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ABSTRACT
The Edge Computing paradigm has emerged to address new re-

quirements in data processing. This approach enables the decen-

tralization of computation by bringing computing capabilities to

the edge of the network, i.e., close to the data sources, offering var-

ious benefits such as reduced latency and minimal network band-

width consumption. In this context, Function as a Service (FaaS)

emerges as a versatile and efficient solution, representing a specific

instantiation of the Serverless Computing model. FaaS provides a

scalable and reactive infrastructure that can be effectively applied

to Edge Computing. Given the limited resource capacity of Edge

nodes, appropriate load balancing is crucial. However, conducting

on-field testing of any designed solution for this purpose can be

arduous and time-consuming. This work addresses this challenge

by proposing a simulation-based framework to design and evaluate

load-management policies in decentralized FaaS environments. Ad-

ditionally, we validate and compare four different load-balancing

strategies, each characterized by varying degrees of complexity.

Our experimental campaign demonstrates the effectiveness of the

framework and our load-management methods across different

operational scenarios.

CCS CONCEPTS
• Computing methodologies→ Simulation evaluation;Ma-
chine learning; • Computer systems organization → Peer-to-
peer architectures.
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1 INTRODUCTION
The Function as a Service (FaaS) model and Serverless Computing

gained remarkable popularity in recent years, offering the most ap-

parent advantages to compute-intensive and bursty workloads [3].

Indeed, reusable services deployed as stateless event-driven con-

tainers offer great flexibility to complex application workflows,

since their execution can be triggered on demand and scaled to zero

to limit overspending. Albeit developed as a Cloud service model,

FaaS can be effectively extended to Edge Computing, enhancing

the cost-effectiveness and the responsiveness of applications [4],

and increasing resource utilization [1]. However, Edge systems are

characterized by distributed resources with widely heterogeneous

capacities in terms of computational and storage power. Exploiting

FaaS in this context is challenging [7, 11], due to dynamic traffic

patterns, limited resources availability, network-partition failures,

locality and performance requirements.

The Decentralized FaaS (DFaaS) architecture, as initially pro-

posed by Ciavotta et al. [6], partially addresses these needs by au-

tonomously balancing the traffic load across Edge nodes within fed-

erated Edge FaaS ecosystems. Utilizing a peer-to-peer (P2P) overlay

network, DFaaS facilitates information sharing among neighboring

nodes, focusing on network topology, expected latency of running

functions, and load states to determine the optimal redirection of

a portion of ingress FaaS execution requests to less loaded peers.

Developing efficient and effective load management strategies is

crucial in this context. However, implementing and comparing

alternative strategies across various scenarios is typically challeng-

ing. Hence, we propose an integrated framework that facilitates

simulation-based analysis and evaluation of load management al-

gorithms for decentralized FaaS environments. Note that, albeit

initially designed and developed to support DFaaS, the framework

we describe in this work is fundamentally agnostic to the specific

platform we consider. It can therefore be applied to simulate and

evaluate load-management algorithms implemented in any decen-

tralized FaaS environment.

The rest of the paper is organized as follows: Section 2 frames the

problem we tackle in this work and overviews the DFaaS system;

Section 3 describes the framework we propose and its main contri-

butions; Section 4 presents the four load-balancing algorithms we
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implemented; Section 5 includes the experimental validation of our

framework and of the proposed strategies; Section 6 overviews the

state of the art, and conclusions are finally drawn in Section 7.

2 PROBLEM STATEMENT
Applying the FaaS paradigm to Edge Computing holds promise as

it facilitates application deployment and ensures improved reac-

tivity, thereby enhancing response times. Sharing functions across

multiple applications enables finer and more precise management

of Service Level Agreements (SLAs), load balancing, and resource

utilization in the Edge nodes of the network [5]. However, the tra-

ditional FaaS model is not seamlessly applicable in an intrinsically

distributed and heterogeneous environment due to highly dynamic

traffic, often characterized by geographic components, variable net-

work topology, and limited resources at the Edge. Nodes need to be

federated into a larger network to effectively leverage intelligent

load-balancing strategies and benefit from shared computational

resources [7]. In the following, we recall the considered scenario

and related DFaaS platform architecture, which are our references

for the framework proposed in this paper.

