracy) to white (high accuracy). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 1 
Characteristics of the datasets: modelling task, number of models participating in the consensus, number of chemicals, number of training and test molecules, molecule 
partition in the positive and negative class.  

dataset task consensus models set molecules positive negative 

CoMPARA binding classification 34 dataset 3540 411 3129   
training 2478 288 2190   
test 1062 123 939 

CATMoS very toxic classification 30 dataset 2894 2651 243   
training 2026 1856 170   
test 868 795 73 

CATMoS nontoxic classification 23 dataset 2890 1655 1235   
training 2022 1158 864   
test 868 497 371 

CATMoS logLD50 regression 20 dataset 2195 – –   
training 1537 — —   
test 658 — —  
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kernel smoothing functions and to define the bandwidth, while test 
molecules were not used for optimisation. Table 1 collects the features of 
each case study. 

2.5. Set up of the chemical space 

The chemical space was encoded into the first two scores of Multidi
mensional Scaling (MDS) calculated on the molecular fingerprints of the 
training molecules. The molecular fingerprints (FPs) are binary or count 
descriptors encoding the structural features of chemicals; they are able to 
provide a holistic, comprehensive and unambiguous representation of 
molecular structures [22]. In particular, binary extended connectivity 
fingerprints (ECFPs) were calculated to represent the molecular structure 
of chemicals for CoMPARA and CATMoS very toxic and nontoxic datasets, 
and Path FingerPrints (PFP) for the CATMoS logLD50 dataset. For all 
these cases, molecules were described by binary vectors of 1024 bits. 
Moreover, additional trials for representing the chemical space were 
conducted by using the first two scores of Principal Component Analysis 
(PCA) calculated on specific molecular descriptors, which were specif
ically selected and proposed in previous studies for the prediction of 
CoMPARA and CATMoS endpoints in the OPERA models [19,21,23]. 

The Jaccard-Tanimoto metric [24] was selected to calculate the 
pairwise similarities between molecules, to be used as input for MDS 
[18], which reproduces similarity/diversity relationships through a 
projection in a low-dimensional space. Finally, the first two MDS scores 
were used to define the chemical space. 

2.6. Selection of the kernel smoothing function and bandwidth 

The types of kernel smoothing function and the bandwidth were 
selected by means of internal cross validation carried out with the 
training samples, which were divided in 5 groups on the basis of a 
venetian blind strategy. Thus, test samples were never used to tune the 
kernel smoothing function and the bandwidth. One group of the training 
samples at a time was used as a temporary set to evaluate the density 
estimate calculated with the other remaining groups. We considered the 
prediction accuracy over the different potential levels and then selected 
as optimal the smoothing function and bandwidth that allowed us to 
obtain increasing accuracy as the potential values increased. The 
bandwidth was varied from 0.2 to 1, with step of 0.1, while three 
different smoothing functions (Gaussian, Epanechnikov or triangular) 
were tested. As an example, the effect of the type of smoothing function 
and the bandwidth value on the potential levels is shown in Fig. 2 for the 
CoMPARA binding dataset. 

2.7. Qualitative and quantitative figures of merit 

The application of the Kernel-based reliability potential was assessed 
by different figures of merit when dealing with qualitative (classifica
tion) and quantitative (regression) modelling. In particular, when 
dealing with classification tasks, the class of each test compound was 
predicted through the majority voting criterion, which classifies a 
molecule as positive or negative on the basis of the most frequent class 

Fig. 2. Potential levels as a function of the kernel smoothing function and bandwidth for the CoMPARA binding dataset. The training chemicals are represented with 
grey dots in the first two MDS scores. 
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assignment. The classification performance was then assessed by means 
of sensitivity and specificity, which are the fraction of correctly pre
dicted positive and negative chemicals, respectively; also their average, 
which is called Non Error rate (NER, also known as Balanced Accuracy), 
was calculated along with the class precision, which is defined as the 
ratio between the number of samples of the class correctly classified and 
the total number of samples predicted to that class [25]. 

On the other hand, in the CATMoS logLD50 case study consensus 
predictions were calculated by averaging the quantitative predictions of 
the individual regression models and the overall performance was 
evaluated by the root mean squared error in prediction (RMSEP) 
calculated on the test molecules: 

RMSEP=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ntest

i=1
(yi − ŷi)

2

ntest

√
√
√
√
√

(6)  

where ntest is the number of molecules in the test set, yi and ŷi are the 
experimental response and the consensus prediction for the i-th test 
molecule, respectively. 

