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Abstract

Boolean functions are mathematical objects used in diverse domains and have been actively
researched for several decades already. One domain where Boolean functions play an impor-
tantrole is cryptography. There, the plethora of settings one should consider and cryptographic
properties that need to be fulfilled makes the search for new Boolean functions still a very
active domain. There are several options to construct appropriate Boolean functions: alge-
braic constructions, random search, and metaheuristics. In this work, we concentrate on
metaheuristic approaches and examine the related works appearing in the last 25 years. To
the best of our knowledge, this is the first survey work on this topic. Additionally, we provide
a new taxonomy of related works and discuss the results obtained. Finally, we finish this
survey with potential future research directions.
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1 Introduction

Boolean functions represent mathematical objects with diverse applications. For instance, in
combinatorial designs, Boolean functions are used to construct Hadamard matrices [76] and
strongly regular graphs [4]. In coding theory, every binary unrestricted code of length 2" can
be interpreted as a set of Boolean functions. In sequences, bent sequences constructed using
bent Boolean functions have the lowest value of mutual correlations and autocorrelations,
and they are used in communication systems with multiple access [60, 61]. In cryptography,
Boolean functions are used in stream and block ciphers as the source of nonlinearity [22].
Furthermore, they are used in fully homomorphic encryption [53] and in the design of hash
functions [85].

Due to their widespread use, the body of works considering their various aspects is rich
and spans several decades, and many of those works consider how to construct Boolean
functions with specific properties. Considering the methodology, such works can be classified
into algebraic constructions, random search, and metaheuristics. While this division makes
sense from an intuitive point of view, different characteristics of those approaches make any
comparison difficult for the following reasons:

1. Algebraic constructions work for many different Boolean function sizes but always pro-
duce the same Boolean functions when adopting the same starting conditions. Finding
new constructions can be far from trivial.

2. Random search is easy to run and will, in principle, output many different Boolean
functions. Still, as the required size of the Boolean function increases, the resulting
properties become suboptimal.

3. Metaheuristics can produce many different Boolean functions that commonly have better
properties than those obtained with random search (rivaling those obtained with algebraic
constructions). Still, such techniques will struggle to produce high-quality solutions for
larger Boolean function sizes. Next, one needs to devise an appropriate objective function
to guide the metaheuristic search, which is more difficult than simply running a random
search but significantly simpler than devising a new algebraic construction. Finally, it is
necessary to run a new search for each considered Boolean function size.

4. Potentially, one could also devise a construction technique that combines different
approaches. For instance, using algebraic constructions to find Boolean functions with
good properties and then using those functions to optimize upon with metaheuristics.
Additionally, one commonly uses random search to construct the initial solutions for
metaheuristics.

Clearly, metaheuristics have some obvious advantages over other construction techniques.
As such, various metaheuristic techniques have been tested over the years concerning the
design of Boolean functions with specific properties and dimensions. While most of those
works report favorable results, there are still many challenges. One of the big challenges is the
lack of a comprehensive overview of the contributions that have been achieved. In this work,
we systematically survey the work done and the open challenges. Moreover, we suggest a new
division of metaheuristic approaches into 1) direct design and 2) metaheuristic-assisted design
of Boolean functions. With this division, we argue to capture the most important differences in
the applied metaheuristic techniques and allow a better comparison of the obtained solutions.
Next, we propose to further divide works in the direct design of Boolean functions based on the
representation of Boolean functions into truth table-based approaches and Walsh-Hadamard-
based approaches. Concerning the part on metaheuristic-assisted design, we classify relevant
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research into the evolution of algebraic constructions and the optimization of combinatorial
objects related to Boolean functions, such as orthogonal arrays.

The rest of this paper is organized as follows. Section 2 recalls basic background notions
related to Boolean functions and gives an overview of the most common metaheuristic algo-
rithms used in the literature to optimize their cryptographic properties. Section 3 surveys
the works belonging to the first main category of our proposed taxonomy, namely the direct
design of Boolean functions via metaheuristics. Section 4 gives an overview of the field
of metaheuristic-assisted design of Boolean functions. Finally, Section 5 points out several
directions for future research on the subject, and Section 6 concludes the paper.

2 Background

Let ', = {0, 1} be the finite field with two elements, with sum and multiplication of a, b €
F, respectively corresponding to the XOR (denoted by @) and logical AND (denoted by
concatenation) of a and b. Given any positive integer n € N, we denote by I} the set of
all n-tuples of elements in [F», which we endow with a vector space structure. In particular,
the sum of two vectors x, y € F; amounts to their bitwise XOR, while the multiplication
of x € F} with a scalar a € [ is the logical AND of a with each coordinate of x. Slightly
abusing notation, we still denote vector sum and multiplication by a scalar, respectively
by @ and concatenation. We also consider I} as a metric space by defining the Hamming
distance dy (x, y) of two vectors x, y € I} as the number of coordinates where x and y
differ. The support of a vector x € IF; is the subset of positions where x is nonzero, i.e.,
supp(x) = {i : x; # 0}, with the Hamming weight wy (x) of x being the cardinality of its
support. Finally, we endow the vector space ; with the inner product - : [ x [} — [,
defined for all x, y € F3 as x - y = €Pj_, x;y;. Thus, the inner product between x and y is
the sum (over [F;) of the pointwise multiplications of x; and y;.

2.1 Boolean functions and their representations

An n-variable Boolean function is any mapping of the form f : ) — IF,, and it can be
uniquely represented by the truth table (lookup table), which is the list of pairs of function
inputs x € I} and corresponding function values f(x). The value vector is the binary vector
Q¢ composed of all f(x), with x € I}, where some total order has been fixed on I} (most
commonly, the lexicographic order). The size of the value vector equals 2", thus we have that
Qr € IF%". If we denote the set of all n-variables Boolean functions by B, = {f : ; — F2},
it follows that the size of B, is #8, = 2", i.e., it grows super-exponentially in n (see Table 1
for exact and approximate values of #13,,).

The support and the Hamming weight of a Boolean function f : F; — F» correspond
respectively to the support and Hamming weight of its value vector €2 . While the truth table
representation is “human-friendly”, not much can be directly deduced from it, except for the
Hamming weight.

A second unique representation of a Boolean function f on IF; is the Algebraic Normal
Form (ANF). Remarking that x%2 = x for all x € [y, the ANF of [ F} — [ is the
multivariate polynomial in the quotient ring F [xo, ..., Xu—1] /(X3 @ X0, ..., X2_| @ Xp—1),
defined as:

) =@ h@ - x*, (1

n
acl;
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Table 1 Exact (#15,,) and approximate (= 3, ) numbers of n-variable Boolean functions

n 3 4 5 6 7
#5,, 256 65536 232 264 2128
~ By 256 65536 4.29.10° 1.84 101 3.40 - 1038
n 8 9 10 11 12
# Bn 2256 25 12 2 1024 22048 24096
~ B, 1.16 - 1077 1.34. 10154 1.80 - 10308 3.23 10617 1.04 - 101234
where x = (xg°, --- , x;""), and h(a) € F is given by the Mdbius transform:
h(a) = @D f(x). forany a € Fj. )
x=a

Here, x < a means that a covers x (alternatively, x precedes a), which means that x; < a;,
foralli € {0, ..., n — 1}. The Md&bius transform is an involution: one can retrieve the value
of the truth table of f by swapping i (a) with f(x) and a with x in (2). The algebraic degree
of f is the size of the largest nonzero monomial in the ANF of f, formally defined as:

deg(f) = a:}rlr(léi)io{wH(a)}. (3)

Functions of degree at most 1 are also called affine. An affine function f is called linear if
h(0) = 0 (where 0 denotes the null vector), i.e., if its ANF does not have a constant term. It
is easy to see that the ANF of a linear function corresponds to the inner product a - x between
a vector a € I} and the input vector x € F7.

