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Abstract

We construct a nonconforming virtual element method for the approximation of singular so-
lutions to isotropic linear elasticity problems on polygonal domains. Standard nonconforming
virtual element spaces are enriched with suitable singular functions. The enrichment is based
on the nonconforming structure of the discrete spaces and not on partition of unity techniques.
We prove optimal convergence and assess numerically the theoretical results of the method.
The proposed scheme naturally paves the way for an efficient linear elastic fracture solver.
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1 Introduction

Solutions to partial differential equations (PDEs) on polygonal and polyhedral domains are gener-
ally singular at vertices and edges. If the coefficients of a given elliptic PDE are constants, then it
is possible to show an explicit splitting of the exact solution into a smooth contribution, and series
of singular functions at the kinks of the domain. Classical monographs discussing the singular
behaviour of the solution are [16, 20, 24], while general techniques to derive explicit asymptotic
expansions are given in [22, 23, 27]. Other works related to singular expansion for the isotropic
linear elasticity case are due to Costabel and Dauge [13–15] and Rössle [30]. The last reference
contains singular expansion for all possible types of boundary conditions.

A possible way to approximate solutions to PDEs is to use Galerkin methods. The rate of
convergence of a Galerkin method is dictated by the minimum between the polynomial degree of
accuracy of the method, e.g., the polynomial degree in finite elements, and a parameter related
to the Sobolev regularity of the exact solution. Therefore, the rate of convergence of a Galerkin
method is typically suboptimal, as solutions to PDEs are singular in some parts of the domain.

For this reason, several Galerkin methods based on polynomial spaces enriched with singular
functions have been developed over the years. To the best of our knowledge, the inclusion of
singular functions in a Galerkin framework traces back to the pioneering works by Fix and col-
laborators [17, 18] at the end of the 60ies for quadrilateral meshes; the extension to triangular
meshes is due to Whiteman and collaborators [5] in the 70ies. Enriched elements fell into forget-
fulness for several years and were re-discovered by Belytschko and collaborators [28] (the extended
finite element method, XFEM) and Babuška and collaborators [31] (the generalized finite element
method, GFEM). Roughly speaking the above approaches are based on the same idea: special
singular functions are added to the usual polynomial approximation space testing them with “hat
functions”, i.e., singular functions are localized by multiplying them with some cut-off polynomial
functions already contained in the original space. The extension of the works by Belytschko et
al. to the case of polytopal meshes is given in [8,9]. The above approaches lead to approximation
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spaces that are globally continuous with basis functions shared by possibly many elements, leading
to a loss of the sparsity of the matrix stemming from the method.

Another possible enrichment is based on employing discrete spaces of discontinuous polynomials
enhanced by singular functions; see, e.g., the celatus discontinuous Galerkin method in [19]. The
advantage of this approach is that the enrichment of the space is quite easy and the support of the
singular functions is only one element, at the price of losing the global continuity of the discrete
solution.

A third and more recent approach lies in between the two discussed above. It hinges upon
using enriched nonconforming virtual element spaces (ncVEM) and was designed for the approx-
imation of singular solutions to the Poisson problem in [3]; the ideas in this reference were later
extended to the hybrid high-order method in [32]. Standard nonconforming virtual element spaces
consist of solutions to local elliptic problems with polynomial data. Their enriched version has the
same structure with the difference that boundary conditions are polynomials plus suitable singular
functions. This construction allows for an automatic inclusion of the singular functions in the
space.

Compared to the standard XFEM and GFEM, the support of local functions in enriched ncVEM
is smaller and is contained in at most two elements. Compared to “celatus methods”, discrete
functions are not fully discontinuous. Moreover, as discussed in [3, Appendix B], the structure of
the discrete spaces naturally offers a framework that allows for orthogonalization procedures that
improve the ill-conditioning of the final system; such techniques are not immediately replicable
in the other two settings. These advantages come at the price that virtual element functions are
not know in closed form but only through certain degrees of freedom. In other words, an explicit
representation of the virtual element functions is only possible through projectors onto certain
enriched polynomial spaces.

The goal of this paper is to construct an enriched nonconforming virtual element method for
isotropic linear elasticity problems on polygons. We shall design the method, analyse optimal
convergence error estimates, and assess the theoretical findings with some test cases.

Structure of the paper. We introduce the model problem and discuss the singular behaviour at
vertices in Section 2. We construct the enriched ncVEM in Section 3 and discuss the convergence
analysis in Section 4. Numerical results are presented in Section 5 and conclusions are drawn in
Section 6. In Appendix A, we review in details the singular behaviour of solutions to isotropic
linear elasticity problems on polygons.

Notation. Given a domain D in R2, Hs(D) denotes the Sobolev space of order s in N over D.
The case s = 0 coincides with the Lebesgue space L2(D). Sobolev spaces of positive noninteger
order s are constructed using interpolation theory. We endow Hs(D) with the usual seminorm,
norm, and inner products

|·|s,D, ∥·∥0,D, (·, ·)0,D.

Given ∂D the boundary of D, H
1
2 (∂D) denotes the space of traces of H1(D) functions over ∂D,

which we can endow with the usual Aronszajin-Gagliardo-Slobodeckij norm. The spaces H−s(D),

s > 0, and H− 1
2 (∂D) are defined by duality.

Throughout, we shall employ standard notation for differential operators. For instance, ∇, div,
and E denote the usual gradient, divergence, and symmetric gradient operators.

2 Model problem and regularity of the solution

Given the (constant) Lamé parameters µ and λ, introduce the elasticity operator

M· := µdivE ·+(µ+ λ)∇div · . (1)
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Let Ω in R2 be a polygonal domain with boundary Γ and f be in [L2(Ω)]2. The domain Ω can
contain slits. We consider the isotropic linear elasticity problem{

−Mu = f in Ω

u = 0 on ∂Ω.
(2)

Introduce

V := [H1
0 (Ω)]

2, a(u,v) := µ

∫
Ω

E (u) : E (v) + (µ+ λ)

∫
Ω

divu divv,

and the energy norm

|v|2 := a(v,v) ∀v ∈ V.

A weak formulation of problem (2) reads{
find u ∈ V such that

a(u,v) = (f ,v)0,Ω ∀v ∈ V.
(3)

Problem (3) is well posed due to the Lax-Milgram lemma, which holds true based on Korn’s
inequality; see, e.g., [11, Chapter 11]. In general, the solution u to (3) belongs to V but has finite
Sobolev regularity at the vertices of Ω.

It is known [16, 20] that the solution u to (3) is given by the sum of a smooth term u0 and a
term S that is singular at the vertices of Ω:

u = u0 + S . (4)

In the simplest case, given (r, θ) the polar coordinates centred at a vertex A, S around a neigh-
bourhood of A is a series of functions of the form

rα(S1(θ),S2(θ))
T , (5)

for positive factors α that depend on the angle at A, and the Lamé parameters.