2.8. Software 

Fingerprints were calculated with Dragon 7 software [26] and mo
lecular descriptors with OPERA [23]. Kernel-based reliability potentials 
were calculated with ad-hoc MATLAB functions. Functions and data to 
reproduce the results obtained in this study are available at the Milano 
Chemometrics and QSAR Research Group website [27]. 

3. Results 

3.1. Classification: CoMPARA binding 

In this case study, Epanechnikov kernel function and bandwidth 
equal to 0.5 were selected by means of cross validation procedures. 
Fig. 3a shows the distribution of training compounds in the ECFPs fin
gerprints chemical space, defined through the first two MDS dimensions, 
along with the potential levels defining the mapping of reliability in 

prediction. Each molecule is coloured with a greyscale: the darkness is 
proportional to the number of wrong predictions provided by the single 
models (34 in this case study). Therefore, the darker the colour, the 
higher the number of misclassifications for a specific chemical, the lower 
its weight (eq. (4)) used to calculate the reliability potential. As a result, 
we then expect the potential being lower where several mis
classifications are clustered (e.g., in the lower-right region for the 
CoMPARA binding chemical space) and higher where better classifica
tion accuracy is obtained, that is, where white and light grey points are 
mainly located. Path fingerprints and OPERA molecular descriptors 
provided an unsuitable representation of the potential distribution in the 
CoMPARA binding chemical space, as shown in Fig. S1 and Fig. S2 of the 
supplementary material, respectively. 

At a first visual inspection, the potential levels provide a fairly good 
representation of the distribution of misclassified compounds in the 
chemical space. Moreover, consider that errors count proportionally in 
the potential calculation, thus wrong predictions for molecules experi
mentally labelled in the less represented class have higher weight (eq. 
(4)). 

Afterwards, the test molecules were projected in the space and then 
associated with a reliability potential value according to the specific 
point in the chemical space they were located in. Results were evaluated 
looking at the classification performance over the test chemicals as a 
function of the different levels of reliability potential. In particular, in 
Fig. 3b the classification balanced accuracy (NER) for test chemicals is 
shown as a function of the potential levels. To get this plot, the potential 
was divided in 10 quantiles; the NER associated to the first potential 
level was therefore calculated taking into account all test chemicals with 
potential higher than the first potential quantile, that is, the test 
chemicals located inside the first potential level shown in Fig. 3a. 
Similarly, the NER associated to the second potential level was calcu
lated considering only the test chemicals located inside the second po
tential level, and so on. As expected, NER increases when the reliability 
potential increases: the classification accuracy is higher if test chemicals 
are located in the inner part of the map, that is, where the reliability 
potential is higher. In particular, in the case of CoMPARA binding, NER 
significantly increases, from 0.74 to 0.93, when only test compounds in 
the most internal potential level of the map (highest potential) are 

Fig. 3. Mapping of reliability in prediction for the CoMPARA binding case study: (a) scores of the training compounds in the first two MDS dimensions; molecules are 
coloured with a greyscale: the darker the colour, the higher the number of misclassifications; the levels of potential are coloured in blue; (b) plot of NER values of test 
chemicals as a function of potential levels; (c) plot of class sensitivity of test chemicals (blue: positive; black: negative) as a function of potential levels; (d) plot of 
class precision of test chemicals (blue: positive; black: negative) as a function of the potential levels. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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considered. In a similar way, Fig. 3c and d show how sensitivity and 
precision of the positive (blue) and negative (black) classes change as a 
function of the potential levels. As for NER, both sensitivity and preci
sion increase while increasing the reliability potential, the sensitivity 
and precision for the positive class changing significantly from 0.56 to 
0.96 and from 0.50 to 0.79, respectively. 

To better explore the benefits for the use of reliability potential, we 
evaluated it in the case of wrong consensus predictions which however 
are supported by model agreement. Usually, a way to define the belief in 

the consensus framework is to evaluate the agreement among the 
combined predictions, the higher the agreement, the higher the belief. 
However, it may accidently happen to have wrong consensus predictions 
which are however based on high agreement, that is, the majority of the 
considered models predicts the chemical in the wrong class. The sup
plementary information provided by the mapping of reliability in pre
diction can help to identify these situations, as shown in Fig. 4, which 
represents the test molecules mapped in the chemical space within the 
potential levels previously calculated with the training samples and 
defining the reliability mapping (Fig. 3a). Test molecules are coloured in 
white if correctly predicted otherwise in dark grey, while test chemicals 
which (a) have agreement of consensus predictions higher than 80% (e. 
g. 80% of available models predicted the chemical in the same class) and 
(b) are however erroneously classified, are coloured in red. The belief 
based on the consensus agreement would be high for these cases, how
ever it can be seen that only few of these chemicals are located in regions 
of the chemical space with high reliability potential. On the other hand, 
the majority of misclassified chemicals (grey points) are correctly 
located in regions with low reliability potential. Therefore, the proposed 
potential measure provides additional information to the estimate based 
on the consensus agreement and enhances the identification of those 
cases for which most of the classification models used for the consensus 
fail in the prediction. 

