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Abstract

In this paper, we propose a new class of assortativity measures for weighted
and directed networks. We extend Newman’s classical degree-degree as-
sortativity by considering node attributes other than degree, and we pro-
pose connections among nodes via directed walks of length greater than one,
thus obtaining higher-order assortativity. We test the new measure in the
paradigmatic case of the world trade network and for other networks from a
socioeconomic context, and we also provide some simulation results. Impor-
tantly, we show how this global network indicator is strongly related to the
autocorrelations of the states of a Markov chain.

Keywords:
Networks, Higher-order Assortativity, Random walks, Markov Chains

1. Introduction

Asymmetric interactions characterize many complex systems in nature,
and directed networks are suitable tools for representing these complex sit-
uations. However, despite the remarkable persistence of such systems in
real-world phenomena, a formal representation as directed networks is still
not used, probably because of the difficulty in treating such models math-
ematically. Indeed, some network indicators are difficult to manage in the
directed framework, and some cases lack a proper definition of the network
measures for directed networks. Against that background, the focus herein is
on providing the generalized concept of an assortativity measure for directed
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networks. This theme is relevant because assortativity is a global indicator
that provides useful insights about network structure.

In the classical definition by Newman (2002), assortativity is represented
by a global measure based on the Pearson correlation between the degrees of
nodes. This measure ranges in the interval [−1, 1], having positive values in
assortative networks and negative values in disassortative ones. The inter-
pretation of the degree–degree assortativity measure is simple: for undirected
networks, high assortativity means that high-degree nodes tend to connect
to other high-degree nodes, whereas in disassortative networks, high-degree
nodes tend to be connected to low-degree nodes.

The analysis of the correlation between a given attribute of the nodes
responds to the necessity to obtain more complete information concerning
that provided by the simple distribution of the considered nodal attribute.

The assortativity measure can be extended in two different directions:
(i) we can consider quantitative attributes of nodes other than degree, or
(ii) we can move on from the adjacency of nodes—which is the basis of
Newman’s degree–degree assortativity—and propose more-general ways to
connect them. In our approach, we seek to meet both these important re-
quirements. Regarding direction (i), degree-based assortativity provides a
restrictive view of the accordance among nodes, but a generalization to dif-
ferent nodal attributes overcomes this issue, extending the meaning of the
coefficient to describe similarities and dissimilarities among nodes in terms
of something other than degree (Meghanathan, 2016; Arcagni et al., 2019;
Yuan et al., 2021). Regarding direction (ii), it is relevant to mention the
generalization of Newman’s assortativity index proposed by Arcagni et al.
(2017), who provided a closed formula leading to a unifying approach for
the assortativity of undirected and unweighted networks. In particular, they
considered pairs of vertices not necessarily adjacent but connected via paths,
shortest paths, and random walks. Importantly, connecting nodes via paths
of length greater than one offers insights into the similarities between con-
nected but non-adjacent nodes. Indeed, high-degree nodes may not be con-
nected directly to each other but nevertheless remain equally connected via
low-degree ones.

Arcagni et al. (2017) labeled the new concept of assortativity based on
paths as higher-order assortativity, which in particular cases allows us to
recover the Newman index as well as other measures based on assortativity
(Estrada et al., 2008; Mayo et al., 2015; Van Mieghem et al., 2010) using
suitable definitions of the matrix governing the connections. In the same
vein, Arcagni et al. (2019) extended higher-order assortativity to a new class
of higher-order measures specific for weighted undirected networks, recover-
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ing as a particular case the weighted assortativity index introduced by Leung
and Chau (2007). The problem of assortativity in directed networks has also
been investigated (Yuan et al., 2021). In particular, Foster et al. (2010) and
Piraveenan et al. (2010) proposed a natural modification of the Newman for-
mula, encoding the assortativity measure into four directed measures based
on combinations of nodal in-degree and out-degree. The coefficients quantify
the tendencies of nodes with high in-degree or out-degree to be connected to
other such nodes or those with the opposite tendency. However, still lacking
is a higher-order measure of assortativity tailored for weighted and directed
networks.

This paper contributes by filling this gap. We introduce the new concept
of an assortativity measure of order h (with h ≥ 1) for the general case of
weighted and directed networks. According to previous studies and when
needed, we refer to this as the higher-order assortativity measure, and we
complete the definitions introduced by Arcagni et al. (2017) and Arcagni
et al. (2019) by including weighted directed networks. Moreover, the pro-
posed concept is formulated based on a nodal attribute that is not necessarily
degree or strength. In doing so, we extend Newman’s assortativity coefficient
in both aforementioned directions.

Notice that taking different kinds of centrality measures allows us to have
clear information on the similarity of the nodes in terms of other attitudes
– like the propensity to create a community (clustering coefficient), the rel-
evance in connecting different sides of the network (betweenness) and so on.
Furthermore, the possibility of further generalizing the assortativity mea-
sures to the case of directed arcs and also for nodes that are not necessarily
adjacent to the reference ones leads to a particularly versatile instrument,
to be exploited for the description of the correlations at different levels and
according to different attributes.

It is recognized that network-based models can be meaningful for rep-
resenting the complexity of real-world systems (Gosak et al., 2022; Breza
et al., 2019; D’Arcangelis and Rotundo, 2016; Varela and Rotundo, 2016),
and studying higher-order properties is particularly relevant. The classi-
cal approach of network theory is based on pairwise relationships between
nodes, but in real-world networks, interactions between individual entities or
groups often go beyond dyadic interactions. This motivates the recent inter-
est in studying interactions that go beyond adjacency relationships. From
this perspective, our proposal addresses an essential and relevant issue that
will have promising application developments. Interesting published reviews
provide an overview of higher-order networks from their mathematical rep-
resentations to recent advances in this field (Majhi et al., 2022; Bick et al.,
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2023).
We show the effectiveness of the proposed measure by applying it to the

world trade network. Indeed, network theory provides a good tool for cap-
turing the complexity of trade relations among countries. Several previous
studies have been devoted to the structure and dynamics of the international
trade network, as well as its connection with fundamental economic factors
(Garlaschelli and Loffredo, 2004; De Benedictis and Tajoli, 2011; De Bene-
dictis et al., 2014; Garlaschelli and Loffredo, 2005; Bhattacharya et al., 2008;
Acemoglu et al., 2012), and this is why we expect the proposed measure to
be useful in this context. We also test the measure on two networks taken
from a socioeconomic context, i.e., the electricity trade network and the mi-
gration network. Finally, to assess the measure’s sensitivity to variations in
model parameters, we apply it to some synthetic networks from a stochastic
block model (SBM).

