
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 983 (2022) 115904
www.elsevier.com/locate/nuclphysb

Super non-Abelian T-duality

Daniele Bielli a,b, Silvia Penati a, Dmitri Sorokin c, Martin Wolf b,∗

a Dipartimento di Fisica, Università degli studi di Milano–Bicocca, and INFN, Sezione di Milano–Bicocca, Piazza 
della Scienza 3, 20126 Milano, Italy

b Department of Mathematics, University of Surrey, Guildford GU2 7XH, United Kingdom
c INFN, Sezione di Padova, and Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di 

Padova, Via F. Marzolo 8, 35131 Padova, Italy

Received 29 April 2022; received in revised form 27 June 2022; accepted 5 July 2022
Available online 15 July 2022

Editor: Clay Córdova

Abstract

We analyse super non-Abelian T-duality for principal chiral models, symmetric space sigma models, 
and semi-symmetric space sigma models for general Lie supergroups. This includes T-duality along both 
bosonic and fermionic directions. As an example, we perform the explicit dualisation of the OSp(1|2)

principal chiral model, and, whilst the target superspace of this model is a three-dimensional supergravity 
background, we find that its super non-Abelian T-dual falls outside the class of such backgrounds.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The original ‘radius → 1/radius’ duality of string theory discovered in [1,2] has evolved into 
a more general concept of T-duality. This is based on a very simple mechanism: two classically 
duality-equivalent string sigma models exist whenever we can formulate a first-order Lagrangian 
which provides a set of equations of motion and Bianchi identities. Then, on the one hand, when 
imposing the Bianchi identities, one recovers the original model, while on the other hand, when 
imposing the equations of motion, one obtains the dual model.

Abelian T-duality [3,4], which is present when the string target space geometry has an Abelian 
isometry, is an exact symmetry of string theory that maps string backgrounds into dual ones 
corresponding to the same conformal field theory. In other words, it relates two world-sheet non-
linear sigma models with equivalent physical properties, both at the classical level as well as the 
quantum level [5,6].

Instead, non-Abelian T-duality [7],1 which generalises the approach of [5] to string back-
grounds that exhibit a bosonic non-Abelian group of isometries, does not represent an exact 
string symmetry [11]. Indeed, the non-Abelian T-dual model possesses a different, in general 
smaller, set of symmetries (local as well as non-local ones). Notable examples can be found 
in [7,12–14]. If supersymmetry is part of the game, the T-dual model is, in general, less or 
non-supersymmetric, as can be inferred from studying the Killing spinor equations after dualisa-
tion [15]. Nevertheless, when starting with a string theory background with a semi-simple group 
of isometries, the T-dual model usually remains a string theory background essentially because 

1 See also [8–10] for previous results.
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non-Abelian T-duality preserves conformal invariance in this case.2 Therefore, non-Abelian T-
duality can fruitfully be used as a string/supergravity solution generating technique [15,14].

Abelian fermionic T-duality has been formulated in [23] as a natural generalisation of the 
Abelian bosonic T-duality to sigma models which possess a superisometry generated by an 
‘Abelian’ Q supercharge (Q2 = 0). The T-self-duality [24,25] of string theory on AdS5 × S5

under a combination of four bosonic and eight fermionic Abelian T-duality transformations pro-
vides a dual string explanation of the duality between maximally-helicity-violating amplitudes 
and light-like Wilson loops in N = 4 supersymmetric Yang–Mills theory (see [26] for a nice 
review). Since under T-duality ordinary superconformal invariance acting on Wilson loops is 
mapped to dual superconformal invariance of scattering amplitudes, which ultimately can be 
thought as being generated by some non-local current, the investigation of T-self-duality is inti-
mately linked to integrability. For the AdS5 × S5 background this has been discussed in [24,25].

More generally, T-self-duality under combinations of bosonic and fermionic T-dualities has 
been proved for string sigma models on AdSd ×Sd ×M10−2d in [27]. Furthermore, whilst T-self-
duality for the AdS4×CP 3 string sigma model is also expected to hold, its proof remains an open 
problem. In particular, the existence of T-self-duality for this background is supported by the 
amplitudes/Wilson loops duality in three-dimensional Aharony–Bergman–Jafferis–Maldacena 
theory [28–31] as well as by the integrability emerging on the string theory sides [32–35] and on 
the gauge theory side [36,37]. However, the proof of T-self-duality in this case is hindered by the 
appearance of singularities in the T-duality transformations of the fields [38–42], and a stringy 
explanation of the amplitudes/Wilson loops duality in three dimensions remains open.