High-level representations of the reference scenario and DFaaS

architecture are reported in Figure 1. A federation of geographically-

distributed FaaS-enabled Edge nodes is considered, denoted by the

set N , each devoted to the execution of serverless functions by

means of OpenFaaS [14]. Users send HTTP requests to the access

point they are connected to, and these are processed locally or

offloaded to neighboring nodes according to the current state and

the decisions taken by suitable load managers. As an example, node

1 in Figure 1a receives sequentially two requests, denoted as Req
1

and Req
2
, respectively; the first one is processed locally, but, as

soon as it is enqueued, the node terminates its available capacity,

so that Req
2
has to be forwarded to a different node 𝑛. Since also

node 𝑛 becomes overloaded after receiving the forwarded request

Fwd2, an incoming Req
3
is offloaded to node 2 by the load balancing

algorithm running in node 𝑛.

The DFaaS architecture (see Figure 1b) comprises three main

components: the proxy, implemented using HAProxy [9] and ex-

ecuted on each node to manage the arrival and distribution of

HTTP requests; the FaaS platform, based on OpenFaaS and respon-

sible for creating, executing, and managing functions; and identical,

independent agents running on each node. These agents imple-

ment distributed and federated control functionalities, monitoring

function- and node-level metrics (e.g., resource utilization), predict-

ing the incoming load and resource demand for different classes of

functions, and negotiating resources with neighboring nodes. In

particular, to facilitate advanced load distribution strategies, the

platform incorporates a mechanism to assess the impact of incom-

ing traffic on the resources utilized and the Quality of Service (QoS)

of deployed functions. This mechanism is achieved through perfor-

mance models based on Machine Learning (ML) and trained using

preliminary profiling of functions and nodes. Estimated metrics

encompass CPU and RAM utilization, power consumption, and

node state (i.e., overloaded or not). Presently deployed models also

estimate the 5th and 95th percentiles for the considered metrics.

(a) Reference scenario

(b) High-level architecture

Figure 1: DFaaS [6] platform

In this work, we assume that the Edge nodes controlled by DFaaS

can be categorized into three types characterized by different com-

puting capacities, which we denote as Light (N𝐿), Mid (N𝑀 ), and

High (N𝐻 ) respectively, so that we can write N𝐿 ∪N𝑀 ∪N𝐻 = N .

Functions are profiled and grouped according to observed re-

source utilization and Quality of Service (QoS); for the purposes

of this study, we consider functions as members of three distinct

classes denoted as low-usage (𝑙𝑢), mid-usage (𝑚𝑢), and high-usage
(ℎ𝑢), respectively. Hence, each node 𝑛 ∈ N is characterized by a set

F𝑛
of available functions, and each function belongs to a specific

group in G𝑛 ⊆ {𝑙𝑢,𝑚𝑢,ℎ𝑢}. Identifying the set F𝑛
for a given node

𝑛 is crucial for advanced load-balancing algorithms, which can of-

fload requests only to neighbors that share at least one function.

We denote these potential targets for request offloading, defining

their set as:

T𝑛 = {𝑞 ∈ N : ∃(𝑛, 𝑞) ∈ E ∧ F𝑞 ∩ F𝑛 ≠ ∅}, (1)

where E is the set of edges connecting nodes in the P2P network.

3 PROPOSED FRAMEWORK
This section describes the framework proposed to support the analy-

sis and evaluation of load-management algorithms in decentralized

FaaS environments, such as the one described in Section 2. The

open-source code for this framework is available on GitHub
1
. A

high-level component diagram is presented in Figure 2. Three main

components are identifiable, each managing a distinct phase of the

envisioned workflow for the framework. These components are:

• Instance generator: This component generates an instance of

the problem (network topology, node types, incoming load

per node) according to a provided configuration.

1
https://github.com/UNIMIBInside/dfaas/tree/main/framework

https://github.com/UNIMIBInside/dfaas/tree/main/framework
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Figure 2: High-level diagram of the framework

• Simulator: It provides the core functionality for creating and

executing distributed load management strategies. For each

simulated time instant, it executes the considered strategy for

each node and returns information about the per-function

load to be sent to the neighbors (see Section 4).

• Analyzer: For each tested strategy, this component computes

aggregate metrics such as the average success rate and the

percentage of rejected requests, enabling the evaluation and

comparison of the strategies’ performance.

Instance Generator, Simulator and Analyzer are supported by

some ancillary components, such as Configuration Manager and
Model. The former facilitates the execution of the experimental

campaign by automating the generation, execution, and assessment

of several simulation scenarios according to user-specified param-

eters, including the number of simulation steps to be considered,

the available nodes N per instance and the corresponding types,

and the list of functions F𝑛
and function classes G𝑛

for each node.

