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ABSTRACT
We present and validate a novel semi-analytical approach to study the effect of dynamical
friction (DF) on the orbits of massive perturbers in rotating stellar discs. We find that DF
efficiently circularizes the orbit of co-rotating perturbers, while it constantly increases the
eccentricity of counter-rotating ones until their angular momenta reverse, then once again
promoting circularization. Such ‘drag toward circular co-rotation’ could shape the distribution
of orientations of kinematically decoupled cores in disc galaxies, naturally leading to the
observed larger fraction of co-rotating cores.

Key words: gravitation – methods: numerical – stars: kinematics and dynamics – galaxies:
nuclei – galaxies: structure.

1 IN T RO D U C T I O N

The orbital evolution of massive perturbers (MPs, i.e. objects
considerably heavier than the single bodies forming the galactic
structure within which the perturber is moving) under the effect
of dynamical friction (DF, see Binney & Tremaine 2008) has been
studied in many different contexts and over a broad range of spacial
scales: from the pairing and mergers of galaxies at kpc-scales (see
De Rosa et al. 2020, for a recent review), through the sinking and
tidal disruption of globular clusters in the central kpc of galaxies
(Binney & Tremaine 2008), down to the formation of massive black
hole (MBH) binaries at pc-scales (MBHBs, see e.g. Dotti, Sesana &
Decarli 2012, for a review).

The interaction between an MP and a rotating system embedding
it (either stellar or gaseous) has been found to reverse the direction
of the MP angular momentum if it is initially anti-aligned with that
of the background, or, if the two are aligned, to circularize the MP
orbit. Such behaviour has first been observed by Dotti, Colpi &
Haardt (2006) in simulations of MBHs in circumnuclear gaseous
discs, common in ultra-luminous infrared galaxies (Sanders &
Mirabel 1996; Downes & Solomon 1998), and observed to form
in gas-rich galaxy mergers (Barnes 2002; Mayer et al. 2007;
Capelo & Dotti 2017). This behaviour, dubbed here ‘drag toward
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circular co-rotation’1 (DTCC hereafter), has been demonstrated to
be independent of the nature of the background, working in nuclear
stellar discs as well (Dotti et al. 2007), and then observed to be
present in larger discs during galaxy minor mergers (Callegari et al.
2011; Fiacconi et al. 2013). Dotti et al. (2006) proposed a qualitative
model in which DF is responsible for the DTCC, by accelerating the
MP in the direction opposite to its instantaneous motion relative to
the local environment. DF always decelerates counter-rotating MPs,
increasing their eccentricity without changing the orbital plane, until
the DF effect integrated over one orbit suffices to reverse the MP
motion; DF instead increases the angular momentum of co-rotating
MPs at the apocentre (where the MP is slower than the background)
and decreases it at the pericentre, circularizing the orbit.

Contrary to the cases of DF exerted by spherical structures with
isotropic velocity fields (e.g. Chandrasekhar 1943), an analytical
description of DF in composite systems with at least one rotating
disc-like structure (such as a disc galaxy or a nuclear disc embedded
in the larger bulge) has not been developed yet. As a consequence,
the model put forward by Dotti et al. (2006) and adopted as physical

1The angular momentum reversal of initially retrograde orbits was originally
referred to as ‘angular momentum flip’ (e.g. Dotti et al. 2006). This
convention could be misleading, since the orbital plane of the orbit does
not evolve gradually passing through a perpendicular configuration. For this
reason, we decided to adopt the new conventional name.

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/2/3053/5820233 by U
niversita di M

ilano Bicocca user on 22 M
arch 2024

http://orcid.org/0000-0001-7889-6810
http://orcid.org/0000-0001-9458-821X
http://orcid.org/0000-0001-6106-7821
http://orcid.org/0000-0002-6248-398X
mailto:matteo.bonetti1990@gmail.com


3054 M. Bonetti et al.

explanation for the DTCC by the all the above-mentioned studies
has not been proved to date. Such proof is long due, because of the
numerous and important consequences of the DTCC, among which:
the slow-down of the MP orbital shrinking (see e.g. the discussion in
Mayer 2013), the enhanced accretion on to orbiting MBHs once they
circularize (Dotti et al. 2009; Callegari et al. 2011), the alignment of
the spins of MBHs in circumnuclear discs, well before they bind in
a binary (Dotti et al. 2010), and the consequent low recoils expected
at coalescence (but for a small tail of fast recoiling remnants, see
Lousto et al. 2012).