Evidently, Abelian fermionic T-duality should be generalised to a non-Abelian setting when 
non-Abelian isometries form supergroups. This can be achieved by following a prescription 
similar to the one introduced in [7] for purely bosonic non-Abelian isometries. However, the 
procedure of integrating out degrees of freedom to obtain the dual action appears more compli-
cated because of the nilpotent nature of the fermionic coordinates involved in the dualisation [43]. 
This is one of the reasons why the studies in this direction have been rather limited so far. Du-
alisation of fermionic directions has been discussed somewhat implicitly in connection with 
λ-deformed sigma models [44], introduced in [45–47], and with the construction of Yang–
Baxter-deformed sigma models as non-Abelian T-duals of deformed coset superspaces [48–50]. 
In particular, it was proved in [49] that for a type II Green–Schwarz superstring, non-Abelian T-
duality always produces a dual background which again satisfies the torsion constraints. This 
was shown under the assumption that one can pick the background B2-field that is invari-
ant under the dualised isometries. This is possible e.g. for the Ramond–Ramond backgrounds 
described by semi-symmetric coset superspaces, but, in general, it is not the case for Neveu–
Schwarz–Neveu–Schwarz backgrounds. In ten-dimensional supergravity, a non-Abelian version 
of fermionic T-duality has been formulated in [51] but is limited, however, to fermionic isome-
tries whose algebra closes on Abelian bosonic isometries. These lead to non-geometric solutions 
to double field theory subject to an extra constraint whose origin remains unclear. Generalisa-
tions of T-duality to supermanifolds and super Lie groups have also been explored in the context 
of Poisson–Lie T-duality [52–56], originally introduced as an extension of standard bosonic du-
alisation [57,58].

2 In the case of non-semi-simple groups, this is no longer true [16,17] due to the appearance of a mixed gauge-
gravitational anomaly [11,18]. As shown in [19,20], such backgrounds are solutions to generalised supergravity field 
equations [21,22].
3



D. Bielli, S. Penati, D. Sorokin et al. Nuclear Physics B 983 (2022) 115904
Despite these efforts, a clear picture of non-Abelian T-duality for supergroups is still missing. 
We shall refer to this as super non-Abelian T-duality in the following. One of the main open prob-
lems is to understand better the interplay between bosonic and fermionic non-Abelian T-duality. 
In particular, it would be interesting to understand whether the combination of fermionic and 
bosonic non-Abelian T-dualities can provide a more extensive tool for generating new string/su-
pergravity solutions.

Inspired by these questions, in this paper we shall carry out a systematic study of super non-
Abelian T-duality, when the dualisation is generically done along the directions corresponding 
to a non-Abelian subsupergroup of the supergroup of isometries. Using the current algebra ap-
proach, we perform in full generality the super non-Abelian T-duality of principal chiral models 
on supergroup manifolds, as well as of symmetric and semi-symmetric supercoset models. For 
all these models, we construct the T-dual action and identify the corresponding equations of 
motion.

A well-known feature of bosonic T-duality is that integrability is preserved. Indeed, if the 
original model possesses a flat conserved current, thus allowing for the existence of a Lax con-
nection, the conservation equation and the flatness condition get exchanged under dualisation, 
and (some of the) local charges of the original model are mapped to non-local charges of the 
T-dual model, and vice versa.3 This continues to be the case under super non-Abelian T-duality, 
and the T-dual Lax connection is formally of the same form as the original one.

The three classes of models under investigation include physically relevant sigma models de-
scribing string/supergravity backgrounds, directly formulated in superspace. In order to address 
the question whether super non-Abelian T-duality always gives rise to new, non-equivalent su-
pergravity solutions, it is important to investigate whether the T-dual geometry is compatible 
with superspace supergravity constraints.

We investigate this issue in one particular example, the OSp(1|2) principal chiral model 
which describes a three-dimensional anti-de Sitter supergravity geometry. For ordinary three-
dimensional anti-de Sitter geometry realised as an SL(2, R) principal chiral model, it has been 
shown [12] that the T-dualisation of the whole SL(2, R) isometry group leads to a dual geome-
try that describes a black hole that is asymptotically anti-de Sitter, though the three-dimensional 
matter-coupled gravity in which this black hole may arise as a solution is unknown yet. Aimed at 
investigating whether this black hole has a conventional supersymmetric generalisation, we study 
super non-Abelian T-duality of the OSp(1|2) model whose geometry is that of the N = 1 AdS3

superspace. Dualising either the whole OSp(1|2) supergroup or its maximal bosonic SL(2, R)

subgroup, we argue that the T-dual model does not satisfy the three-dimensional supergravity 
constraints [65–68], thus falling outside the class of supergravity backgrounds. The reason for 
this is the fact that the super non-Abelian-T-duality procedure gives rise to dual supervielbeins 
and a B2-field with a complicated space-time dependence that prevents them to satisfy the three-
dimensional supergravity constraints (even after any possible redefinition of supervielbeins and 
connection). This seems to be a first example in which super non-Abelian T-duality does not 
generate supergravity solutions. Whether this failure is a peculiarity of this model or arises more 
generally remains an open question that we plan to address in a near future. We should note 
that this result does not contradict the result of [49] since, as will be explained in detail below, 
the OSp(1|2) sigma model under consideration does not describe a (three-dimensional) Green–
Schwarz superstring.

