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Abstract: We consider a class of finite-dimensional variational inequalities where both the operator and
the constraint set can depend on a parameter. Under suitable assumptions, we provide new estimates
for the Lipschitz constant of the solution, which considerably improve previous ones. We then consider
the problem of computing the mean value of the solution with respect to the parameter and, to this end,
adapt an algorithm devised to approximate a Lipschitz function whose analytic expression is unknown,
but can be evaluated in arbitrarily chosen sample points. Finally, we apply our results to a class of Nash
equilibrium problems, and generalized Nash equilibrium problems on networks.
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1. Introduction

In many optimization or variational inequality (VI) problems, some data can depend
on parameters, and it is important to analyze the regularity of the solution with respect to
those parameters. For a detailed account of some classical results on the topic of parametric
optimization, the reader can refer to [1]. The investigation of the Lipschitz behavior of solutions
to convex minimization problems, from the point of view of set valued analysis, has also been
carried out in the influential paper [2], and recently extended to abstract quasi-equilibrium
problems in [3]. On a more applied context, in the case of linear programming, sharp Lips-
chitz constants for feasible and optimal solutions of some perturbed linear programs were
derived in [4,5]. Another influential paper focusing on the estimate of Lipschitz constants for
the solutions of a perturbed system of equalities and inequalities is [6], while in [7], the estimate
of the Lipschitz constant is connected with of the role played by the norm of the inverse of a
non-singular matrix in bounding the perturbation of the solution of a system of equations in
terms of a right-hand side perturbation. The topic of parametric sensitivity analysis for varia-
tional inequalities has been developed by many authors in recent decades, and the excellent
monograph [8] contains many related results. Let us notice, however, that while the number of
papers dealing with local parametric differentiability for variational inequalities is very large,
the investigation of parametric variational inequalities under the mere Lipschitz assumptions
on data have received less attention, in particular with respect to the problem of estimating the
global Lipschitz constant of the solution.

The local Lipschitz continuity of the solution of a variational inequality with parametric
constraint set was investigated in [9], while more recently, the authors [10] derived an estimate
of the global Lipschitz constant of the unique solution of a parametrized variational inequality,
by making an extensive use of Lagrange multipliers techniques. Specifically, the Lagrange
multiplier computations were used to derive the contribution of the parametric variation in
the constraint set to the corresponding variation in the solution of the variational inequality.
Interestingly enough, similar results were obtained in [11] with purely geometric methods.
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In [12], the authors improved the above-mentioned estimate but realized that, due to the
complexity of the problem, their estimates were also far from being optimal.

In this paper, we derive new estimates for the Lipschitz constant of the solution of
a parametric variational inequality, which considerably improve the previous ones. We
then combine our results with a variant of the algorithm proposed in [13,14] to provide
an approximation, on a given interval, of a univariate Lipschitz function whose analytic
expression is unknown, but can be computed in arbitrarily chosen sample points (such
a function is often called a black box-function). It turns out that the same algorithm
also provides an approximation of the integral of the black-box function on the interval
under consideration. Thus, we can use our estimate of the Lipschitz constant of the
solution, to approximate its mean value on a given interval. Our results are then applied to
investigate a class of Nash and generalized Nash equilibrium problems on networks.

The specific class of Nash equilibrium problems known as Network Games (or games
played on networks) was investigated for the first time in the paper by Ballester et al. [15].
Players are modeled as nodes of a graph, and the social or economic relationship between
any two players is represented by a link connecting the two corresponding nodes. Two
players connected with a link are called neighbors. Considering linear-quadratic utility
functions, the authors were able to express the unique Nash equilibrium as a series ex-
pansion involving the powers of the adjacency matrix of the graph, thus showing that,
although players only interact with their neighbors, the equilibrium also depends on indi-
rect contacts (i.e., neighbors of neighbors, neighbors of neighbors of neighbors, and so on).
A wealth of social and economic processes may be modeled using the theory of Network
Games; see, for instance, the papers [16–19], the survey [20] and the monograph [21]. The
solution methods used in all the above-mentioned references combine the best response
approach with some results of Graph Theory (see, e.g., [22]). It is worth noticing that
although the connection between variational inequalities and Nash equilibrium problems
was proven about forty years ago [23], very few papers have dealt with the variational
inequality approach to Network Games and, in this regard, the interested reader can
find a detailed investigation in [24]. Furthermore, the case of generalized network Nash
equilibrium problems with shared constraints has not yet been investigated within the
above-mentioned framework, with the only exception of the paper [25].

The paper is organized as follows. In Section 2, we provide estimates of the Lipschitz
constant of the solution of our parametric VI in a general case, as well as in four different
cases where the dependence on the parameter is more specific. In Section 3, we describe the
algorithm used to approximate the solution components and their mean values. Section 4
is devoted to the application of our results to a class of Network Games, and is struc-
tured in three subsections. Specifically, in Section 4.1 we provide the basic concepts on
Network Games, in Section 4.2 we describe the quadratic reference model of a network
Nash equilibrium problem, while in Section 4.3 we first recall the definition of generalized
Nash equilibrium problem with shared constraints, and the concept of variational solution,
and then consider the quadratic reference model in this new setting. In Section 5, we apply
our estimates and algorithm to some parametric network games. We then summarize our
work and outline some future research perspectives in a small conclusion section. The
paper ends with an appendix, where we derive some exact results that can be obtained in
the special case where the Lipschitz constant of the operator of the variational inequality
equals its strong monotonicity constant.

2. Problem Formulation and Lipschitz Constant Estimates

Let F : [0, T] × Rn → Rn and, for each t ∈ [0, T], K(t) be a nonempty, closed and
convex subset of Rn. We denote with 〈·, ·〉 the scalar product in Rn. The variational
inequality on Rn, with parameter t ∈ [0, T], is the following problem: for each t ∈ [0, T],
find x(t) ∈ K(t) such that:

〈F(t, x(t)), y− x(t)〉 ≥ 0, ∀ y ∈ K(t). (1)
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In the case where, for each t ∈ [0, T] the solution of (1) is unique, we will prove,
assuming the Lipschitz continuity of F and of the parametric functions describing K(t),
the Lipschitz continuity of the solution map t 7→ x(t) and derive an a priori estimate of its
Lipschitz constant Λ. Specifically, we estimate Λ in the general case where the variables t
and x cannot be separated, as well as in the separable case where F(t, x) = G(x) + H(t).
Moreover, in the special circumstance where K(t) = K, for any t ∈ [0, T], two simplified
formulas are derived. We then focus on computing approximations for the mean value of
the components xj : [0, T]→ R, j = 1, . . . n:

1
T

∫ T

0
xj(t)dt. (2)

We recall here some useful monotonicity properties.

Definition 1. A map F : Rn → Rn is monotone on a set A ⊂ Rn if and only if

〈F(x)− F(y), x− y〉 ≥ 0, ∀ x, y ∈ A.

If the equality holds only when x = y, F is said to be strictly monotone.

A stronger type of monotonicity is given by the following definition.

Definition 2. F : Rn → Rn is α-strongly monotone on A if and only if ∃α > 0:

〈F(x)− F(y), x− y〉 ≥ α‖x− y‖2, ∀ x, y ∈ A.

The concepts of strict and strong monotonicity coincide for linear operators and they
are equivalent to the positive definiteness of the corresponding matrix. When F also
depends on a parameter, the following property is useful.

Definition 3. F : [0, T]×Rn → Rn is uniformly α-strongly monotone on A if and only if ∃α > 0:

〈F(t, x)− F(t, y), x− y〉 ≥ α‖x− y‖2 ∀ x, y ∈ A, ∀ t ∈ [0, T].

Sufficient conditions for the existence and uniqueness of the solution of a variational
inequality problem can be found in [8]. We mention here the following classical theorem
which, in the parametric case, has to be applied for each t ∈ [0, T].

Theorem 1. Let K ⊂ Rn be a closed and convex set and F : Rn → Rn continuous on K. If K
is bounded, then the variational inequality problem VI(F, K) admits at least one solution. If K is
unbounded, then the existence of a solution is guaranteed by the following coercivity condition:

lim
‖x‖→+∞

〈F(x)− F(x0), x− x0〉
‖x− x0‖

= +∞,

for x ∈ K and some x0 ∈ K. Furthermore, if F is α-strongly monotone on K, then the solution
exists and is unique.

Let us now prove two theorems, along with three corresponding corollaries, which
constitute the main contribution of the paper. Such results, at different levels of generality,
ensure that the unique solution of (1) is Lipschitz continuous, and also provide an estimate
of the Lipschitz constant of the solution.
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Theorem 2 (General case). Assume that F : [0, T]×Rn → Rn is uniformly α-strongly monotone
on Rn and F is Lipschitz continuous on [0, T]×Rn with constant L, i.e.,

‖F(t1, x1)− F(t2, x2)‖ ≤ L(|t1 − t2|+ ‖x1 − x2‖), ∀x1, x2 ∈ Rn, ∀ t1, t2 ∈ [0, T].