Note that the proposed assortativity measure offers a relevant interpre-
tation in the field of Markov chains (see Norris et al., 1998, for a survey of
this class of stochastic processes). Indeed, directed and weighted networks
are particularly suitable for describing random flows moving over a discrete
set of states identified by nodes. In the graph representation of a Markov
chain, the existence of an arc connecting state/node i with state/node j is
associated with a non-null probability of jumping from i to j. Therefore, the
(suitably normalized) weights of the arcs in a complex network are naturally
associated with the probability of observing a flow from a state to another one
in the corresponding Markov chain. In stating the bridge between complex
networks and Markov chains, we follow the route traced by some relevant
contributions in the literature. It is worth mentioning Gómez et al. (2010),
who dealt with a disease propagation model by merging complex networks
and Markov chains. In the same application environment, Iannelli et al.
(2017) elaborated on the informative content of the general network-based
measures derived from Markov-chain theory. Our novelty here is to connect
higher-order assortativity—a topological property of the network involving
nodes other than adjacent ones—and homogeneous discrete-time Markov
chains.

Specifically, let us consider nodal assortativity with reference to a given
vertex centrality measure. The assortativity index of order h ranges in
[−1, 1]; it approaches 1 (resp. −1) when the nodes connected via walks of
length h have a high level of concordance (resp. discordance) in the consid-
ered centrality measure. This variation range suggests that the assortativity
index of order h can be interpreted as an autocorrelation term at h lags in the
context of Markov chains, and this is exactly our case. Indeed, the order h is
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the length of a walk from one node to another, and if we imagine that each
link takes one unit of time, then the considered walk takes h units of time.
In this respect, the order h can be seen as a temporal variable for a discrete-
time Markov chain with states given by the nodes of the network along with
their centrality measures and transition probabilities related opportunely to
the weights of the network’s links.

This interpretation of the assortativity measure of order h allows us to
state a natural bridge between complex networks and stochastic processes.
In so doing, we are able to move from the information content of the higher-
order assortativity of a network to the dynamical properties of the underlying
Markov chain. Specifically, the temporal dimension of the network and the
regularities captured by the autocorrelation—which are hidden in the net-
work structure—become clear when moving to Markov-chain theory.

This paper is structured as follows. In Section 2, we describe the math-
ematical notation, and in Section 3 we introduce the novel definition of
higher-order assortativity extended to weighted digraphs. We then apply
the proposed index to the world trade network (Section 4) and to the elec-
tricity and migration networks (Section 5), and some simulations are shown
in Section 6. Section 7 shows how the higher-order assortativity measure can
be interpreted in the context of discrete-time homogeneous Markov chains
with finite states. Finally, the paper concludes with Section 8.

2. Preliminaries

In this section, we outline some basic definitions and notation related
to directed complex networks that are used to present our methodological
proposal. For a more detailed treatment, see Bang-Jensen and Gutin (2008),
Newman (2010), and Gross and Yellen (2003).

A directed graph (or digraph) N = (V,A) is a pair of sets V and A,
where V is the set of n vertices (or nodes) and A is the set of m ordered
pairs (arcs) of vertices of V ; if (i, j) and/or (j, i) is an element of A, then
vertices i and j are adjacent. An i–j directed walk is a sequence of vertices
and arcs from i to j such that all arcs have the same direction.

A weight wij > 0 can be associated with each arc (i, j) so that a weighted
digraph is obtained. Moreover, it is assumed that wij = 0 if and only
if (i, j) /∈ A. The w weights are collected in a real n-square matrix W
(the weighted adjacency matrix). By definition, the elements of this matrix
describe both the adjacency relationships between the vertices in V and the
weights on the arcs. In this context, a weighted directed network is a directed
graph N = (V,A) equipped with a weighted non-symmetric matrix W. In
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the unweighted case, non-null weights can take only unitary value, and so
matrix W provides only information about the adjacency relationships. In
the case of unweighted networks, we denote W by A (the adjacency matrix),
and we assume that the principal diagonal of the adjacency matrix is filled by
zeros to exclude loops. Indeed, assortativity is usually computed for networks
without loops to avoid the trivial situation of computing self-correlations (for
example, see the survey on assortativity measures for complex networks by
Noldus and Van Mieghem, 2015).

The (i, j) element of the kth power of the matrix A is the number of
directed walks of length k from i to j.

Because in-degree, out-degree, in-strength, and out-strength are the most
popular centrality measures in the context of the assortativity, as the original
definition by Newman (2002) suggests, we introduce a particular notation
for them, along with their definitions. We define the in-degree dIi (resp.
out-degree dOi ) of a node i ∈ V as the number of arcs pointing toward
(resp. starting from) i. Then, the in-degree and out-degree vectors are dI

and dO, respectively, and the vector of the vertices’ degrees is given by
d = dI + dO. We define the in-strength and out-strength of node i ∈ V (sIi
and sOi , respectively) and in-strength and out-strength vectors (sI and sO,
respectively) analogously. A vertex i ∈ V with dIi = 0 and dOi > 0 is called
a source because it is the origin of its outgoing arcs. Similarly, a vertex
i ∈ V with dOi = 0 and dIi > 0 is called a sink because it is the end of each
incoming arc.