The latter provides an access point to retrieve the node-level metric

estimates (see Section 2) needed for advanced strategies.

Details about the main framework components are provided in

the following sections.

3.1 Instance Generator
This module supports the generation of a pseudo-random problem

instance based on a high-level description provided by the user,

including the number of Edge nodes to consider, the probability

of connection between two nodes, and the maximum percentage

of overloaded nodes. These three aspects significantly impact the

simulator’s performance. Instances characterized by a large number

of nodes require more processing time, while strongly connected

networks tend to favor intelligent load-management strategies, ben-

efiting from a larger number of neighboring nodes. Additionally,

if the percentage of overloaded nodes is too large, all algorithms

perform equally poorly because the load cannot be effectively dis-

tributed. A problem instance is generated by randomly creating: (i)

the set of Edge nodesN , (ii) the list of function classes G𝑛
, and (iii)

the list of functions F𝑛
that can be executed on each node 𝑛. It is

assumed that G𝑛
and F𝑛

remain fixed throughout the simulation.

Once these three steps are completed, the module generates

the incoming load 𝜆𝑛𝑔 (𝜏) for each 𝑛 ∈ N , for each function class

𝑔 ∈ G𝑛
and for each simulation step 𝜏 starting from a user-specified

maximum rate dictionary Λ. Each element {Λ𝜈
𝑔 }𝜈≡N𝐿,N𝑀 ,N𝐻

corre-

sponds to the maximum number of requests per second that can be

reached by functions belonging to the class 𝑔 when executed on the

various node types. This component is designed to be extensible and

accommodate various load patterns; however, the current version

implements a single triangular pattern 𝜆𝑛𝑔 (𝜏), where values close to
the maximum rate are reached at a time instant 𝜏 , referred to as the

peak time, occurring around the midpoint of the simulation. For a

specific node type 𝜈 , the load profile 𝜆𝑛𝑔 (𝜏) is defined as follows:

𝜆𝑛𝑔 (𝜏) =


Λ𝜈
𝑔 · 𝑟𝑎𝑛𝑑𝑜𝑚

(
𝜏
𝜏
, 𝜏+1

𝜏

)
Λ𝜈
𝑔 · 𝑟𝑎𝑛𝑑𝑜𝑚

(
𝑇−𝜏+1

𝜏
, 𝑇−𝜏

𝜏

)
,

(2)

where 𝑇 is the overall length of the simulation.

Note that directly using the values in Λ to determine the load

at peak time generates a worst-case scenario where all nodes are

simultaneously overloaded. Since no load-management strategy

can effectively cope with this situation, the component introduces a

preprocessing stage where the peak load values are tuned according

to the user-specified maximum number of overloaded nodes in each

instance. Finally, the 𝜆𝑛𝑔 (𝜏) profiles are used to determine the load

values for each function in class 𝑔, and the process terminates by

generating the graph representing the network topology.

3.2 Simulator
This component implements the main simulation loop. Specifically,

given an instance of the problem, this module is responsible for

executing a load management strategy by iterating over the sim-

ulation time 𝜏 and the node set N , and retrieving information on

load-balancing decisions.

To execute a strategy, the simulator must interact with the agent
component. As detailed in Section 2, each agent controls a single

Edge node and, based on the implemented strategy, calculates the

percentage of requests to be served locally or offloaded to suitable

neighboring nodes. A strategy leverages the features offered by the

framework (models, predictions, information provided by neigh-

bors, etc.). For ease of comparison and analysis, the framework

supports the definition of multiple strategies that can be dynam-

ically loaded and executed by the agent. Additionally, strategies

may utilize performance models to make decisions; the framework

supports several models simultaneously. For example, the current

version of the simulator exposes endpoints to estimate the 5th, 50th,

and 95th percentiles (0.05, 0.5 and 0.95 quantiles) for various met-

rics. The user can configure the simulator to use a specific strategy

and model type. Further details on the implemented strategies can

be found in Section 4.

Finally, collaboration with other components of the framework

enables the automated execution of large experimental campaigns

to compare different strategies on different instances, collecting

data and metrics for later analysis by the Analyzer.

3.3 Analyzer
This component takes as input the problem definition and the out-

put generated by the Simulator for one or more load-management

strategies and facilitates comparison by calculating a set of indica-

tors. Such an architectural choice thus enables the decoupling of

the strategy execution phase from the evaluation phase, resulting

in a more flexible and independent overall definition and evaluation

process. Additionally, the development of these two components
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can proceed independently. At the time of writing, the Analyzer

enables the calculation of the following metrics (although, due to its

modular structure, it can be easily extended to include new ones):

• Success Rate (𝑆𝑅): It represents the percentage of requests
successfully processed by the system over the considered

time horizon.