Moreover, we assume that K(t) is a closed and convex set for any t ∈ [0, T], and there exists
M ≥ 0 such that

‖pK(t1)
(x)− pK(t2)

(x)‖ ≤ M|t1 − t2|, ∀ x ∈ Rn, ∀ t1, t2 ∈ [0, T], (3)

where pK(t)(x) denotes the projection of x on the closed convex set K(t).
Then, for any t ∈ [0, T], there exists a unique solution x(t) of the VI(F, K(t)) and x(t) is

Lipschitz continuous on [0, T], with an estimated constant equal to

Λ1 =


inf

z∈(0,2α̃)

[
M

1− s
+

z(1 + z)
s(1− s)

]
, if α̃ < 1,

M + 2
√

2M + 1, if α̃ = 1,

where α̃ = α/L and s =
√

z2 − 2α̃z + 1.

Proof. The existence and uniqueness of the solution x(t) follows from Theorem 1. Given
t1, t2 ∈ [0, T], we denote x1 := x(t1) and x2 := x(t2). We know that

x1 = pK(t1)
(x1 − λF(t1, x1)), x2 = pK(t2)

(x2 − λF(t2, x2)),

hold for any λ > 0, due to the characterization of the projection onto a closed convex set
and the Brower fixed point theorem (see, e.g., [8]). Hence, we obtain the following estimate:

‖x2 − x1‖ = ‖pK(t2)
(x2 − λF(t2, x2))− pK(t1)

(x1 − λF(t1, x1))‖
≤ ‖pK(t2)

(x2 − λF(t2, x2))− pK(t1)
(x2 − λF(t2, x2))‖

+ ‖pK(t1)
(x2 − λF(t2, x2))− pK(t1)

(x1 − λF(t1, x1))‖
≤ M|t1 − t2|+ ‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖, (4)

where the second inequality follows from assumption (3) and the non-expansiveness of the
projection map. Moreover, we have

‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖2

= ‖x2 − x1‖2 + λ2‖F(t2, x2)− F(t1, x1)‖2 − 2λ〈x2 − x1, F(t2, x2)− F(t1, x1)〉
≤ ‖x2 − x1‖2 + λ2L2(‖x2 − x1‖+ |t2 − t1|)2 − 2λ〈x2 − x1, F(t2, x2)− F(t1, x1)〉
= ‖x2 − x1‖2 + λ2L2(‖x2 − x1‖+ |t2 − t1|)2 − 2λ〈x2 − x1, F(t2, x2)− F(t2, x1)〉
− 2λ〈x2 − x1, F(t2, x1)− F(t1, x1)〉

≤ ‖x2 − x1‖2 + λ2L2(‖x2 − x1‖+ |t2 − t1|)2 − 2λα‖x2 − x1‖2

+ 2λ‖x2 − x1‖‖F(t2, x1)− F(t1, x1)‖
= ‖x2 − x1‖2 + λ2L2(‖x2 − x1‖+ |t2 − t1|)2 − 2λα‖x2 − x1‖2

+ 2λL‖x2 − x1‖|t2 − t1|
= (1 + λ2L2 − 2λα)‖x2 − x1‖2 + λ2L2|t2 − t1|2

+ 2λL(1 + λL)‖x2 − x1‖|t2 − t1|. (5)

It is well-known that α ≤ L, since the assumptions guarantee that the following inequalities

α‖x− y‖2 ≤ 〈F(t, x)− F(t, y), x− y〉 ≤ ‖F(t, x)− F(t, y)‖‖x− y‖ ≤ L‖x− y‖2
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hold for any x, y ∈ Rn and t ∈ [0, T]. Thus, we obtain

1 + λ2L2 − 2λα ≥ 1 + λ2L2 − 2λL = (1− λL)2 ≥ 0,

hence s :=
√

1 + λ2L2 − 2λα is well defined. Notice that if α < L, then s > 0 for any λ > 0,
while if α = L then s > 0 for any λ ∈ (0, 1/L) ∪ (1/L,+∞). Moreover, we have

1 + λL =
√

1 + λ2L2 + 2λL >
√

1 + λ2L2 − 2λα = s,

thus, if s > 0, we have

λ2L2|t2 − t1|2 ≤
[

λL
(

1 + λL
s

)
|t2 − t1|

]2
. (6)

It follows from (5) and (6) that

‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖2

≤ (s‖x2 − x1‖)2 +

[
λL
(

1 + λL
s

)
|t2 − t1|

]2
+ 2λL(1 + λL)‖x2 − x1‖|t2 − t1|

=

[
s‖x2 − x1‖+ λL

(
1 + λL

s

)
|t2 − t1|

]2
,

hence

‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖ ≤ s‖x2 − x1‖+ λL
(

1 + λL
s

)
|t2 − t1|. (7)

It follows from (4) and (7) that

(1− s)‖x2 − x1‖ ≤
(

M +
λL(1 + λL)

s

)
|t2 − t1|.

Notice that 1− s > 0 if and only if λ ∈ (0, 2α/L2). Therefore, in the case α < L, we
obtain

‖x2 − x1‖ ≤
[

M
1− s

+
λL(1 + λL)

s(1− s)

]
|t2 − t1|, ∀ λ ∈

(
0,

2α

L2

)
, (8)

while in the case α = L, we obtain

‖x2 − x1‖ ≤
[

M
1− s

+
λL(1 + λL)

s(1− s)

]
|t2 − t1|, ∀ λ ∈

(
0,

1
L

)
∪
(

1
L

,
2
L

)
. (9)

If we set z = λL and α̃ = α/L, then we can write s =
√

z2 − 2α̃z + 1 and the esti-
mate (8), which, in case α̃ < 1, reads as

‖x2 − x1‖ ≤ inf
z∈(0,2α̃)

[
M

1− s
+

z(1 + z)
s(1− s)

]
|t2 − t1|.

In case α̃ = 1, we have s = |z− 1|, and the estimate (9) reads as

‖x2 − x1‖ ≤
[

inf
z∈(0,1)∪(1,2)

f (z)
]
|t2 − t1|,

where
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f (z) =
M

1− |z− 1| +
z(1 + z)

|z− 1|(1− |z− 1|) =


M
z

+
1 + z
1− z

if z ∈ (0, 1),

M
2− z

+
z(1 + z)

(z− 1)(2− z)
if z ∈ (1, 2).

An analytical study of the function f (see Appendix A.1) provides

inf
z∈(0,1)

f (z) = M + 2
√

2M + 1,

and

inf
z∈(1,2)

f (z) =
M2 + 7M + 8 + 2

√
2M + 12

M + 8− 2
√

2M + 12
.

Moreover, it is easy to check that the following inequality

inf
z∈(1,2)

f (z) ≥ inf
z∈(0,1)

f (z)

holds for any M ≥ 0. Therefore, we obtain

inf
z∈(0,1)∪(1,2)

f (z) = inf
z∈(0,1)

f (z) = M + 2
√

2M + 1,

thus the thesis follows.

Corollary 1 (General operator and constant feasible region). Assume that F satisfies the same
assumptions of Theorem 2 and the feasible region K does not depend on t. Then, the solution x(t) of
the VI(F, K) is Lipschitz continuous on [0, T] with estimated constant equal to Λ1 = L/α.

Proof. Since K does not depend on t, inequality (3) holds with M = 0. Hence, Theorem 2
guarantees that x(t) is Lipschitz continuous on [0, T] with a constant equal to

inf
z∈(0,2α̃)

z(1 + z)
s(1− s)

, if α̃ < 1,

1, if α̃ = 1,

where α̃ = α/L and s =
√

z2 − 2α̃z + 1. It is sufficient to prove that if α̃ < 1, then

inf
z∈(0,2α̃)

z(1 + z)
s(1− s)

=
1
α̃

.

Since α̃ > 0, we have

(1 + α̃)z2 − 2α̃z + 1 + α̃ > 0, ∀ z ∈ R,

thus
(1 + α̃)z2

[
(1 + α̃)z2 − 2α̃z + 1 + α̃

]
> 0, ∀ z > 0,

On the other hand, we have

(1 + α̃)z2
[
(1 + α̃)z2 − 2α̃z + 1 + α̃

]
= (1 + α̃)2z4 − 2α̃(1 + α̃)z3 + (1 + α̃)2z2

= (1 + α̃)2z4 + α̃2z2 + 1− 2α̃(1 + α̃)z3 + 2(1 + α̃)z2 − 2α̃z− z2 + 2α̃z− 1

= [(1 + α̃)z2 − α̃z + 1]2 − z2 + 2α̃z− 1

= [(1 + α̃)z2 − α̃z + 1]2 − s2,
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hence
[(1 + α̃)z2 − α̃z + 1]2 > s2, ∀ z > 0.

Since s > 0 and (1 + α̃)z2 − α̃z + 1 > 0 hold for any z > 0, we obtain

(1 + α̃)z2 − α̃z + 1 > s, ∀ z > 0.

The latter inequality is equivalent to

α̃z(1 + z) > s− z2 + 2α̃z− 1 = s(1− s), ∀ z > 0.

Since s > 0 and 1− s > 0 hold for any z ∈ (0, 2α̃), we obtain

z(1 + z)
s(1− s)

>
1
α̃

, ∀ z ∈ (0, 2α̃).