3 For an earlier discussion of dualities and integrability of two-dimensional sigma models, see e.g. [59–64].
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This paper is organised as follows. In Section 2, after a brief review of principal chiral models 
and supercosets, we summarise the general procedure for dualising (part of) their superisome-
tries that we are going to apply in the rest of the paper. This is the direct generalisation of the 
procedure for purely bosonic non-Abelian T-duality [5,7] based on gauging the subsupergroup 
involved in the dualisation. In Section 3, we focus on the super non-Abelian T-duality of prin-
cipal chiral models. After deriving the T-dual action in general and studying its symmetries, we 
investigate in detail the OSp(1|2) principal chiral model describing the super AdS3 geometry. In 
particular, we argue that the target superspace of the T-dual model obtained by dualising either 
the whole supergroup or its maximal bosonic subgroup does not satisfy the three-dimensional 
supergravity constraints. In Section 4, we give preliminary results regarding the application of 
super non-Abelian T-duality to supercosets. Since for these models the dualisation procedure can 
be affected by the non-invertibility of the gauge equations of motion required to remove the orig-
inal coordinates in favour of a consistent set of dual ones, we cannot determine the T-dual action 
in general. At this point, a case-by-case study would be necessary which is, however, beyond the 
scope of the present paper. Finally, in Section 5, we close by collecting some comments and a 
list of possible future directions. Several appendices follow, which contain some technical details 
and a brief summary of three-dimensional supergravity (see Appendix D).

2. Preliminaries

We begin with a short review of the classes of two-dimensional sigma models which will be 
considered in the present paper. This primarily helps us fixing notation and conventions.

We consider a generic Lie supergroup G with Lie superalgebra g. We denote the number of 
bosonic and fermionic generators of g by nb and nf, respectively. In addition, we assume that we 
are given an inner product 〈−, −〉 on g, that is, a non-degenerate Ad-invariant graded-symmetric 
bilinear form.

Generally, to define two-dimensional sigma models involving G, we consider elements 
g ∈ C ∞(�, G) where C ∞(�, G) is the set of smooth maps from a two-dimensional Lorentzian 
manifold �, the world-sheet, to G. We then introduce the (pull-back to � via g of the) Maurer–
Cartan form on G by

j := g−1dg ∈ �1(�,g) (2.1)

and which satisfies the Maurer–Cartan equation

dj + 1
2 [j, j ] = 0 . (2.2)

Here, ‘d’ is the exterior derivative on � and �p(�, g) are the g-valued differential p-forms on 
�. In addition, the Lie bracket [−, −] of g is extended to �p(�, g) in the usual way.

The current in (2.1) is invariant under the global (left) G-action

g 	→ g−1
0 g for all g0 ∈ G , (2.3a)

whereas under the global (right) G-action

g 	→ gg0 for all g0 ∈ G , (2.3b)

it transforms adjointly j 	→ g−1
0 jg0.

In the following, we shall often use the notation

∇ω := d + [ω,−] and Fω := dω + 1 [ω,ω] for ω ∈ �1(�,g) . (2.4)
2
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Furthermore, if ‘�’ denotes the Hodge star operator on � with respect to the world-sheet metric, 
we have �2 = id on �1(�, g). Therefore, we have the decomposition �1(�, g) ∼= �1+(�, g) ⊕
�1−(�, g) into self-dual and anti-self-dual g-valued one-forms on �. We shall make use of the 
projectors

P ± : �1(�,g) → �1±(�,g) with P ± := 1
2 (id ±�) . (2.5)

2.1. Principal chiral model

Sigma model action The principal chiral model on G is defined by the action

S := 1
2

∫
�

〈j, �j 〉 , (2.6)

where j is the current in (2.1), the wedge product is understood and ‘�’ is the Hodge star operator 
on � with respect to the world-sheet metric. The model describes the dynamics of nb bosonic 
and nf fermionic degrees of freedom. The equation of motion following from (2.6) is

d�j = 0 , (2.7)

and together with the Maurer–Cartan equation (2.2), this forms what is known as the first-order 
system of the model.

Noether symmetries The action (2.6) possesses a global (G × G)-symmetry, where, in our con-
ventions, the first factor corresponds to the global left G-action (2.3a) and the second factor to the 
global right G-action (2.3b). It is not too difficult to see that the corresponding Noether currents 
are

LN := gjg−1 and RN := j . (2.8)

Lax connection Importantly, the first-order system, consisting of (2.7) and (2.2), is equivalent 
to

dJ (z) + 1
2 [J (z), J (z)] = 0 , (2.9a)

where

J (z) := − 1
4 (z − z−1)2 j + 1

4 (z2 − z−2) �j (2.9b)

is called the Lax connection with z a complex spectral parameter [69]. To derive the first-order 
system from (2.9), we note that �2 = id and ρ ∧ �σ = −�ρ ∧ σ for ρ, σ ∈ �1(�, g). As is well-
known, a flat Lax connection always yields an infinite number of conservation laws [60], thus 
ensuring the integrability of the model (for a nice recent review, see [70]).