• Success Rate in the Stress Period (𝑆𝑅𝑠𝑡𝑟𝑒𝑠𝑠 ): This corresponds
to 𝑆𝑅 when considering only the middle section of the simu-

lation, during higher loads.

• Mean Node Power Consumption (𝑁𝑃𝐶𝑎𝑣𝑔): It denotes the av-
erage power consumption of each node in the network.

• Max Node Power Consumption (𝑁𝑃𝐶𝑚𝑎𝑥 ): This indicates the
maximum power consumption of each node in the network.

• Rejected Requests (𝜌): It represents the total number of re-

jected requests over the considered time horizon. This in-

cludes requests forwarded to a node that does not host the

required function, requests forwarded to an overloaded node,

requests that would cause the threshold on the node power

consumption to be exceeded (if any), and requests rejected

by overloaded nodes until they return to the operational

state.

4 LOAD MANAGEMENT ALGORITHMS
This section outlines four load-balancing algorithms that are imple-

mented and distributed with the current version of the simulation

framework. Two of these algorithms, as discussed in Section 4.1,

are classified as baselines. These approaches are characterized as

local or unintelligent, primarily serving the purpose of comparison.

In contrast, the node-margin and power-saving strategies (detailed

in Sections 4.2 and 4.3) are intelligent methods aimed at improv-

ing load balancing among neighbors and mitigating node power

consumption, respectively.

Each strategy aims to generate a table of forwarding weights W,

where𝑤
𝑓

𝑖 𝑗
represents the proportion of requests to be offloaded from

node 𝑖 ∈ N to node 𝑗 for all functions 𝑓 ∈ F 𝑖
. Correspondingly,𝑤

𝑓

𝑖𝑖
denotes the requests served locally by node 𝑖 . With the exception

of the baseline strategy, all implemented methods utilize node-level

metrics to determine W, leveraging the ML-based performance

models introduced in Section 2. These methods implement various

choices based on the type of adopted model. For example, 0.95

quantile models generally result in more conservative strategies,

as the associated node metrics are typically overestimated.

4.1 Baseline Strategies
We consider two baseline strategies, called Base Strategy and Equal
Strategy.

In the Base Strategy the table W is generated under the assump-

tion that no load balancing is performed. Therefore, 𝑤
𝑓

𝑖𝑖
= 1, and

𝑤
𝑓

𝑖 𝑗
= 0 for all 𝑗 ≠ 𝑖 . If the nodes become overloaded, requests will

be rejected.

Another straightforward load-balancing mechanism is imple-

mented for each node 𝑖 by evenly distributing the estimated excess

requests among its neighbors: this is what we called Equal Strategy.
In particular, the matrix W is defined such that𝑤

𝑓

𝑖𝑖
= 1 and𝑤

𝑓

𝑖 𝑗
= 0

for all neighbors 𝑗 if the node is in an underloaded state (i.e., no

excess requests are expected). Otherwise, the strategy involves an

iterative approach in which, during each iteration, 1% of incoming

requests for each function 𝑓 ∈ F 𝑖
is equally redistributed among

neighbors until node 𝑖 returns to the operational state.

Therefore, the weights in matrix W can be derived as follows:

𝑤
𝑓

𝑖 𝑗
=

1

𝑅 𝑓
·

𝑅 𝑓 − 𝑟

𝑓

fwd
if 𝑖 = 𝑗

𝑟
𝑓

fwd

𝜈𝑖
otherwise,

(3)

where 𝑅 𝑓
is the total number of incoming requests directed

to function 𝑓 , 𝑟
𝑓

fwd
is the number of requests directed to 𝑓 to be

offloaded (𝑟
𝑓

fwd
= 0 if node 𝑖 is expected to be in an underloaded

state), and 𝜈𝑖 is the number of neighboring nodes defined as nodes

𝑗 ∈ N that are connected to 𝑖 .

4.2 Node-Margin Strategy
The forwarding weights are computed by taking into account the

network topology, the functions hosted by the neighboring nodes,

and the estimated node-level metrics. In particular, each node 𝑖 ∈ N :

(i) determines its margin, i.e., the percentage of resources it can
offer to neighbors to process their excess of requests; (ii) exchanges

information with the neighboring nodes, including the margin and

the expected load for each function class in G𝑖
; (iii) computes the

weights according to the node state and the neighbors’ margin.