On the other hand, we have

lim
z→0

z(1 + z)
s(1− s)

= lim
z→0

z(1 + z)(1 + s)
s(1− s2)

= lim
z→0

z(1 + z)(1 + s)
sz(2α̃− z)

= lim
z→0

(1 + z)(1 + s)
s(2α̃− z)

=
1
α̃

.

Therefore, the proof is complete.

Theorem 3 (Separable operator). Assume that F : [0, T]×Rn → Rn is separable, i.e,

F(t, x) = G(x) + H(t), ∀ t ∈ [0, T], x ∈ Rn,

where G : Rn → Rn is α-strongly monotone on Rn and Lipschitz continuous on Rn with constant
Lx, and H : [0, T] → Rn is Lipschitz continuous on Rn with constant Lt. Moreover, we assume
that K(t) is a closed and convex set for any t ∈ [0, T], and there exists M ≥ 0, such that (3) holds.

Then, for any t ∈ [0, T], there exists a unique solution x(t) of the VI(F, K(t)), and x(t) is
Lipschitz continuous on [0, T] with an estimated constant equal to

Λ2 =


inf

z∈(0,2α̂)

[
M

1− ŝ
+

L̂z(1 + z)
ŝ(1− ŝ)

]
, if α̂ < 1,

M + 2
√

2ML̂ + L̂, if α̂ = 1,

where α̂ = α/Lx, L̂ = Lt/Lx and ŝ =
√

z2 − 2α̂z + 1.

Proof. The existence and uniqueness of the solution x(t) follows from Theorem 1.
Given t1, t2 ∈ [0, T], we denote x1 := x(t1) and x2 := x(t2). For any λ > 0, we have
the following estimate:

‖x2 − x1‖ = ‖pK(t2)
(x2 − λF(t2, x2))− pK(t1)

(x1 − λF(t1, x1))‖
≤ ‖pK(t2)

(x2 − λF(t2, x2))− pK(t1)
(x2 − λF(t2, x2))‖

+ ‖pK(t1)
(x2 − λF(t2, x2))− pK(t1)

(x1 − λF(t1, x1))‖
≤ M|t1 − t2|+ ‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖. (10)

Moreover, we have
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‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖2

= ‖x2 − x1‖2 + λ2‖F(t2, x2)− F(t1, x1)‖2 − 2λ〈x2 − x1, F(t2, x2)− F(t1, x1)〉
= ‖x2 − x1‖2 + λ2‖G(x2)− G(x1) + H(t2)− H(t1)‖2 − 2λ〈x2 − x1, G(x2)− G(x1〉
− 2λ〈x2 − x1, H(t2)− H(t1)〉

≤ ‖x2 − x1‖2 + λ2(Lx‖x2 − x1‖+ Lt|t2 − t1|)2 − 2λ〈x2 − x1, G(x2)− G(x1〉
− 2λ〈x2 − x1, H(t2)− H(t1)〉

≤ ‖x2 − x1‖2 + λ2(Lx‖x2 − x1‖+ Lt|t2 − t1|)2 − 2λα‖x2 − x1‖2

+ 2λ‖x2 − x1‖‖H(t2)− H(t1)‖
≤ ‖x2 − x1‖2 + λ2(Lx‖x2 − x1‖+ Lt|t2 − t1|)2 − 2λα‖x2 − x1‖2

+ 2λLt‖x2 − x1‖|t2 − t1|
= (1 + λ2L2

x − 2λα)‖x2 − x1‖2 + λ2L2
t |t2 − t1|2

+ 2λLt(1 + λLx)‖x2 − x1‖|t2 − t1|. (11)

Since α ≤ Lx, we have

1 + λ2L2
x − 2λα ≥ 1 + λ2L2

x − 2λLx = (1− λLx)
2 ≥ 0,

hence ŝ :=
√

1 + λ2L2
x − 2λα is well defined. Notice that if α < Lx, then s > 0 for any

λ > 0, while if α = Lx, then s > 0 for any λ ∈ (0, 1/Lx) ∪ (1/Lx,+∞). Moreover, we have

1 + λLx =
√

1 + λ2L2
x + 2λLx >

√
1 + λ2L2

x − 2λα = ŝ,

thus, if ŝ > 0, we have

λ2L2
t |t2 − t1|2 ≤

[
λLt

(
1 + λLx

ŝ

)
|t2 − t1|

]2
. (12)

It follows from (11) and (12) that

‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖2

≤ (ŝ‖x2 − x1‖)2 +

[
λLt

(
1 + λLx

ŝ

)
|t2 − t1|

]2
+ 2λLt(1 + λLx)‖x2 − x1‖|t2 − t1|

=

[
ŝ‖x2 − x1‖+ λLt

(
1 + λLx

ŝ

)
|t2 − t1|

]2
,

hence

‖(x2 − λF(t2, x2))− (x1 − λF(t1, x1))‖ ≤ ŝ‖x2 − x1‖+ λLt

(
1 + λLx

ŝ

)
|t2 − t1|. (13)

It follows from (10) and (13) that

(1− ŝ)‖x2 − x1‖ ≤
(

M +
λLt(1 + λLx)

ŝ

)
|t2 − t1|.

Notice that 1− ŝ > 0 if and only if λ ∈ (0, 2α/L2
x). Therefore, in the case α < Lx, we

obtain

‖x2 − x1‖ ≤
Mŝ + λLt(1 + λLx)

ŝ(1− ŝ)
|t2 − t1|, ∀ λ ∈

(
0,

2α

L2
x

)
, (14)
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while in the case α = Lx, we obtain

‖x2 − x1‖ ≤
Mŝ + λLt(1 + λLx)

ŝ(1− ŝ)
|t2 − t1|, ∀ λ ∈

(
0,

1
Lx

)
∪
(

1
Lx

,
2
Lx

)
. (15)

If we set z = λLx, α̂ = α/Lx and L̂ = Lt/Lx, then we can write ŝ =
√

z2 − 2α̂z + 1,
and the estimate (14), in the case α̂ < 1, reads as

‖x2 − x1‖ ≤ inf
z∈(0,2α̂)

[
M

1− ŝ
+

L̂z(1 + z)
ŝ(1− ŝ)

]
|t2 − t1|.

In the case α̂ = 1, we have ŝ = |z− 1| and the estimate (15) reads as

‖x2 − x1‖ ≤
[

inf
z∈(0,1)∪(1,2)

f (z)
]
|t2 − t1|,

where

f (z) =
M

1− |z− 1| +
L̂z(1 + z)

|z− 1|(1− |z− 1|) =


M
z

+
L̂(1 + z)

1− z
if z ∈ (0, 1),

M
2− z

+
L̂z(1 + z)

(z− 1)(2− z)
if z ∈ (1, 2).

An analytical study of the function f (see Appendix A.2) provides

inf
z∈(0,1)

f (z) = M + 2
√

2ML̂ + L̂,

and

inf
z∈(1,2)

f (z) =
M2 + 7ML̂ + 8L̂2 + 2L̂

√
2ML̂ + 12L̂2

M + 8L̂− 2
√

2ML̂ + 12L̂2
.

Moreover, it is easy to check that the following inequality

inf
z∈(1,2)

f (z) ≥ inf
z∈(0,1)

f (z)

holds for any M ≥ 0 and L̂ > 0. Therefore, we obtain

inf
z∈(0,1)∪(1,2)

f (z) = inf
z∈(0,1)

f (z) = M + 2
√

2ML̂ + L̂,

thus the thesis follows.

Corollary 2 (Separable operator and constant feasible region). Assume that F satisfies the
assumptions of Theorem 3 and the feasible region K does not depend on t. Then, the solution x(t) of
the VI(F, K) is Lipschitz continuous on [0, T] with estimated constant equal to Λ2 = Lt/α.

Proof. Theorem 3 guarantees that x(t) is Lipschitz continuous on [0, T] with a constant equal
to 

inf
z∈(0,2α̂)

L̂z(1 + z)
ŝ(1− ŝ)

, if α̂ < 1,

L̂ = Lt/α, if α̂ = 1,

where α̂ = α/Lx, L̂ = Lt/Lx and ŝ =
√

z2 − 2α̂z + 1. Moreover, similarly to the proof of
Corollary 1, where α̃ is replaced by α̂, it can be proved that if α̂ < 1, then
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inf
z∈(0,2α̂)

L̂z(1 + z)
ŝ(1− ŝ)

=
L̂
α̂
=

Lt

α
.

In the special case where F does not depend on t, we obtain the same estimate proved
in [12].

Corollary 3 (Constant operator). Assume that F and K satisfy the assumptions of Theorem 3
and F does not depend on t, i.e., H(t) ≡ 0. Then, the solution x(t) of the VI(F, K) is Lipschitz
continuous on [0, T] with estimated constant equal to

Λ2 =
M

1−
√

1−
( α

L

)2
.

Proof. If H(t) ≡ 0, then Lt = 0, and Theorem 3 guarantees that x(t) is Lipschitz continuous
on [0, T] with a constant equal to

inf
z∈(0,2α̂)

M
1− ŝ

, if α̂ < 1,

M, if α̂ = 1,

where α̂ = α/Lx = α/L and ŝ =
√

z2 − 2α̂z + 1.
Moreover, it is easy to check that

inf
z∈(0,2α̂)

M
1− ŝ

=
M

1−
√

1− α̂2
=

M

1−
√

1−
( α

L

)2
,

thus the thesis follows.