In Appendix A below, we review examples of singular solutions S , and discuss the singular
exponent α and the smooth angular part (S1(θ),S2(θ)). The crucial property satisfied by S is
that the singular functions belong to the kernel of the isotropic elasticity operator M, i.e., they
represent singular displacement field corresponding to self-equilibrated stress states for the material
body

MS = 0. (6)

3 The enriched virtual element method for isotropic linear
elasticity

We design a nonconforming enriched virtual element method for the approximation of solutions
to the isotropic linear elasticity problem (3). For the sake of presentation, we henceforth assume
that S in (4) consists of only one term SA that is singular at a vertex A of Ω and has the form (5).
In particular, for a given smooth field u0, we write

u = u0 + SA. (7)

The remainder of this section is organized as follows: in Section 3.1, we introduce admissible se-
quences of meshes and enriched polynomial spaces; in Section 3.2, we construct nonconforming
enriched virtual element spaces for isotropic linear elasticity; in Section 3.3, we study the interpo-
lation properties of functions in such virtual element spaces; in Section 3.4, we design and analyse
the properties of the discrete bilinear form and right-hand side; in Section 3.5, we present the
virtual element method and discuss its well posedness.
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3.1 Meshes: layerizations and enriched polynomial spaces

We consider a mesh Tn that possibly contains elements with slits. By En, we denote the corre-
sponding set of edges, which we split into internal E I

n and boundary E B
n edges. Given K ∈ Tn,

its set of edges is E K ; its outward pointing normal vector is nK ; its centroid is xK ; its diameter
is hK ; its number of vertices is NK

V . Given e ∈ En, its centroid is xe and its length is he; further,
we associate to e a normal unit vector ne once and for all. Clearly, if e ∈ E K for some K ∈ Tn,
then we have nK · ne = ±1.

We assume that there exists a uniform γ ∈ (0, 1) such that

(A0) for all K1 and K2 in Tn with K1 ∪K2 ̸= ∅, γhK1 ≤ hK2 ≤ γ−1hK1 ;

(A1) every K in Tn is star-shaped with respect to a ball of radius larger than or equal to γhK ;

(A2) no small edges are allowed, i.e, for all K ∈ Tn and e ∈ E K , γhK ≤ he.

We introduce element and edge layers. First, we recall decomposition (7) and that the singular
function SA is singular only at the vertex A. Given the polygonal mesh Tn, we introduce the first
layer of elements either abutting or close to vertex A: given a positive parameter γ̃,

T 1
n := {K ∈ Tn | dist(A,K) ≤ γ̃ diam(Ω)} . (8)

Next, we define the second layer, i.e., the set of elements abutting the elements in T 1
n :

T 2
n :=

{
K ∈ Tn | ∃K̃ ∈ T 1

n such that K ∩ K̃ ⊂ En

}
.

Eventually, we introduce the layer of the remaining elements:

T 3
n := Tn \ (T 1

n ∪ T 2
n ).

We also consider a layerization of the edges En. Notably, we define

E 1
n :=

{
e ∈ En | ∃K ∈ T 1

n such that e ∈ E K
}
, E 2

n := En \ E 1
n .

We give a graphical example of the element and edge layers on the slit domain

Ω := (0, 1)2 \ {(x, y) ∈ R2 | x = y, x ∈ (1/4, 3/4)}.

The singular vertex A is the tip (3/4, 3/4) and γ̃ is set to 0.1.

A A

Figure 1: Left panel : in blue, the elements in the first element layer T 1
n ; in green, the elements in the second

element layer T 2
n ; in red, the elements in the third layer T 3

n . Right panel : in red, the edges in the first edge layer E 1
n ;

in blue, the edges in the second edge layer E 2
n . The domain is a unit square domain with an internal crack. We

assume that the solution to problem (3) is singular only at the right-upper tip of the crack A = (3/4, 3/4). In red,
we depict the circumference of radius 0.1 centred at A. The parameter γ̃ in (8) is 0.1.

Next, given the singular function SA in polar coordinates (r, θ) centred at A, we define

S K
A (r, θ) := SA

(
r

hK
, θ

)
, S e

A(r, θ) := SA

(
r

he
, θ

)
.
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Given K ∈ Tn and e ∈ E K , introduce the element and edge “elasticity” trace operators γe
El, γ

K
El :

[H1(K)]2 → [H− 1
2 (∂K)]2 on K ∈ Tn as

γK
El(v) := µ(E v)nK +(µ+λ)divv nK γe

El(v) := µ(E v)ne+(µ+λ)divv ne ∀v ∈ [H1(K)]2. (9)

We define (possibly) enriched polynomial spaces over elements and edges as follows. For a given p
in N, we set Pp(K) and Pp(e) as the spaces of polynomial fields over K and e. We define

P̃p(K) :=

{
Pp(K)⊕ S K

A if K ∈ T 1
n

Pp(K) if K ∈ T 2
n ∪ T 3

n .
P̃p(e) :=

{
Pp(e)⊕ γe

El(S
e
A) if e ∈ E 1

n

Pp(e) if e ∈ E 2
n .

3.2 Nonconforming enriched virtual elements

Recall that the elasticity operator M and the trace elasticity operator γK
El are defined in (1) and (9),

respectively. We define the local enriched virtual element space on the element K as follows:

Vn(K) :=
{
vn ∈ [H1(K)]2 | M(vn) ∈ Pp−2(K), γK

El(vn)|e ∈ P̃p−1(e)∀e ∈ E K
}
. (10)

Thanks to (6), we have the inclusion

P̃p(K) ⊂ Vn(K).

The above inclusion guarantees optimal approximation properties of the space; see Lemma 4.3
below.

Consider the following set of linear functionals:

� the bulk moment: given any basis {mK
α }dim(Pp−2(K))

α=1 of Pp−2(K),

|K|−1

∫
K

vn ·mK
α ∀α = 1, . . . ,dim(Pp−2(K)); (11)

� the polynomial edge moments: for each e ∈ E K , given a basis {me
α}

dim(Pp−1(e))
α=1 of Pp−1(e),

|e|−1

∫
e

vn ·me
α ∀e ∈ E K , ∀α = 1, . . . ,dim(Pp−1(e)); (12)

� the “singular” edge moments: for each “singular” edge e ∈ E 1
n ,∫

e

vn · γK
El(SA)|e ∀e ∈ E K . (13)

Define the local bilinear form

aK(u,v) := µ(∇u,∇v)0,K + (µ+ λ)(divu,divv)0,K ∀K ∈ Tn.

Lemma 3.1. The set of degrees of freedom (11)–(12)–(13) is unisolvent.

Proof. The proof follows along the same lines as those of [3, Lemma 3.1]. The dimension of Vn(K)
matches the number of degrees of freedom, whence we only need to check their unisolvence.

Given vn ∈ Vn(K) such that all the functionals (11)–(12)–(13) vanish, we show that

aK(vn,vn) = 0. (14)

In fact, if this is the case, then we use the Korn’s inequality [11, Corollary 11.2.22] and deduce
that vn is a constant vector. The assertion follows imposing zero vector average, e.g., on an edge.