2.2. Symmetric space sigma model

Lie algebra decomposition We now consider sigma models defined on coset superspaces G/H
where H is a Lie subsupergroup of G which arises as the fixed point set of an automorphism 
of G of order 2. Such coset spaces are known as symmetric spaces. At the level of the Lie 
superalgebras, this means that the Lie superalgebra g of G decomposes as
6
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g ∼= h⊕m with h := 1
2 (1 + σ)︸ ︷︷ ︸

=:Ph

(g) and m := 1
2 (1 − σ)︸ ︷︷ ︸

=:Pm

(g) , (2.10a)

where h is the Lie superalgebra of H and σ : g → g is an automorphism of g with σ 2 = 1. Then,

[h,h] ⊆ h , [m,h] ⊆ m , and [m,m] ⊆ h . (2.10b)

Elements of h are said to be of homogeneity 0 and elements of m of homogeneity 2, respectively 
and we denote the homogeneity of a homogeneous element by | −|. Furthermore, we assume that 
the inner product 〈−, −〉 is compatible with the decomposition (2.10), that is, we take 〈U, V 〉 = 0
for |U | + |V | �= 0 mod 4 for any two homogeneous elements U, V ∈ g.

Sigma model action In order to formulate the sigma model action, we first observe that under 
the decomposition (2.10) the current j = g−1dg decomposes as

j = A + m ,

A := Ph(j) ∈ �1(�,h) and m := Pm(j) ∈ �1(�,m) .
(2.11)

Under the local (right) H-action

g 	→ gh for all h ∈ C ∞(�,H) (2.12)

the A component in (2.11) transforms as a connection one-form, A 	→ h−1Ah +h−1dh, whereas 
m as an endomorphism one-form, m 	→ h−1mh. Therefore, the sigma model action

S := 1
2

∫
�

〈m,�m〉 (2.13)

is invariant under local transformations (2.12). The associated equation of motion reads

∇A�m = 0 , (2.14)

where ∇A has been defined in (2.4). This model describes the dynamics of nb = nG
b −nH

b bosonic 
and nf = nG

f − nH
f fermionic degrees of freedom, with nG

b , nH
b and nG

f , nH
f being the number of 

bosonic and fermionic generators of G and H, respectively.

Noether symmetries The action (2.13) is invariant under the global (left) G-action (2.3a). It is 
easy to check that the associated Noether current is given by

JN := gmg−1 . (2.15)

Lax connection The Maurer–Cartan equation (2.2) decomposes under (2.10) as

FA + 1
2 [m,m] = 0 and ∇Am = 0 (2.16)

and together with the equation of motion (2.14) they constitute the first-order system of a sym-
metric space sigma model. Importantly, this first-order system is equivalent to

dJ (z) + 1
2 [J (z), J (z)] = 0 , (2.17a)

where

J (z) := A + 1 (z2 + z−2)m − 1 (z2 − z−2) �m (2.17b)
2 2

7
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is the Lax connection with z a complex spectral parameter.
Evidently, this Lax connection depends on the choice of the coset representative. However, in 

order to generate an infinite tower of conserved charges which are manifestly gauge invariant, it 
is preferable to consider a Lax connection that is invariant under H-gauge transformations. This 
requirement is satisfied by

J ′(z) := g
(
J (z) − J (1)

)
g−1 = g

(
J (z) − j

)
g−1 = gJ (z)g−1 + gdg−1 . (2.18)

Furthermore, upon defining z′ := − log(z) and expanding this expression around z′ = 0, we ob-
tain

J ′(z(z′)) = �LN z′ +O(z′2) , (2.19)

where the coefficient LN is the Noether current (2.15). Thus, at order z′ the flatness of J ′ implies 
the conservation of the Noether current.

2.3. Semi-symmetric space sigma model

Lie algebra decomposition Let us now come to sigma models on semi-symmetric spaces, that 
is coset superspaces G/H where H is a Lie subsupergroup of G which arises as the fixed point set 
of an automorphism of G of order 4. This means that the Lie superalgebra g of G decomposes as

g ∼= h⊕ p⊕m⊕ q (2.20a)

with

h := 1
2 (1 + σ + σ 2 + σ 4)︸ ︷︷ ︸

=:Ph

(g) , m := 1
2 (1 − σ + σ 2 − σ 3)︸ ︷︷ ︸

=:Pm

(g) ,

p := 1
2 (1 − iσ − σ 2 + iσ 4)︸ ︷︷ ︸

=:Pp

(g) , q := 1
2 (1 + iσ − σ 2 − iσ 3)︸ ︷︷ ︸

=:Pq

(g) ,
(2.20b)

where h is the Lie superalgebra of H and σ : g → g is an automorphism of g with σ 4 = 1 and

[h,h] ⊆ h , [p,h] ⊆ p , [m,h] ⊆ m , [q,h] ⊆ q ,

[p,p] ⊆ m , [m,p] ⊆ q , [q,p] ⊆ h ,

[m,m] ⊆ h , [q,m] ⊆ p ,

[q,q] ⊆ m .

(2.20c)

Elements of h are said to be of homogeneity 0, elements of p of homogeneity 1, elements of m of 
homogeneity 2, and elements of q of homogeneity 3, respectively. Furthermore, we assume that 
the inner product 〈−, −〉 is compatible with the decomposition (2.20), that is, we take 〈U, V 〉 = 0
for |U | + |V | �= 0 mod 4 for any two homogeneous elements U, V ∈ g.