Table 1 summarizes the estimate of the Lipschitz constant of x(t) depending on the
features of the map F and the feasible set K.

Table 1. Estimate of the Lipschitz constant of x(t) depending on the features of the map F and the
feasible set K.

General K Constant K

General F
Λ1 =

inf
z∈(0,2α̃)

[
M

1− s
+

z(1 + z)
s(1− s)

]
, if α̃ < 1,

M + 2
√

2M + 1, if α̃ = 1,

Λ1 =
L
α

where α̃ =
α

L
, s =

√
z2 − 2α̃z + 1

Separable F

Λ2 =
inf

z∈(0,2α̂)

[
M

1− ŝ
+

L̂z(1 + z)
ŝ(1− ŝ)

]
, if α̂ < 1,

M + 2
√

2ML̂ + L̂, if α̂ = 1,

Λ2 =
Lt

α

where α̂ =
α

Lx
, L̂ =

Lt

Lx
,

ŝ =
√

z2 − 2α̂z + 1

Constant F Λ2 =
M

1−
√

1−
( α

L

)2
–
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Theorems 2 and 3, along with Corollaries 1, 2 and 3, do not provide the solution x(t)
of the parametric VI in closed form, but guarantee that it is a Lipschitz continuous function
of the parameter t and provide an estimate of the corresponding constant. The knowledge
of the Lipschitz constant is a key tool to provide lower and upper approximations of both
the solution x(t) and its mean value on [0, T], as the algorithm described in the next section
shows.

3. Approximation Algorithm

Let xj : [0, T]→ R be any component of the solution vector x of (1); assume that xj is a
Lipschitz continuous function and Λ is an estimate of its Lipschitz constant, i.e.,

|xj(t1)− xj(t2)| ≤ Λ|t1 − t2|, ∀ t1, t2 ∈ [0, T]. (16)

Furthermore, let I be the integral of xj over [0, T] and, to begin with, assume that we
only know the value of xj at the two endpoints 0, T. We wish to construct an approximation
of xj in the interval [0, T] and also obtain an estimate Î of the value of I, together with an
estimate of the error |I − Î|.

The Lipschitz continuity of xj allow us to localize its graph by drawing four lines
passing trough the points (0, xj(0)) and (T, xj(T)), with slopes Λ and −Λ. We thus con-
struct a parallelogram P0,T containing the unknown graph of the function (see Figure 1,
left). Specifically, the two upper and the two lower sides of the parallelogram (dashed lines)
correspond, respectively, to an upper bound xu

j and a lower bound xl
j for xj. The functions xu

j

and xl
j can be written as follows:

xu
j (t) = min{ xj(0) + Λt, xj(T)−Λ(t− T) },

xl
j(x) = max{ xj(0)−Λt, xj(T) + Λ(t− T) }.

0 T 0 T/2 T

Figure 1. Upper and lower bounds (dashed lines) and best approximation (solid line) of a Lipschitz
continuous function evaluated at t = 0 and t = T (left), and same curves after the evaluation at the
midpoint t = T/2.

Denote now with x̂j(t) an approximation of the value of xj at some t ∈ [0, T], with
δ(t) = |xj(t)− x̂j(t)| the error on the estimate, and with ew(t) = max{xu

j (t)− x̂j(t), x̂j(t)−
xl

j(t)} the largest possible absolute error on the estimate, whence:

δ(t) ≤ ew(t),
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where the equality sign holds when xj coincides with its upper or lower bound. The case
where δ(t) = ew(t) can be called the worst case, and the value of x̂j(t) that minimizes ew(t)
is the mean value

x̂j(t) =
xu

j (t) + xl
j(t)

2
, (17)

which yields

ew(t) =
xu

j (t)− xl
j(t)

2
. (18)

The graph of x̂j(t), in the worst case, is represented by the solid line in Figure 1, on the
left. In order to obtain a global measure of the error in the interval [0, T], in the worst case,
it is then natural to define:

Ew(0, T) =
∫ T

0
ew(t) dt =

∫ T

0

xu
j (t)− xl

j(t)

2
dt, (19)

which is equal to the half of the area of P0,T , denoted by A(0, T), and thus Ew(0, T) =
A(0, T)/2.

We thus have an approximation x̂j of the function xj, together with the estimates ew
and Ew of the worst case local and total error, respectively. The average worst case error is
defined as Ew(0, T)/T.

We want now to approximate the integral I of xj over [0, T]. Notice that lower and
upper bounds for I are given, respectively, by

Il =
∫ T

0
xl

j(t) dt =
(xj(0)− xj(T))2

4Λ
− Λ

4
T2 +

T(xj(0) + xj(T))
2

,

Iu =
∫ T

0
xu

j (t) dt = −
(xj(0)− xj(T))2

4Λ
+

Λ
4

T2 +
T(xj(0) + xj(T))

2
.

The estimate of I that differs the less from the two extreme Il and Iu is the average value

Î =
Il + Iu

2
=

T(xj(0) + xj(T))
2

.

For this choice of Î, the error |I − Î| can reach the value of EI = (Iu − Il)/2 in the
worst case.

It follows from (17) that Î is equal to the integral of the approximating function x̂j.
We remark from (19) that the total worst case error Ew coincides with the estimate of the
error EI on the integral Î. Hence, both for the estimate of the function and of its integral,
the quantity that measures the corresponding errors is the same, and it is exactly half the
area of the parallelogram P0,T . It is easy to check (see [13,14]) that, for any pair of points
t1, t2 (with t1 < t2), the area of parallelogram Pt1,t2 is

A(t1, t2) =
∫ t2

t1

(xu
j (t)− xl

j(t)) dt =
Λ2(t1 − t2)

2 − (xj(t1)− xj(t2))
2

2Λ
. (20)

Now, we want to analyze how the evaluation of xj in a further point improves the
approximation procedure. For this, let t1 = 0, t2 = T, let t3 be an arbitrary point in (0, T)
and repeat the previous procedure in the intervals [0, t3] and [t3, T], respectively. The graph
of xj is now contained in the union of parallelograms P0,t3 and Pt3,T . Therefore, a new
sample point allows to better locate the graph of xj. In this case, the bounding functions
are computed as follows:

xu
j (t) =

{
min{xj(0) + Λ′t, xj(t3)−Λ′(t− t3)} if t ∈ [0, t3],
min{xj(t3) + Λ′′(t− t3), xj(T)−Λ′′(t− T)} if t ∈ [t3, T],
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xl
j(t) =

{
max{xj(0)−Λ′t, xj(t3) + Λ′(t− t3)} if t ∈ [0, t3],
max{xj(t3)−Λ′′(t− t3), xj(T) + Λ′′(t− T)} if t ∈ [t3, T],

where Λ′ and Λ′′ denote the update estimates of the Lipschitz constant of xj in the intervals
[0, t3] and [t3, T], respectively.

For the two sub-intervals, we can provide approximations of xj and of its integral,
and estimates of the corresponding errors Ew(t1, t3) and Ew(t3, t2).

We observe that the smaller the sum of the areas of the new parallelograms is, the
better the new estimate of the function is. Hence, with the evaluation of xj at new points
and repeating the above procedure, we can further improve the approximation xj and its
integral, as specified by the following algorithm.

Step 0. (Initialization)
Fix a positive constant εtot, which represents the desired maximum error on the inte-
gral of xj (or total worst case error in the estimate of xj itself). Create a list of evaluation
points, which initially contains the two endpoints 0 and T, and the corresponding
list of function values xj(0), xj(T). Calculate the area A(0, T) of parallelogram P0,T
by means of (20) and initialize a list of parallelograms’ areas.

Step 1. (New evaluation)
Locate the parallelogram having the largest area, and the corresponding interval, say
[t1, t2] (at the first step, [t1, t2] coincides with the whole interval [0, T]). Add the new
evaluation point p = (t1 + t2)/2, and update the lists of points and function values
accordingly. Compute the two Lipschitz constants in the intervals [t1, p] and [p, t2].
Update the parallelograms’ areas list by removing the area of parallelogram Pt1,t2 and
inserting the areas of the two new parallelograms Pt1,p and Pp,t2 .

Step 2. (Stopping rule)
Compute the worst case error Etot over the interval [0, T]:

Etot = (sum of the areas of all parallelograms) /2.

If Etot ≤ εtot, then stop the procedure, otherwise go to Step 1.

At the k-th iteration of the algorithm, we thus have divided the interval [0, T] with
k + 2 points, which we reorder as {t1 = 0, t2, . . . , tk+1, tk+2 = T}, and we denote with Λi
the estimate of the Lipschitz constant of xj in [ti, ti+1]. The bounding functions in [ti, ti+1]
are then given by:

Xu
j (t)|[ti ,ti+1]

= min
t∈[ti ,ti+1]

{
xj(ti) + Λi(t− ti), xj(ti+1)−Λi(t− ti+1)

}
,

Xl
j(t)|[ti ,ti+1]

= max
t∈[ti ,ti+1]

{
xj(ti)−Λi(t− ti), xj(ti+1) + Λi(t− ti+1)

}
.

In the next result, we provide a complexity analysis of the algorithm.