3.2. Classification: CATMoS very toxic and nontoxic 

The proposed approach was applied to both CATMoS classification 
datasets with the same strategy as in the previous case study. The po
tential for test molecules was calculated in the chemical space defined 
by the first two MDS dimensions of the training chemicals. Potentials 
were calculated by means of Epanechnikov kernel function with band
width equal to 0.50 and 0.80 for CATMoS very toxic and nontoxic 
datasets, respectively (Figs. 5 and 6). Results confirmed the potential 
being an effective measure to assist the reliability in predictions. For the 
CATMoS very toxic dataset, the increasing of potential causes an in
crease of NER of test chemicals from 0.76 to 0.90 (Fig. 5b), thus con
firming that higher potential is associated to regions of the chemical 
space where prediction accuracy is higher. Also sensitivity and precision 

Fig. 4. Projection of the test compounds into the 2-dimensional MDS space for 
the CoMPARA binding case study; the levels of reliability potential calculated 
with training compounds are coloured in blue; test molecules correctly pre
dicted are coloured in white; test molecules erroneously classified are coloured 
in dark grey; test molecules erroneously classified but with consensus predic
tion agreement higher than 80% are coloured in red. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 5. Mapping of reliability in prediction for the CATMoS very toxic case study: (a) scores of the training compounds in the first two MDS dimensions; molecules 
are coloured with a greyscale: the darker the colour, the higher the number of misclassifications; the potential levels are coloured in blue; (b) plot of NER of test 
chemicals vs. potential levels; (c) plot of class sensitivity of test chemicals (blue: positive; black: negative) vs. potential levels; (d) plot of class precision of test 
chemicals (blue: positive; black: negative) vs. potential levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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(Fig. 5c and d) change significantly: when increasing the potential level, 
sensitivity of the negative class increases from 0.57 to 0.88, while the 
sensitivity of the positive class remains substantially constant and higher 
than 0.90. Precision of the negative class has a significant rise only when 
chemicals located in the inner levels are taken into account: it increases 
from 0.54 to 0.74 in the latest 3 levels. 

When dealing with the CATMoS nontoxic case study, NER, sensitiv
ities and precision do not increase when increasing the potential level 
(Fig. 6b–. c and d). The cause of this behaviour can be explained by 
looking at the chemical space (Fig. 6a), where training molecules asso
ciated with erroneous predictions (black and dark grey points) look to be 
spread out and do not cluster as in the previous case studies. Therefore, 
it is not possible to identify regions where consensus predictions are 
expected to have better accuracy. 

For both case studies, chemicals spaces defined with Path finger
prints and OPERA molecular descriptors provided again unsuitable 
representations of the potential distribution, as shown in Figs. S3, S4, S5 
and S6 of the supplementary material. 

3.3. Extending the chemical space to more dimensions 

As a consequence of results shown in Fig. 6, one option to get better 
representation of the mapping of reliability for the CATMoS nontoxic 
case study is to represent the chemical space taking into account more 
than two dimensions. This can enable a better definition of the chemical 
space, even if its graphical representation is not possible anymore. Fig. 7 
shows the results when taking into account the first 5 MDS dimensions 
for the calculation of the potential, with Epanechnikov as kernel func
tion and bandwidth equal to 0.4. With respect to the results obtained 
with 2 dimensions (Fig. 6), the extension of the chemical space di
mensions allows NER of test chemicals to linearly increase from 
approximately 0.82 (in low potential region) to 0.90 (in high potential 
region). The same pattern can be observed when looking at sensitivity of 
the negative class (black line in Fig. 7b), which linearly increases when 
augmenting the potential levels from 0.75 to 0.91. The same trend can 
be noticed for the precision of the positive class (blue line in Fig. 7c). 
Therefore, augmenting the dimension for the definition of the chemical 

space allowed a better mapping of reliability in prediction for this case 
study, as demonstrated by the better classification performances asso
ciated to test chemicals with higher potential. 