3. A novel definition of higher-order assortativity

We consider two vertex centrality measures and collect their values for
the weighted directed network N in the n-dimensional vectors x and y. We
define the higher-order assortativity of length h ≥ 1 for this weighted digraph
as a particular case of the Pearson correlation index in the n-dimensional
vectors x and y, as follows:

rh = r(x,y,Eh) =
x⊤ (

Eh − phq
⊤
h

)
y√[

x⊤
(
Dph − php

⊤
h

)
x
] [
y⊤

(
Dqh − qhq

⊤
h

)
y
] , (1)

where Eh is a normalized n-squared matrix whose element in row i and
column j is denoted by e

(h)
ij , with ∥Eh∥1 =

∑n
i,j=1 |eij | = 1, while ph = Eh1,

qh = E⊤
h 1, where 1 is the conformable vector of elements equal to 1, and Dph

and Dqh are the diagonal matrices with the vectors ph and qh, respectively,
on the main diagonal.
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Cov(x,y,Eh) = x⊤ (
Eh − phq

⊤
h

)
y is the covariance between x and y

with joint distribution Eh, V ar(x,ph) = x⊤ (
Dph − php

⊤
h

)
x is the vari-

ance of x with distribution ph, and V ar(y,qh) = y⊤ (
Dqh − qhq

⊤
h

)
y is the

variance of y with distribution qh.
In particular, we assume that E1 = W

∥W∥1 , and as we will see in Sec-
tion 7.2, matrix Eh is also related to Markov chains for all h ≥ 1. Therefore,
the assortativity measure in Eq. (1) depends on suitable centrality measures
x and y that are related to the initial and terminal state, respectively, of a
stochastic process of h steps.

The considered higher-order assortativity extends the related concepts
introduced by Arcagni et al. (2017, 2019) for weighted undirected networks.
In accord with Newman (2002), we note that the in-strength and out-strength
of the nodes play a relevant role when dealing with assortativity also in
the context of weighted digraphs. Indeed, such centrality measures provide
distinct information about the network topology. Therefore, we describe
such cases in detail while also giving the interpretation of the higher-order
assortativity measure in this particular context.

Specifically, for a complete treatment of the higher-order assortativity
measure for weighted and directed networks, we consider all possible combi-
nations of in-strength and out-strength, and starting from Eq. (1), we define
the four types of higher-order assortativity index for weighted digraphs as
follows.

1. rOI
h = r(sO, sI ,Eh) (out–in)

This coefficient evaluates the correlation between the out-strength and
in-strength vectors using Eq. (1) for nodes that are connected via a
directed walk of length h. Specifically, a high value of rOI

h is associated
with high concordance between the out-strength and in-strength of
such vertices, while a value of rOI

h close to −1 implies high discordance.
2. rIOh = r(sI , sO,Eh) (in–out)

This index measures the concordance and discordance between the in-
strength of the starting vertices and the out-strength of the arrival
vertices after a directed walk of length h.

3. rIIh = r(sI , sI ,Eh) (in–in)
This coefficient provides an evaluation of the correlation between the
in-strength of the starting vertices and the in-strength of the ending
vertices in the presence of a directed walk of length h.

4. rOO
h = r(sO, sO,Eh) (out–out)

This version of the higher-order assortativity index captures the cor-
relation between the out-strength of the starting vertices and the out-
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strength of the terminal ones when they are connected via a directed
walk of length h.

Note that given h, it is not necessarily the case that rOI
h = rIOh because

the indexes depend on the distribution of directed walks described by the
matrix Eh, which is not necessarily symmetric.

4. Higher-order assortativity in the world trade network

To illustrate the advantages of our definition, we show an application
of higher-order assortativity to the world trade network. This application
is interesting given the extensive literature merging networks and economic
theory (see Carvalho and Tahbaz-Salehi, 2019, for an excellent review of
the literature on production networks from both theoretical and empirical
perspectives).

International trade plays a fundamental role in the global economic sys-
tem, and understanding the structure of interactions among economic agents
at the international level is useful for studying the cross-country transmis-
sion and propagation of local shocks (Acemoglu et al., 2012; Carvalho, 2014;
Acemoglu et al., 2016) or for explaining the co-movement of business cycles
(Long and Plosser, 1983; Burstein et al., 2008). In this context, complex
networks and their properties are effective in offering a way to represent
these interactions. In this regard, some interesting contributions are those
by Serrano et al. (2007), De Benedictis and Tajoli (2011), De Benedictis
et al. (2014), Fagiolo et al. (2008), Barigozzi et al. (2010), and Bartesaghi
et al. (2022). One property of the trade network is the local heterogeneity
of its structure (Serrano et al., 2007; De Benedictis and Tajoli, 2011). Fagi-
olo et al. (2008) showed the coexistence of weak and strong trade links, and
countries with intense trade relationships tend to be more clustered together.
Acemoglu et al. (2012) studied how the intersectoral network structure con-
tributes to generate aggregate fluctuations from microeconomic shocks. The
empirical model of network formation proposed by Mundt (2021) applied to
the input–output data reveals significant fluctuations of network ties over
time, inducing changes also in the aggregate network structural properties.

Studying higher-order assortativity for the trade network is motivated by
the complexity of the trade relationships, which often cannot be explained
by simply investigating adjacent commercial partners, and the higher-order
properties of the network could be more informative than the first-order ones.
For instance, Acemoglu et al. (2012) stated that even if two different net-
works exhibit the same first-order characteristics (same degree or strength
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distribution), different higher-order interactions among economic sectors can
lead to different levels of severity of aggregate downturns. These facts moti-
vate us to test our measure on the world trade network.

The data refer to goods traded between countries, with the trade vol-
umes expressed in US dollars1. We constructed both export and import
weighted networks, where the vertices are countries and the weights on arcs
represent the volumes of imported or exported goods among 222 countries in
the year 2021. Note that the number of vertices is greater than the number
of recognized countries because ComTrade includes even almost-uninhabited
territories. Therefore, in the following, the word “country” covers a broad
definition that also includes these regions.

Concerning links between countries, the export network should be com-
plementary to the import network because import from i to j should be equal
to export from j to i. However, this is not the case because the data describe
only trade declared officially by reporter countries with their partners, and
some declarations are either missed or mismatched. This problem pertains
also to years before 2021.

Here, we follow an approach similar to that adopted by Antonietti et al.
(2022), who constructed a symmetric trade network aggregating import and
export data. However, unlike Antonietti et al. (2022), our network preserves
the edge directions, working in this way with a directed network.

More specifically, let WI and WE be weighted adjacency matrices rep-
resenting the volumes of import and export trade among countries. Thus,
the trade network is defined as N = (V,W), where the elements wij of the
matrix W are

wij = max(wE
ij , w

I
ji),

with wE
ij and wI

ji being the ij entries of matrices WE and W⊤
I , respectively.

In this way, the asymmetric matrix W expresses the flow of goods from coun-
try i to country j. Note that in constructing W, we choose the maximum
between import and export. Indeed, in line with Antonietti et al. (2022),
we assume that the higher the value declared, the higher the quality of the
information that can be contained.