To show (14), we use an integration by parts and the definition of Vn(K) in (10)

aK(vn,vn) = −(vn, Mv︸︷︷︸
∈Pp−2(K)

)0,K +
∑

e∈E K

(vn, γ
K
El(vn)︸ ︷︷ ︸
P̃p−1(e)

)0,e
(10)
= 0.
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p = 1, standard space p = 1, enriched space

Figure 2: Degrees of freedom on a pentagon for p = 1. Left panel : standard nonconforming VEM. Right panel :
enriched nonconforming VEM. The blue circles represent the standard edge polynomial moments (12). The green
pentagons represent the enriched edge moments (13).

p = 2, standard space p = 2, enriched space

Figure 3: Degrees of freedom on a pentagon for p = 2. Left panel : standard nonconforming VEM. Right panel :
enriched nonconforming VEM. The blue circles represent the standard edge polynomial moments (12). The green
pentagons represent the enriched edge moments (13). The magenta triangle represents the bulk polynomial mo-
ments (11).

In Figures 2 and 3, we depict the degrees of freedom for standard and enriched nonconforming
virtual elements on a pentagon for p = 1 and 2, respectively.

The set of standard degrees of freedom (11)–(12) could be used to construct a standard polyno-
mial nonconforming virtual element space for the isotropic linear elasticity problem. The resulting
construction would differ from those available in the literature; see, e.g., [33].

Next, we construct the global nonconforming space. To the aim, define the vector broken
Sobolev space with respect to the decomposition Tn as follows:

[H1(Tn)]
2 :=

{
v ∈ [L2(Ω)]2 | v|K ∈ [H1(K)]2 ∀K ∈ Tn

}
.

For each edge e in En, recall that ne is a fixed-once-and-for all normal unit vector of e. Given an
internal edge e in E I

n , denote the two adjacent elements by K1 and K2. If instead e in E B
n is a

boundary edge, let K be the only element such that e in E K .
We define the jump operator as follows:

JvKe = JvK :=

{
v|K1

· nK1
+ v|K2

· nK2
if e ∈ E I

n

v|K · nK if e ∈ E B
n

∀v ∈ [H1(Tn)]
2.

We define a (vector) nonconforming Sobolev space with respect to Tn:

[H1,nc
p (Tn)]

2 :=

{
v ∈ [H1(Tn)]

2

∣∣∣∣∫
e

(JvK ne) · m̃e = 0 ∀e ∈ En, ∀m̃e ∈ P̃p−1(e)

}
. (15)

Eventually, we define the global nonconforming vector enriched virtual element space for isotropic
linear elasticity as follows:

Vn :=
{
vn ∈ [H1,nc

p (Tn)]
2 | vn|K ∈ Vn(K) ∀K ∈ Tn

}
.

6



We endow the space Vn with a set of degrees of freedom obtained by a standard nonconforming
coupling of the edge moments (12) and (13).

3.3 Interpolation estimates

We analyse interpolation estimates by means of functions in the global virtual element space Vn.
Introduce the broken energy bilinear form

aTn(u,v) :=
∑

K∈Tn

aK(u,v) ∀u, v ∈ [H1(Tn)]
2,

and the broken, global and local energy norm

|v|2aTn := aTn(v,v) =
∑

K∈Tn

|v|2aK :=
∑

K∈Tn

aK(v,v) ∀v ∈ [H1(Tn)]
2.

Proposition 3.2. Let u ∈ [Hs+1(Ω)]2, s > 0. Then, there exists uI ∈ Vn such that, for all uπ

piecewise in [P̃p(K)]2,
|u− uI |aTn ≤ |u− uπ|aTn .

Proof. The proof follows along the same lines as that of [26, Proposition 3.8] and [3, Lemma 4.3].
Define uI such that, for all the degrees of freedom dof of Vn,

dof(u− uI) = 0. (16)

Using an integration by parts, definition (16) with the properties of (10), an integration by parts
back, and the Cauchy-Schwarz inequality yield, for all K in Tn,

|u− uI |2aK = −(u− uI ,M(u− uI))0,K +
∑

e∈E K

(u− uI , γ
K
El(u− uI))0,e

= −(u− uI ,M(u− uπ))0,K +
∑

e∈E K

(u− uI , γ
K
El(u− uπ))0,e

= aK(u− uI ,u− uπ) ≤ |u− uI |aK |u− uπ|aK .

Diving both sides by |u− uI |aK and summing over all the elements yield the assertion.

3.4 Discrete bilinear forms and right-hand side

We construct the discrete computable bilinear forms and right-hand side.

The discrete bilinear form. Let RM(K) be the space of the rigid body motions over K. We

define an energy projector into enriched polynomials Π̃
a,K

p = Π̃
a

p : [H1(K)]2 → P̃p(K) as follows:{
aK(q̃p,v − Π̃

a

pv) = 0∫
∂K

(v − Π̃
a

pv)qRM = 0
∀q̃p ∈ P̃p(K), ∀v ∈ [H1(K)]2, ∀qRM ∈ RM(K). (17)

Lemma 3.3. Given vn ∈ Vn, Π̃
a

pvn is computable explicitly via the degrees of freedom (11),
(12), and (13).

Proof. As for the “bulk” contribution, we have to show the computability of aK(q̃p,vn) for all q̃p ∈
Pp(K) and vn ∈ Vn:

aK(q̃p,vn) = −( Mq̃p︸ ︷︷ ︸
∈Pp−2(K)

,vn)0,K +
∑

e∈E K

(γK
El(q̃p)︸ ︷︷ ︸

∈P̃p−1(e)

,vn)0,e.

The fact that Mq̃p ∈ Pp−2(K) follows from (6). The first and second terms on the right-hand side
are computable via the degrees of freedom (11), and (12)-(13), respectively. The computability of
the boundary constraint in (17) follows from the definition of the edge moments (12)–(13).
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Following the VEM gospel [6], we use the energy projection Π̃
a

p to design the discrete bilinear
form, mimicking the continuous one a(·, ·):

an(un,vn) :=
∑

K∈Tn

aKn (un,vn) ∀un, vn ∈ Vn,

where

aKn (un,vn) := aK(Π̃
a

pun, Π̃
a

pvn) + SK((I− Π̃
a

p)un, (I− Π̃
a

p)vn) un, vn ∈ Vn(K). (18)

The bilinear form SK : ker(Π̃
a

p) × ker(Π̃
a

p) → R in (18) must be computable from the degrees of
freedom and is such that there exist two positive constants c∗ ≤ c∗ independent of the discretisation
parameters with

c∗a
K(vn,vn) ≤ SK(vn,vn) ≤ c∗aK(vn,vn) ∀vn ∈ ker(Π̃

a

p). (19)

Given α∗ := min(1, c∗) and α∗ := max(1, c∗), it can be shown that

α∗a
K(vn,vn) ≤ aKn (vn,vn) ≤ α∗aK(vn,vn) ∀vn ∈ ker(Π̃

a

p), ∀K ∈ Tn. (20)

On each element K in Tn, we have the consistency property

aKn (q̃p,vn) = aK(q̃p,vn) ∀q̃p ∈ P̃p(K), ∀vn ∈ Vn(K). (21)

Next, we exhibit an explicit choice for the stabilization and prove the related bounds in (19).