Details on the three phases are provided in the following.

Margin Computation. The margin 𝜇𝑖 of node 𝑖 ∈ N represents

the portion of resources it can offer to neighboring nodes to host

requests they cannot process. If the predicted node state for the

next simulation step is overloaded, then 𝜇𝑖 = 0. Otherwise, the

node counts the number 𝜈𝑖 of neighboring nodes 𝑗 ∈ T 𝑖
(see

Equation (1)). If 𝜈𝑖 is zero, i.e., no function is in common with any of

the neighboring nodes, then 𝜇𝑖 = 0 since forwarded requests could

not be processed. Otherwise, the node obtains predicted values

for incoming load, CPU and RAM usage, and power consumption.

For any metric𝑚, a utilization threshold 𝑢𝑖𝑚 is set, and the margin

is computed to prevent the node from reaching an overloaded

state. Specifically, if any predicted metric value 𝑢̃𝑖𝑚 exceeds the

corresponding threshold, then 𝜇𝑖 = 0. Otherwise, the margin can be

calculated considering the difference between the expected values

and their thresholds.

Information Exchange. The primary objective of this phase is to

share information with neighboring nodes concerning the margin

𝜇𝑖 . Additionally, if a node expects to find itself in the overloaded

state and intends to offload requests to other nodes, it must also

communicate the predicted load value 𝜆𝑖𝑔 for each function class

𝑔 ∈ G𝑖
(see Section 3.1). Each node is tasked with assessing the

impact that its forwarded requests will have on neighboring nodes,

ensuring that the margin is not exceeded. Calculating this impact is

typically challenging due to its dependence on factors such as the

current number of requests being handled by neighbors, influenced

by different runtimes in warm and cold states [8, 10, 12].

Forwarding Weights Computation. As with the other strategies, re-

quests are forwarded by node 𝑖 only if it is expected to be in an
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overloaded state; if not, 𝑤
𝑓

𝑖𝑖
= 1 and 𝑤

𝑓

𝑖 𝑗
= 0 for all 𝑗 ≠ 𝑖 , where

𝑓 ∈ F 𝑖
.

The selection of target neighbors capable of receiving the for-

warded requests is determined by the margin value 𝜇 𝑗 provided

during the Information Exchange phase by all neighboring nodes

𝑗 ∈ T 𝑖
. Thus, node 𝑖 proceeds as follows:

(1) It randomly selects a candidate 𝑗 ∈ T 𝑖
and function 𝑓 ∈

F 𝑖 ∩ F 𝑗
, obtaining its margin 𝜇 𝑗 .

(2) It attempts to assign 1% of requests for function 𝑓 to node 𝑗 ,

calculating the offloading impact on the neighbor’s marginal

resources.

(3) If the impact on resources does not exceed the provided

margin, the request offloading is confirmed, and the node

state estimation model is invoked to check whether 𝑖 is still

overloaded. Otherwise, the transfer is rejected, and function

𝑓 is removed from the set of candidate functions. Note that

if function 𝑓 is the only one in F 𝑖 ∩ F 𝑗
, node 𝑗 is removed

from T 𝑖
.

These steps are repeated until the node exits the overloaded state

or no feasible targets can be found. The forwarding weights are

defined as in Equation (3), computing 𝑟
𝑓

fwd
for each neighbor and

each function.

4.3 Power-Saving Strategy
This is the only implemented strategy that allows limiting node

power consumption. It is important to note that a node bound to

a particular consumption threshold can handle a lower number

of requests than a node not subject to such limits, leading to a

higher number of rejections in case of heavy traffic. Therefore,

instead of replacing other methods that may be more efficient from

the success-rate perspective, this strategy should be used when

lower traffic is expected, thus guaranteeing good service quality

and energy savings.

The method proceeds as described for the node-margin strategy

in Section 4.2, except that only the power consumption metric is

considered when evaluating the margin. Moreover, the algorithm

terminates not only when node 𝑖 exits the overloaded state or

no available neighbors are found, but also if the expected power

consumption falls below the prescribed threshold.

5 EXPERIMENTAL ANALYSIS
The proposed framework has been validated to assess its perfor-

mance and compare the four built-in load-management strategies,

considering the metrics listed in Section 3.3. The following sec-

tions describe the experimental setup (Section 5.1) and results, in

terms of strategies comparison (Section 5.2) and scalability of the

framework (Section 5.3). The results prove the effectiveness of the

node-margin strategy in terms of success rate and highlight the

promising outcomes of the power-saving strategy. The execution

times of the simulator are also discussed.