4.1. Analysis of main characteristics of network
First, we analyze some classical network characteristics. The number of

vertices is n = 222, and let A be the adjacency matrix obtained from W

1The data are freely available for download from ComTrade; see UN COMTRADE
(2022).
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by neglecting the arc weights. The network density is computed as the ratio
between the total number of arcs and the maximum number of potential
arcs2 n(n− 1). Therefore, the density is

∥A∥1
n(n− 1)

=

∑n
i,j=1 aij

n(n− 1)
= 0.4996.

Although one might expect the trade network to be complete, this is not so
in this case because of the presence of peripheral nodes representing small
countries and regions that probably communicate only a part of their exports
or imports.

Distributions of centrality measures—in particular degree and strength—
provide other important information. The degree and strength of a vertex
represent the number and volume of a country’s exchanges, giving insights
into the diversification and intensity of trade. Fig. 1 shows the marginal
distributions of in–out degree and in–out strength. In line with Bhattacharya
et al. (2008), in-strength and out-strength are represented graphically using
a logarithmic scale with base 10. We choose the log-transformation for the
strength because in the trade network, the strength increases exponentially
and the resulting distribution is log-normal. In fact, as can be seen in Fig. 1,
the log-strength has a bell shape similar to that of a normal distribution.
Choosing a logarithmic base equal to 10 allows us to express the scale of
trade in multiples of ten thousand million dollars.

The distributions of the “in” and “out” measures are quite similar, but
note the following characteristics of the degree and log-strength distributions:
(i) on the horizontal axis, the magnitude of the degree corresponding to
the number of countries is a few hundred, whereas that of the strength
ranges from 106 to 1012; (ii) the log-strength distribution is bell-shaped; (iii)
the degree distribution is polarized because more than half of the countries
have connections with fewer than 100 other countries, while one-tenth of the
countries are connected with almost all the other ones. As we will see later,
this last characteristic is meaningful when searching for clusters of central
and peripheral countries.

We now compare countries via the four centrality measures: in-degree,
out-degree, in-log-strength, and out-log-strength. Table 1 shows the strong
correlations (computed using the Pearson coefficient) between the considered
variables. As expected, the “in” and “out” directions are strongly correlated
(0.883 and 0.947 for degree and log-strength, respectively). However, there is

2N is a directed network without loops.
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Figure 1: Histograms of four centrality-measure distributions observed on 222 countries.
The distributions are partitioned into 10 classes whose breaks are the deciles, and the
heights of the rectangles are the densities of the relative frequencies, so each rectangle
represents about one-tenth of the observations. The top-left histogram represents the out-
degree distribution, the top-right one the in-degree distribution, the bottom-left one the
out-log-strength distribution, and the bottom-right one the in-log-strength distribution.

also a strong linear correlation between degree and log-strength centralities,
with values ranging from 0.771 to 0.792. Although correlation is not cau-
sation, these high values suggest that an increasing number of connections
increases volumes exponentially.

We now analyze the principal components from the standardized vari-
ables. The first component represents 87% of the whole variability (consid-
ering the first two together, the variability increases to 96%), and its loading
is all positive. Therefore, its scores can be used to provide a mixed and
rough order of the countries in terms of centrality. In increasing order, the
top 10 central countries are Canada, Belgium, Japan, Italy, Great Britain,
the Netherlands, France, Germany, China, and the United States.

We performed a hierarchical cluster analysis using the four principal com-

11



in-deg. out-deg. in-log-str. out-log-str.
in-deg. 1
out-deg. 0.883 1
in-log-str. 0.792 0.785 1
out-log-str. 0.742 0.771 0.947 1

Table 1: Matrix of correlations between centrality measures.

ponents instead of the strongly correlated original variables. We used Eu-
clidean distances between countries, and we defined distances between groups
with the complete method. The number of groups suggested by the hierar-
chical method is two. One cluster of 116 is composed of small territories and
countries almost peripheral in terms of trade volumes, and the other cluster
of the remaining 106 countries controls most of the volumes; we refer to the
latter cluster as the main network.

Network of trades − 2021

Export−import flows
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Main network
Peripheral countries
Data not available
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Figure 2: Map of world trade network. A directed edge is represented by a black arrow
from the exporting country to the importing one, the opacity of which is proportional to the
value of the traded goods. Countries are clustered via a hierarchical division method using
the centrality measures (in and out degree and log-strength) as the original dimensions.
The optimal cutting of the dendrogram generates two groups that can be interpreted as
the main network (green) and peripheral countries (red).

Fig. 2 provides a graphical representation of the trade network, showing
the groups that emerged from the cluster analysis, i.e., the main network
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and peripheral countries. However, how these groups relate to each other re-
mains to be investigated. As we will see in the next subsection, assortativity
provides an answer in terms of centrality correlation.

4.2. Higher-order assortativity
Evidently, there are several combinations of centrality measures and ad-

jacency matrices that can be used when computing the higher-order assor-
tativity coefficient. In this section, we focus on only those cases that offer a
more intuitive interpretation of the results in the context of the world trade
network3.

It is important to note that the assortativity coefficient can be developed
by taking the centrality measures x and y as in- or out- one, as explained
in the four cases of assortativity in Section 3 (in–out, out–in, in–in, out–
out). The selection of x and y leads to different assortativity measures with
different interpretations. In particular, we give the following economical in-
terpretations of the used centrality measures: out-going centrality measures
supply, i.e., the out-degree and out-strength of vertex i reflect the supply of
goods of country i; in-going centrality measures demand, i.e., the in-degree
and in-strength of vertex i reflect the demand of goods of country i; the
directions of edges represent export, i.e., an arrow from i to j represents
export from country i to country j.

In view of the economic meanings of the centrality measures given above,
the most suitable directed assortativity in this application is the out–in as-
sortativity rOI

h in order to effectively track the paths of the exchanges of
goods between countries. Indeed, referring to the volume of flows (then to
the strength), of the four measures proposed herein, those mentioned above
describe well the relationship between exporting and importing countries.