Sigma model action Under the decomposition (2.20) the current (2.1) decomposes as

j = A + p + m + q ,

A := Ph(j) ∈ �1(�,h) , m := Pm(j) ∈ �1(�,m) ,

p := P (j) ∈ �1(�,p) , q := P (j) ∈ �1(�,q) .

(2.21)
p q

8
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To formulate the sigma model action, we consider that under the local (right) H-action (2.12)
the component A of j transforms as a connection one-form, h 	→ h−1Ah + h−1dh, whereas 
{p, m, q} as endomorphism one-forms, {p, m, q} 	→ h−1{p, m, q}h for all h ∈ C ∞(�, H). The 
associated sigma model action is then the Green–Schwarz-like action [71–73]

S := 1
2

∫
�

〈m,�m〉 + 1
2

∫
�

〈p,q〉 . (2.22)

The equations of motion following from (2.22) are

∇A�m − 1
2 [p,p] + 1

2 [q, q] = 0 ,

[m,p + �p] = 0 ,

[m,q − �q] = 0 .

(2.23)

As in the symmetric space case, the model describes the dynamics of nb bosonic and nf
fermionic degrees of freedom with nb = nG

b − nH
b and nf = nG

f − nH
f .

Noether symmetries One can check that

JN := g
(
m − 1

2�(p − q)
)
g−1 (2.24)

is the Noether current associated with the global (left) G-action (2.3a).

Lax connection The Maurer–Cartan equation (2.2) decomposes under (2.20) as

FA + 1
2 [m,m] + [p,q] = 0 ,

∇Ap + [m,q] = 0 ,

∇Am + 1
2 [p,p] + 1

2 [q, q] = 0 ,

∇Aq + [m,p] = 0 ,

(2.25)

and together with the equations of motion (2.23) they constitute the first-order system of a semi-
symmetric space sigma model. Importantly, this first-order system is equivalent to

dJ (z) + 1
2 [J (z), J (z)] = 0 , (2.26a)

where

J (z) := A + zp + 1
2 (z2 + z−2)m + z−1q − 1

2 (z2 − z−2) �m (2.26b)

is the Lax connection with z being a complex spectral parameter [74].4

As before, this Lax connection depends on the choice of coset representative but again, there 
is a Lax connection that is invariant under H-gauge transformations,

J ′(z) := g
(
J (z) − J (1)

)
g−1 = g

(
J (z) − j

)
g−1 = gJ (z)g−1 + gdg−1 . (2.27)

Upon setting z′ := − log(z) and expanding this expression around z′ = 0, we obtain

J ′(z(z′)) = �LN z′ +O(z′2) , (2.28)

where now LN is the Noether current (2.24).

4 Generally, such Lax connections and flatness conditions arise for coset spaces that admit a Zm-grading [75].
9
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2.4. Topological deformations

We may also consider deformations of the models (2.6), (2.13), and (2.22) that do neither 
alter the equations of motion nor the Noether symmetries, thus preserving integrability. Due to 
these properties, such type of deformations are referred to as topological, and they have first 
been studied in the literature [76,77,48,49] in connection with Yang–Baxter deformations of 
two-dimensional sigma models [78–81].

Two-cocycles and derivations Let � ∈ H 2(g) be a Lie superalgebra two-cocycle (we may also 
restrict to a Lie subsuperalgebra of g),5 that is, � ∈∧2

g∗ and it is subject to the cocycle condi-
tion

�(U, [V,W ]) + (−1)|U |(|V |+|W |)�(V, [W,U ]) + (−1)|W |(|U |+|V |)�(W, [U,V ]) = 0

(2.29)

for all U, V, W ∈ g where | − | denotes the Graßmann degree. By the Riesz representation theo-
rem, there is a unique endomorphism D : g → g such that

�(U,V ) = 〈D(U),V 〉 for all U,V ∈ g . (2.30)

Whilst the graded anti-symmetry of � is equivalent to

〈D(U),V 〉 = −〈U,D(V )〉 for all U,V ∈ g , (2.31)

the cocycle condition (2.29) is equivalent to

D([U,V ]) = [D(U),V ] + [U,D(V )] for all U,V ∈ g , (2.32)

that is, D is a derivation for the Lie bracket [−, −]. Furthermore, upon writing g = eV for g ∈ G
and V ∈ g, we can extend D to a left-invariant vector field on G by

D(eV ) := eV
∞∑

k=0

(−1)k

(k + 1)! adk
V (D(V )) with adV := [V,−] . (2.33)

It then follows that

D(gUg−1) = g
(
D(U) + [

g−1D(g),U
])

g−1 (2.34)

for all g ∈ G and for all U ∈ g. See Appendix A for details. The Ad-invariance of 〈−, −〉 then 
immediately yields

�(gUg−1, gVg−1) = �(U,V ) + 〈g−1D(g), [U,V ]〉 (2.35)

for all g ∈ G and for all U, V ∈ g. Moreover, we shall also make use of the notation

DA := D + adA for all A ∈ g . (2.36)

Then, (2.34) implies that

5 The Whitehead lemma says that if g is a finite-dimensional semi-simple Lie algebra, then H 2(g) = 0. However, for 
Lie superalgebras, the Whitehead lemma does no longer hold in general. See [82] and references therein on the cohomol-
ogy for Lie superalgebras. See also [83,84] for some recent developments in cohomology theory for Lie superalgebras 
relevant to string theory/supergravity.
10
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Dg−1Ag+g−1D(g)(g
−1Ug) = g−1DA(U)g (2.37)

for all g ∈ G and for all A, U ∈ g. Note that to show this one uses that g−1D(g) = −D(g−1)g

for all g ∈ G as directly follows from (2.33).