Theorem 4. After k iterations of the algorithm, the worst case error Etot is, at most, equal to

E0

2blog2(k+1)c , (21)

where

E0 =
Λ2T2 − (xj(0)− xj(T))2

4Λ
is the worst case error before the algorithm starts. Therefore, the algorithm stops after at most
d2E0/εtote iterations.

Proof. At each iteration, we need to compute the two new estimates of the Lipschitz
constant in the intervals [t1, p] and [p, t2]. Such estimates are less than or equal to the
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Lipschitz estimate Λ in the interval [0, T]. Since the area of each parallelogram given by
Formula (20) (and thus the error on the integral) is an increasing function of Λ, the worst
case occurs when the two estimates coincide with Λ. Hence, the worst case complexity
analysis of the algorithm reduces to that of the algorithm where the Lipschitz estimate is
not updated at any iteration. Therefore, following the same argument as in [13], we can
prove the inequality

Ak
A0
≤ 1

2i , (22)

where Ak denotes the sum of the areas of all parallelograms generated by the algorithm
after k iterations, A0 is the area of the parallelogram before the algorithm starts, and i is
the integer such that 2i ≤ k + 1 < 2i+1. Since the worst case error Etot after k iterations
is Etot = Ak/2, E0 = A0/2, and i = blog2(k + 1)c, we obtain the following inequality
from (22):

Etot =
Ak
2
≤ A0/2

2i =
E0

2blog2(k+1)c ,

thus (21) holds.
If we denote k̄ = d2E0/εtote, then

k̄ + 1 >

⌈
2E0

εtot

⌉
≥ 2E0

εtot
,

thus, we obtain

εtot >
2E0

k̄ + 1
=

E0

2log2(k̄+1)−1
≥ E0

2blog2(k̄+1)c ,

hence (21) guarantees that the worst case error after k̄ iterations is less than εtot; that is, the
algorithm stops after at most k̄ iterations.

4. Application to Parametric Network Games

The theoretical results proved in Section 2 and the approximation algorithm described
in Section 3 can be applied to any parametric VI in the form (1). It is well known that
parametric VIs in the form (1) can be viewed as the dynamic equilibrium models, in the
case where the problem data depend on a time parameter t. Several applications of these
models have been studied in recent years (see, e.g., [26,27] and references therein). On
the other hand, network games are an interesting class of non-cooperative games with
an underlying network structure, which can be modeled through VIs [24]. A number of
applications of network games have been analyzed in the literature, from social networks
to juvenile delinquency (see, e.g., [20,21] and references therein).

In this section, we apply the results of Sections 2 and 3 to a class of parametric
network games, which can be modeled as parametric VIs in the form (1), where both the
players’ utility functions and their strategy sets depend on a time parameter. Specifically,
in Section 4.1, a brief recall of Graph Theory and Game Theory concepts is given together
with the definition of parametric network games. Then, we focus on the linear-quadratic
model, both in the framework of the network Nash equilibrium problem (Section 4.2) and
the network generalized Nash equilibrium problem (Section 4.3).

4.1. Basics of Network Games

We begin with a recapitulation of foundational Graph Theory concepts. We define a
graph g as a pair of sets (V, E), where V represents the set of nodes, while E represents the
set of arcs composed of pairs of nodes (v, w). Arcs sharing identical terminal nodes are
categorized as parallel arcs, while arcs in the form of (v, v) are designated as loops. For the
context at hand, we exclusively consider simple graphs, which are characterized by the
absence of both parallel arcs and loops. Within our framework, the players are represented
by the n nodes of the graph. Furthermore, we operate within the framework of undirected
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graphs, wherein arcs (v, w) and (w, v) are considered equivalent. Two nodes v and w are
adjacent if they are connected by the arc (v, w). The information regarding the adjacency of
nodes can be stored in the form of the adjacency matrix G, where the elements gij assume a
value of 1 when (vi, vj) is an arc and 0 otherwise. Notice that matrix G is symmetric and
with diagonal elements equal to 0. For a specific node v, the nodes that share a direct link
with it through arcs are referred to as the neighbors of v. These neighbors are collated
within the set Nv(g). The cardinality of Nv(g) is the degree of v.

A walk is defined as a sequence v0, e1, v1, e2, . . . , vk comprising both graph nodes vi
and graph edges ei, for any 1 ≤ i ≤ k, where the arc ei has endpoints vi−1 and vi. Notice
that within a walk, the possibility of revisiting a node or traversing an arc multiple times is
permitted. The length of a walk is equal to the number of its arcs. The indirect connections
between any two nodes within the graph are described through the utilization of the
powers of the adjacency matrix G. Indeed, it can be proved that the element g[k]ij of Gk

provides the number of walks of length k between the nodes vi and vj.
We now recall some concepts of Game Theory, which will then be adapted to our

specific framework. A strategic game (in normal form) is a model of interaction among
decision makers, which are usually called players. Each player has to make a choice among
various possible actions, but the outcome of her choice also depends on the choice made by
the other players. The elements of the game are:

• A set of n players;
• A set Ai, for each player i ∈ {1, . . . , n}, called the strategy (or action) set of player i;

each element (x1, x2, . . . , xn) ∈ A := A1 × A2 × . . .× An is called a strategy profile;
• For each player i ∈ {1, . . . , n}, a set of preferences, according to which they can order

the various profiles;
• For each player i ∈ {1, . . . , n}, a utility (or payoff) function, ui : A→ R, which repre-

sents their preferences such that to higher values there correspond better outcomes.
Let us notice that the utility function of player i does not merely depend on xi, but on
the whole strategy profile x = (x1, x2, . . . , xn); that is, the interaction with the other
players cannot be neglected in their decision processes.

In the case of more than two players, it is important to distinguish the action of player i
from the action of all the other players. To this end, we will use the notation x−i to denote
the subvector (x1, . . . , xi−1, xi+1, . . . , xn), and write x = (xi, x−i) = (x1, . . . , xn). Since each
player i wishes to maximize their utility, and only controls her action variable xi, a useful
solution concept is that of Nash equilibrium of the game.

Definition 4. A Nash equilibrium is a vector x∗ ∈ A such that:

ui(x∗i , x∗−i) ≥ ui(xi, x∗−i), ∀ i ∈ {1, . . . , n}, ∀ xi ∈ Ai. (23)

The interested reader can find a comprehensive theoretical treatment of Game Theory
in the book [28], along with various applications.

We now adapt the above concepts to our parametric network problem and, for simplic-
ity, still denote the set of players by {1, 2, . . . , n} instead of {v1, v2, . . . , vn}. Thus, consider
an interval [0, T], and for each t ∈ [0, T], denote with Ai(t) ⊂ R the parametric strategy
space of player i, while A(t) = A1(t)× · · · × An(t) is called the parametric space of action
profiles. Each player i is endowed with a payoff function ui : [0, T] × A(t) → R that
he/she wishes to maximize. The notation ui(t, x, G) is often utilized when one wants to
emphasize the dependence on the graph structure. We wish to find a Nash equilibrium of
the parametric game; that is, for each t ∈ [0, T], we seek an element x∗(t) ∈ A(t) such that
for each i ∈ {1, . . . , n}:

ui(t, x∗i (t), x∗−i(t)) ≥ ui(t, xi, x∗−i(t)), ∀ xi ∈ Ai(t). (24)
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A characteristic of network games is that the vector x−i is only made up of components
xj such that j ∈ Ni(g); that is, j is a neighbor of i. For modeling purposes, and also for
simplifying the analysis, it is common to make further assumptions on how variations in
the actions of a player’s neighbors affect her marginal utility. We assume that the type of
interaction does not change in [0, T] and, in the case where ui(t, ·) ∈ C2(Rn), we obtain the
following definitions.

Definition 5. We say that the network game has the property of strategic substitutes if for each
player i the following condition holds:

∂2ui(t, xi, x−i)

∂xj∂xi
< 0, ∀(i, j) : gij = 1, ∀ t ∈ [0, T], ∀ x ∈ A(t).

Definition 6. We say that the network game has the property of strategic complements if for each
player i the following condition holds:

∂2ui(t, xi, x−i)

∂xj∂xi
> 0, ∀(i, j) : gij = 1, ∀ t ∈ [0, T], ∀ x ∈ A(t).

We will use the variational inequality approach, pioneered by [23] (in the non-paramet-
ric case), to solve Nash equilibrium problems. If, for each t ∈ [0, T], the ui are continuously
differentiable functions on Rn, and ui(t, ·, x−i) are concave, the Nash equilibrium problem
is equivalent to the variational inequality VI(F, A(t)):

For each t ∈ [0, T], find x∗(t) ∈ A(t) such that

〈F(t, x∗(t)), x− x∗(t)〉 ≥ 0, ∀ x ∈ A(t), (25)

where

[F(t, x)]> := −
(

∂u1

∂x1
(t, x), . . . ,

∂un

∂an
(t, x)

)
(26)

is also called the pseudo-gradient of the game, according to the terminology introduced by
Rosen [29].

In the following subsection, we introduce the parametric linear-quadratic utility func-
tions, which will be used both for the Nash equilibrium problem and the generalized Nash
equilibrium problem. This simple functional form as been extensively used in the literature
(see, e.g, [20]) because, in the case on non-negative strategy space, it allows solutions in
closed form. We consider instead the case where the strategy space of each player has a
(parameter-dependent) upper bound.