Fig. 3 shows the higher-order direct assortativity for increasing h com-
puted on both the unweighted and weighted network. In both cases, the
network is disassortative at order h = 1, which means that the exporters
with many connections and a large volume tend to trade with small im-
porters. Note that in absolute value, the assortativity is always lower than
0.5, which is because of large traders needing to trade with each other (e.g.
the United States and China) and maybe also small traders.
At order h = 2 the assortativity becomes positive. Similar behavior has also
been observed for undirected networks (Arcagni et al., 2017, 2019), and it

3We also computed the higher-order assortativity measures in all the remaining cases
and results are available upon request.
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Figure 3: Higher-order assortativity between out-centrality and in-centrality of world
trade network; results refer to unweighted structure (left) and weighted network using
log-strength as centrality measure (right); x-axis represents the length of walks, y-axis the
assortativity indexes.

may be the consequence of the disassortative behavior at order h = 1. In-
deed, if at the first step exporters and importers tend to belong to different
groups, then at the second step they tend to belong to the same one. Focus-
ing on the meaning of the measure, because the network refers to the totality
of traded goods, the exchange of goods between countries i and k may occur
directly (e.g. exchanging raw materials) in one time unit h = 1 or indirectly
in two time units h = 2 through the transformation of the raw materials
(into semi-manufactured goods) via country j. Then, the assortativity of
order h = 2 captures a new pattern of the exchange of goods between two
countries. This bouncing between disassortative and assortative behavior
continues for odd and even orders, respectively.

Considering the weights, the behavior of higher-order assortativity is sim-
ilar because of the correlations among centrality measures reported in Table
1. However, considering the weights, we observe a strong reduction in the
amplitude of variation. In fact, weights on arcs separate the main network
(identified with the cluster analysis) from the remaining, and the main net-
work of trades is almost complete as expected.
Finally, we observe that assortativity tends to zero when the order increases,
this being because of the indreased of randomness in the expected flow of
goods in the network.
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5. Other applications

In this section, we apply our indexes to two different real-world networks
in order to show the effectiveness of the proposed measure in other contexts
as well. The considered networks are the electricity trade network and the
migration network. This allows us to provide different results and to inves-
tigate the long-term behavior of people flows or a specific sector in the trade
scenario.

5.1. Electricity trade network
Unlike the application to the world trade network, in which the total

volume of trade was considered, we focus here on the specific electricity
sector. Also, in this case weights refer to the value and are expressed in US
dollars.

In the analysis, we are interested in the exchanges between countries,
therefore the electricity produced for self-consumption is not included; for-
mally, the network construction does not incorporate loops. From an eco-
nomic perspective, this implies that trade is concentrated mainly in Europe,
with China and the United States becoming peripheral countries in the net-
work. Unlike the whole trade network that incorporates the aggregated
volume of traded goods, this network has only 10 source nodes (then zero in-
centrality) and 29 sinks (then zero out-centrality). Therefore, the weighted
results are based on the strength centrality because the log-strength is not
finite.

Fig. 4 shows the results, and it is evident that the outcomes are quite
different from those in the case of the whole trade network. This is due
to the different network topology that emerges when we focus on only this
specific sector. In this case, some countries (e.g., the United States) self-
produce electricity for internal consumption, which can have more than one
motivation. For instance, it is related to a country’s investment in renew-
able energies. In this sense, the United States does not follow a general
common regulation as in Europe, and investment in renewable energies is
left as a choice of individual states, some of which are experimenting with
beneficial forms of energy self-production. Conversely, European countries
are in general still dependent on energy supplied from external sources (Di
Silvestre et al., 2021). Therefore, trade is concentrated mostly in Europe,
and European countries have high centrality. Consequently, the assortativity
is always positive and seems not to vanish.
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Figure 4: Higher-order assortativity between out-centrality and in-centrality of electricity
trade network. The results refer to the unweighted structure (left) and the weighted
network using strength as the centrality measure (right). The horizontal axis represents
the walk length, and the vertical axis represents the assortativity index.

5.2. International migration network
In this application, a network of people is constructed starting from the

international migration database provided by OECD (2020)4, which is the
most recent and complete dataset. Weights correspond to the number of
migrants in a year from a country to another one.

Similar to the world trade network, two information items are available
for each pair of countries: the number of outgoing people, and the number of
incoming people. As was done in the case of the international trade network,
we assume as weights the largest numbers of people, and we preserve the edge
directions.

Fig. 5 shows the higher-order assortativity indexes obtained for this ap-
plication. The international migration network is disassortative for walks of
odd length and assortative for walks of even length. At order h = 1, both
the binary and weighted networks exhibit disassortative behavior, and this
is in line with the literature (Fagiolo and Mastrorillo, 2013). Finding the
actual reason for the oscillating behavior of the assortativity measure would
require migration to be explored in depth, which is well beyond the present
scope, but we can make some interesting suggestions. For various reasons

4https://stats.oecd.org/Index.aspx?DataSetCode=MIG#
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Figure 5: Higher-order assortativity between out-centrality and in-centrality of network
based on International Migration Database. The results refer to the unweighted structure
(left) and the weighted network using log-strength as the centrality measure (right). The
horizontal axis represents the walk length, and the vertical axis represents the assortativity
index.

(e.g., geographical), few countries are typically the first destination of people
coming from many poor countries, and often the first country reached is only
the first step of a long journey, with the final destination reached after pass-
ing through different intermediate countries. For instance, several countries
with low migrations outflows concentrate migrants toward a few countries
with high levels of inflow (e.g., the European countries that are closer to the
migration source). As a second step, migrants disperse into Europe, moving
to several countries with low levels of inflow. This fact is reflected by the
alternating behavior of the assortativity as the order increases. The results
based on the weighted network replicate the unweighted structure but with
smaller absolute values.

6. Simulations

In this section, some simulations are reported to show how the assorta-
tivity at a few steps is strongly conditioned by the weights.

Figs. 6 and 7 show 500 simulated networks from an SBM for different
network sizes n ∈ {20, 50, 100, 200, 500, 1000}. The same simulations were
proposed by Yuan et al. (2021) for the case of assortativity of order h = 1.
The results in Fig. 6 refer to binary networks, in which case the higher-
order indexes are computed by identifying the node degree as the centrality
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Figure 6: Higher-order assortativity between out-degree and in-degree using binary adja-
cency matrix of 500 simulated networks from stochastic block model (SBM) comparing
different sizes n of the model. The horizontal axis represents the walk length, and the
vertical axis represents the assortativity index. The simulations returned different distri-
butions of the assortativity index for each order, so the distributions are represented using
box plots to show the quartiles and any anomalous values.

measure and using the binary adjacency matrix to build the matrix E. In
Fig. 7, the results refer to weighted networks, in which case the strength
is adopted as the centrality measure and the weighted adjacency matrix
is used to build the matrix E. The simulation results are represented by
box plots depicting the distribution of the results for different orders h. To
provide an intuitive view of matrices Eh, we show the case of h = 1, . . . , 20
for a simulated Erdös–Rényi directed network with order n = 100 (see the
Supplementary material).