Another way to uniquely represent a Boolean function f : F; — [, is the Walsh-
Hadamard Transform (WHT) Wy : 5 — Z, defined for all a € [ as:

Wia) = ) (=1)70ee, @

n
xely

In particular, the coefficient W ¢ (@) measures the correlation between f and the linear function
a - x. The multiset of all coefficients W (a) for a € I} is also called the Walsh-Hadamard
Spectrum (WHS) of f. The WHT is very useful in cryptography as many cryptographic
properties of Boolean functions can be characterized through it. Contrarily to the ANF, the
WHT is not an involution since it maps the set IF%" to Z%". The mapping Wy is however
injective, from which it follows that the spectrum of a Boolean function f uniquely identifies
f. In particular, one can retrieve the truth table of f from its WHS by using the Inverse
Walsh-Hadamard Transform, which has the same structure of (4), except that x and (— 1)/
are replaced respectively by a, and Wy (a), and the sum is normalized by a 27" factor.

From a computational complexity point of view, a naive algorithm to compute the ANF
or the WHT of a n-variable Boolean function requires ©(22") steps since one needs to loop
over all possible values a € F}, and for each of them, the sum ranges again in IE"Z’ However,
there exist more efficient divide-and-conquer butterfly algorithms, namely the Fast Mobius
Transform and the Fast Walsh-Hadamard Transform that require only O(n2") steps. Details
of such algorithms can be found in [7].
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2.2 Cryptographic properties and bounds

Boolean functions used in stream and block ciphers must fulfill several cryptographic criteria.
Each criterion is geared towards a particular cryptanalytic attack: the rationale is that if a
Boolean function satisfies it, then mounting the corresponding attack becomes computation-
ally unfeasible for the attacker.

Here, we only discuss the most often considered properties in the works addressing the
construction of Boolean functions with metaheuristics. For more information on the attacks
they protect from and other cryptographic properties not covered here that have been less
frequently considered with metaheuristics (such as propagation criteria and algebraic immu-
nity), we refer the reader to [7].

Balancedness

The Hamming weight of a Boolean function f : I} — I is a basic cryptographic property,
which indicates the output bias of the function. In particular, the Boolean function should be
balanced, namely wg (f) = 2"~!. This means that the truth table of f is composed of an
equal number of zeros and ones. This property can also be expressed in terms of the WHT
as follows: f is balanced if and only if W, (0) = 0.

Algebraic Degree

We defined the algebraic degree of f in Section 2.1 as the size of the largest occurring
monomial in the ANF of f. As a cryptographic criterion, the algebraic degree of f should
be as high as possible.

Nonlinearity
The minimum Hamming distance between a Boolean function f and all affine functions is
called the nonlinearity of f, denoted by nl . This property can be characterized in terms of
the Walsh-Hadamard coefficients as follows:

nlf=2"—1—lmax|wf(a)|. 5)

2 acF 5

As a cryptographic property, the nonlinearity of f should be as high as possible. According
to (5), this happens if the largest Walsh-Hadamard coefficient in absolute value is as low as
possible. Parseval’s identity states that the sum of the squared Walsh-Hadamard coefficients
is constant for all n-variable Boolean functions, and it equals 221 This result allows for
deriving the following inequality, known as the covering radius bound:

nly <2n=t _on/271 (©)

A Boolean function can be considered highly nonlinear if its nonlinearity is close to the
covering radius bound in its class. In particular, the functions whose nonlinearity equals the
maximal value 2"~! — 2"/2=1 are called bent. Bent functions exist only for even values of
n, as each WHT coefficient must be equal to +273. Consequently, bent functions are not
balanced since Wy (0) # 0. When n is odd, the bound in (6) cannot be tight. In this case the

maximum nonlinearity is between =1 2" and 2 |27—2 — 27/2=2 | [7]. The former value
is also called the quadratic bound since it is the maximum nonlinearity reachable by Boolean
functions with algebraic degree 2.

Correlation immunity and resiliency
A Boolean function f : }F’z’ — [, is t-th order correlation immune, with 1 < t < n, if
its output distribution does not change by fixing at most ¢ input variables. This property is
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characterized using the Walsh-Hadamard Transform as follows: f is z-th order correlation
immune if and only if Wy (a) = Oforalla € F; suchthat1 < wpy(a) < t. Asacryptographic
criterion, a Boolean function should be correlation immune of a high order. Further, a function
ist-resilientif itis balanced and 7-th order correlation immune. This means that any restriction
of the function obtained by fixing at most ¢ coordinates is a balanced function. The order ¢ of
correlation immunity (respectively, resiliency) induces a trade-off with the algebraic degree
and nonlinearity of a function. More precisely, Siegenthaler’s bound states thatd < n —t
(respectively, d < n —t — 1), where d is the algebraic degree of the function; moreover,
a consequence of Sarkar-Maitra’s divisibility bound is that nl; < 2n=1 — 2! (respectively,
nlf < 2n—1 _ 2t+1).

2.3 Metaheuristics

Heuristics are algorithms that find good solutions to large-size problem instances. In general,
they do not have an approximation guarantee on the obtained solutions [81]. Alternatively,
heuristics can be defined as parts of an optimization algorithm. In that role, heuristics use
the information currently gathered by the algorithm to help decide which solution candidate
should be tested next or how the next solution can be produced.

Heuristic algorithms can be further divided into problem-specific heuristics and meta-
heuristics. Problem-specific heuristics are methods that are tailor-made to solve a specific
problem. Metaheuristics, in the original definition, represent solution methods that orchestrate
an interaction between local improvement procedures and higher-level strategies to create a
process capable of escaping from local optima and performing a robust search of a solution
space [21]. Alternatively, metaheuristics can be defined as general-purpose algorithms that
can be applied to solve almost any optimization problem [81]. One can follow many crite-
ria to classify metaheuristics, but we divide them into single-solution-based metaheuristics
and population-based heuristics [81]. Single-solution-based metaheuristics manipulate and
transform a single solution during the search, as in the case of algorithms like Local Search
(LS) or Simulated Annealing (SA). Population-based metaheuristics work on a population
of solutions, e.g., Evolutionary Algorithms (EAs), Particle Swarm Optimization (PSO), and
Artificial Immune Systems (AIS).

2.3.1 Local search

Local Search (LS) is possibly the simplest metaheuristic method that, in each iteration,
replaces the current solution with a neighbor that improves the objective function [81].
In each iteration, the algorithm searches a neighborhood N(¢) of the current solution and
selects a better solution, if one can be found, for the next iteration. To generate neighboring
solutions of the current solution, LS can use various operators, which differ in how they
generate the neighborhood. Although many strategies can be used to select which neighbor
should be selected from N (¢) to replace the current solution, such as first improvement, best
improvement, or random, all of them lead to the same problem. LS is inherently a greedy hill-
climbing method that will get trapped in the first local optimum it reaches since it only accepts
solutions that are better than the current one. Therefore, the basic LS method was extended
in different ways, which allowed it to escape local optima and achieve better performance on
multimodal problems.
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2.3.2 Simulated annealing

Simulated Annealing (SA) operates on a single potential solution, which is locally changed
in each iteration, and its new fitness value is recorded [34]. The algorithm is inspired by the
annealing process of metals, in which a certain material is heated and then gradually cooled
to alter its physical properties. Similar to LS, SA uses neighborhood operators to search for
better solutions in the vicinity of the current solution. However, in addition to accepting a
better neighboring solution, SA can also accept a worse neighbor with a certain probability.
The idea is that the probability of accepting worse solutions gradually decreases, allowing
the algorithm to thoroughly explore the search space in earlier iterations and converge to an
optimal solution in later iterations. The acceptance probability of worse solutions is controlled
by a parameter denoted as the temperature, with different cooling schedules being used to
decrease the temperature during the execution of the algorithm, which also decreases the
probability of accepting worse solutions.