In this paper, we describe a simple analytical form for the DF on
MPs in rotating systems (Section 2), and integrate it numerically in
composite systems including discs. We compare the outcome of this
new semi-analytical description with the results of high-resolution
N-body simulations of the same galactic models (Section 3). Finally,
as discussed in Section 4, the agreement between the two numerical
tests demonstrates that DF is indeed the only responsible for the
DTCC in rotating systems. In the same section we comment on
the possible implications of the DTCC for kinematically decoupled
cores, and discuss some future expansions and applications of our
model.

2 ME T H O D

Employing a C++ implementation of the Bulirsch–Stoer (Bu-
lirsch & Stoer 1966) integration scheme,2 we numerically integrate
the differential equations describing the motion of an MP when sub-
jected to the global conservative gravitational potential φ generated
by the galaxy mass distribution, as well as because of the action of
DF.

In order to obtain analytical equations of motion, we model the
host galaxy through appropriate density-potential pairs (ρ/φ), in
particular we choose

(i) a Navarro–Frenk–White profile (NFW; Navarro, Frenk &
White 1997), with mass Mh and scale radius ah, to describe the
dark matter (DM) halo

ρh(r) = Mh

4πa3
h

ah

r(1 + r/ah)2
, (1)

φh(r) = −GMh

r
ln

(
1 + r

ah

)
; (2)

(ii) an Hernquist profile (Hernquist 1990), with mass Mb and
scale radius ab, to model a compact stellar bulge

ρb(r) = Mb

2π

ab

r(r + ab)3
, (3)

φb(r) = − GMb

r + ab

; (4)

(iii) an exponential disc profile (see e.g. Binney & Tremaine
2008), with mass Md, scale radius Rd and scale height zd, to represent
the galactic stellar disc

ρd (R, z) = Md

4πR2
dzd

e−R/Rd sech2

(
z

zd

)
, (5)

φd (R, 0) ≈ −GMd

2R2
d

R [I0(w)K1(w) − I1(w)K0(w)]

+ GMdzd

R2
d

e−R/Rd , (6)

2See e.g. Bonetti et al. (2016) for further details about the integration
algorithm.

where R =
√

x2 + y2, w = R/(2Rd), while I, K are modified
Bessel functions of the first and second kind, respectively. The
disc potential is known only in the disc equatorial plane, where
the orbits of the perturbers are set. We note that the first term in
equation (6) is strictly valid for a razor-thin disc, while the second
term is an approximate correction that takes into account the non-
zero thickness of the exponential disc (see e.g. Kuijken & Gilmore
1989).

Under the above assumptions, the total mass density and total
gravitational potential (in the z = 0 plane) are simply given by

ρ(r) = ρh(r) + ρb(r) + ρd (R, z), (7)

φ(r) = φh(r) + φb(r) + φd (R, 0), (8)

and the particle mp at position rp = (xp, yp, zp) with velocity vp =
(vpx

, vpy
, vpz

) is therefore subjected to a conservative acceleration

acons = −∇φ. (9)

In addition to the conservative gravitational force, the motion of
the MP is also affected by the ‘dissipative’ DF force.3 In the case
of spherically symmetric non-dissipative systems, the effect of DF
is often modelled via the Chandrasekhar (1943) formula:

adf,sph = −2πG2ρ(r) ln(1 + �2)mp

(
erf(X) − 2Xe−X2

√
π

)
vp

v3
p

,

(10)

where X = vp/(
√

2σ ) is a dimensionless parameter relating the
perturber velocity to the isotropic velocity dispersion σ , while
ln (1 + �2) (or more frequently ln �) is commonly known as the
Coulomb logarithm, with � = pmax/pmin being the ratio between the
maximum and minimum impact parameters. The above expression
for DF is derived in the simplistic assumption of an MP moving
in an infinite and homogeneous density background whose velocity
distribution is strictly Maxwellian. In spite of this, equation (10)
has been proven to reproduce the inspiral of an MP surprisingly
well for a vast range of spherically symmetric and isotropic density
profiles, once the radius-dependent local velocity dispersion σ (r) is
plugged in the equation (see e.g. Tremaine & Weinberg 1984).