An explicit choice for the stabilization. Given e in E K an edge of an element K in Tn,

introduce the enriched L2-edge polynomial projection Π̃
0,e

p−1 : [L2(e)]2 → P̃p−1(e) defined as

(q̃e
p−1, Π̃

0,e

p−1v − v)0,e ∀q̃e
p−1 ∈ P̃p−1(e), ∀v ∈ [L2(e)]2. (22)

This operator is computable for functions in Vn from their standard and “singular” edge degrees
of freedom (12)–(13).

Furthermore, given K in Tn, introduce the standard L2-bulk polynomial projection Π0
p−2 :

[L2(K)]2 → Pp−2(K) defined as

(qp−2,Π
0
p−2v − v)0,K ∀qp−2 ∈ Pp−2(K), ∀v ∈ [L2(K)]2. (23)

Next, for all un and vn in ker(Π̃
a

p), define

SK(un,vn) = h−1
K

∑
e∈E K

(Π̃
0,e

p−1un, Π̃
0,e

p−1vn)0,e + h−2
K (Π0

p−2un,Π
0
p−2vn)0,K , (24)

where Π̃
0,e

p−1 and Π0
p−2 are defined in (22) and (23), respectively.

In the following result, we prove the two bounds in (19).

Proposition 3.4. Let SK(·, ·) be the stabilization defined in (24). Then, the bounds in (19) are
valid with constants c∗ and c∗ independent of hK .

Proof. Let vn ∈ ker(Π̃
a

p). Without loss of generality, we assume hK = 1. The assertion follows
from a scaling argument.

The bound on c∗. An integration by parts, the definition of the local space Vn(K) in (10), the
Cauchy-Schwarz inequality, and the definition of the stabilization SK in (24) give

aK(vn,vn) = −(vn,Mvn)0,K +
∑

e∈E K

(vn, γ
K
El(vn))0,e

= −(Π0
p−2vn,Mvn)0,K +

∑
e∈E K

(Π̃
0,e

p−1vn, γ
K
El(vn))0,e

≤ ∥Π0
p−2vn∥0,K∥Mvn∥0,K +

∑
e∈E K

∥Π̃
0,e

p−1vn∥0,e∥γK
El(vn)∥0,e

≲ SK(vn,vn)
1
2

(
∥Mvn∥20,K +

∑
e∈E K

∥γK
El(vn)∥20,e

) 1
2

.

(25)
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We need to prove an upper bound on the second term on the right-hand side in terms of |vn|aK .
Focus on the bulk term. Using a polynomial inverse inequality on polygons, see, e.g., [7, equa-
tion (32)] and [12, Lemma 10], we can write

∥Mvn∥0,K ≲ ∥Mvn∥−1,K := sup
Φ∈[H1

0 (K)]2

(Mvn,Φ)0,K
|Φ|1,K

= sup
Φ∈[H1

0 (K)]2

aK(vn,Φ)

|Φ|1,K
≤ (2µ+ λ)|vn|aK .

Eventually, we focus on the boundary terms appearing in the second term on the right-hand
side of (25). Using equivalence of (semi)norms in finite dimensional spaces arguing as in [3,
Proposition 4.7], we can write( ∑

e∈E K

∥γK
El(vn)∥20,e

) 1
2

≲ ∥µ∇vn + (µ+ λ)divvn∥0,K = |vn|aK .

The bound on c∗. The second bound is proven using the stability of L2 projectors in L2 norms,

the fact that functions in ker(Π̃
a

p) have zero average on the boundary, see (17), and the trace and
the Poincaré inequalities.

The discrete right-hand side. The discrete right-hand side is dealt with as in standard virtual
elements [6]. Given V (K) the set of vertices of K, we define

⟨fn,vn⟩ :=

{∑
K∈Tn

1
NK

V

∑
ν∈V (K)(f ,vn(ν))0,K if p = 1∑

K∈Tn
(f ,Π0

p−2vn)0,K if p ≥ 2.

3.5 The method

We consider the following nonconforming virtual element method:{
find un ∈ Vn such that

an(un,vn) = ⟨fn,vn⟩ ∀vn ∈ Vn.
(26)

The well posedness of method (26) follows from the Korn’s inequality, the Lax-Milgram lemma,
and the stability properties of an(·, ·).

4 Convergence analysis

We present the convergence analysis for method (26) under assumption (7). We follow the lines of
the corresponding analysis for the Poisson problem in [3, Section 4]. For the sake of completeness,
we provide some details.

After showing abstract error estimates in Section 4.1, we prove upper bounds on all the terms
appearing in such estimates; see Sections 4.2, 4.3, and 4.4. In Section 4.5, we state an optimal
convergence result.

4.1 Abstract error estimates

We present abstract error estimates for method (26). To the aim, we first introduce a bilinear

form Nn : [H
1
2+ε(Ω)]2 × [H1,nc

p (Tn)]
2 → R, ε > 0, representing the variational crime due to the

nonconformity of the spaces as follows:

Nn(u,vn) :=
∑

K∈Tn

∫
∂K

γK
El(u) · vn =

∑
e∈E I

n

∫
e

(µEu+ (µ+ λ)divu)JvnK. (27)
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Theorem 4.1. Let α∗ and α∗ be the stability constants in (20), and uπ and uI be (piecewise)

in P̃p(K) and Vn. Then, given u and un the solutions to (3) and (26), the following a priori
estimate is valid:

|u− un|aTn ≤ α−1
∗

{
(1 + α∗) (|u− uπ|aTn + |u− uI |aTn )

+ sup
vn∈Vn

(f ,vn)0,Ω − ⟨fn,vn⟩
|vn|aTn

+ sup
vn∈Vn

Nn(u,vn)

|vn|aTn

}
.

Proof. The proof is fairly standard in the nonconforming VEM literature [3, 4, 26]. Given δn =
un − uI ∈ Vn, the triangle inequality implies

|u− un|aTn ≤ |u− uI |aTn + |δn|aTn . (28)

Consider the second term on the right-hand side. Using (20) and (21), we can write

|δn|2aTn =
∑

K∈Tn

|δn|2aK ≤ α−1
∗

∑
K∈Tn

aKn (δn, δn)

= α−1
∗

∑
K∈Tn

(
aKn (un, δn)− aKn (uI − uπ, δn)− aK(uπ − u, δn)− aK(u, δn)

)
.

An integration by parts and (27) entail∑
K∈Tn

aK(u, δn) = (f , δn)0,Ω + Nn(u, δn).

Using again (20), (28), and standard manipulations give the assertion.

4.2 Best enriched polynomial and virtual interpolation estimates

We review certain enriched polynomial and interpolation estimates. We follow the lines of [3,
Sections 4.2 and 4.3]. We begin with stating a best enriched polynomial estimate. Its proof is the
vector version of [3, Lemma 4.2] and is therefore omitted.

Lemma 4.2. Given u the solution to (3) and u0 its smooth part as in (7), there exists uπ piecewise

in P̃p(K) such that

|u− uπ|aTn ≲ hp
{( ∑

K∈T 1
n

|u0|2p+1,K

) 1
2

+
( ∑

K∈T 2
n∪T 3

n

|u|2p+1,K

) 1
2
}
.