The simulations where run under the same conditions as those of Yuan
et al. (2021). The SBM comprises blocks of Erdös–Rényi directed graphs
with probability p of creating an arc within blocks. An edge between two
blocks is generated with probability p′ < p. Because the networks are di-
rected, once an edge is created, a direction is assigned to that edge with equal
probability 0.5. In line with Yuan et al. (2021), we consider two blocks, each
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Figure 7: Higher-order assortativity between out-strength and in-strength using weighted
adjacency matrix of 500 simulated networks from SBM comparing different sizes n of the
model. The horizontal axis represents the walk length, and the vertical axis represents the
assortativity index. The simulations returned different distributions of the assortativity
index for each order, so the distributions are represented using box plots to show the
quartiles and any anomalous values.

with the same size n/2, the within probability is p = 0.2, and the between
probability is p′ = 0.02. Weights are also assigned as in the cited article:
the first block has weights sampled uniformly from integers between 0 and
5, the second block has weights sampled uniformly from integers between 5
and 10, and arcs between blocks have weights equal to 5.

The networks with sizes 20 and 50 show many outliers. However, in
both the unweighted and weighted cases, the stability of the simulations
increases with the network size. Focusing on the weighted case, the first
block is characterized by vertices with low centrality and the second one
by vertices with high centrality. Because the within probability p is much
higher than the between probability p′ and the two blocks are characterized
by different levels of weights, there are more connections between vertices
with similar centrality. In other words, the walk remains trapped in the
block and struggles to exit from it.
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In the unweighted case, the assortativity is close to zero because the two
blocks have the same structure; this is typical of an Erdös–Rényi game, which
generates almost regular graphs with a low variability in degree. On the
contrary, when taking the weights into account, the assortativity is positive
because nodes tend to be connected to others with the same strength but not
to those with different strengths. This is because the probability of creating
edges within blocks is higher than that of creating them between blocks. The
strength has different expected values but the same variability in each block.
The simulations for the unweighted case required almost an hour, and the
time was similar for the weighted case.

To enable the simulations to be reproduced, we have provided the R code
for weighted networks in the supplementary material. In the unweighted
case, it is sufficient to remove the instructions that assign weights to the
edges. Note that most of the R instructions are related to the simulation
of the SBM, and the higher-order assortativity is computed with only one
instruction thanks to the HOasso package that evaluates the assortativity
for objects of class igraph from the homonym package (Csardi and Nepusz,
2006; Csárdi et al., 2023).

7. A Markov chains-based interpretation of the higher-order as-
sortativity

In this section, we formalize the informative content of the higher-order
assortativity measure in terms of the transition probabilities of discrete-time
homogeneous Markov chains with finite states. As a premise, we introduce
some basic definitions and notation for Markov chains. For a complete treat-
ment, see Norris et al. (1998).

7.1. Markov chains: basic definitions and notation
A homogeneous discrete-time Markov chain with finite states is a stochas-

tic process X = (X(t) : t ∈ N) such that the following conditions are true.

(P1) There exists a set V with n elements such that X(t) ∈ V for each
t ∈ N. The elements of V are the states of X , and the set V is the
state space of the Markov chain.

(P2) The Markov property holds, i.e.,

P (X(t+1) = j|X(t) = i,X(t−1) = it−1, . . . , X(0) = i0) = P (X(t+1) = j|X(t) = i),

for each t ∈ N and i, j, i0, . . . , it−1 ∈ V .
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(P3) The one-step transition probabilities are invariant with respect to time,
i.e.,

P (X(t+ 1) = j|X(t) = i) = P (X(1) = j|X(0) = i),

for each t ∈ N and i, j ∈ V . We collect all the one-step transition
probabilities in an n-square matrix P whose generic element is pij =
P (X(1) = j|X(0) = i). P is the transition probability matrix of the
Markov chain X .

As we will see below, the node set V of the network coincides with the
state space of the Markov chain.

Properties (P1)–(P3) allow us to identify a Markov chain via three ele-
ments: the state space V , the transition probability matrix P, and the initial
probability distribution π0 = (π0(1), . . . , π0(n)), where π0(i) = P (X(0) = i)
for each i ∈ V . In particular, property (P3) states that the Markov chain X
is homogeneous.

Furthermore, property (P3) can be extended to the case of h-step tran-
sition probabilities that are invariant with respect to time for each h ∈ N. A
straightforward computation shows that

P (X(t+ h) = j|X(t) = i) = P (X(h) = j|X(0) = i) (2)

for each t, h ∈ N and i, j ∈ V . We collect the h-step transition probabilities
in the n-square matrix Ph, the element of which in row i and column j is
p
(h)
ij = P (X(h) = j|X(0) = i).

Because the state space V is finite, the matrix Ph is Ph, i.e., the h-step
transition probability matrix is the hth power of the one-step matrix P.

7.2. Higher-order assortativity in the context of Markov chains
Given h ≥ 1, we recall that ∥Eh∥1 = 1. Therefore, by referring to

Markov-chain theory, the generic element e(h)ij may represent the joint proba-
bility that i and j are the position states of X at time t and t+h, respectively,
for each t, i.e.,

e
(h)
ij = P (X(h) = j,X(0) = i). (3)

By considering the Markov chain X for which Eq. (3) is true and by using
the conditioned probability definition, we can write

Eh = Dπ0P
h, (4)

where Dπ0 is a diagonal n-squared matrix whose diagonal entries are the
components of the initial distribution π0.
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Notice that (4) leads to E1 =
W

∥W∥1 = Dπ0P. Thus, matrices Dπ0 and P
identify Eh, for each h ≥ 1. In this respect, we notice that the construction
of Eh is not flexible, being constrained to the considered network. This said,
we do not have any conditions on the selection of the network, so that we
have the possibility of representing Eh in the case of any chosen structure.