Topological deformations Next, if we extend � and D in the usual fashion to �p(�, g), we 
can define a deformed model by

S� := S + ζ
2

∫
�

�(j, j) = S + ζ
2

∫
�

〈D(j), j 〉 , (2.38)

where S is any of the actions (2.6), (2.13), or (2.22) and ζ ∈ R is an arbitrary deformation pa-
rameter. In the case when considering coset superspaces G/H, that is, either (2.13) or (2.22), 
we need to require that the restriction �|h of the two-cocyle � to the Lie superalgebra h of H
vanishes. This, in turn, ensures that the action (2.38) is invariant under the H-gauge transforma-
tions (2.12). Note that the condition �|h = 0 is equivalent to D being of degree two, that is, 
D|h : h → m and D|m :m → h in the case of the symmetric space sigma models, and in the case 
of semi-symmetric space sigma models this gets augmented by D|p : p → q and D|q : q → p.6

Furthermore, it is not too difficult to check that the deformation is topological in the sense 
that the equations of motion for (2.38) are the same as those of the undeformed model given 
by S. To show this, one makes use of the derivation property (2.32) of D and the Maurer–
Cartan equation (2.2). Likewise, it also follows that (2.38) is invariant under the same symmetry 
transformation as the undeformed model with the same Noether currents. All this thus ensures 
that the deformed model has the same Lax connection as the undeformed model and hence, the 
deformation does not spoil integrability.7

As mentioned before, we may consider the restriction �|k of � to some Lie subsuperalgebra 
k of g. If K denotes the Lie supergroup associated with k, we may consider the change g 	→ k−1g

for k ∈ C ∞(�, K) and then deform any of the sigma model actions (2.6), (2.13), or (2.22) by 
adding ζ2

∫
�

�|k(k−1dk, k−1dk) with �|k ∈ H 2(k). In fact, under the assumption that �|k is non-
degenerate, homogeneous Yang–Baxter deformations have been shown in [77] to be equivalent to 
the non-Abelian T-dual of the deformed model when T-duality is performed, with �|−1

k
solving 

the (classical) Yang–Baxter equation and the deformation parameter given by ζ−1.

2.5. Super non-Abelian T-duality

We are now interested in studying non-Abelian T-duality of the sigma models from the pre-
ceding sections. The general procedure that we shall apply is a straightforward generalisation of 
the well-known prescription of purely bosonic non-Abelian T-duality [5,7] to supergroups, and 
we shall refer to it as super non-Abelian T-duality in the following.

Gauging Following [5,7], the first step to dualise one of the previously discussed sigma models 
is to gauge a Lie subsupergroup K of G, corresponding to the directions that we wish to dualise. If 

6 Indeed, �|h = 0 is equivalent to D|h : h → m, and the other conditions then follow from the derivation property of 
D and the requirement of preserving the commutations relation (2.10b) and (2.20c).

7 Another deformation one may consider is by using the Kac–Moody two-cocycle on the based loop algebra L0g given 
by 
∫
�

∫ 1
0 dt 〈 dJ

dt
, J 〉 with J : � × S1 → g with dJ + 1

2 [J, J ] = 0 and J (t = 0) = J (t = 1) = j . Such a deformation also 
renders the theory integrable.
11
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k denotes the Lie superalgebra of K, the gauging is obtained by introducing a k-valued connection 
one-form ω ∈ �1(�, k). Consequently, the current (2.1) generalises to

jω := g−1ωg + g−1dg for g ∈ C ∞(�,G) . (2.39)

Evidently, Fjω = g−1Fωg and so, the flatness of jω is equivalent to the flatness of ω. Further-
more, jω is invariant under the local (left) K-action

g 	→ k−1g and ω 	→ k−1ωk + k−1dk for all k ∈ C ∞(�,K) . (2.40)

Adding Lagrange multipliers To implement Fω = 0, we introduce Lagrange multipliers repre-
sented by 
 ∈ C ∞(�, k), and we define the master action

Sω := S + 1
2

∫
�

〈D(jω), jω〉 +
∫
�

〈
 + D(g)g−1,Fω〉 , (2.41)

where S is any of the actions (2.6), (2.13), or (2.22) with j replaced with jω, and D is the 
derivation introduced in (2.30) by means of the two-cocycle �. Without loss of generality, we 
have set the deformation parameter ζ equal to one. It should be noted that the action (2.41)
is H-gauge invariant in the case when considering coset superspaces G/H, that is, either (2.13)
or (2.22), because of our assumption that �|h vanishes; see Section 2.4. Moreover, in order to 
have the action (2.41) also K-gauge invariant, we require that the gauge transformations (2.40)
are augmented by


 	→ k−1
k + k−1D(k) for all k ∈ C ∞(�,K) . (2.42)

Finally, we can simplify (2.41) as

Sω = S + 1
2

∫
�

〈D(jω), jω〉 +
∫
�

〈
̃,Fjω 〉 with 
̃ := g−1
g + g−1D(g) (2.43)

which is manifestly K-gauge invariant. This form of the master action will be the starting point 
of our T-dualisation procedure.