2.3.3 Evolutionary algorithms

Evolutionary Algorithms (EAs) are population-based metaheuristic optimization methods
that use biology-inspired mechanisms like selection, crossover, and survival of the fittest [19].
The biggest milestone in the development of this area can be traced to the 19th century and
Charles Darwin. In 1859, he published a book, “On the Origin of Species” where he identified
the principles of natural evolution [16]. There are many different evolutionary algorithms,
but they all share the same general traits. The usual variation operators are mutation and
crossover. Crossover operates over multiple solutions (parents) and combines them into a
new solution (child). Mutation works on a single individual and changes parts of it. The goal
of crossover is to facilitate the exploitation of good properties of existing solutions, whereas
mutation increases the diversity and thus stimulates the exploration of new solutions. The
selection operator also represents an important operator used to select solutions that should
participate in the crossover or be eliminated from the population. Although various selection
operators were proposed, their logic is the same in the sense that they foster the choice
of better individuals for recombination while giving a larger chance of eliminating worse
solutions from the population.

Genetic algorithm

Genetic Algorithms (GAs) are probabilistic algorithms where search methods model some
natural phenomena: genetic inheritance and survival of the fittest. GAs are a subclass of EAs
where the elements of the search space are arrays of elementary types like strings of bits,
integers, floating-point values, and permutations [19].

Genetic programming

Genetic Programming (GP) belongs to EAs and commonly uses tree data structures that
undergo an evolutionary process [36]. Although GP has a history of more than 50 years, its
full acceptance is due to the work of Koza at the beginning of the 1990s, when he formalized
the idea of employing chromosomes based on tree data structures. Since the aim of GP is to
generate new programs automatically, each individual in a population represents a computer
program. The most common form is a symbolic expression representing a parse tree. A parse
tree is an ordered, rooted tree that represents the syntactic structure of a string according to
some context-free grammar. A tree can represent, e.g., a mathematical expression, a rule set,
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or a decision tree. The building elements in a tree-based GP are functions (inner nodes) and
terminals (leaves, problem variables). Both functions and terminals are known as primitives.

2.3.4 Particle swarm optimization

Particle Swarm Optimization (PSO) is one of the most well-known and successful repre-
sentatives of swarm intelligence methods [81], which model an indirect communication
between the individuals in the population as they traverse the search space. Concretely, PSO
is inspired by the social behavior of birds, in which a coordinated behavior can be observed
as they migrate in flocks [33]. Each solution in PSO denoted a particle, consists of its current
position and velocity, which are updated in each iteration of the algorithm. The position spec-
ifies the current position of the particle in the search space, whereas the velocity represents
the direction in which the particle will move in search of the global optimum. The velocity
is updated as a linear combination of the previous velocity and the relative position of the
particle representing the best solution obtained by this particle and the best overall solution
obtained by any particle in the swarm. After updating the velocity, it is used to update the
position of each particle by adding it to the current position of the particle.

2.3.5 Artificial immune systems

Artificial Immune Systems (AIS) is a group of metaheuristics inspired by concepts observed
in the immune systems of living beings [81]. Although various algorithms inspired by immune
systems were proposed, one of the most popular and commonly used algorithms is the Clonal
Selection Algorithm (CLONALG) [17]. In this algorithm, each solution, called an antibody,
undergoes a cloning process in which a number of clones of each solution are created.
The number of clones created for each solution is proportional to the affinity (quality) of
each antibody, meaning more clones of better solutions will be created. After cloning, the
hypermutation operator is applied to modify the clones with a certain probability, again
based on their affinity. In this case, the mutation probability is larger for antibodies with
a lower affinity, meaning that smaller changes are performed on good solutions. The new
population is created by selecting a certain number of the best-created clones. However, to
foster diversity, a certain number of the worst solutions in the new population are replaced
with randomly generated solutions.

3 Direct design of cryptographic boolean functions with metaheuristics

Constructing a Boolean function can be regarded as a combinatorial optimization problem
where, given the number of variables n and the set of properties to optimize, the goal is
to find an n-variable Boolean function that satisfies the desired properties. The first choice
one needs to make when optimizing a Boolean function is the representation of candidate
solutions. In most applications, this has also proven to be the most influential factor, while
the choice of the actual search algorithm had a smaller impact. It is important to note that
the majority of metaheuristics, both the ones presented in the previous chapter, as well as in
general, allow the use of an arbitrary solution representation. However, a set of appropriate
operators required by the selected algorithm must be defined for each encoding.
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3.1 Truth table-based representations

In this section, we present the applications that rely on the optimization of the underlying
truth table of a Boolean function, as opposed to optimizing the Walsh-Hadamard function
representation. Since most related works consider the truth table representation, we do not
describe each paper in detail but concentrate on unifying perspectives.

3.1.1 Solution encodings

Bitstring

In the context of Boolean functions, the bitstring representation is the most trivial approach
to encoding a solution. In this case, the algorithm operates directly on the truth table since a
potential solution is encoded as a string of bits with a length of 2" for a Boolean function with
n inputs. This encoding is the most natural for many metaheuristics, such as the GA, as the
algorithm is based on the genetic code paradigm. However, the application of this encoding
will ultimately depend on the type of the search algorithm.

Single-solution-based search methods need to define at least one neighborhood for the
solution encoding, and in this case, there are many possibilities. The usual neighborhood
operators include inverting a single bit, setting or resetting a bit, exchanging two randomly
selected bits (swap), inverting a sequence between two-bit positions, mixing the bits between
two positions, inserting a bit at a randomly selected position, etc. These local operators are
also commonly used as mutation operators in evolutionary algorithms.

When only balanced Boolean functions are considered, the set of operators is usually
constrained to the ones that preserve that property (such as swap, inversion, or insertion).
Additionally, new operators may be defined for a certain property, such as inverting two
random bit positions instead of a single one in the case of balanced functions.

In addition to mutation, evolutionary algorithms also need to define crossover operators,
which combine genetic material from (at least) two parent solutions to construct a single-
child solution. Here, the most common choice is the one-point crossover, which randomly
selects a breakpoint in the string; the child solution is a concatenation of the bits from the
first parent up to the breakpoint and from the second parent onward. In the case of larger
solutions, more breakpoints can be used to promote diversity. The extreme case is a uniform
crossover that randomly selects the source parent after each bit position, which is the most
disruptive method. As for mutation, special crossover operators can be considered when the
goal is to constrain the search space only to balanced functions. Examples of this approach
include uniform crossover augmented with counters that keep track of the multiplicities of Os
and 1s in the child chromosome. When one of the two counters reaches half of the bitstring
length, the remaining positions are filled with the complementary value to maintain the
balance [40, 47].

Most papers on Boolean functions include the bitstring representation for optimization of
Boolean functions, but it is rarely used as a single standalone encoding (see Table 2).