From matrix P and then Ph with h > 1, which is stochastic by rows,
i.e., the rows of the matrix sum to 1, we have Ph1 = 1 and hence

Eh1 = (Dπ0P
h)1 = Dπ0(P

h1) = Dπ01 = π0, (5)

which gives π0 = ph, h ≥ 1, where ph is the vector that appears in Eq. (1).
Indeed, given joint probabilities e

(h)
ij , by Eq. (3) we have

n∑
j=1

e
(h)
ij =

n∑
j=1

P (X(h) = j,X(0) = i) = P (X(0) = i) = π0(i) ∀i = 1, ..., n,

i.e., ph is the initial probability distribution.
It is clear that in general there is no unique Markov chain X with state

space V for which Eq. (4) is valid. However, given Eq. (5), there is a unique
vector π0. So, once we choose the network N = (V,A), there is a unique
Markov chain X = (X(t) : t ∈ N) with V,P, and π0 fixed.

Note that for each network node i ∈ V that is a sink, matrix P must be
stochastic. Therefore, a 1 is added in the main diagonal to associate with
the sink an absorbing state in the Markov chain, and π0(i) must be 0 so as
not to modify the network topology and comply with Eq. (4) for h = 1. On
the contrary, π0(i) > 0 ∀i ∈ V if i is not a sink because then Eq. (4) returns
a zero line in E1 no matter the values in P.

Analogous to Eq. (5), we have

E⊤
h 1 = (Dπ0P

h)⊤1 = (Ph)⊤Dπ01 = (Ph)⊤π0 = πh (6)

then πh = qh, h ≥ 1, where qh is the vector that appears in Eq. (1). Again,
by Eq. (3) we have

n∑
i=1

e
(h)
ij =

n∑
i=1

P (X(h) = j,X(0) = i) = P (X(h) = j) = πh(j) ∀j = 1, ..., n,

i.e., qh is the probability distribution after h steps.
Keeping this in mind, we can rewrite the higher-order assortativity index

(defined in Eq. 1) in the Markov-chain context as

rh = r(x,y,Dπ0P
h) =

x⊤ (
Dπ0P

h − π0π
⊤
h

)
y√[

x⊤
(
Dπ0 − π0π⊤

0

)
x
] [
y⊤

(
Dπh

− πhπ
⊤
h

)
y
] . (7)
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The higher-order assortativity index of length h then represents the auto-
correlation at time-distance h of a Markov chain evaluated not on the states
vi ∈ V but on their transformations x and y. Indeed, in a network context,
centrality measures can be the image of a real function on the node set V .

7.3. Some illustrative examples
We present some toy examples to illustrate how the newly introduced

assortativity measure works in the context of Markov chains. For this, we
consider some instances of weighted networks whose related Markov chains
have a meaningful state classification. We go into detail below.

We consider four networks Nk = (V,Wk) with k = 1, . . . , 4, sharing the
same set of nodes V = {a,b, c,d, e} and with weighted adjacency matrices
Wk defined as follows:

W1 =


0 2 2 2 0
396 0 0 4 0
0 0 0 0 0
0 4 0 0 396
0 2 2 2 0

 , W2 =


0 2 196 2 0

396 0 0 4 0
0 0 0 0 0
0 4 0 0 396
0 2 196 2 0

 ,

W3 =


0 2 198 0 0
0 0 0 100 0

150 0 0 0 150
0 200 0 0 0

200 0 200 0 0

 , W4 =


0 198 198 0 0
0 0 0 100 0
150 0 0 0 150
0 200 0 0 0
200 0 200 0 0

 .

The networks are shown in Fig. 8. From inspection, note that N1 and N2

have the same topology and differ only by two weights. In particular, there
are no outflows from node c; i.e., it is a sink. However, while in the former
case the inflows into node c have remarkably low weights, in the latter they
are particularly high. This evidence is true in terms of the weights’ abso-
lute values (i.e., considering matrices W1 and W2) but also from a relative
perspective (i.e., considering the transition probability matrices P1 and P2

shown below).
Also, N3 and N4 share the same topology, and there are no outflows from

the class of nodes {b,d} ⊂ V . In both cases, it is possible to have an inflow
in such a class from the set {a, c, e} via the arc from node a to node b. This
arc has a low weight in network N3 but a remarkably high one in N4.

We now consider the centrality measures. In Table 2, we report the
in-strength sIk and out-strength sOk distributions for each network Nk, k =
1, ..., 4 as well the average values. Note that the average values for the in-
strengths and out-strengths are the same because of the associativity of the
sum.
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Figure 8: Graphical representations of four illustrative examples. The red vertices are
sinks or classes without out-flows. The numbers on the edges refer to the corresponding
weights. Networks N1 and N2 have the same topology but different weights, as do N3 and
N4.

V sI1 sO1 sI2 sO2 sI3 sO3 sI4 sO4
a 396 6 396 200 350 200 350 396
b 8 400 8 400 202 100 398 100
c 4 0 392 0 398 300 398 300
d 8 400 8 400 100 200 100 200
e 396 6 396 200 150 400 150 400

Mean 162.4 240 240 279.2

Table 2: In-strength sIk and out-strength sOk for each example k = 1, . . . , 4.

We classify the nodes as large or small with respect to the average values
of the corresponding centrality measure. Table 2 shows that in network
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N1, nodes a and e are large receivers but small spreaders, whereas nodes b
and d are small receivers and large spreaders, and node c is peripheral. In
network N2, the node centrality is the same as that in network N1, with the
exception of node c, which becomes a large receiver. In network N3, nodes
of the absorbing class {b,d} are peripheral, and node a is a large receiver
but a small spreader; node e is a small receiver but a large spreader, and
node c is central. The centralities in network N4 differ only for node a, which
also becomes a large spreader and consequentially a central node; therefore,
node b is affected by this variation and becomes a large receiver.