T-dualisation Upon integrating out 
 in (2.41), we recover the original sigma model action. 
Indeed, the equation of motion for 
 is the flatness condition Fω = 0, and hence, ω is locally 
pure gauge. Generally, however, ω might have non-trivial holonomies around non-contractible 
loops which prevents us from having ω be pure gauge globally. However, we shall ignore this 
technicality by assuming that the topology of � is suitably chosen. Hence, we have ω pure gauge 
globally and so, we may fix a K-gauge in which it vanishes identically.

On the other hand, if we integrate out ω, we obtain the T-dual model. Since the latter will still 
be invariant under K-gauge transformation, we may fix a gauge to remove dim(K) coordinates. 
For instance, for principal chiral models, this can be used to gauge away dim(K) original coordi-
nates, thus arriving at a gauge-fixed T-dual action with the same number of degrees of freedom 
as the original one, with the key difference that now the dim(K) Lagrange multipliers play the 
role of dual coordinates. In particular, when taking K = G, gauge invariance can be used to set 
the original group element g = 1, and, consequently, the T-dual model depends only on the dual 
coordinates 
.
12
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In the case of sigma models defined on coset superspaces G/H, the reasoning is similar with 
the only difference being that the original model describes dim(G) − dim(H) degrees of free-
dom. The gauge invariance inherited by the T-dual model has to be used to fix also some of the 
Lagrange multipliers [85,14], while the remaining ones provide a set of dual coordinates.

It should be stressed that this procedure can be complicated by certain uniqueness issues when 
trying to solve the equation of motion for ω for the projection of jω onto the Lie superalgebra 
of H. While for the principal chiral model this issue does not arise, it may arise in symmetric 
and semi-symmetric models, and depends on the properties of the chosen Lie groups. In this 
case, the T-dualisation procedure needs to be modified accordingly and requires a case-by-case 
discussion. There are many examples in the literature for purely bosonic sigma models where 
this problem is automatically cured once the Lagrange multipliers are turned on in the master 
action (2.41) and the T-dualisation is performed before gauge fixing them [85,14,49]. Instead, 
for sigma models defined on supergroups the problem is made more severe by the appearance of 
fermionic coordinates, which are not invertible by their own nature. It turns out that in general 
switching on the fermionic Lagrange multipliers does not help in making the equations invertible, 
and more sophisticated approaches need to be used. In the case of purely fermionic cosets, this 
has been largely discussed in [43]. We shall come back to this in Section 4 and in a forthcoming 
paper.

In what follows, we are going to discuss the T-dualisation of the three classes of models intro-
duced above. Our primary focus is to identify explicitly the T-dual actions, study the associated 
Lax pair and the fate of integrability. In a simple example, corresponding to the principal chiral 
model describing an AdS3 supergravity background, the question whether super non-Abelian 
T-duality leads to a dual background which still solves the supergravity torsion constraints is 
carefully investigated.

3. Super non-Abelian T-duality of principal chiral models

3.1. General derivation of the T-dual model

We shall gauge a subsupergroup K of G so that the master action (2.43) becomes

Sω = 1
2

∫
�

〈jω, �jω〉 + 1
2

∫
�

〈D(jω), jω〉 +
∫
�

〈
̃,Fjω 〉 (3.1)

with jω as given in (2.39).

T-dual sigma model action The T-dual model is obtained by integrating out the ω field. In 
particular, upon varying (3.1) with respect to ω, we obtain

�jω + ∇jω
̃ − D(jω) = 0 . (3.2)

Upon making use of (2.5) and (2.36), this equation can be solved for jω as

jω = − 1

1 − D
̃

(
P +(d
̃)

)+ 1

1 + D
̃

(
P −(d
̃)

)
. (3.3)

Therefore, with the help of the identity〈
1

(V ),W

〉
=
〈
V,

1
(W)

〉
for all U,V,W ∈ g , (3.4)
1 ± DU 1 ∓ DU

13
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which is a consequence of (2.31), the T-dual action that follows from (3.1) upon substituting (3.3)
is

S̃ =
∫
�

〈
d
̃,

1

1 − D
̃

(
P +(d
̃)

)〉
. (3.5)

T-dual equation of motion and Lax connection Using (3.4), the expansion

1

1 ± (D
̃ + δD
̃)
= 1

1 ± D
̃

∓ 1

1 ± D
̃

◦ δD
̃ ◦ 1

1 ± D
̃

+ · · · , (3.6)

and δD
̃ = adδ
̃, some algebra shows that the equation of motion following from the T-dual 
action (3.5) is

dj̃ + 1
2 [j̃ , j̃ ] = 0 , (3.7)

where j̃ := jω with jω given in (3.3). Consequently, j̃ satisfies (3.2). Upon combining this 
with (3.7) and making use of the Jacobi identity and the properties of D, we obtain

d�j̃ = 0 . (3.8)

The equations (3.7) and (3.8) confirm that for (deformed) principal chiral models the well-known 
pattern of exchanging equations of motions and Maurer–Cartan equations [11] occur also under 
super non-Abelian T-duality. Moreover, it allows to identify the T-dual Lax connection as

J̃ (z̃) := − 1
4 (z̃ − z̃−1)2 j̃ + 1

4 (z̃2 − z̃−2) �j̃ , (3.9)

thus ensuring integrability of the T-dual model.