We conclude the section by proving interpolation estimates, which are a consequence of Propo-
sition 3.2 and Lemma 4.2.

Lemma 4.3. Given u the solution to (3) and u0 its smooth part as in (7), there exists uI in Vn

such that

|u− uI |aTn ≲ hp
{( ∑

K∈T 1
n

|u0|2p+1,K

) 1
2

+
( ∑

K∈T 2
n∪T 3

n

|u|2p+1,K

) 1
2
}
.

In words, even if the solution u of (3) is singular, approximation and interpolation estimates
by means of enriched polynomials and enriched virtual element functions are optimal with respect
to the polynomial degree of accuracy of the method.

4.3 Approximation of the right-hand side

We show an upper bound on the term representing the variational crime on the right-hand side,
i.e.,

sup
vn∈Vn

(f ,vn)0,Ω − ⟨fn,vn⟩
|vn|aTn

.

No enrichment is used in the discretization of the right-hand side. Thus, the following bound
follows as in standard virtual elements [6].
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Lemma 4.4. Given f ∈ Hp−1(Ω) the right-hand side of (3), the following bound is valid:

sup
vn∈Vn

(f ,vn)0,Ω − ⟨fn,vn⟩
|vn|aTn

≲ hp∥f∥p−1,Ω.

4.4 Approximation of the nonconformity term

Recall that Nn(·, ·) is defined in (27). We show an upper bound on the term representing the
variational crime due to the nonconformity of the method, i.e.,

sup
vn∈Vn

Nn(u,vn)

|vn|aTn

.

Lemma 4.5. Given u the solution to (3), u0 as in (7), and Nn(·, ·) as in (27). Then, the following
bound is valid:

sup
vn∈Vn

Nn(u,vn)

|vn|aTn

≲ hp
{( ∑

K∈T 1
n

|u0|2p+1,K

) 1
2

+
( ∑

K∈T 2
n∪T 3

n

|u|2p+1,K

) 1
2
}
.

Proof. The proof follows along the same lines as that of [3, Lemma 4.6]. For the sake of clarity,
we report some details. Since Nn(·, ·) is defined as a sum over all internal edges, we fix e in E I

n .
Given e in E I

n , we introduce K+ and K− such that

K+ ∩K− ⊃ e, nK+ · ne = 1, nK− · ne = −1.

Using the definition of nonconforming functions (15), we can write∫
e

(µEu+ (µ+ λ)divu)JvK =
∫
e

γe
El(u) · (vn|K+ − vn|K−) =

∫
e

γe
El(u0) · (vn|K+ − vn|K−)

≤ ∥γe
El(u0)− Π̃

0,e

p−1γ
e
El(u0)∥0,e∥vn|K+ − vn|K− − Π̃

0,e

p−1(vn|K+ − vn|K−)∥0,e.

GivenK eitherK+ orK−, introduceΠ∇
p : [H1(K)]2 → Pp(K) anyH1(K) projector onto standard

polynomials. Using the properties of orthogonal projectors, a trace inequality, and the Poincaré-
Wirtinger inequality, we arrive at∫

e

(µEu+ (µ+ λ)divu)JvK ≲ h
1
2

K |u0 −Π∇
p u0|1,Kh

1
2

K

(
|vn|2aK+ + |vn|2aK−

) 1
2

.

The assertion follows from standard polynomial approximation estimates and the smoothness of u0.

4.5 Convergence estimate

We collect the foregoing estimates and exhibit the optimal convergence rate for method (26).

Theorem 4.6. Let u and un be the solutions to (3) and (26) with right-hand side f ∈ Hp−1(Ω),
and u0 as in (7). Then, the exists a positive constant c depending on α∗ and α∗ in (20) such that

|u− un|aTn ≲ hp
{( ∑

K∈T 1
n

|u0|2p+1,K

) 1
2

+
( ∑

K∈T 2
n∪T 3

n

|u|2p+1,K

) 1
2

+ ∥f∥p−1,Ω

}
.

Proof. The assertion follows combining Theorem 4.1, and Lemmas 4.2, 4.3, 4.4, and 4.5.

5 Numerical experiments

We investigate numerically the convergence rate of method (26) from Theorem 4.6. The numerical
assessment of accuracy and convergence is processed in relation to the relevant singularity patterns
and mechanical interpretation emerging in each problem.
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Throughout the numerical campaign, we shall refer to: standard, partially enriched, and fully
enriched versions of method (26). The first one corresponds to the standard nonconforming virtual
element method; the second one to the method with enrichment on few elements close to the
“singular” vertices as detailed in Section 3.1 (we henceforth take γ = 0.1); the third one to the
method with enrichment on all elements.

As the discrete solution un to (26) is not available in closed form, we employ the following
computable error measure: ∣∣∣u−Π∇

p un

∣∣∣
aTn

|u|1,Ω
.

With an abuse of notation, we shall refer to the above quantity as the H1 error.
Following [3], we orthogonalize the enriched polynomial basis functions on each edge used in

the definition of the edge degrees of freedom (12)–(13). This is a beneficial procedure in improving
the condition number of the stiffness matrix, which can be performed due to the nonconforming
structure of the discrete spaces.

This section is organized as follows. In Sections 5.1 and 5.2, we assess method (26) on the two
benchmarks detailed in Examples A.1 and A.2 below; in Section 5.3, we discuss possible extensions
and comparison with other methods.

5.1 L-shaped domain

We consider singular solutions on the L-shaped domain aiming at confirming the accuracy and
efficiency of method (26) on a pure mathematical benchmark and assessing sensitivity to degree
elevation.

Figure 4: Types of meshes employed on the L-shaped domain: uniform Cartesian (left panel); random triangles
(central panel); Voronoi polygons (right panel).

5.1.1 Increasing the polynomial degree of accuracy

We measure the method sensitivity to the polynomial degree of accuracy p elevation according to
the singular patch test derived in Section A.1 below, i.e., for the exact solution in (36) given by

u1(r, θ) = r
7
6 SA(θ). (29)

Homogeneous Dirichlet (clamped) boundary conditions are fixed along the edges at the re-entrant
corner. This test case is considered with the aim of checking the consistency of the method with
respect to singular functions.

We pick a uniform Cartesian mesh with mesh size h = 1/4, see Figure 4 (left panel), and in
Figure 5 plot the H1-error for polynomial degree of accuracy p ranging from 1 to 8. We only
consider the fully enriched version of the method.

Since the exact solution belongs to the global virtual element space and the method is consistent
with respect to polynomials and singular functions, we expect the error to be zero up to machine
precision. This is what we observe in Figure 5. The error grows with the condition number of the
stiffness matrix. In turns, the condition number increases with p as standard in the p-version of any
Galerkin method. A further reduction of such an ill-conditioning would be possible by performing

12
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Figure 5: Singular patch test u1 defined in (29) on the L-shaped domain. p-version of the fully enriched version
of method (26). We fix a uniform Cartesian mesh with size = 1/4; see Figure 4 (left panel).

an extra orthogonalization of the polynomial basis elements employed in the definition of the bulk
degrees of freedom (11) as in [25].