Integer

A more compact way of representing the truth table is by way of grouping substrings of
bits into separate integer values. Indeed, in many implementations, this is the actual way of
storing a sequence of bits in memory. In this case, the truth table is divided into a number
of substrings k of the same length /, and each substring is represented with an integer value.
For this to be feasible, the truth table size 2" must be divisible by k, and the substring length
[ must be a power of 2; each integer value is then restricted to [0, 2! — 1].
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Table 2 The division of papers using different genotypes and the truth table phenotype

Encoding Papers

Bitstring (unconstrained) [1,3,5,11, 13, 14, 20, 25-30, 32, 37, 38, 44, 46, 55, 56,
58,59, 63-65, 67-69, 71-74, 84, 86]

Bitstring (balanced) [39-42, 47, 57, 62]

Integer [40, 70]

Floating-point [74]

Symbolic [23, 24, 44, 47, 62-65, 67-71]

Using a different encoding allows the search algorithm to operate on a different data
structure, which is usually called the genotype in the context of evolutionary computation.
When a candidate individual is evaluated, its genotype is translated into the phenotype,
which is the actual representation of the solution of the problem being solved. In this case,
the genotype the algorithm operates on is the sequence of integers, while the phenotype is
still in the form of a truth table of the Boolean function. In general, the distinction between
genotype and phenotype is always made within the literature of evolutionary algorithms.
However, we introduced it here since, for the bitstring encoding, the mapping is trivial (i.e.,
the identity function).

Several options are available when decoding the genotype to the phenotype. For the works
that employ the integer encoding to evolve Boolean functions, the integer value is translated
to a binary string using either the natural binary encoding or Gray coding. Further, binary
strings representing each integer can be concatenated to form a complete truth table. On the
other hand, the individual bits can be distributed so that bits encoding one integer value are
placed k positions apart from each other in the truth table.

Under an integer encoding, the local search (or mutation) and crossover operators will
behave differently from the bitstring case, thus forming different neighborhood structures.
The common mutation operators include randomly modifying a single gene (integer value),
either in the whole range [0, 2/ — 1] or by a smaller value, gene swapping, substring inversion,
etc. Crossover operators are usually based on one-point or multiple-point crossover; however,
some operators combine each pair of genes from two parents independently, with the resulting
child gene assuming an average of two-parent genes or a random value between the parent
genes.

Integer encodings have also been used when restricting the search space to balanced
Boolean functions. The main approaches are the map-of-ones and the zero-length encod-
ings [40]. In the former, the genotype of a balanced n-variable function is defined by a
sequence of 2"~ ! integer numbers between 0 and 2" — 1, which represent the positions of the
1s in the truth table vector of the function. In the latter, the function is instead represented
by a sequence of 2"~! + 1 integer numbers. Each number specifies how many consecutive
0Os are between two 1s, and balancedness is ensured by requiring that the sum of all num-
bers in the sequence is 2"~ !. Clearly, in both approaches, special crossover and mutation
operators are required to generate offspring chromosomes that preserve the corresponding
encodings.

Floating-point
The previous encodings are well suited for genotype-agnostic search algorithms, such as GA
or local search methods. Metaheuristics that are defined over the real-valued domain, such
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as PSO and AIS, can, in principle, be modified to operate on bit strings or integer values as
well but are rarely used in optimizing Boolean functions in this form.

To accommodate algorithms operating on the continuous domains, we can take one step
further and encode a single integer value as a floating-point (FP) number. A common practice
is to define the genotype as a sequence of floating-point numbers assuming values in [0, 1]
or [—1, 1]. Real values are first decoded into corresponding integer values in [0, 2! — 1] and
then to the resulting truth table, as in the previous integer encoding.

Since the resolution of the floating point is the highest around 0, a single FP value can
represent a relatively large number of truth table bits. In theory, this could be scaled up to
around 48 bits since 2~*8 ~ 10719, which is the approximate rounding error at magnitude 1
for 64-bit FP values. However, usually, a much smaller number of bits has actually been used
in practice, with the boundary case being one FP value used to encode just a single bit [74].

Using floating-point representation allows the application of many optimization algo-
rithms designed for continuous optimization. Algorithms of this type may employ highly
specific modification operators in the real value domain, resulting in neighborhood struc-
tures that may differ substantially from those used in the discrete binary domain. However,
not many papers present examples of this approach, as only one instance of continuous opti-
mization algorithm has been applied to Boolean optimization (Table 2). As a matter of fact,
the only two works we are aware of that use PSO to evolve the cryptographic properties of
Boolean functions [62, 77] actually use a discrete variant of this metaheuristic, rather than
the basic version tailored for continuous search spaces. Furthermore, while the objective
(fitness) landscape has been an object of active research in bitstring encoding (e.g., [26, 72]),
we are not aware of such an analysis for the floating-point encoding.

Symbolic

Regardless of the application, all optimization methods using direct mapping to truth table-
based representation suffer from the same problem: the curse of dimensionality. Although
good results may be obtained for small Boolean function sizes, the efficiency inevitably
deteriorates with the increase in the number of variables. A different approach partially
circumvents this problem by relying on a symbolic representation of a Boolean function as
a genotype.

Evolutionary algorithms that use symbolic solution representation, such as GP, are usually
applied to this goal. As recalled in Section 2.3.3, GP maintains a population of candidate
programs for solving a given problem. The programs may take any form, but the most common
representation in GP uses a syntax tree encoding, where inner tree nodes represent functional
elements, and the terminal nodes represent variables or functions without arguments. If the
execution of the program does not produce any side effects, then the program is equivalent
to a function, and in this case, the GP solves a symbolic regression problem.

Symbolic regression may be regarded as equivalent to the problem of evolving (finding)
a suitable Boolean function satisfying one or more given properties. Here, the n Boolean
variables present terminal nodes (leaves) that can appear as arguments in a syntax tree.
Commonly used functional elements in this scenario include a number of elementary binary
Boolean functions, such as OR, XOR, AND, XNOR, etc. Apart from these, unary functions
such as NOT are also used, as well as non-standard functional elements: AND with one input
inverted, IF with three arguments (that evaluates the first argument, returns the second one
if the first evaluates to ’true’, and the third otherwise), etc. Figure 1 shows an example of a
symbolic tree used by GP, which represents the Boolean expression (VO XOR V1) AND (V1
OR VO0).
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Fig.1 Symbolic representation
used by tree-based GP

A GP tree thus represents an executable expression that is evaluated as a Boolean function.
Regardless of the tree elements and shape, a candidate tree is evaluated by “executing”
the expression for every possible combination of input Boolean variables and recording its
output, thus generating the function truth table as its phenotype. The conversion process from
genotype to phenotype may be time-demanding for a larger number of variables since the
same expression needs to be interpreted 2" times.

In GP, various mutation and crossover operators are used; for instance, subtree mutation
randomly selects a node within the tree and replaces the selected subtree with a new randomly
created one. Crossover operators may include simple tree crossover, uniform crossover, size
fair, one-point, context preserving crossover, etc. [75].