5.1 Experimental Setup and Methodology
We conducted simulations over 𝑇 = 7 time steps (with a step size

of 𝜏 = 1 minute) using networks which represent common Edge

architectures [15]: 50% of the nodes belong to N𝐿 , characterized

by 2 CPUs and 8GB of RAM; 30% are in N𝑀 (4 CPUs and 16GB

of RAM), and 20% in N𝐻 (6 CPUs and 24GB of RAM). In the first

series of experiments, whose results will be discussed in Section 5.2,

we considered random networks of 10 nodes, with a probability

of connection between two nodes equal to 0.4, and each problem

instance was simulated with maximum percentages of overloaded

nodes (referred to as MPO) set at 30%, 60%, and 90%, respectively,

which can be controlled by the simulator. In the scalability analysis

(see Section 5.3), we varied the number of nodes between 5 and

35 (with step 10), the probability of creating connections between

nodes from 0.2 to 0.8 (with step 0.2), and considered MPO equal

to 30%, 60% and 90%. Each experiment was replicated using three

model types: linear regression, and quantile regressions at 0.05 and

0.95, resulting in a total of over 5000 simulations.

Linux Virtual Machines were created using KVM and Qemu on

an Intel
®

NUC Kit NUC6i7KYK computer and profiled to model

the performance of nodes and functions. The metric thresholds for

the node-margin and power-saving strategies are listed in Table 1;

as mentioned in Section 4.2, they are used to define the margin

a node can offer to the neighbors. The values have been chosen

empirically according to the results obtained from some exploratory

experiments, with the rationale of choosing values below which it

is very rare that a node is overloaded.

node-margin power-saving
Node type CPU usage RAM usage power power

N𝐿 150% 4.1 GB 0.7𝑊 0.49𝑊

N𝑀 290% 5.5 GB 2.1𝑊 1.54𝑊

N𝐻 460% 6.0 GB 3.5𝑊 2.45𝑊

Table 1: Metric thresholds

As for the methodology, in the initial part of Section 5.2 we

will assess the impact of MPO on both the success rate and power

consumption achieved by the node-margin and the power-saving

strategies. Subsequently, we will examine the average values of

the five indicators discussed in Section 3.3 across various problem

instances with different MPO levels and compare the performance

of the four strategies, including the baseline ones. To facilitate dis-

cussion, instead of presenting the absolute values of the indicators,

we will consider the average percentage gain (𝐴𝑃𝐺) obtained by the

equal, node-margin, and power-saving strategies in comparison to

the base strategy. This is defined as:

𝐴𝑃𝐺 =
Δ𝐼𝑠

𝐼𝑏𝑎𝑠𝑒
· 100, (4)

where 𝐼𝑏𝑎𝑠𝑒 denotes the value of index 𝐼 (which may be 𝑆𝑅,

𝑆𝑅𝑠𝑡𝑟𝑒𝑠𝑠 , 𝑁𝑃𝐶𝑎𝑣𝑔 , 𝑁𝑃𝐶𝑚𝑎𝑥 or 𝜌) obtained by the base strategy, and

Δ𝐼𝑠 denotes the difference between any strategy 𝑠 and the base one.

Since for the success rate we can say that a strategy 𝑠 improves

over the base one if the indicator’s value is higher than the base’s

one, while for the other metrics we observe an improvement when

the value is lower, we define Δ𝐼𝑠 as:

Δ𝐼𝑠 =

{
𝐼𝑠 − 𝐼𝑏𝑎𝑠𝑒 if 𝐼 is 𝑆𝑅 or 𝑆𝑅𝑠𝑡𝑟𝑒𝑠𝑠

𝐼𝑏𝑎𝑠𝑒 − 𝐼𝑠 otherwise.

(5)
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(a) Linear regression (b) 0.05 quantile regression (c) 0.95 quantile regression

Figure 3: 𝑆𝑅 and 𝑆𝑅𝑠𝑡𝑟𝑒𝑠𝑠 with the node-margin and power-saving strategy, varying MPO and model type

(a) Linear regression (b) 0.05 quantile regression (c) 0.95 quantile regression

Figure 4: 𝑁𝑃𝐶𝑎𝑣𝑔 and 𝑁𝑃𝐶𝑚𝑎𝑥 with the node-margin and power-saving strategy, varying MPO and model type

(a) Linear regression (b) 0.05 quantile regression (c) 0.95 quantile regression

Figure 5: 𝐴𝑃𝐺 of all strategies with respect to base, considering 𝑆𝑅, 𝑁𝑃𝐶 and 𝜌 and different model types

For the scalability analysis (see Section 5.3), we evaluated the

average execution time of each simulation step. The tests were

executed on a PC with Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz

and 16GB of RAM.