5.1.2 Convergence under uniform mesh refinements

Given u1 as in (29), we investigate the equilibrium problem on the L-shaped domain for the exact
solution

u2(x, y) = u2(r, θ) = (sin(πx) sin(πy); sin(πx) sin(πy))T + u1(r, θ). (30)

Homogeneous Dirichlet (clamped) boundary conditions are still fixed at the re-entrant corner
edges. Sequences of uniform Cartesian, random triangles, and Voronoi polygonal meshes are used;
see Figure 4 for a representation of the coarsest mesh of each type.

We present numerical results for the standard, partially enriched (γ = 0.1), and fully enriched
h-version of the method with polynomial degree of accuracy p = 1, 2, and 3; see Figure 6 and
Table 2.
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Figure 6: Singular solution u2 defined in (30) on the L-shaped domain. Standard (left panel), partially enriched
with γ = 0.1 (central panel), and fully enriched (right panel) h-versions of method (26). Degrees of accuracy p = 1
(solid), 2 (dashed), and 3 (dash-dotted). Sequences of uniform Cartesian (Quad), random triangle (Tri), and Voronoi
polygon (Poly) meshes, as in Figure 4.
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Table 2 Orders of convergence corresponding to each mesh refinement from Figure 6 for the exact
solution u2 in (30).

standard method
QUAD TRI POLY

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

mesh ref. #1 1.0512 1.3042 0.6149 0.7901 0.7537 0.3613 1.2880 0.9002 1.2899
mesh ref. #2 1.0598 0.9036 1.2831 1.3734 1.3319 1.6941 1.2827 1.3849 1.3311
mesh ref. #3 1.3891 1.0512 1.1307 1.4956 1.6056 1.4991 1.2494 0.8994 1.2107
mesh ref. #4 1.5190 1.2954 1.0784 0.9943 1.9566 1.1138 0.6191 0.9802 1.7720

partially enriched method
QUAD TRI POLY

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

mesh ref. #1 0.3370 1.2115 1.8896 0.6234 1.5871 2.1946 -0.2259 0.7741 1.7741
mesh ref. #2 1.9405 2.9610 3.9135 1.2067 2.1652 3.5275 1.7639 2.7821 3.7760
mesh ref. #3 0.9844 1.9321 3.0274 1.3289 2.4390 3.3324 1.0974 1.9569 3.0695
mesh ref. #4 1.0904 2.2009 3.0291 0.8276 2.7899 2.9471 0.9588 2.0616 2.9525

fully enriched method
QUAD TRI POLY

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

mesh ref. #1 0.4231 1.8227 2.4482 0.6234 1.5871 2.1946 0.8721 1.9684 2.6809
mesh ref. #2 0.9292 1.6627 2.9484 1.2067 2.1652 3.5275 1.4167 1.9410 3.3470
mesh ref. #3 0.9772 1.7462 2.7914 1.3289 2.4390 3.3324 0.6276 1.9765 2.7067
mesh ref. #4 0.9775 1.8752 2.7820 0.8276 2.7899 2.9471 0.7088 1.8292 2.4894

The standard nonconforming VEM suffers from a lack of accuracy due to intrinsic inconsistency
with the problem solution: the rate of convergence is suboptimal compared to the polynomial degree
of accuracy. Instead, the two enriched version converge with (optimal) order p.

The partially enriched version offers the most effective option in terms of accuracy, conditioning,
and computational cost, leading to optimal rate of convergence and error levels with respect to the
more cumbersome fully enriched version.

5.2 Slit domain

We assess numerically the equilibrium of the bi-unit slit domain with homogeneous Neumann
boundary conditions along the edges emanating from the internal corner: this is the actual config-
uration at the crack apex for a material with zero cohesion and no friction. The problem setup is
discussed in Example A.2 below; there, we derive the corresponding two strongest singular terms
appearing in the expansion at the crack tip, for the given geometry and boundary conditions; see
also [28].

In particular, given S 1
A(θ) and S 2

A(θ) as in (38) and (39), we consider the exact solution

u3(x, y) = u3(r, θ) = (sin(πx) sin(πy); sin(πx) sin(πy))T + r
1
2 S 1

A(θ) + r
1
2 S 2

A(θ). (31)

We employ sequences of Quad, Tri, and Voro meshes as in Figure 7, and polynomial degree of
accuracy p = 1, 2, and 3. Standard, partially enriched (γ = 0.1), and fully enriched versions of the
method are explored. We report the numerical results in Figure 8 and Table 3.

An inspection of Figure 8 and Table 3 reveals optimal convergence rates for the partially and
fully enriched versions of the method, still with an edge in favour of the former, which is the less
computationally expensive and less ill-conditioned. The standard version remains suboptimal in
the polynomial degree of accuracy.

5.3 Extensions and comparison with other methods

Method (26) can be extended so as to approximate solutions to other relevant engineering problems
as those in, e.g., [1, 2, 10,21,29].

Compared to extended Galerkin methods as in [9, 28], the present approach yields better con-
ditioned linear systems, thanks to orthogonalization strategies of enriched polynomial spaces as
in [3], which would yield loss of sparsity of the stiffness matrix in the conforming setting.
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Figure 7: Slit domain mesh types: uniform Cartesian (left panel); random triangles (central panel); Voronoi
polygons (right panel).

10
-2

10
-1

h

10
-2

10
-1

H
1
 e

rr
o
o
r

Quad - k = 1

Quad - k = 2

Quad - k = 3

Tri - k = 1

Tri - k = 2

Tri - k = 3

Poly - k = 1

Poly - k = 2

Poly - k = 3

10
-2

10
-1

h

10
-8

10
-6

10
-4

10
-2

H
1
 e

rr
o
o
r

Quad - k = 1

Quad - k = 2

Quad - k = 3

Tri - k = 1

Tri - k = 2

Tri - k = 3

Poly - k = 1

Poly - k = 2

Poly - k = 3

10
-2

10
-1

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

H
1
 e

rr
o
o
r

Quad - k = 1

Quad - k = 2

Quad - k = 3

Tri - k = 1

Tri - k = 2

Tri - k = 3

Poly - k = 1

Poly - k = 2

Poly - k = 3

Figure 8: Singular solution u3 defined in (31) on the slit domain. Standard (left panel), partially enriched with
γ = 0.1 (central panel), and fully enriched (right panel) h-versions of method (26). Degrees of accuracy p = 1
(solid), 2 (dashed), and 3 (dash-dotted). Sequences of uniform Cartesian (Quad), random triangle (Tri), and
Voronoi polygon (Poly) meshes, as in Figure 7.

In fact, in partition of unity based Galerkin methods the inclusion of singular functions in the
discrete space is performed by multiplying the singular functions with the usual hat functions,
which form a partition of unity. Notably, the support of the resulting function is the patch of
elements sharing a vertex. Any orthogonalization procedure (for instance a stable Gram-Schmidt
process) of the resulting basis functions would lead to basis functions with support given by the
(increasing) union of vertex patches.