4.2. The Linear-Quadratic Network Nash Equilibrium Problem

Let Ai(t) = [0, Ui(t)] for any i ∈ {1, . . . , n}, t ∈ [0, T], where, for each i, Ui(t) is a
positive and Lipschitz continuous function on [0, T]. The payoff of player i is given by:

ui(t, x) = k(t)xi −
1
2

x2
i + φ

n

∑
j=1

gijxixj, (27)

In this model k : [0, T]→ R is a positive Lipschitz function, and φ > 0 describes the
interaction between a player and their neighbors, which corresponds to the case of strategic
complements. Moreover, since k(t) is the same for all players, they only differ because of
their position in the network. The pseudo-gradient’s components are given by:

Fi(t, x) = −k(t) + xi − φ
n

∑
j=1

gijxj, i ∈ {1, . . . , n}, (28)
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which can be written in compact form as:

F(t, x) = (I − φG)x− k(t)1,

where 1 = (1, . . . , 1)> ∈ Rn. We will seek Nash equilibrium points by solving the varia-
tional inequality: for each t ∈ [0, T], find x∗(t) ∈ A(t) such that

〈(I − φG)x∗(t)− k(t)1, x− x∗(t)〉 ≥ 0, ∀ x ∈ A(t). (29)

Lemma 1. F is uniformly strongly monotone if φρ(G) < 1, where ρ(G) is the spectral radius
of G.

Proof. The symmetric matrix I − φG is positive definite if and only if its minimum eigen-
value λmin(I − φG) is positive. On the other hand, λmin(I − φG) = 1− φλmax(G). Since
G is a symmetric non-negative matrix, the Perron–Frobenius Theorem guarantees that
λmax(G) = ρ(G), hence I − φG is positive definite if and only if φρ(G) < 1. This condition
does not depend on t ∈ [0, T].

Notice that, when φρ(G) < 1, the map F in (28) satisfies the assumptions of Theorems 2
and 3 with constants α = 1 − φρ(G), Lx = ‖I − φG‖2, Lt = Lk

√
n, where Lk is the

Lipschitz constant of k(t), and L = max{Lx, Lt}. Moreover, the feasible region A(t) satisfies
assumption (3) with constant M = ‖(L1, . . . , Ln)‖2, where Li is the Lipschitz constant of
Ui(t) for any i = 1, . . . , n (see [11]). Therefore, it follows from Theorems 2 and 3 that the
Nash equilibrium x∗(t) is a Lipschitz continuous function with estimated constant equal to
min{Λ1, Λ2}.

Remark 1. The game under consideration also falls, for each t ∈ [0, T], in the class of potential
games according to the definition introduced by Monderer and Shapley [30]. Indeed, a potential
function is given by:

P(t, x) =
n

∑
i=1

ui(t, x)− φ

2

n

∑
i=1

n

∑
j=1

gijxixj. (30)

Monderer and Shapley have proven that, in general, the solutions of the problem

max
x∈A(t)

P(t, x)

form a subset of the solution set of the Nash game. Because both problems have a unique solution
under the condition φρ(G) < 1, it follows that the two problems share the same solution.

4.3. The Linear-Quadratic Network Generalized Nash Equilibrium Problem

We start this subsection with a recall of generalized Nash equilibrium problems
(GNEPs) with shared constraints and their variational solutions. More details can be found
in the already-mentioned paper by Rosen, and in the more recent papers [31–38]. We
directly introduce the parametric case, and all the following definitions and properties hold
for any fixed t ∈ [0, T].

In GNEPs, the strategy set of each player is dependent on the strategies of their rivals.
In this context, we examine a simplified scenario where the variable x is constrained to
be non-negative (x ≥ 0). Moreover, we consider a function g : [0, T]×Rn → Rm, which
characterizes the collective constraints shared among the players. For each t, and for each
move x−i of the other players, the strategy set of player i is then given by:

Ki(t, x−i) = {xi ∈ R+ : g(t, x) = g(t, xi, x−i) ≤ 0}.
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Definition 7. The GNEP is the problem of finding, for each t ∈ [0, T], x∗(t) ∈ Rn such that,
for any i ∈ {1, . . . , n}, x∗i (t) ∈ Ki(t, x∗−i(t)) and

ui(t, x∗i (t), x∗−i(t)) ≥ ui(xi, x∗−i(t)), ∀ t ∈ [0, T], ∀ xi ∈ Ki(t, x∗−i(t)). (31)

We assume that that, for each fixed t ∈ [0, T], xi ∈ Ki(t, x∗−i), the functions ui(t, ·, x−i)
are concave and continuously differentiable, and the components of g(t, ·) are convex and
continuously differentiable. As a consequence, a necessary and sufficient condition for
x∗i (t) ∈ Ki(t, x∗−i) to satisfy (31) is

−
∂ui(t, x∗i (t), x∗−i(t))

∂xi
(xi − x∗i (t)) ≥ 0, ∀t ∈ [0, T], ∀ xi ∈ Ki(t, x∗−i(t)). (32)

Thus, if we define F(t, x) as in (26), and

K(t, x) = K1(t, x−1)× · · · × Kn(t, x−n),

it follows that x∗(t) is a GNE if and only if, ∀t ∈ [0, T], x∗(t) ∈ K(t, x∗(t)) and

〈F(t, x∗(t)), x− x∗(t)〉 ≥ 0, ∀ x ∈ K(t, x∗(t)). (33)

The above problem, where the feasible set also depends on the solution, is called a
quasi-variational inequality (with parameter t), and its solution is as difficult as the original
GNEP. Let us now remark that even if the strict monotonicity assumption on F is satisfied
for each t, the above problem (equivalent to the original GNEP) has infinite solutions. We
can select a specific solution by studying its Lagrange multipliers.

Thus, assume that, for each t ∈ [0, T], x∗(t) is a solution of GNEP. Hence, for each i,
x∗i (t) solves the maximization problem

max
xi
{ui(t, xi, x∗−i(t)) : g(t, xi, x∗−i(t)) ≤ 0, xi ≥ 0}.

Under some standard constraint qualification, we can then write the KKT conditions
for each maximization problem. We then introduce the Lagrange multiplier λi(t) ∈ Rm

associated with the constraint g(t, xi, x∗−i) ≤ 0 and the multiplier µi(t) ∈ R associated with
the nonnegativity constraint xi ≥ 0. The Lagrangian function for each player i reads as:

Li(t, xi, x∗−i(t), λi(t), µi(t)) = ui(t, xi, x∗−i(t))− 〈g(t, xi, x∗−i(t)), λi(t)〉+ µi(t)xi

and the KKT conditions for all players are given by:

∇xi Li(t, x∗i (t), x∗−i(t), λi∗(t), µ∗i (t)) = 0, i = 1, . . . , n, (34)

λi∗
j (t)gj(t, x∗(t)) = 0, λi∗

j (t) ≥ 0, gj(t, x∗(t)) ≤ 0, i = 1, . . . , n, j = 1, . . . , m (35)

µ∗i (t)x∗i (t) = 0, µ∗i (t) ≥ 0, x∗i (t) ≥ 0, i = 1, . . . , n. (36)

Conversely, under the assumptions made, if, for any fixed t, (x∗(t), λ(t), µ∗(t)), where
λ∗(t) = (λ1∗(t), . . . , λn∗(t)) and µ∗(t) = (µ∗1(t), . . . , µ∗n(t)), satisfy the KKT system (34)–(36),
then x∗(t) is a GNE. We are now in position to classify equilibria.

Definition 8. Let x∗(t) be a GNE which, together with the Lagrange multipliers
λ∗(t) = (λ1∗(t), . . . , λn∗(t)) and µ∗(t) = (µ∗1(t), . . . , µ∗n(t)), satisfies the KKT system of all
players. We call x∗(t) a normalized equilibrium if there exists a vector r(t) ∈ Rn

++ and a vector
λ̄(t) ∈ Rm

+ such that

λi∗(t) =
λ̄(t)
ri(t)

, ∀ i = 1, . . . , n,
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which means that, for a normalized equilibrium, the multipliers of the constraints shared by all
players are proportional to a common multiplier. In the special case where, for some t, ri(t) = 1 for
any i, i.e., the multipliers coincide for each player, x∗(t) is called variational equilibrium (VE).
Rosen [29] proved that if the feasible set, which in our case is:

K(t) = {x ∈ Rn
+ : g(t, x) ≤ 0}

is compact and convex, then there exists a normalized equilibrium for each r(t) ∈ Rn
++.

Now, let us define, for each r(t) ∈ Rn
++, the vector function Fr(t) : Rn → Rn as follows:

[Fr(t)(t, x)]> := −
(

r1(t)
∂u1

∂x1
(t, x), . . . , rn(t)

∂un

∂xn
(t, x)

)
.

The variational inequality approach for finding the normalized equilibria of the GNEP
is expressed by the following theorem, which can be viewed as a special case of Proposition
3.2 in [34] in a parametric setting.

Theorem 5.