Recently, a series of investigations (Hashimoto, Funato & Makino
2003; Just & Peñarrubia 2005; Just et al. 2011; Petts, Gualandris &
Read 2015; Petts, Read & Gualandris 2016) showed that the
adoption of position dependent minimum and maximum impact
parameters further improves the agreement with MP orbital decays
obtained in full N-body simulations. Motivated by this, we imple-
ment equation (10) separately for the halo and bulge components,
adopting position-dependent velocity dispersion σ (r)x and mass
density ρ(r)x (where x refers either to the halo or to the bulge) and
the following expressions for the maximum and minimum impact
parameters:

pmax,x = r/γx,

pmin = max(Gmpv−2
p , Dp),

γx = − d ln ρx

d ln r
, (11)

3DF is not dissipative in nature, but here we do not consider the effect that the
perturber exerts on the surrounding matter, changing its density and velocity
distributions, and focus only on the dynamical evolution of the perturber
itself.
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DF in rotating discs 3055

where γ x represents the logarithmic slope of the density profiles of
the two spherical components, r is the radial coordinate and Dp is
the physical radius of the MP, which is zero for the case of an MBH.
Note that, in the case of multiple component systems, as the one we
present in this paper, the value of σ (r)x should be formally derived
self-consistently accounting for all components. However, the
comparison with the results of a full N-body simulation discussed in
the next section demonstrates that, for the parameters we consider,
our simple approximation is sufficient to recover the main features
of the perturber orbital evolution.

Contrary to the isotropic cases, the DF acceleration due to a
rotating disc component is not necessarily opposed to the perturber
direction of motion with respect to the centre of mass of the whole
system, but, as discussed in the introduction, primarily depends on
the direction of the relative velocity vector between the perturber
and the surrounding medium. In fact, as long as the orbit is counter-
rotating or, if co-rotating and eccentric, DF acts instantaneously in
the direction opposite to the velocity of the perturber with respect to
the surrounding matter in its proximity, making the dependence on
the velocity direction more relevant than that on the specific shape
of the density profile.4 Being interested in confirming the DTCC
effect, we limit our investigations to non-circular co-rotating cases,
and therefore we make the simplifying assumption that the DF in
the disc is primarily determined by the local distribution of matter
and velocity around the MP. In particular, in the expression:

dvp

dt
= −2πG2mp ln(1 + �2)ma

∫
d3vaf (va)

vp − va

|vp − va |3 , (12)

we assume that the distribution function f (va) is a delta function
around the circular velocity at the position of the MP, i.e.

f (va) = δ3(va − vcirc(Rp)) (13)

yielding

dvp

dt
= −2πG2mp ln(1 + �2)ρd (Rp, 0)

vp − vcirc(Rp)

|vp − vcirc(Rp)|3 , (14)

where ρd (Rp, 0) = maf (vcirc(Rp)), while vcirc is given by

|vcirc(Rp)|2 = R
∂φ

∂R

∣∣∣∣
R=Rp

. (15)

Due to the paucity of detailed studies on DF in rotating systems,
a set of equations like (11) for discs has not been discussed in
literature so far.

Nevertheless, in order to obtain a simple form for the acceleration,
we introduce a physically motivated prescription, based on the
Coulomb logarithm, similar in spirit to the spherical case. In particu-
lar, we define �= pmax,d/pmin,d, with the maximum impact parameter
taken equal to the scale height of the disc, as the underlying
assumption of quasi-homogeneous three-dimensional density fails
on scales larger than zd. The minimum impact parameter is defined
instead as an effective influence radius based on the relative velocity
vrel = |vp − vcirc|, i.e.

pmin,d = Gmp

v2
rel + 0.01v2

circ

. (16)

4Note that for circular co-rotating orbits in thin discs (i.e. when the support
due to any pressure gradient is negligible), the perturber would be at rest
with the matter in its immediate proximity, and any orbital evolution would
be driven by the opposite forces exerted by matter inside and outside the
perturber orbit (see e.g. the discussion in Mayer 2013).

Table 1. Structural and numerical parameters of the three galaxy compo-
nents: halo, bulge, and disc. For the DM halo, GALIC assumes an Hernquist
profile with the scale radius set by the concentration parameter of the
halo (assumed c = 10; see Yurin & Springel 2014, for full details). Npart

and ε correspond to the number of particles and the Plummer-equivalent
gravitational softening employed for each component, respectively.