5.2 Experimental Results
The impact of varying MPO was evaluated on the two most ad-

vanced strategies, namely node-margin and power-saving, to ana-

lyze their performance in increasingly challenging scenarios.

Figure 3 presents the results in terms of success rate, considering

the three available performance models for node-level metrics. It

is evident that 𝑆𝑅 progressively decreases for higher values of

MPO since, as expected, achieving good load balancing becomes

more challenging when a plurality of nodes are overloaded (i.e., the

overall load in the network is higher). However, it is noteworthy

that both node-margin and power-saving strategies maintain 𝑆𝑅

and 𝑆𝑅𝑠𝑡𝑟𝑒𝑠𝑠 above 80% and 60%, respectively, even in the most

challenging scenario.
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(a) Varying number of nodes (b) Varying MPO (c) Varying edge probability (d) Varying strategy

Figure 6: Execution times distribution of each simulation step 𝜏

A similar comparison regarding power consumption is depicted

in Figure 4. Here, we observe that the node power consumption

(𝑁𝑃𝐶𝑎𝑣𝑔 and 𝑁𝑃𝐶𝑚𝑎𝑥 ) increases with higher MPO values, as effi-

cient solutions tend to consume more energy in a complex setting.

Additionally, it is evident that, as will be discussed further, the

power-saving strategy typically limits energy consumption com-

pared to the node-margin strategy. The only exception is illustrated

in Figure 4b, where the 0.05 quantile regression model is consid-

ered: the specified threshold fails to restrict power consumption

adequately, resulting in performance similar to that of the node-

margin strategy.

Finally, Figure 5 compares the built-in strategies by reporting the

achieved Average Performance Gain (𝐴𝑃𝐺), computed as discussed

in Section 5.1, after averaging all available indicators over the three

MPO values considered. We remind the reader that, according to

the definition in Equation (5), for each plot in Figure 5, a strategy 𝑠

outperforms the base strategy if 𝐴𝑃𝐺 is greater than 0 (the higher,

the better). Observations from the figure are as follows:

• The performance of the equal strategy remains unaffected

by the performance model type under consideration, as it de-

termines forwarding weights by equally distributing excess

requests regardless of node utilization metrics. Generally, it

yields a higher success rate and a lower number of rejected

requests compared to the base strategy, albeit at a slightly

higher power consumption.

• The node-margin strategy is the best-performing in terms of

success rate and 𝜌 , achieving up to a 25% higher𝐴𝑃𝐶 for the

former and 50% for the latter with any model type. However,

this method is the most energy-intensive, with an average

Node Power Consumption (𝑁𝑃𝐶𝑎𝑣𝑔) between 7.5% and 10%

higher than the base strategy.

• Lastly, the power-saving strategy demonstrates good per-

formance in terms of success rate and number of rejected

requests when considering linear regression and 0.05 quan-

tile regression as performance models. However, as it bases

decisions on a single metric, it is highly sensitive to varia-

tions in predictions, as evidenced by significant performance

degradation when considering 0.95 quantile regression mod-

els. Consequently, accurate tuning of the optimal threshold

value for power consumption is necessary. Notably, this strat-

egy is the only one that manages to reduce maximum power

consumption compared to the base strategy (see Figures 5a

and 5c), with an 𝐴𝑃𝐺 around 7.5%.

Overall, these results highlight the promising performance of

node-margin and power-saving in designing a load-balancing schema

for networks of decentralized FaaS-enabled Edge nodes.

5.3 Scalability Analysis
We validated the impact of varying several instance parameters

on the execution time of each simulation step 𝜏 . In particular, as

mentioned in Section 5.1 and reported in Figure 6, we considered

the instance dimension, represented by the size of the set of nodes

N , the probability of creating an edge connecting two nodes, the

maximum percentage of overloaded nodes (MPO), and the impact

of adopting different load-balancing strategies.

As expected, incrementally increasing the number of nodes (refer

to Figure 6a) andMPO (refer to Figure 6b) results in a substantial rise

in the average execution time. Indeed, both the node-margin and

power-saving strategies require the identification of suitable target

neighbors to offload part of the computation, and this operation

becomes more time-consuming when a larger number of nodes is

available (or when most of them are overloaded).