1. Suppose that x∗(t) is a solution of VI(Fr(t), K(t)), where r(t) ∈ Rn
++, a constraint qualifi-

cation holds at x∗(t) and (λ̄(t), µ̄(t)) ∈ Rm ×Rn are the multipliers associated with x∗(t).
Then, x∗(t) is a normalized equilibrium such that the multipliers (λi∗(t), µ∗i (t)) of each
player i satisfy the following conditions:

λi∗(t) =
λ̄(t)
ri(t)

, µ∗i (t) =
µ̄i(t)
ri(t)

, ∀ i = 1, . . . , n.

2. If x∗(t) is a normalized equilibrium such that the multipliers (λi∗(t), µ∗i (t)) of each player i
satisfy the following conditions:

λi∗(t) =
λ̄(t)
ri(t)

, ∀ i = 1, . . . , n,

for some vector λ̄(t) ∈ Rm
+ and r(t) ∈ Rn

++, then x∗(t) is a solution of VI(Fr(t), K(t)) and
(λ̄(t), r1(t)µ∗1(t), . . . , rn(t)µ∗n(t)) are the corresponding multipliers.

The variational equilibria can then be computed by solving, for any t ∈ [0, T], the fol-
lowing variational inequality: find x∗(t) ∈ K(t) such that

〈F(t, x∗(t)), x− x∗(t)〉 ≥ 0, ∀ x ∈ K(t). (37)

As an example of network GNEP, we consider the same payoff functions defined as
in (27), while the strategy set of player i is given by the usual individual constraint xi ≥ 0
and an additional constraint, shared by all the players, on the total quantity of activities of
all players, that is

Ki(t, x−i) =

{
xi ∈ R+ :

n

∑
i=1

xi ≤ C(t)

}
, i = 1, . . . , n, t ∈ [0, T],

where C : [0, T] → R is a given positive and Lipschitz continuous function. Depending
on the specific application, the additional constraint can have the meaning of a collective
budget upper bound or of a limited availability of a certain commodity. If φρ(G) < 1, then
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the variational equilibrium can thus be found by solving VI(F, K(t)), where F is the same
as in (28) and

K(t) =

{
x ∈ Rn

+ :
n

∑
i=1

xi ≤ C(t)

}
. (38)

Notice that K(t) satisfies Assumption (3), with constant M equal to the Lipschitz
constant of the function C (see [11]). Therefore, Theorems 2 and 3 guarantee that the
variational equilibrium x∗(t) is a Lipschitz continuous function with estimated constant
equal to min{Λ1, Λ2}.

5. Numerical Experiments

In this section, some numerical experiments show the performance of the algorithm
described in Section 3 based on the new Lipschitz estimates provided in Section 2.

First, we compare the new Lipschitz estimate Λ1 provided in Theorem 2 with that
provided in [12] from the numerical point of view on a set of sample parameters. Then, we
compare the performance of the algorithm described in Section 3 based on the Lipschitz
estimate used. The algorithm and the computation of Lipschitz estimates were implemented
in MATLAB R2023a.

5.1. Comparison between Λ1 and the Estimate in [12]

Under the same assumptions of Theorem 2, the authors in [12] proved that the solution
x(t) of the VI(F, K(t)) is Lipschitz continuous with a constant equal to

Λ0 = inf
(ε,λ)


M +

√
λ2 + λ

ε
+ λ2

1−
√

1 + λ2(1 + ε)− λ(2α̃− ε)
: 0 < ε < 2α̃, 0 < λ(1 + ε) + ε < 2α̃

, (39)

where α̃ = α/L. Since it is not easy to write the estimates Λ0 and Λ1 in closed form, we
decided to compare them numerically. We considered the following grid for the parameters
(α̃, M): α̃ varies from 0.01 to 1 with a step equal to 0.01, while M varies from 0 to 10
with step equal to 0.01. For any value of (α̃, M) in the considered grid, we computed the
values of Λ0 and Λ1: the minimum value in Λ0 was numerically approximated (due to the
non-convexity of the objective function and constraints), while the minimum value in Λ1
was computed by exploiting the MATLAB function fminbnd. The results show that the
new estimate Λ1 definitely improves Λ0. In fact, Λ1 is always less than Λ0 and the relative
improvement in Λ1 compared to Λ0, i.e., (Λ0 −Λ1)/Λ0, is about 42% on average with a
minimum of 13% and a maximum of 99%.

5.2. Performance of the Algorithm

We now show the performance of the algorithm described in Section 3 to solve a
linear-quadratic network Nash equilibrium problem (Example 1) and a linear-quadratic
network GNEP (Example 2). We implemented three different versions of the algorithm
according to the Lipschitz estimate used. We considered the estimate Λ0 provided in [12],
and the new estimates Λ1 and Λ2 introduced in Theorems 2 and 3, respectively.

Example 1. We consider a linear-quadratic network Nash equilibrium problem as in the framework
of Section 4.2, with a network of 8 nodes (players) as shown in Figure 2.
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Figure 2. Network topology of Example 1.

The spectral radius of the adjacency matrix G is ρ(G) ' 3.1019. We set the function
k(t) = t + 5, with t ∈ [0, 15]. We set two different values for parameter φ: φ = 0.1/ρ(G) or
φ = 0.5/ρ(G), so that there exists a unique Nash equilibrium in both cases. We set the upper
bounds Ui(t) = min{2i + (t + 5)/2, 18} for any i = 1, . . . , 8. We recall that the map F in (28)
satisfies the assumptions of Theorems 2 and 3 with constants α = 1− φρ(G), Lx = ‖I − φG‖2,
Lt =

√
8, L = max{Lx, Lt}, and the feasible region

A(t) =
8

∏
i=1

[0, Ui(t)]

satisfies Assumption (3) with constant M = ‖(L1, . . . , L8)‖2, where Li is the Lipschitz constant of
the function Ui for any i = 1, . . . , 8. We run the algorithm to approximate the fifth component of
the solution vector x(t), due to the special position of the player 5 in the network. To evaluate the
function x5(t) during the execution of the algorithm, i.e., to find Nash equilibria of the problem, we
exploited the ad hoc algorithm proposed in [39].

Table 2 shows the number of iterations performed (or Nash equilibria computed) by the three
versions of the algorithm (based on the estimates Λ0, Λ1 and Λ2) for different values of φ and the
error tolerance εtot. We set the maximum number of iterations equal to 106. Results show that the
algorithm based on the estimate Λ2 outperforms the other two versions based on the estimates Λ0
and Λ1. Table 3 shows the convergence of the approximate mean value of x5(t) (computed by the
algorithm based on Λ2) for different values of φ.

Table 2. Example 1 with a moving feasible region: number of iterations of the algorithm based on the
Lipschitz estimate used.

φ = 0.1/ρ(G) φ = 0.5/ρ(G)

εtot Alg with Λ0 Alg with Λ1 Alg with Λ2 Alg with Λ0 Alg with Λ1 Alg with Λ2

1 5107 1799 640 15,383 5246 1714
0.5 10,213 3597 1277 30,765 10,490 3426
0.2 26,069 8554 3260 78,858 26,431 7995
0.1 52,136 17,107 6518 157,715 52,860 15,989
0.05 104,270 34,212 13,034 315,428 105,719 31,977
0.02 246,321 92,250 30,788 815,228 249,976 85,721
0.01 492,640 184,499 61,575 >1 × 106 499,950 171,441

Lipschitz
estimate Λ0 = 88.46 Λ1 = 33.18 Λ2 = 11.18 Λ0 = 276.49 Λ1 = 96.82 Λ2 = 30.31
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Table 3. Example 1 with a moving feasible region: approximate mean value of x5(t).

εtot φ = 0.1/ρ(G) φ = 0.5/ρ(G)

1 13.0189685363 15.2238272767
0.5 13.0189711251 15.2238276377
0.2 13.0189724192 15.2238277070
0.1 13.0189727295 15.2238277328

0.05 13.0189728137 15.2238277376
0.02 13.0189728309 15.2238277386
0.01 13.0189728372 15.2238277390

Moreover, we run the algorithm to solve the problem in the case the feasible region A(t)
is constant, with Ui(t) = 18 for any t and i = 1, . . . , 8, and the map F is the same as before.
Tables 4 and 5 show the number of iterations of the algorithm and the approximate mean value of
x5(t), respectively. Notice that, in this case, the Lipschitz estimates Λ1 and Λ2 coincide, since
L = Lt and the algorithm based on such an estimate is much more efficient than the one based on
Λ0.

Table 4. Example 1 with a constant feasible region: number of iterations of the algorithm based on
the Lipschitz estimate used.

φ = 0.1/ρ(G) φ = 0.5/ρ(G)

εtot Alg with Λ0 Alg with Λ1 Alg with Λ2 Alg with Λ0 Alg with Λ1 Alg with Λ2

1 2835 179 179 7985 343 343
0.5 5668 357 357 15,968 684 684
0.2 13,983 881 881 43,207 1701 1701
0.1 27,965 1760 1760 86,413 3401 3401
0.05 55,928 3519 3519 172,824 6800 6800
0.02 128,807 8111 8111 433,801 15,862 15,862
0.01 257,613 16,220 16,220 867,601 31,722 31,722

Lipschitz
estimate Λ0 = 45.07 Λ1 = 3.14 Λ2 = 3.14 Λ0 = 138.59 Λ1 = 5.66 Λ2 = 5.66

Table 5. Example 1 with a constant feasible region: approximate mean value of x5(t).