The homogeneous Markov chains related to the networks of the exam-
ples share the same state space V = {a, b, c, d, e}. We denote the Markov
chain associated with network Nk by Xk for k = 1, . . . , 4. The transition
matrix and the initial probability distribution of Xk can be obtained from
the adjacency matrix Wk and are labeled as Pk and π0,k. Here, we give the
transition matrices:

P1 =


0 0.3̄ 0.3̄ 0.3̄ 0
0.99 0 0 0.01 0
0 0 1 0 0
0 0.01 0 0 0.99
0 0.3̄ 0.3̄ 0.3̄ 0

 , P2 =


0 0.01 0.98 0.01 0
0.99 0 0 0.01 0
0 0 1 0 0
0 0.01 0 0 0.99
0 0.01 0.98 0.01 0

 ,

P3 =


0 0.01 0.99 0 0
0 0 0 1 0
0.5 0 0 0 0.5
0 1 0 0 0
0.5 0 0.5 0 0

 , P4 =


0 0.5 0.5 0 0
0 0 0 1 0
0.5 0 0 0 0.5
0 1 0 0 0
0.5 0 0.5 0 0

 .

The initial probability distributions are proportional to the out-strengths
because of Eq. (5), and they are written as follows:

π⊤
0,1 = [0.008, 0.493, 0, 0.493, 0.007],

π⊤
0,2 = [0.16̄, 0.3̄, 0, 0.3̄, 0.16̄],

π⊤
0,3 = [0.16̄, 0.083̄, 0.25, 0.16̄, 0.3̄],

π⊤
0,4 = [0.284, 0.072, 0.215, 0.143, 0.287].

For illustration, see the Supplementary material, where we present the direct
computation of Eh, for h = 1, 2, 3 along with some comments for the case of
network N4.

The states of the Markov chains X are easily classified: state c is an
absorbing state for Markov chains X1 and X2, and the set of states {b,d} is an
absorbing class for X3 and X4. In accordance with the related networks, the
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probabilities of being absorbed by states c and {b, d} represent the elements
distinguishing X1 from X2 and distinguishing X3 from X4, respectively.

h N1 N2 N3 N4

1 0.7718 0.0828 0.5404 0.5503
2 −0.7664 −0.0739 0.5204 −0.0309
3 0.6031 0.0507 0.3515 0.2663
4 −0.6031 −0.0470 0.5067 −0.0130
5 0.5086 0.0361 0.4034 0.1688

· · · · · · · · · · · · · · ·
9996 0 0 −0.0098 −0.0718
9997 0 0 0.0098 0.0718
9998 0 0 −0.0098 −0.0718
9999 0 0 0.0098 0.0718

10000 0 0 −0.0098 −0.0718

Table 3: First and last evaluated values of rOI
h for the four illustrative examples.
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Figure 9: Higher-order assortativity rOI
h between out-strength and in-strength using

weighted adjacency matrix to evaluate transition probabilities. The results refer to net-
works N1 (left) and N2 (right). The horizontal axis represents the walk length on a
logarithmic scale, and the vertical axis represents the assortativity index.

Next, we inspect the assortativity as the correlation between the out-
strength and in-strength associated with the states of the aforementioned
Markov chains. Fig. 9 reports the out–in higher-order assortativity rOI

h for
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networks N1 and N2. In N1, the probability of falling into the absorbing
state c is small, so we can consider its effect as marginal. Nodes a and e
have small out-strength and high in-strength, in contrast to nodes b and
d, which have the opposite characteristics. We identify the pair {a, e} as
group 1 and the pair {b, d} as group 2. At the first step (h = 1), the
assortativity is due mainly to the correlation between the out-strengths in
group 1 and the in-strengths in group 2, and vice versa. As can be seen, there
is concordance between them, and therefore positive assortativity. After two
steps (h = 2), if the Markov chain starts from group 1, then it is highly
probable that it jumps to group 2 and then back to group 1, generating
disassortative behavior; the same is true if the Markov chain starts from
group 2. Consequently, for increasing h, this creates the alternating between
positive and negative assortativity for odd and even values of h, respectively,
as confirmed in Table 3. The asymptotic zero-assortative behavior is caused
by both the randomness and the presence of the absorbing state c. In network
N2, the same behavior can be observed with a smaller oscillation; this is due
to the increased out-degrees of nodes in group 1 and the higher probability
of falling into the absorbing state c where there is no centrality variability.

Note that even if there is no variability of strength measures in the sink,
there is no indeterminate form in Eq. (1) because the probability of falling
into the sink is less than one. Moreover, in network N1, the probability of
falling into the sink is high, so the asymptotic value is reached immediately.
By contrast, in network N2 the asymptotic value is reached after a long time
alternating between assortative and disassortative behavior.

Fig. 10 shows the same results for networks N3 and N4. These networks
are characterized by the absorbing class {b, d} and the complementary one
{a, c, e} connected by the bridge represented by the edge from node a to
node b. Both classes have positive assortativity. In N3, the bridge has a
low weight, so the inter-assortative behavior dominates. In network N4, the
weight of the bridge is very high, and so the larger oscillations are justified
by the differences between the classes.

8. Conclusions

This paper fills a gap in the literature on complex networks by intro-
ducing the concept of higher-order assortativity for weighted and directed
networks, where the considered nodal attributes are the directed versions of
degree and strength centrality. These measures have a clear interpretation in
socioeconomic applications that are well-linked to directed and weighted net-
works, such as migration and international trade as studied in the proposed
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Figure 10: Higher-order assortativity rOI
h between out-strength and in-strength using

weighted adjacency matrix to evaluate transition probabilities. The results refer to net-
works N3 (left) and N4 (right). The horizontal axis represents the walk length on a
logarithmic scale, and the vertical axis represents the assortativity index.

empirical applications. Furthermore, we also highlighted the strong connec-
tion between the introduced assortativity measure and the autocorrelations
of suitably defined Markov chains.

The versatility of the proposed methodology makes it possible to de-
scribe the preferential attachment of a wide set of models, with a possible
paradigmatic empirical instance being the structure and systemic risk pro-
file of the interbank system (Bo and Capponi, 2015; Castellano et al., 2021;
Castiglionesi and Eboli, 2018; Cerqueti et al., 2022, 2021; Bargigli et al.,
2015). Moreover, the interpretability of the proposed assortativity measure
in the context of Markov chains might be exploited efficiently to analyze the
properties of some classes of dynamical random systems that have Marko-
vian properties. In this respect, it is important to note that the decay of the
autocorrelation explains the long-term memory properties of the underlying
stochastic process (Hurst, 1951). These challenging themes are already part
of our research agenda.
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