Conversely, varying the probability of creating edges between

nodes does not exert a significant impact on the execution time;

instead, it is marginally higher when increasing the probability

between 0.2 and 0.6, but then slightly decreases when moving to

0.8 (refer to Figure 6c). While seemingly counter-intuitive, this

result aligns with the observation that, on the one hand, addressing

the load-management problem becomes more challenging when

the network is more connected, but on the other hand, finding a

suitable target for requests offloading becomes achievable when

the average number of neighbors for each node increases.

Finally, as illustrated in Figure 6d, it is evident that the equal

strategy is significantly faster, as it involves less complex operations

to determine the forwarding weights. Nonetheless, the average exe-

cution time with both the node-margin and power-saving strategies

remains below 30 seconds, making them suitable for practical ap-

plications.

6 RELATEDWORK
The growing demand for real-time data processing and the sim-

plification of applications development and deployment opened

new research directions aimed at reconciling the Serverless service

model and the Edge Computing paradigm. While this convergence

promises to combine the advantages of both, enabling greater effi-

ciency and agility in real-time data processing, it also comes with
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great challenges. Indeed, deploying Serverless functions to Edge

devices requires optimizing resources and performance to accom-

modate hardware limitations and variable network conditions. At

the same time, it is crucial to ensure the consistency and reliability

of distributed operations across a heterogeneous network of these

devices. This section overviews literature proposals concerning

the application of the Serverless paradigm and FaaS model to Edge

Computing, with primary focus on load management.

RACER [5] exploits Reinforcement Learning for the load manage-

ment of FaaS-based applications in an Cloud-Edge continuum. In

particular, nodes are organized in a hierarchical structure including

three tiers: base-station nodes with limited computational capacity,

intermediate hosts, and Cloud datacenters with huge capacity but

large latency overheads. Based on the characteristics (e.g., quality of

service requirements, execution cost, input data, etc.) of the tasks to

be performed, the agent selects the tier where the function should be

executed. Also 𝜆ContSim [13] considers as a target the Cloud-Edge

continuum. As our work, it allows to evaluate custom strategies

through simulation. However, it focuses on positioning strategies

(i.e., functions-to-nodes mapping methodologies designed to op-

timize desired quantities such as costs, energy consumption and

availability), while the load balancing is not discussed. Finally, a

FaaS platform to adaptively exploit the Cloud-Edge continuum,

called Serverledge, is presented in [16]. It adopts a decentralized

approach where Edge nodes can serve all the incoming requests or

leverage vertical offloading to deal with workload peaks. As in our

proposal, nodes exchange information with the neighbors to iden-

tify the best candidates to forward requests when needed. However,

there is no specific focus on different offloading strategies.

Among proposals that consider only Edge resources (as ours),

Hedgi [2] implements a centralized manager to coordinate the load

balancing among highly heterogeneous nodes. This significantly

differs from our approach, where a load-management agent acts

independently on each node. The closest to our work is [7], whose

authors propose: (i) an architectural framework to route to appro-

priate Edge devices the requests coming to stateless functions, and

(ii) an emulation environment to test the framework supporting dif-

ferent load management strategies. However, they do not consider

multiple classes of functions, while we take this aspect into account

to evaluate the nodes compatibility in forwarding requests.

7 CONCLUSION AND FUTUREWORK
This paper proposes a simulation-based framework for evaluat-

ing load-balancing algorithms in decentralized FaaS environments.

The framework automates the generation of problem instances

characterized by different Edge networks and load distributions,

facilitating the seamless execution and comparison of different load-

management strategies based onmetrics such as success rate, power

consumption, and the number of rejected requests. We tested and

evaluated the framework within the context of the Decentralized

FaaS (DFaaS) platform [6], implementing and comparing sample

strategies leveraging knowledge on nodes utilization and power

consumption. Our findings highlight their promising performance

in terms of the analyzed metrics.

Although the implemented framework represents an effective

simulation environment for comparing load-management algo-

rithms, it has some limitations, particularly related to the fact that

it provides a limited view of the P2P network, focusing only on the

closest neighbors. Future work will focus on extending the frame-

work by considering robust techniques to enable message passing

among Edge nodes, thereby enabling synchronization and effective

management of malfunctions (e.g., sudden node disappearance due

to unpredictable failures). Furthermore, we will consider develop-

ing load prediction models, opening new research paths aimed at

outlining a strategy to alternate load-balancing algorithms based

on incoming requests.
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