Halo Bulge Disc

Mass 1.1 × 1012 M� 2.2 × 109 M� 4.4 × 1010 M�
Scale radius 37 (21) kpc 0.96 kpc 4.25 kpc
Scale height – – 0.85 kpc
Profile Hernquist (NFW) Hernquist Exponential
Npart 106 5 × 105 2 × 106

ε 40 pc 10 pc 10 pc

The additional term 0.01v2
circ at the denominator is added only for

purely operational purposes. It represents a numerical floor to pmin,d

that avoids its divergence and therefore a spurious suppression of
the DF force due to the disc once the circular velocity is met.5

In addition to the above prescription and trying to account for
the other possible dependencies of DF that cannot be accounted for
in this simple framework (e.g. the faster decrease of density in the
vertical direction w.r.t. the radial one), we introduce an additional
tunable constant Adisc in equation (14), yielding to

adf,disc = −Adisc2πG2 ln(1 + �2)mpρd (R, 0)
vp − vcirc(R)

|vp − vcirc(R)|3 .

(17)

The value of the constant Adisc is determined by comparing the
semi-analytical orbital evolution of the perturber with that obtained
in an N-body simulation, as discussed in Section 3.

Finally, including all terms presented above, the total acceleration
acting on mp reads

a = acons + adf,sph + adf,disc, (18)

which allows us to numerically integrate the orbital motion in the
galactic disc.

3 R ESULTS: C OMPA RI SON W I TH N- B O DY
SI MULATI ONS

To validate our analytic prescription we perform high-resolution
N-body simulations of an isolated galaxy with the code GIZMO

(Hopkins 2015), descendent of GADGET2 (Springel 2005), where
gravity is solved via a multipole hierarchical method based on a
Barnes–Hut Oct-Tree structure, that guarantees an optimal balance
between accuracy and performance.

Our galaxy model (used both in the semi-analytical calculation
and in the N-body runs) includes a DM halo, described in the semi-
analytical framework by a NFW profile and modelled as a Hernquist
(1990) model in the N-body run. In the latter case, the scale radius
is set according to the halo concentration parameter, assumed to be
c = 10. A stellar exponential disc and a central spherical bulge (also
modelled as a spherical Hernquist profile) are embedded in the DM
component. The model parameters are summarized in Table 1.

The choice of a massive bulge component was made mainly to
enforce the Toomre-stability criterion over the whole stellar disc

5Actually, if pmin,d diverges then �2 → 0 making ln (1 + �2) vanish. We
checked that our setup is practically insensitive to any change up to an order
of magnitude, both up and downwards, of the factor suppressing vcirc.
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Figure 1. Toomre Q parameter for the stellar disc component in our galaxy
model ICs. The black dashed line corresponds to the minimum Q to avoid
strong non-axisymmetric perturbations developing in the disc.

(as can be seen from the Toomre Q parameter profile in Fig. 1),
thus suppressing the formation of strong local overdensities. Such
features would add a stochastic forcing on to the perturber any time
a close encounter takes place, hence contaminating the net DTCC
effect always present whenever the background density is rotating
(see Fiacconi et al. 2013; del Valle et al. 2015; Roškar et al. 2015;
Lupi et al. 2016; Souza Lima et al. 2017; Tamburello et al. 2017).
Our choice minimizes such stochastic perturbations and therefore
allows for a clean test of the hypothesis that the DTCC effect is only
due to DF.

We create the initial conditions for the N-body runs using GALIC

(Yurin & Springel 2014), an iterative tool to create galaxy models in
collisionless equilibrium, in which the particle orbits are integrated
at each iteration for about 10 orbital times.

We then set an MP with mass MMP = 108 M� at a separation
rMP = 5 kpc from the galaxy centre, moving along an elliptic
orbit in the disc equatorial plane with eccentricity eMP = 0.7. We
consider two orbital configurations, with the MP either co-rotating
or counter-rotating relative to the stellar disc. The mass and spatial
resolution of the N-body simulations are chosen to guarantee that
the DF on to the MP is properly resolved (see the discussion in
Pfister et al. 2017), as shown in Table 1.

In order to tune the free parameter Adisc, we performed several
tests to minimize the differences between the semi-analytical
integration and the full N-body simulations, finding that the best
value for Adisc is ≈0.5. This best-fitting value, of the order of unity,
suggests that our modelling catches all the major physical properties
of disc DF. Hence, the final form of the disc DF acceleration used
to obtain the results presented in this section is

adf,disc = −πG2 ln(1 + �2)mpρd (R, 0)
vp − vcirc(R)

|vp − vcirc(R)|3 , (19)

with � = pmax,d/pmin,d.6

6During the perturber evolution we found that the average value of the factor
containing the Coulomb logarithm (i.e. Adisc2π ln (1 + �2)) lies around 20–
22 for the prograde case and around 28–32 for the retrograde case. The
difference can be ascribed to the higher relative velocity attained in the
retrograde case. Additionally, in order to test the robustness of the employed
prescription, we also tried to repeat the fitting procedure for Adisc with a
slightly different galaxy with zd/Rd = 0.15 rather than 0.2 (see Table 1).