On the other hand, the orthogonalization procedure employed in the ncVEM, see [3] instead
leads to “orthogonalized” basis functions with the same support of the original basis: edge basis
functions have support given by the union of the elements sharing the given edge; bulk basis
functions have support given by a single element.

6 Conclusions

We introduced a novel nonconforming virtual element method with discrete spaces enriched with
suitable singular functions for the approximation of solutions to the isotropic linear elasticity
problem. The proposed methodology offers a viable and efficient strategy of accurately modeling
the cracking phenomenon of linear elastic material bodies with no dependence on the material
parameters of the fracturing medium. The natural inclusion of the analytical singularities offered
by the presented approach makes it an interesting candidate for the development of nonlinear crack
tracking procedures purely based on fracture mechanics.
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Table 3 Orders of convergence corresponding to each mesh refinement from Figure 6 for the exact
solution u2 in (30).

standard method
QUAD TRI POLY

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

mesh ref. #1 0.7720 0.5628 0.4929 0.8802 0.9010 0.8116 -0.2022 0.4342 0.3160
mesh ref. #2 0.4698 0.5675 0.7980 0.5903 0.6990 0.6865 0.5190 0.7121 0.5392
mesh ref. #3 0.6161 0.5730 0.4806 0.3437 1.0477 0.7493 0.5265 0.8472 0.5739
mesh ref. #4 0.3652 0.7605 0.4627 0.6169 0.3666 0.9675 0.5105 0.8309 0.6227

partially enriched method
QUAD TRI POLY

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

mesh ref. #1 0.9943 2.2687 2.2995 0.6132 1.5758 2.1727 1.1194 1.7281 3.3404
mesh ref. #2 0.9917 1.9996 3.4185 1.1193 2.1990 3.6351 1.1255 1.9527 3.0675
mesh ref. #3 0.9996 1.8413 3.1572 1.0053 2.4939 3.1818 1.4204 2.5217 4.4240
mesh ref. #4 1.0002 2.0083 3.0366 1.5171 2.2800 3.0270 0.8787 2.1447 2.8780

fully enriched method
QUAD TRI POLY

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

mesh ref. #1 1.5236 1.5074 4.2058 0.6132 1.5758 2.1727 2.1242 1.7281 3.5660
mesh ref. #2 0.8596 1.9762 1.8529 1.2489 2.1990 3.6351 0.8301 1.8845 3.5146
mesh ref. #3 0.9743 1.9906 3.1613 1.3701 2.4939 2.9431 0.8521 3.5568 2.7452
mesh ref. #4 0.9917 2.0329 1.6528 0.7175 2.2800 3.2665 0.4202 1.3280 2.7661

A On some corner singularities for the isotropic linear elas-
ticity problem on polygons

Recall splitting (4) and denote the measure of the angle at A by ω. In the following, we review the
behaviour of the singular components SA in the neighbourhood of vertex A of Ω. Such singular
functions are typically given by the sum of several singular terms. In Section A.1, we focus on
each single term of such expansion on a couple of benchmark domains; notably, we exhibit possible
choices of such terms. Instead, in Section A.2, we review the full singular expansion.

A.1 Singular functions at corners

We compute explicitly singular solutions at corners in the kernel of the operator M defined in (1)
of the form (5). These solutions represents singular displacement fields, corresponding to self-
equilibrated stress states for the 2D material body exhibiting a re-entrant corner, which tend to
infinity at the tip of the corner. Notably, the parameter α, and the functions S1 and S2 in (5)
are computed in a two step procedure:

� impose the constraint
M(rα(S1(θ),S2(θ))

T ) = 0 in Ω; (32)

� impose the boundary conditions for θ = 0 and θ = ω.

Introduce
F (α) := λ+ 3µ− α(λ+ µ), G(α) := λ+ 3µ+ α(λ+ µ).

As in [30, equation (4.7)], imposing (32) for functions in the form (5) yields, for α ∈ R+ to be fixed
later,

SA(θ) = c1(α)

(
cos[(1 + α)θ]
− sin[(1 + α)θ]

)
+ c2(α)

(
sin[(1 + α)θ]
cos[(1 + α)θ]

)
+ c3(α)

(
F (α) cos[(1− α)θ]
−G(α) sin[(1− α)θ]

)
+ c4(α)

(
F (α) sin[(1− α)θ]
G(α) cos[(1− α)θ]

)
.

(33)

So far, α denotes an arbitrary singular exponents at corner A, which has to be fixed so that
the function in (33) fulfils suitable homogeneous boundary conditions. Explicit choices of α are
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determined solving a 4× 4 system with unknowns given by cj(α), j = 1, . . . , 4, which is obtained
imposing the homogeneous boundary conditions.

Recall that ω denotes the measure of A and that the angular part of the polar coordinates
takes value in (0, ω). For the sake of exposition, we focus on Dirichlet boundary conditions only,
which correspond to clamped edges of the re-entrant corner.

Imposing homogeneous Dirichlet boundary conditions in (33), the resulting 4× 4 system reads
cos[(1 + α)0] sin[(1 + α)0] F (α) cos[(1− α)0] F (α) sin[(1− α)0]
cos[(1 + α)ω] sin[(1 + α)ω] F (α) cos[(1− α)ω] F (α) sin[(1− α)ω]
− sin[(1 + α)0] cos[(1 + α)0] −G(α) sin[(1− α)0] G(α) cos[(1− α)0]
− sin[(1 + α)ω] cos[(1 + α)ω] −G(α) sin[(1− α)ω] G(α) cos[(1− α)ω]



c1(α)
c2(α)
c3(α)
c4(α)

 =


0
0
0
0

 ,

i.e.,
1 0 F (α) 0

cos[(1 + α)ω] sin[(1 + α)ω] F (α) cos[(1− α)ω] F (α) sin[(1− α)ω]
0 1 0 G(α)

− sin[(1 + α)ω] cos[(1 + α)ω] −G(α) sin[(1− α)ω] G(α) cos[(1− α)ω]



c1(α)
c2(α)
c3(α)
c4(α)

 =


0
0
0
0

 . (34)

System (34) admits a nontrivial solution if the determinant of the system matrix is zero. Imposing
such a determinant to be zero is equivalent to solving the so-called characteristic equation.

In the case of homogeneous Dirichlet, i.e., clamped boundary conditions, the characteristic
equation reads as follows, see, e.g., [30, Section 4] 1 find α ∈ R+ such that

sin2(αω)− α2λ
λ+ 2µ

(λ+ 3µ)2
sin2 ω = 0. (35)

Next, we look for explicit α solutions to (35) on two benchmark domains.

Example A.1. We focus on the re-entrant corner (0, 0) of the L-shaped domain

Ω1 := (−1, 1)2 \ [0, 1)× (−1, 0],

and fix the following Lamé parameters:

λ = −7

2
+ 9

√
2

2
, µ =

7

2
− 3

√
2

2
.

We have ω = 3π/2; the first three real smallest solutions to (35) read

α1 = 0.58917798046021; α2 = 0.769651906609214; α3 = 7/6.