3.4. Regression: CATMoS logLD50 

Beside the application of the kernel-based reliability mapping in the 
framework of classification, we tested it also with regression consensus 
modelling. The CATMoS logLD50 case study was used for this aim. 

Even in this case, the potential for test molecules was calculated in 
the chemical space defined through the first two MDS dimensions. The 
best kernel function to define the mapping was again the Epanechnikov 
kernel, with bandwidth equal to 1. RMSEP was used as a figure of merit 
to evaluate the regression performance on test molecules as a function of 
their reliability potential (Fig. 8). RMSEP substantially decreases when 
increasing the potential level, even if fluctuations are observed when 
considering test molecules located in regions associated with lower 
values of potential. Nevertheless, RMSEP is equal to 0.525 when 
considering all test chemicals (first level of potential), while it decreases 
to 0.468 when considering only molecules with the highest potential 
(those included in the last level). 

This pattern can be observed also looking at the experimental vs 
predicted response plots in Fig. 9. Plots were drawn taking into account 
only chemicals included in the potential levels number 2, 4, 6, 8 and 10, 
respectively, that is chemicals with reliability potential higher than that 
associated with these levels. Molecules are coloured with a grey scale 
indicating the residuals between predicted and experimental logLD50 
(high residuals: black, low residuals: white). RMSEP is shown in the plot 
title and decreases when increasing the level (according to Fig. 8). 

Molecules with highest residuals (coloured in black and associated 
with the highest prediction errors) have lower potential and, in fact, 
they are excluded step by step when increasing the potential levels. This 
can therefore be considered as a proof of the augmented belief associ
ated with higher potential even for quantitative modelling. 

Fig. 6. Mapping of reliability in prediction for the CATMoS nontoxic case study: (a) scores of the training compounds in the first two MDS dimensions; molecules are 
coloured with a greyscale: the darker the colour, the higher the number of misclassifications; the levels of potential are coloured in blue; (b) plot of NER of test 
chemicals vs. potential levels; (c) plot of class sensitivity of test chemicals (blue: positive; black: negative) vs. potential levels; (d) plot of class precision of test 
chemicals (blue: positive; black: negative) vs. potential levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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4. Conclusions 

In this study we propose a new metric to assess the reliability in the 
degree of accuracy of consensus predictions associated with specific 
regions of the chemical space. This metric is calculated with kernel- 
based potentials and it can be used in the framework of both classifi
cation and regression consensus modelling. It can assist the prediction of 
untested compounds with reliability estimation: the higher the potential 
for a given compound, the higher the belief the compound is located in a 
chemical region where predictions are accurate. 

The effectiveness of the proposed measure was evaluated with four 
case studies, including extensive consensus datasets. For each case 

study, chemicals were divided in training and test sets and mapped in 
the chemical space defined by their binary fingerprints; the training 
compounds were used to calculate the potential, while the goodness of 
the proposed measure was assessed taking into account the test 
chemicals. 

Results demonstrated that higher reliability potential is associated 
with specific regions of the chemical space where consensus modelling 
performs better in terms of accuracy, both for qualitative and quanti
tative responses. Therefore, the kernel-based potential can be used to 
assess how much each point of the chemical space, and consequently the 
compounds located in that point, is recurrently associated with predic
tion accuracy of consensus modelling. This can enable the mapping of 

Fig. 8. Mapping of reliability in prediction for the CATMoS logLD50 case study: (a) scores of the training compounds in the first two MDS dimensions; molecules are 
coloured with a greyscale: the darker the colour, the higher the regression residuals; the levels of potential are coloured in blue; (b) plot of RMSEP as a function of 
potential levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Mapping of reliability in prediction for the CATMoS nontoxic case study with chemical space extended to 5 dimensions: (a) plot of NER values of test 
chemicals as a function of potential levels; (b) plot of class sensitivity of test chemicals (blue: positive; black: negative) as a function of potential levels; (c) plot of 
class precision of test chemicals (blue: positive; black: negative) as a function of potential levels. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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reliability in predictions and enhance the definition of a comfort zone, 
where consensus predictions are expected to have a steady level of 
performance and better accuracy. 

The definition of an appropriate chemical space can influence the 
results. Because it depends on the type of adopted descriptors, future 
studies will be devoted to testing the effect that different types of de
scriptors can have on the definition of the chemical space and therefore 
on the subsequent calculation of the reliability potential. 

Finally, in addition to the application in the consensus framework, in 
future studies the proposed kernel-based mapping could be also tested 
and extended to assess reliability in predictions for individual models. 
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