Figs 2 and 3 compare the orbital evolution obtained via the
full N-body runs (dashed orange lines) with our semi-analytical
prescription (solid blue lines). In both figures, the left-hand panels
show the perturber radial separation7 (upper panel), its angular
momentum normalized to its starting value (middle panel) and its
orbital eccentricity8 (lower panel) as a function of time. The single
right-hand panel instead reports the perturber motion in the galactic
equatorial plane.

Fig. 2 shows the orbital evolution for a prograde perturber,
while in Fig. 3 we consider an initially retrograde case. In spite
of our simplistic assumptions, the semi-analytical evolution closely
matches that of the full N-body simulation. This is particularly
evident for the perturber radial separation, orbital eccentricity, and
motion in the disc plane. The angular momentum evolution is
initially well reproduced, but, especially for the prograde case,
it starts to deviate at later times. This behaviour is due to the
assumption of locality made in our framework, which allows us
to safely employ the semi-analytical prescription as long as the MP
orbit is eccentric or, if circular, counter-rotating, while it becomes
unreliable when the perturber orbit approaches a co-rotating circular
one, i.e. when the relative velocity between the perturber and the
disc at the perturber location goes to zero and equation (19) diverges.
This limitation of our semi-analytical prescription is the reason why
we limit ourselves to the study of the DTCC, and we do not focus on
reproducing the whole evolution down to the centre of the composite
system. Nevertheless, we can note that the orbital evolution is very
well reproduced up to the point when the eccentricity approaches
zero. Remarkably, as clear from the bottom left panels of Figs 2 and
3, both for the prograde and retrograde cases, the time for which e
→ 0 is practically the same of the corresponding N-body simulation.

Circularization of initially retrograde orbits takes longer (by
about a factor of 2) with respect to the prograde case (as shown
by the comparison between Figs 2 and 3). The difference in the
time-scales is due to the fact that, in order to circularize the MP
orbit, DF has first to reverse the MP angular momentum, forcing
the retrograde configuration into a prograde one. Still, despite the
simplistic assumptions made, the time at which the sign reversal
happens turns out to be quite similar to that of the N-body run
and even more remarkably the eccentricity evolution gets closely
reproduced up to the time of circularization. We stress again that our
goal is to model the motion of eccentric perturbers (or circular but
counter-rotating), where velocities relative to the stellar background
are non-negligible. In this regime our approach closely follows
the outcomes of N-body simulations confirming that the angular
momentum reversal, as the circularization, is determined by DF.

Again we found that the best value for Adisc is ≈0.5. Moreover, we also
confirmed that � remains practically unchanged with respect to the zd/Rd =
0.2 disc.
7The high resolution of the N-body run ensures that the perturber orbit
remains close to the disc equator.
8As long as the perturber lies in the equatorial plane, the potential depends on
the radial coordinate only. This allows us to employ well-known results valid
for central potentials. At each time-step we evaluate the total energy E and
angular momentum h (per unit mass), and assuming them as instantaneously
conserved, we obtain an expression for the radial velocity, i.e.

v2
r = 2

(
E

m
− φ(r)

)
− h2

r2
. (20)

Setting vr = 0, we can then numerically solve for r to obtain the two
roots that characterize bound orbits, i.e. the values of for the pericentre and
apocentre, from which the eccentricity is ultimately evaluated.
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DF in rotating discs 3057

Figure 2. Evolution of an initially prograde perturber. The left-hand panels, from top to bottom, refer respectively to the perturber separation, angular
momentum (normalized to its initial magnitude) and eccentricity as a function of time. The right-hand panel shows the perturber orbit in the galactic equatorial
plane. In all panels, our semi-analytical approach is shown as a blue solid line and the N-body run as an orange dashed line.

Figure 3. Same as Fig. 2 but for an initially retrograde perturber.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we considered a simple semi-analytical approach to
describe the motion of MPs inside rotating axisymmetric structures.
We validated our prescription against full N-body simulations,
finding a remarkable good agreement. We verified that DF drives
the MP motion towards circular orbits, even when initially the MP
counter-rotates. In this last case, first the MP angular momentum
gets reversed causing the MP to co-rotate with the disc, then, once
on a prograde orbit, DF circularizes it.