εtot φ = 0.1/ρ(G) φ = 0.5/ρ(G)

1 13.0336960026 15.9007292403
0.5 13.0337000695 15.9007436640
0.2 13.0337020507 15.9007521737
0.1 13.0337029357 15.9007529259

0.05 13.0337033781 15.9007531658
0.02 13.0337033949 15.9007532022
0.01 13.0337034020 15.9007532066

Example 2. We now consider a linear-quadratic network generalized Nash equilibrium problem,
as in the framework of Section 4.3. We assume that the player network is the same as Example 1. We
set the function k(t) = t + 5, with t ∈ [0, 15], φ = 0.1/ρ(G) or φ = 0.5/ρ(G), and K(t) defined
as in (38) with C(t) = min{13+ t, 18}. The map F in (28) satisfies the assumptions of Theorems 2
and 3 with constants α = 1− φρ(G), Lx = ‖I − φG‖2, Lt =

√
8, L = max{Lx, Lt}, and the

feasible region satisfies assumption (3) with constant M = 1. In order to find the unique variational
equilibrium x(t) of the problem, we found the maximizer of the potential function (30) by means of
the MATLAB function quadprog. As in Example 1, we run the algorithm to approximate the fifth
component of the solution vector x(t).

Table 6 shows the number of iterations performed by the three versions of the algorithm (based
on the estimates Λ0, Λ1 and Λ2) for different values of φ and εtot. Results show again that the
algorithm based on the estimate Λ2 outperforms the other two versions based on the estimates Λ0
and Λ1. Table 7 shows the convergence of the approximate mean value of x5(t) for different values
of φ.



Algorithms 2023, 16, 458 23 of 27

Table 6. Example 2 with a moving feasible region: number of iterations of the algorithm based on the
Lipschitz estimate used.

φ = 0.1/ρ(G) φ = 0.5/ρ(G)

εtot Alg with Λ0 Alg with Λ1 Alg with Λ2 Alg with Λ0 Alg with Λ1 Alg with Λ2

1 3353 497 302 10,118 1210 637
0.5 6703 992 602 20,233 2419 1272
0.2 16,053 2498 1438 51,723 6282 3222
0.1 32,104 4994 2875 103,444 12,561 6441
0.05 64,206 9986 5747 206,886 25,120 12,880
0.02 163,601 25,447 15,288 501,923 60,264 33,256
0.01 327,200 50,892 30,574 >1 × 106 120,525 66,511

Lipschitz
estimate Λ0 = 79.14 Λ1 = 26.80 Λ2 = 9.93 Λ0 = 246.59 Λ1 = 76.16 Λ2 = 25.65

Table 7. Example 1 with a moving feasible region: approximate mean value of x5(t).

εtot φ = 0.1/ρ(G) φ = 0.5/ρ(G)

1 2.0960942274 1.9169266928
0.5 2.0960948096 1.9169268259
0.2 2.0960949552 1.9169268675
0.1 2.0960949916 1.9169268696

0.05 2.0960950007 1.9169268701
0.02 2.0960950030 1.9169268702
0.01 2.0960950035 1.9169268703

Similarly to Example 1, Table 8 and 9 show the number of iterations of the algorithm and the
approximate mean value of x5(t) in the case where the feasible region K(t) is constant, with C(t) =
18 for any t, and the map F is the same as before.

Table 8. Example 2 with a constant feasible region: number of iterations of the algorithm based on
the Lipschitz estimate used.

φ = 0.1/ρ(G) φ = 0.5/ρ(G)

εtot Alg with Λ0 Alg with Λ1 Alg with Λ2 Alg with Λ0 Alg with Λ1 Alg with Λ2

1 2836 200 200 7985 358 358
0.5 5671 399 399 15,969 714 714
0.2 13,988 944 944 43,210 1755 1755
0.1 27,975 1887 1887 86,419 3509 3509
0.05 55,948 3773 3773 172,837 7017 7017
0.02 128,837 9392 9392 433,825 16,141 16,141
0.01 257,673 18,783 18,783 867,648 32,281 32,281

Lipschitz
estimate Λ0 = 45.07 Λ1 = 3.14 Λ2 = 3.14 Λ0 = 138.59 Λ1 = 5.66 Λ2 = 5.66

Table 9. Example 2 with a constant feasible region: approximate mean value of x5(t).

εtot φ = 0.1/ρ(G) φ = 0.5/ρ(G)

1 2.197847188363 2.009981572725
0.5 2.197847188363 2.009981572725
0.2 2.197847188363 2.009981572725
0.1 2.197847188363 2.009981572725

0.05 2.197847188363 2.009981572725
0.02 2.197847188363 2.009981572725
0.01 2.197847188364 2.009981572727

6. Conclusions

In this paper, we improved previous estimates of the global Lipschitz constant of the
unique solution of a parametric variational inequality. Having in mind various applications
where the parameter represents time, we utilized the estimated constant to approximate the
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mean value of the solution by modifying an algorithm previously derived to approximate
black box Lipschitz functions. We then applied our results to two class of games played
on networks, where we assumed that some terms of the players’ utility functions as well
as the constraint set could vary with time. In future work, we plan to investigate the case
where also the adjacency matrix of the graph is time-dependent.
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Appendix A

Appendix A.1. Special Case α̃ = 1 in Theorem 2.

The function
f (z) =

M
z

+
1 + z
1− z

is strictly convex in (0, 1) and

f ′(z) =
2z2 −Mz2 + 2Mz−M

z2(1− z)2 .

If M = 0, then infz∈(0,1) f (z) = 1. If M > 0, then the minimizer of f is

z̄ =


−M+

√
2M

2−M if M < 2,
1
2 if M = 2,
M−
√

2M
M−2 if M > 2.

Therefore, we have

inf
z∈(0,1)

f (z) =


7 if M = 2,

M√
2M−M
2−M

+
1+
√

2M−M
2−M

1−
√

2M−M
2−M

if M 6= 2,

=

{
7 if M = 2,
1 + M + 2

√
2M if M 6= 2,

= 1 + M + 2
√

2M.

The function

f (z) =
M

2− z
+

z(1 + z)
(z− 1)(2− z)

=
z2 + z(M + 1)−M
−z2 + 3z− 2

is strictly convex in (1, 2) and

f ′(z) =
(4 + M)z2 − 2z(M + 2) + M− 2

(−z2 + 3z− 2)2 .
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Thus, the minimum is reached in

z̄ =
M + 2 +

√
2M + 12

M + 4
,

which belongs to the interval (1, 2). Therefore, we have

inf
z∈(1,2)

f (z) =
4M + 24 + (M2 + 7M + 8)

√
2M + 12

(M + 8)
√

2M + 12− 4M− 24

=

√
8
√

M + 6 + M2 + 7M + 8
M + 8−

√
8
√

M + 6

=
M2 + 7M + 8 + 2

√
2M + 12

M + 8− 2
√

2M + 12
.

Appendix A.2. Special Case α̃ = 1 in Theorem 3.

The function
f (z) =

M
z

+ L̂
1 + z
1− z

is strictly convex in (0, 1) and

f ′(z) =
2Lz2 −M(1− z)2

z2(1− z)2 .

If M = 0, then infz∈(0,1) f (z) = L̂. If M > 0, then the minimizer of f is

z̄ =


−M+

√
2L̂M

2L̂−M
if 2L̂−M > 0,

−M+
√

2L̂M
2L̂−M

if 2L̂−M < 0,
1
2 if 2L̂−M = 0.

Therefore, we have

inf
z∈(0,1)

f (z) =


7L̂ if M = 2L̂,

M(2L̂−M=√
2L̂M−M

+ L̂
1+
√

2L̂M−M
2L̂−M

1−
√

2L̂M−M
2L̂−M

if M 6= 2L̂,

=

{
7L̂ if M = 2L̂,
M + 2

√
2L̂M + L̂ if M 6= 2L̂,

= M + 2
√

2L̂M + L̂.

The function

f (z) =
M

2− z
+ L̂

z(1 + z)
(z− 1)(2− z)

=
L̂z2 + z(M + L̂)−M
−z2 + 3z− 2

is strictly convex in (1, 2) and

f ′(z) =
(4L̂ + M)z2 − 2(2L̂ + M)z + M− 2L̂

(−z2 + 3z− 2)2 .

The minimum point is

z̄ =
M + 2L̂ +

√
2L̂M + 12L̂2

4L̂ + M
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which belongs to (1, 2). Moreover, after some algebra, we obtain:

inf
z∈(1,2)

f (z) =
(M2 + 7L̂M + 8L̂2)

√
12L̂2 + 2L̂M + 4ML̂2 + 24L̂3

(M + 8L̂)
√

12L̂2 + 2L̂M− 4L̂M− 24L̂2

=
M2 + 7L̂M + 8L̂2 + L̂

√
8L̂
√

M + 6L̂

M + 8L̂−
√

8L̂
√

M + 6L̂

=
M2 + 7ML̂ + 8L̂2 + 2L̂

√
2ML̂ + 12L̂2

M + 8L̂− 2
√

2ML̂ + 12L̂2
.
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