A related evolutionary algorithm, Cartesian Genetic Programming (CGP), represents the
function as a directed graph. The graph is commonly represented as a two-dimensional grid
with given dimensions (number of rows and columns) chosen by the user. What makes CGP
different from tree-based GP is that in CGP, the genotype is a list of integers representing
the graph primitives and their connectivity. The genotype is mapped to the directed graph
that is evaluated as a Boolean function, as in the case of a GP syntax tree. CGP genotypes
are of fixed length, while the phenotypes have a variable length following the number of
unconnected (unexpressed) genes. Figure 2 shows how the same expression from Fig. 1
could be represented in CGP. The list of integers in the genotype denotes the inputs to each
of the nodes (first two numbers in each group) and the function index used by the node (third
number in each group). The function used in each node is determined by mapping the index
to one of the available functions, which in this example would be 0 for AND, 1 for OR, and
2 for XOR. The output of each node is numbered in increasing order. Thus, 0 and 1 represent
the input variables VO and V1, 2 represents the output of the first operator (hence, of the
third number in the first group of the genotype), 3 the output of the second operator, and so
on. Finally, the last number in the genotype determines which node represents the output of
the expression. This genotype can be decoded into the illustrated phenotype, in which the
nodes are arranged in a graph with two rows and three columns (where the columns refer
only to the operators nodes). It is interesting to note that not all nodes need to be used when
constructing the expression (such is the case with nodes with outputs 5, 6, 7), which enables
CGP to evolve expressions of various lengths and complexity.

It is important to note that symbolic Boolean representations (such as GP and CGP)
have been shown to achieve superior results compared to previous encodings in almost
all applications. Symbolic representations have been successfully used to evolve Boolean
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Genotype
011 012 230 130 252 431 4

Phenotype

Fig. 2 Symbolic representation used by CGP. Circle nodes represent the operators, square nodes are the
inputs/outputs. The grey-shaded square node denotes the output of the whole function

functions of up to 16 variables [23], which would have been impractical for representations
directly encoding a truth table of size 2'°. Only in the case of specific criteria and smaller
Boolean sizes, such as the evolution of hyperbent functions of up to 8 variables [44], may
the simple bitstring encoding obtain better results.

Discussion
Table 2 provides the division of works that use the truth table encoding (phenotype) consid-
ering the genotypes. Certain observations can be made:

1. The majority of the works use bitstring encoding, which is not surprising as it represents
a natural choice. In fact, all the papers between 1997 and 2013 use bitstring encoding. A
smaller number of works consider the bitstring encoding restricted to balanced functions
to reduce the size of the search space.

2. Symbolic encoding is the second most used one. Interestingly, while stated in related
works to be the most successful one, we cannot notice it has been used more than the
bitstring encoding in the last few years.

3. Integer encoding is rarely used, and we know only two papers using it: the first one [70]
considers quaternary Boolean functions, so integer encoding is a natural choice. The
second one [40] explores two different integer representations for balanced Boolean
functions, namely the map-of-ones and the zero-length encodings.

4. Floating-point is, similarly to the integer encoding, rarely used. In fact, there is only
one paper using it [74]. Since that paper is also the only one exploring immunological
algorithms for the design of Boolean functions, we can state it represents a not sufficiently
investigated approach.

3.1.2 Criteria

A natural direction to consider is the number of criteria used in the objective function, which
is the function being optimized, while the fitness function is what is used to guide the opti-
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mization algorithm. For example, when evolving Boolean functions with high nonlinearity,
the common criterion in the objective function is the nonlinearity property. At the same time,
to evolve such Boolean functions with high nonlinearity, the fitness function can be of differ-
ent forms, e.g., using only the nonlinearity property or nonlinearity and the Walsh-Hadamard
spectrum.

We divide the works into those that consider only one criterion and those that consider
more than one criterion. In the latter case, we will differentiate between the works using two
criteria or more than two criteria.

One criterion

In cases where only one criterion is considered in the optimization process, most related
works consider nonlinearity. As such, those works usually consider evolving bent Boolean
functions, e.g., [20, 23, 27]. Additionally, there is a number of works that aim at balanced
Boolean functions with high nonlinearity. In this case, the algorithms usually constrain the
search to use only balanced Boolean functions (common examples are local search algorithms
that make pairwise bit flips in the truth table) and still maximize nonlinearity as a single
criterion in the objective function [40—42]. From the performance perspective, the employed
techniques generally perform well and find bent Boolean functions up to a reasonable number
of inputs, e.g., 16. For larger Boolean function sizes, the bottleneck is the evaluation part,
as metaheuristics commonly work by assessing a large number of candidate solutions. We
also mention some previously unattainable results achieved in this category, see, e.g., [32].
Still, we note that the objective function considered nonlinearity only, while success with
a specific combination of cryptographic properties cannot be attributed to metaheuristics
(since other properties were not optimized but only evaluated afterward). One example of the
unsuccessful use of metaheuristics is the evolution of hyperbent Boolean functions where
the criterion is nonlinearity [44].

Two criteria

With two criteria in the optimization process, there are several variants that need to be
discussed. The simplest option (and the one considered in most of the representative works)
uses the nonlinearity ! and balancedness criteria 2. Other common options for two criteria
include considering 1) nonlinearity and algebraic degree, e.g., [71], 2) support and correlation
immunity, e.g., [65], and 3) nonlinearity and autocorrelation, e.g., [46]. Finally, we note that
there are different ways how the objective function is built for two criteria: some works
consider optimizing both criteria at the same time. In contrast, other works employ a two-
stage approach where the second criterion is optimized only after the first one is fulfilled.
Moreover, the related works could also be divided based on whether they consider maximizing
(minimizing) both criteria or minimizing one criterion and maximizing the other. As is the
case for one criterion, optimizing for two criteria seems to be a relatively easy problem where
the bottleneck becomes the Boolean function size. One example of a successful result would
be finding balanced Boolean functions with 8 inputs and nonlinearity equal to 116 [68],
which is also the best-known result in the literature.

More than two criteria
There are multiple options for the objective function when considering more than two criteria.
Our analysis shows most works in this category consider three or four criteria, but there are

! The nonlinearity property could be evaluated with only the extreme value in the Walsh-Hadamard trans-
form [67] or as a more elaborate function evaluating the whole Walsh-Hadamard spectrum [13].

2 Balancedness appears either as a constraint for a function to have or as an imbalancedness penalty.
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works going up to six criteria. Some common combinations include 1) nonlinearity, algebraic
degree, and balancedness [63], and 2) nonlinearity, autocorrelation, and balancedness [58].
On the other hand, unusual combinations include 1) nonlinearity, algebraic immunity, and
fast algebraic resistance [52], 2) nonlinearity, correlation immunity, and strict avalanche
criterion (SAC) [46, 57], and 3) balancedness, nonlinearity, and transparency order [62].
Besides the approaches discussed in the previous paragraph (optimizing multiple criteria
at the same time and multi-stage approach), here, we also notice several works using the
multiobjective paradigm [1, 86]. From the performance perspective, the results achieved in
this category are mostly good, where, as previously, the bottleneck becomes the Boolean
function size. Additionally, in this category, we can also recognize the bottleneck due to the
slow computation of specific cryptographic properties (e.g., algebraic immunity) [86].

3.1.3 Boolean function size

From the perspective of optimizing Boolean functions of different sizes, we can observe
several trends. First, the smallest considered size is Boolean functions with four inputs, see,
e.g., [1, 72].> Next, most of the works consider smaller sizes, e.g., up to eight inputs, with
eight inputs being the most investigated dimension in general [5, 56, 71, 74]. The works that
consider larger sizes commonly go up to 16 inputs [20, 23, 52, 55, 63, 74]. We are aware
of only one paper that considers larger than 16 inputs Boolean functions where the authors
evaluate their approach up to 26 inputs [28].