Here, we focused on rotating flat structures, but this feature
does not specifically require a disc-like geometry. The DTCC
effect is indeed common in any rotating structure and it could
play an influential role even in fast rotating ellipticals (Emsellem
et al. 2011) or galactic nuclei (see e.g. the discussion in Sesana,
Gualandris & Dotti 2011; Rasskazov & Merritt 2017). Still, since a
proper analytical description for such cases is not as easy as for the

current case, we do not explore that further, limiting our discussion
to the disc case only.

In addition to the consequences of the DTCC effect for MBHBs
(discussed in Section 1 and in the references therein), the DTCC
also has a direct impact on the properties of kinematically decoupled
stellar cores (KDCs). KDCs are central stellar components with
a rotation axis that is misaligned from the main stellar body of
the Galaxy. They are characterized by an abrupt change of more
than 30 deg in the kinematic position angle and are observed
in a significant fraction of early-type galaxies ( ∼ 7 per cent
Krajnović et al. 2011). Their presence is a clear signature of an
external accretion event, with smaller KDCs (diameter <1 kpc)
associated with more recent accretion events, either caused by
gas accretion followed by subsequent in situ star formation or
caused by a minor merger (McDermid et al. 2006; Raimundo et al.
2013).
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In general, one could expect that if a minor merger occurs with
a random orientation, the probability of observing decoupled cores
that co-rotate or counter-rotate with respect to the main stellar
body of the Galaxy would be approximately similar. However,
this does not seem to be the case, at least for the distribution of
externally accreted gas. Davis et al. (2011) find a larger fraction
of co-rotating than counter-rotating gas in early-type galaxies,
specifically in a ∼65/35 ratio between co-rotating gas and gas
with large misalignment (>30 deg). It is still not clear why such
trend is observed, but some suggested reasons are that minor
merger accretion may be anisotropic, occurring along a preferential
direction such as the major axes of the DM halo (Davis et al. 2011;
Deason et al. 2011), or that there is a drag towards co-rotation due
to the interaction with already present gas (e.g. in the hot halo of
the Galaxy, Davis et al. 2011). If a KDC forms from the gas that
has been externally accreted, then the statistics for the stellar core
misalignment should be the same as for the gas since they would
share similar dynamics.

The work presented here suggests an alternative mechanism to
promote the higher relative occurrence of co-rotating KDSc. Our
work predicts that for galaxies with discs, such as S0s and spiral
galaxies, DF can result in the inversion of the angular momentum
of a massive perturber, from a counter-rotating orbit to a co-rotating
orbit. This is especially relevant for minor mergers, where we expect
the accreted satellite galaxy to be a massive perturber and at a later
stage to form a KDC. If one considers that the original direction
of the minor merger is randomly oriented, this angular momentum
inversion would result in a larger fraction of co-rotating KDCs
than counter-rotating KDCs formed after minor merger events. The
consequence of this alternative mechanism is an overall tendency
for co-rotating KDCs in galaxies with discs, and its relevance can
be observationally tested with the study of larger samples of KDCs
and with the characterization of the host IGM properties. The fact
that the DF mechanism studied here operates even in extremely gas-
poor systems, makes it a an important mechanism to consider even
in early-type galaxies with low native gas content. In addition, after
circularization, DF removes efficiently angular momentum leading
the perturber to the host nucleus without requiring a finely tuned
initial angular momentum to justify the fall of externally accreted
material down to the inner kpc of its host.

In analogy with KDCs, DTCC could have a similar impact on
the kinematic properties of nuclear star clusters. Such systems have
been proposed to form either via in situ star formation (e.g. Loose,
Kruegel & Tutukov 1982), and/or via the accretion of multiple
stellar clusters reaching the centre of the system via DF (e.g.
Tremaine, Ostriker & Spitzer 1975). The in situ channel has been
always regarded as more promising if one wants to explain the
kinematic properties of nuclear star clusters, and in particular their
significant rotation. On the other hand, recently, Tsatsi et al. (2017)
showed that even the formation via clusters accretion can bring
to a net significant rotation, even if the orbits of the inspiralling
clusters are isotropic. Our result strengthens their findings as, if we
account for DTCC, clusters coming from the galactic disc should
be accreted with the same direction in angular momentum (if their
circularization occurs before the cluster gets tidally disrupted).

Finally, in a future study we plan to expand our semi-analytical
treatment to the case of circular perturbers (corresponding to the
final configuration of any initial configuration as a consequence of
the DTCC effect) and to out-of-plane geometries. This prescription
will be instrumental in order to fully characterize the DF time
distribution of infalling perturbers as a function of their host galaxy
properties.
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