The corresponding characteristic equation has a finite number of real solutions.
Next, we show how to recover the singular function in (5). To the aim, we only consider the

case α = α3. The coefficients cj(7/6), j = 1, . . . , 4, in (33) are found by solving the system (34)
for the given values of α, λ, and µ. In particular, the rank-3 system is

1 0 7
(
1−

√
2

2

)
0

−
√
2
2

−
√
2

2
7
(
1−

√
2

2

) √
2

2
−7

(
1−

√
2

2

) √
2

2

0 1 0 7
(
1 +

√
2

2

)
√
2

2
−

√
2

2
7
(
1 +

√
2

2

) √
2

2
7
(
1 +

√
2

2

) √
2

2



c1(7/6)
c2(7/6)
c3(7/6)
c4(7/6)

 =


0
0
0
0

 .

There are infinite solutions to this problem: for any c4(7/6),

c1(7/6) = 7

(
1−

√
2

2

)
(
√
2 + 1)c4(7/6), c2(7/6) = −7

(
1 +

√
2

2

)
c4(7/6),

c3(7/6) = −(
√
2 + 1)c4(7/6).

1In [30, (4.11)], the corresponding characteristic equation reads as follows:

sin2(αω)− α2

(
λ+ µ

λ+ 3µ

)2

sin2 ω = 0.

The reason for this is that the angle at the vertex is (0, ω) in our setting; (−ω/2, ω/2) in [30].
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In particular, the explicit singular solution belongs toH
13
6 −ε(Ω), for all arbitrarily small, positive ε,

and is a multiple of

r
7
6 SA(θ) = r

7
6

[
7(1−

√
2/2)(

√
2 + 1)

(
cos(13θ/6)
− sin(13θ/6)

)
− 7(1 +

√
2/2)

(
sin(13θ/6)
cos(13θ/6)

)

−(
√
2 + 1)

 7
(
1−

√
2
2

)
cos(θ/6)

+7
(
1 +

√
2
2

)
sin(θ/6)

+

−7
(
1−

√
2
2

)
sin(θ/6)

7
(
1 +

√
2
2

)
cos(θ/6)

 .

(36)

Example A.2. We focus on the tip of the the slit domain

Ω2 := (−1,−1)2 \ {{0} × [0, 1)}.

In this case, ω = 2π and (35) simply reads

sin2(2πα) = 0.

This equation has positive solutions α given by

2πα = kπ ∀k ∈ N −→ α =
k

2
∀k ∈ N.

Interestingly, all the singular values α do not depend on the Lamé coefficients.
For the sake of exposition, we focus on the strongest singularity α = 1/2. Compute

F (1/2) =
1

2
λ+

5

2
µ, G(1/2) =

3

2
λ+

7

2
µ.

The coefficients cj(α), j = 1, . . . , 4, in (33) are found by solving the system (34) for the given α,
and for all λ and µ. In particular, the rank-2 system is

1 0 F (1/2) 0
−1 0 −F (1/2) 0
0 1 0 G(1/2)
0 −1 0 −G(1/2)



c1(1/2)
c2(1/2)
c3(1/2)
c4(1/2)

 =


0
0
0
0

 . (37)

There are two families of solutions to the linear system (34). They correspond to the two following
choices of the coefficients in (33):

c1(1/2) = −F (1/2)c3(1/2) ∀c3(1/2) ∈ R, c2(1/2) = −G(1/2)c3(1/2) ∀c4(1/2) ∈ R.

Thus, the singular solutions are

r
1
2 S 1

A(θ) = r
1
2

[
−F (1/2)

(
cos(3/2θ)
− sin(3/2θ)

)
+

(
F (1/2) sin(1/2θ)
−G(1/2) cos(1/2θ)

)]
(38)

and

r
1
2 S 2

A(θ) = r
1
2

[
−G(1/2)

(
sin(3/2θ)
cos(3/2θ)

)
+

(
F (1/2) sin(1/2θ)
G(1/2) cos(1/2θ)

)]
. (39)

The functions in (38) and (39) belong to H
3
2−ε(Ω), for all arbitrarily small, positive ε. They are

found in linear elastic fracture mechanics as reported, e.g., in the classical paper [28].
The Lamé parameters do not come into play in the singular exponents α, but only in the linear

combination appearing in the above singular functions. This is not the case of Example A.1, where
also the singular exponent α used to depend on the Lamé parameters.

Besides, there are infinitely many singular exponents α. Instead, in Example A.1, there is only
a finite number of real exponents α.

Remark 1. So far, we mainly focused on the case of Dirichlet and homogeneous Neumann bound-
ary conditions on the two edges abutting vertex A. The above way of reasoning extends to all
possible combinations of boundary conditions. We refer to [30] for the counterpart of the char-
acteristic equation to solve. The relevant point is that, in the analysis of the method, the actual
representation of the singular function is not relevant as long as it satisfies (6).
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A.2 General singular expansions at vertices

We review the full singular expansions at a vertex as in [30]; see also [16,20,27].
Let α0 be such that (32) is satisfied and let e0 = e0(α,φ) be an associated eigenfunction. The

set of fields {e0,0, e0,1, . . . , e0,k} with e0,0 = e0 is called a Jordan chain to α if

m∑
q=0

1

m!

(
∂

∂α

)q

M e0,m−q(α, θ)|α=α0
= 0 ∀m = 1, 2, . . . , k.

We call the number k + 1 the length of the Jordan chain.
The main result of this section was proven, e.g., in [30, Theorem 3.1]; see also the references

therein.

Theorem A.1. Let u be the solution to (3) on a polygonal domain Ω. Given A one of the vertices
of Ω, u admits an asymptotic expansion in polar coordinates at A of the form

u(r, θ) = η(r)

 M∑
i=1

mi−1∑
j=0

ci,jsi,j(r, θ)

+w(r, θ).

In the above equation:

� η denotes a cut-off function, which localises the singular behaviour of the solution;

� M is the number of eigenvalues of M with R(α) ∈ (0, 1), where multiple eigenvalues are
counted multiple times accordingly;

� mi, for all i = 1, . . . ,M , is the length of the Jordan chain corresponding to the eigenfunc-
tion ei;

� ci,j are suitable coefficients, called stress intensity factors, which are explicitly known [27];

� si,j are the singular functions

si,j(r, ω) = rαi

j∑
k=0

lnk(r)

k!
ei,j−k(αi, θ); (40)

� w belongs to H2 in a neighbourhood inside Ω of A.

Remark 2. As discussed, e.g., in [15, Section 6], if the multiplicity of α is equal to the kernel of the
system matrix in (34), then the length of the Jordan chain is one. Consequently, expansion (40)
contains no logarithmic factors. This is for instance the case of the L-shaped domain benchmark
in Example A.1. In principle, as for the slit domain benchmark in Example A.2, the multiplicity
of all the α solving the characteristic equation is 2, which is the dimension of the kernel of the
matrix (37). For this reason, we could also compute the second element of the Jordan chain and
investigate the behaviour of singular functions containing an extra logarithmic singularity factor.
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