3.2 Walsh-hadamard-based representation

We have seen in Section 2.2 that the Walsh-Hadamard spectrum can be used to characterize
several cryptographic criteria of a Boolean function, including its balancedness, nonlinearity,
and correlation immunity order. Thus, the interesting idea is to encode a candidate solution
as a Walsh-Hadamard spectrum that already satisfies certain properties. At this point, one
might think it is possible to manipulate this spectrum using a metaheuristic and optimize for
other properties not captured by the Walsh-Hadamard transform (for example, the algebraic
degree). However, the situation is more complicated: as we mentioned in Section 2.1, the
WHT is an injective mapping from IF%" to Z*"', but clearly not a surjective one. Hence, if
one starts from a random spectrum and then applies the inverse transform, the result likely
is a pseudo-Boolean function f : F; — Z, rather than a Boolean function. This suggests
the following strategy to use the Walsh-Hadamard spectrum as a representation method for
metaheuristics:

1. Encode the genotype of the candidate solution as a WHS satisfying the desired set of
properties, e.g., low maximum absolute value for high nonlinearity and coefficients up
to Hamming weight ¢ set to O for correlation immunity of order 7.

2. Evaluate the fitness of this candidate solution by applying the inverse Walsh-Hadamard
transform and then measuring how far the obtained pseudo-Boolean function is from
being a true Boolean function.

3. Apply the variation operators of the metaheuristic to modify the WHS of the candidate
solution, steering the corresponding pseudo-Boolean function closer to a true Boolean
function.

3 Actually, for the quaternary Boolean functions, the authors [70] start with dimension two, but once mapped
to binary Boolean functions, it is naturally larger.
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The approach above, called spectral inversion, was pioneered by Clark et al. in [12]. There,
the authors focused on the search for plateaued Boolean functions. In particular, a Boolean
function f : ) — IF; is called plateaued if its Walsh-Hadamard coefficients are at most
three-valued, and namely, they range in the set {—2", 0, +2"}, with r > % The case r = %
actually corresponds to bent functions, which can be seen as a subset of plateaued functions
characterized by spectra that only take two values in (=23, 42%}. When r is strictly larger
than 7, the spectrum of a plateaued function must have some coefficients set to 0 due to
Parseval identity. Therefore, proper plateaued functions are interesting because they can be
balanced and correlation immune. It is possible to prove (see, e.g., [7]) that a plateaued
function f : 5 — IF» with r > 7 has resiliency order r — 2 (thus it is balanced and
correlation immune of order r — 2), nonlinearity 2" ~! —2"~! and algebraic degree n —r — 3.
Consequently, it is optimal both concerning Siegenthaler’s and Sarkar and Maitra’s bounds.

The idea behind the representation of Clark et al.’s spectral inversion method is the fol-
lowing. Once the target n and r are chosen, a candidate solution is encoded as a three-valued
Walsh-Hadamard spectrum. The coefficients corresponding to positions with Hamming
weight up to » — 2 are always set to O to ensure resiliency order » — 2. Then, theoreti-
cal results, including Parseval’s identity and Sarkar-Maitra’s divisibility bound, are used to
determine the number of remaining coefficients that need to be set respectively to —2", 0, and
+2". These remaining coefficients can be freely permuted in the positions of the spectrum
with Hamming weight higher than r — 2.

To evaluate the fitness of a three-valued spectrum, Clark et al. experimented with two
fitness functions, both measuring the distance of the pseudo-Boolean function obtained by
applying the inverse WHT to the spectrum from being a true Boolean function. In particular,
a global optimum for this problem (i.e., reaching distance zero) corresponds to a plateaued
Boolean function with the desired profile of properties encoded by its spectrum. As a meta-
heuristic to drive the search, the authors used a simulated annealing algorithm. The simulated
annealing algorithm’s basic move consisted of swapping two distinct values in the spectrum
(excluding the coefficients set to zero for resiliency). The authors applied this method to
evolve plateaued functions of size 7, 8, and 9, but with a very low success rate only for 7
variables, while no functions were produced for 8 and 9 inputs.

The principle of spectral inversion has been investigated in several more works, using other
metaheuristics or focusing on subclasses of plateaued functions. For example, Stanica et al.
used again simulated annealing to evolve Rotation-Symmetric Boolean Functions (RSBF),
where the input vectors that are equivalent under cyclic rotations have the same output
values [79]. Reducing the search space in this way, the authors could construct 9-variable
plateaued functions with nonlinearity 240, resiliency order 2, and degree 6.

Saber et al. used Particle Swarm Optimization to obtain a 9-variable plateaued function
with nonlinearity 240, resiliency order 3, and algebraic degree 5 [77]. The PSO version used
in that work * is quite different from the traditional one used to solve continuous optimization
problems. In particular, this is a discrete version of PSO suitable for permutation or com-
binatorial search spaces. Updating a particle’s position amounts to swapping two distinct
values in the Walsh-Hadamard spectrum, much like in the simulated annealing approach
of [12]. Velocity vectors are instead replaced by probability vectors: the higher the velocity

4 The details of the PSO algorithm are available in the master thesis [82] of the second author of [77].
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of a particle along a specific coordinate, the more likely the corresponding spectral value is
swapped with another one. 3

Kavut et al. devised a steepest-descent algorithm to search for 9-variable plateaued func-
tions with the same properties of those considered in [77] through spectral inversion [31].
This metaheuristic basically corresponds to a greedy local search where the move giving the
best improvement is always chosen at each iteration until a local optimum is reached. The
success rate of this technique turned out to be quite low (6 functions obtained out of 150
runs), but this was sufficient for the authors’ purposes since they used these functions as a
basis to construct larger ones via concatenation.

More recently, Mariot and Leporati proposed a GA to evolve plateaued functions of 6
and 7 variables using spectral inversion [45]. The genotype representation was the same,
i.e., a three-valued Walsh-Hadamard spectrum with coefficients set to zero up to Hamming
weight r — 2. To create valid offspring chromosomes, the authors designed ad-hoc crossover
and mutation operators that would preserve the properties of the spectra. In particular, the
crossover was based on the idea of counters to keep track of the multiplicities of —2",
0, and +2", similar to what is done in the works that evolve balanced Boolean functions
with GA [40]. The authors of [45] obtained good success rates for plateaued functions of 6
variables, outperforming the simulated annealing algorithm of [12], but they were not able
to produce any plateaued function of 7 variables.

4 Metaheuristic-assisted construction of boolean functions
4.1 Evolving constructions

It is common to divide algebraic constructions into primary and secondary ones [7]. In
primary constructions, new functions are obtained without using known ones. In secondary
constructions, existing functions are used to construct new ones. Today, we know several con-
structions that can be used to obtain Boolean functions with specific cryptographic properties.
For example, [7] lists ten primary and ten secondary constructions to obtain bent Boolean
functions. While this can be considered numerous, there is no reason why there could not
be many more possible ones. In particular, the constructions only cover a tiny fraction of the
possible Boolean functions with the corresponding cryptographic properties. Hence, the use
of metaheuristics is also motivated by the possibility of exploring other new functions not
obtainable through the known constructions. Additionally, bent Boolean functions can also
be considered a well-explored topic [54] compared to some other Boolean functions. Indeed,
we could easily envision a specific set of properties that a Boolean function needs to fulfill
and for which there is no available algebraic construction.

In such settings, it makes sense to ask whether metaheuristics could find algebraic con-
structions. Since most algebraic constructions are given in the symbolic form, they can be
optimized using a suitable encoding. Here, the GP methods offer a natural mapping using
either a tree-based or graph-based representation. Several papers have addressed the topic of
evolving, rather than inventing, secondary Boolean constructions; these papers differ regard-
ing the method and the objective criteria.

5 The PSO algorithm of [46] surveyed in Section 3.1 uses the same principle to optimize balanced Boolean
functions with a truth table-based encoding, with the swap-based position update used to maintain the bal-
ancedness.
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In [66], the authors aim at obtaining bent Boolean functions for a larger number of vari-
ables. Rather than directly evolving for bent functions as in, e.g., [23], the authors used GP to
evolve a secondary construction to transform several input bent functions of n — 2 variables
into an output bent function of n variables (inspired by the Rothaus construction). Using as
seeds bent functions of only 4 variables, the authors have obtained secondary constructions
that generate bent functions in higher dimensions. Apart from that, the evolved constructions
seem to be quite general because the same constructions have succeeded in generating bent
functions from 6 up to 24 variables from different seed functions (in two fewer variables).
What remains unclear from the obtained results is whether any of the evolved constructions
would be a new one. Indeed, since metaheuristics find numerous solutions, one would need
to check all of them to see if there are new constructions. Moreover, as it is not possible to
know the size of the construction to be generated, they commonly have a significant amount
of bloat that must be analyzed and removed. In the GP literature, bloat refers to the phe-
nomenon that the size of the trees tends to increase without a corresponding improvement of
the fitness value, which leads to the creation of non-coding regions.

Mariot et al. used the approach from the previous paragraph and tried to evolve construc-
tions of hyperbent Boolean functions [44]. Unfortunately, the approach did not work, and the
authors did not manage to evolve any constructions resulting in hyperbent Boolean functions.

A similar approach is used in [9], but this time to find balanced functions with high
nonlinearity. The approach is again based on finding secondary constructions, which are,
in turn, evolved with GP. This approach may be interesting since only a few known such
constructions exist. Their results show that GP can find constructions that tend to generalize
well, i.e., result in balanced highly-nonlinear functions for various tested sizes and different
input function groups. While the obtained levels of nonlinearity rarely reach the best-known
values, the simplest solution found by GP turns out to be a particular case of the well-known
indirect sum construction.

Carlet et al. discuss how evolutionary algorithms can be used to help in finding a good
Boolean function construction [10]. The authors start from a recent work by C. Carlet [8],
where he proposed a generalization of the Hidden Weight Boolean Function allowing a
construction of n-variable balanced functions f from (n — 1)-variable Boolean functions g
fulfilling some criteria. There are multiple choices for the function g, and the authors used
evolutionary algorithms to find functions that still satisfy the necessary criteria while improv-
ing nonlinearity. The approach resulted in Boolean functions with significantly improved
nonlinearity.

Mariot et al. investigated how to design a secondary semi-bent and bent construction of
Boolean functions based on cellular automata [51]. More precisely, the authors started with
Boolean functions with good cryptographic properties and used them as local rules of cellular
automata to obtain larger Boolean functions with similar cryptographic properties. The choice
of the local rule was performed using an evolutionary algorithm, which evolved an affine
transformation that preserved the main cryptographic properties of the starting function (e.g.,
nonlinearity).

4.2 Construction of related objects
In this last section, we survey a few works focused on using metaheuristics to construct

combinatorial objects related to Boolean functions. Although most of these works are not
directly motivated by the search for Boolean functions with good cryptographic properties,
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we show how some of them can be interpreted as metaheuristic constructions of particular
classes of Boolean functions.

The field of combinatorial designs concerns the study of families of subsets of a finite
set, such that they satisfy certain balancedness properties [80]. Besides being a source of
interesting open problems in discrete mathematics, the interest in combinatorial designs also
spawns from the multiple applications they have in diverse domains, including statistics, the
design of experiments, error-correcting codes, and cryptography.

Similarly to the case of Boolean functions, most of the constructions of combinatorial
designs proposed in the literature leverage the use of algebraic methods [15]. An interesting
research thread that emerged in the last few years also considers the metaheuristic construction
of specific combinatorial designs. These include the use of various optimization algorithms
such as simulated annealing and evolutionary algorithms to construct orthogonal arrays [40,
50, 78, 83], Steiner systems [2], orthogonal Latin squares [49], disjunct matrices [35], and
permutation codes [48].

Some classes of Boolean functions with good cryptographic properties can be charac-
terized in terms of combinatorial designs. For example, bent functions are equivalent to
Hadamard matrices and difference sets of a specific form [18, 76]. More relevant to our
discussion is the fact that correlation immune functions can be characterized in terms of
orthogonal arrays. An orthogonal array of N runs, k levels, s entries, and strength ¢, denoted
asan OA(N, k, s, t),isan N x k array with entries from a set of s symbols, such that in every
N x t subarray, each ¢-tuple of symbols occurs exactly A = N /s’ times. Binary orthogonal
arrays are OAs with s = 2. The connection between Boolean functions and binary orthogonal
arrays stems from a result by Camion et al. [6], where they proved that a Boolean function
f : 5 — TFy is t-th order correlation immune if and only if its supportis an OA(N, k, 2, 1),
where N = #supp(f) and k = n. Therefore, works using optimization algorithms for con-
structing binary orthogonal arrays can be equally interpreted as a metaheuristic construction
of ¢-th order correlation immune functions.

To the best of our knowledge, only two works explicitly address the construction of binary
orthogonal arrays, namely [50] and [40]. In the former, the authors use GA and GP to evolve
N x k binary matrices. Given the target parameter ¢, the fitness function measures the deviation
of each N x t submatrix from satisfying the balancedness constraint required for an OA of
strength ¢. For the GA variation operators, the counter-based balanced crossover of [57] and
swap mutation are applied column-wise on the binary matrices in the population. This is
based on the observation that any OA(N, k, s, t) is also an OA(N, k, s, i) for all strength
i up tot — 1. Thus, any binary OA must also have balanced columns. This idea has been
further explored in [40] with the map-of-ones and zero-length balanced crossover operators.
The GP algorithm used in [50] is based instead on a representation similar to the symbolic
encoding surveyed in Section 3.1. A N x k matrix is encoded by a set of k syntactic trees
that are used to synthesize the columns of the matrix. In particular, a column is the truth table
vector obtained by evaluating the corresponding tree over all possible inputs. Consequently,
the number of runs N of the array is forced to be a power of 2 since it is basically the truth
table of a Boolean function.

The results of [50] showed that GP generally outperforms GA on this particular problem,
although GA effectively searches a smaller search space due to the representation with bal-
anced columns. In particular, GP can construct orthogonal arrays up to O A(32, 16, 2, 3) and
0A(32,31, 2,2), while GA arrives at most at N = 16 runs. The number of runs of the OA is
particularly interesting when considering correlation immune functions as a countermeasure
for side-channel attacks. In this scenario, it is desirable that the support of such functions
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is as low as possible for efficiency reasons. In the OA interpretation of correlation immune
functions, the support size corresponds to the number of runs N of the arrays.

The shortcoming of [50] is that the number of runs must be set before the evolutionary
search begins. However, one could envision a two-stage optimization process where in the
first step, one constructs an OA with specified parameters set as done in [50]. Then, one
can consider the reduction of the number of runs as a combinatorial optimization problem
itself. The idea is to select a subset of 2! rows so that the reduced matrix is still an OA with
a A parameter decreased by 1. The choice of this subset of rows can be made again using a
metaheuristic algorithm. This method has been investigated in [43], where the author devised
a GA to perform this reduction step. However, the results reported there are only for very
small OAs, and this approach should be investigated more in the future.

5 Achievements and future challenges

The surveys in the previous sections emphasize the great variety of methods and approaches
used to design Boolean functions with good cryptographic properties through metaheuristics.
In this section, we first summarize the main results of cryptographic significance achieved
by these techniques, and then we enumerate a number of future challenges of this research
thread that we deem interesting to address through further research.

5.1 Significance of the results

The first natural question that arises from inspecting the host of metaheuristics used in the
literature is whether such techniques managed to find any Boolean function of cryptographic
significance. Below, we summarize the best results achieved so far. We do not consider
balancedness since this is an easy criterion to optimize, and as we saw previously, several
algorithms use ad-hoc encodings to satisfy it. The same applies to the algebraic degree,
which is a relatively straightforward property to maximize. Concerning autocorrelation-
related properties (such as propagation criteria), we remark that they became less relevant
also in the literature of Boolean functions, as they are not directly related to concrete attacks.
For these reasons, in what follows, we consider only the best results concerning the two
cryptographic properties that are most challenging to optimize, namely nonlinearity and
correlation immunity.

Nonlinearity

The main issue when assessing the success of a method to construct a highly-nonlinear
Boolean function is that the maximum attainable nonlinearity is not known in general. As
mentioned in Section2.2, this is because determining a tight bound on the nonlinearity is
equivalent to finding the covering radius of a Reed-Muller code of the first order, which
is an open problem when the number of variables n is odd and greater than 7. When n is
even, the covering radius bound is met by bent functions, which already constitute the first
benchmark to evaluate the effectiveness of a metaheuristic algorithm. However, one runs
into a similar problem when 7 is odd by considering the highest possible nonlinearity for a
balanced Boolean function. For example, already for n = 8, it is not known if the maximum
nonlinearity of a balanced function is 116 or 118.
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For the above reasons, we can discuss the merits of metaheuristic algorithms in finding
nonlinear Boolean functions under two main benchmarks:

(1) The highest number of variables achieved in the optimization of bent functions.
(2) The highest nonlinearity achieved when optimizing balanced functions.

Concerning (1), it is necessary to discriminate between the truth table-based represen-
tations and the metaheuristic evolution of algebraic constructions. In the latter case, once
a viable construction has been found by the metaheuristic algorithm, it can yield new bent
functions for any number of variables (provided that smaller bent functions are given as inputs
if we are talking about secondary construction) [66]. Then, the problem becomes whether the
construction itself is not equivalent to previously known ones. We remark that little research
has been carried out on this aspect so far, and the few works adopting this standpoint mostly
obtained constructions that had already been discovered by mathematicians. Hence, here we
focus mainly on metaheuristics that exploit the truth table-based representation. In this case,
the best technique that can evolve bent functions up to n = 16 variables is Cartesian GP [23].

Regarding (2), one can again differentiate between the evolution of algebraic constructions,
where [9] is the only work that we are aware of targeting this problem with GP (though
always ending up with a known construction) and the optimization of truth table-based
representations. In this latter case, GP and Cartesian GP seem to be the best-performing
algorithms since they can discover balanced functions of nonlinearity 116, which is the best-
known value so far for n = 8 variables [68]. Similar remarks can be made for balanced
Boolean functions up to n = 16 inputs, as reported in [63].

Overall, the above observations indicate that the methods employing the symbolic repre-
sentation for the truth tables of the functions (i.e., GP, whether in the Cartesian variant or in
its basic form) obtained the best results so far.

Correlation immunity and resiliency

Most of the works that consider correlation-immunity or resiliency as an optimization
criterion usually do that in combination with other cryptographic properties (most often
nonlinearity and balancedness). However, in those cases, the orders of correlation immunity
and the number of input variables are usually small. Hence, it makes sense to focus on those
works that target specifically only this property. In this case, the best results achieved so far
are through GP and CGP in [65]. There, the authors considered the evolutionary construction
of correlation immune functions up to n = 13 variables and order + = 13, also minimizing
the Hamming weight for implementation reasons. On a similar line, the orthogonal array
approach of [50] can construct correlation-immune functions of order at most t = 3, but
for a number of variables up to n = 32. Again, the best-performing metaheuristic achieving
these results is GP.

5.2 Future directions of research

The discussion above prompts us with the following challenges of cryptographic significance
that we deem interesting for future research on the subject:

Challenge 1: Improve the best known nonlinearity

The most obvious challenge would be to investigate if metaheuristic algorithms can find
examples of new Boolean functions that improve on the best-known results concerning non-
linearity. We remark that this has already happened in the past, for example, with discrete
PSO [77] that was able to provide a Boolean function with nonlinearity 240, algebraic degree
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5, and resiliency order 3. The most interesting challenge for the future is to see whether meta-
heuristics can locate a balanced Boolean function of n = 8 inputs with nonlinearity 118. This
would settle a long-standing open problem.

Challenge 2: Find optimal Boolean functions that are not equivalent to known ones
Most of the works employing metaheuristic techniques usually limit their analysis to the
performance of the algorithms in terms of the achieved cryptographic properties. A post-hoc
analysis of the obtained Boolean functions in terms of affine equivalence is usually missing.
This is an issue that future research should address: as a matter of fact, it would be interesting
to see if the Boolean functions constructed by metaheuristic algorithms are equivalent to
those generated by algebraic constructions. In the latter case, the merits of the metaheuristic
approach would be even greater since it would mean that they can effectively find "new"
functions that were previously unknown.

Challenge 3: Improve the metaheuristic-assisted constructions of Boolean functions

The methods described in Section 4 on the use of metaheuristics to assist in the construction
of Boolean functions is the most relevant research trend in this direction, and certainly it
shows promise. However, up to now, somewhat limited results have been achieved, mostly
with secondary constructions evolved by GP that turned out to be equivalent to previously
known ones. A very interesting challenge would be to use metaheuristics to define a primary
construction instead. We believe that a promising way to achieve this objective would be to
integrate the evolution of related objects, such as Hadamard matrices and partial spreads, into
an evolutionary framework that can infer an algebraic expression to combine these objects
to obtain optimal Boolean functions, such as bent functions. GP, in this respect, could be a
viable option since it has been applied in other domains for tasks of symbolic regression.

Directions for future research

Beside the directions implied by the challenge above, we also enumerate several avenues for
future improvements, which mostly target the metaheuristic aspect rather than the crypto-
graphic significance of the obtained Boolean functions.

1. Using truth table solution encoding, especially in combination with bitstring repre-
sentation, represents a standard and well-explored option. We do not see significant
opportunities there besides considering previously not investigated combinations of cryp-
tographic properties.

2. Floating-point representation deserves further investigation to assess what advantages it
can bring (if any).

3. Truth table encoding is a natural option but will always suffer from the computational
bottleneck and cannot be used to construct large Boolean functions.

4. We found no works using ANF solution encoding. Since many bounds and properties
can be expressed through it, it would be interesting to use ANF to encode solutions.

5. WHS encoding is interesting, but it suffers from solutions that do not map to Boolean
functions. This problem is especially pronounced in the context of operators (like muta-
tion and crossover) as they easily disrupt a correct solution into a wrong one. It remains
an open question of how to construct metaheuristic operators that can work on WHS
encoding and maintain the correctness of solutions.

6. In the same way that researchers constructed metaheuristic operators that preserve bal-
ancedness for the truth table encoding, it would be relevant to explore how to construct
analogous operators for symbolic encoding.
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6 Conclusions

In this survey, we analyze works that use metaheuristics to construct Boolean functions
with good cryptographic properties. We provide a new taxonomy based on the solution
encoding rather than the search technique used since many of the related works actually use
combinations of construction techniques, making them difficult to be classified. On the other
hand, when considering the solution representation, we can see that works naturally map
into different categories, allowing easier analysis of the results. Finally, we identified and
discussed potentially interesting directions for future research.
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