T-dual Noether symmetries The T-dual model is invariant under global G-transformations in-
duced by the right action (2.3b) and given by the transformation


̃ 	→ g−1
0 
̃g0 + g−1

0 D(g0) for all g0 ∈ G , (3.10)

where D(g0) was defined in (2.33). Indeed, this follows immediately from (2.37). The Noether 
current associated with this symmetry is then given by

J̃N = �D
̃(j̃ ) . (3.11)

3.2. Example: OSp(1|2) principal chiral model

As an explicit example of super non-Abelian T-duality, we shall now consider the principal 
chiral model for the orthosymplectic group OSp(1|2). The interest in this supergroup manifold 
is due to its interpretation as an N = 1 supersymmetric AdS3, and as such, it represents an 
appropriate background for three-dimensional supergravity [86,66,67,87–89], as we are going to 
discuss.

In the absence of supersymmetry, non-Abelian T-duality of the SL(2, R) principal chiral 
model, which describes AdS3, has been performed in [12]. There, it has been shown that the 
T-dualisation of an SL(2, R) subgroup of the isometry group SL(2, R) ×SL(2, R) yields a three-
dimensional metric corresponding to a black hole space-time and a non-trivial B2-field. To the 
best of our knowledge, it is still unknown whether this black hole and B2-field configuration is 
14
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a solution of a matter-coupled gravity and whether it can be embedded into a three-dimensional 
supergravity.

It is then interesting to investigate what happens in the case of the AdS3 supergeometry. To this 
end, we shall discuss the T-dualisation of an OSp(1|2) subgroup of the group of superisometries 
OSp(1|2) × OSp(1|2). We will also comment about the T-dualisation of the maximal bosonic 
subgroup SL(2, R) ⊆ OSp(1|2). We will find that in both cases, the target superspaces and B2-
fields of the T-dual models fall outside the class of possible solutions of a three-dimensional 
N = 1 supergravity. This indicates that the black hole configuration obtained by the non-Abelian 
T-dualisation of the SL(2, R) principal chiral model in [12] does not seem to have a conventional 
supergravity extension.

Orthosymplectic algebra To begin with, we fix our conventions for the orthosymplectic algebra 
osp(1|2). In spinorial notation, it is described by a set of two fermionic generators Qα and three 
bosonic generators Lαβ = Lβα for α, β, . . . = 1, 2 subject to the following non-trivial commuta-
tion relations

[Lαβ,Lγ δ] = −i
(
εγ (αLβ)δ + εδ(αLβ)γ

)
,

[Qα,Qβ ] = Lαβ , [Lαβ,Qγ ] = −iεγ (αQβ) .
(3.12)

The parentheses on the right-hand sides denote normalised symmetrisation of the enclosed in-
dices and i is the imaginary unit. In addition, εαβ = −εβα with εαγ εγβ = δα

β and δα
β is the 

Kronecker symbol. Furthermore, we introduce an inner product 〈−, −〉 on osp(1|2) by

〈Qα,Qβ〉 := iεαβ , 〈Lαβ,Lγ δ〉 := εα(γ εδ)β , and 〈Qα,Lβγ 〉 := 0 . (3.13)

Sigma model action Since H 2(osp(1|2)) vanishes [82], we work with the undeformed ac-
tion (2.6). In particular, we parametrise g ∈ G as

g := gbgf with gb := exαβLαβ , gf := e−F , and F := θαQα , (3.14)

with three bosonic coordinates xαβ = xβα and two fermionic coordinates θα . The corresponding 
current j = g−1dg =: jαβLαβ + jαQα can be split as

j = jb + jf , (3.15a)

where (see also Appendix B)

jb := g−1
b dgb and jf := −∇jbF − 1

2 adF (∇jbF) − 1
6 ad2

F (dF) (3.15b)

and the covariant derivative is as defined in (2.4). Explicitly,

jb =: eαβLαβ ,

jf = −[(1 − i
8θ2)dθα + iθαeαβ

]
Qβ + 1

2 (θαdθβ + i
2θ2eαβ)Lαβ ,

(3.16)

where θ2 := θαθα . Consequently,

j = −(1 − i
8θ2)(dθβ + iθαeαβ

)
Qβ + (

1 + i
4θ2)(eαβ + 1

2θ(αdθβ)
)
Lαβ . (3.17)

In order to compute eαβ explicitly, we use the Baker–Campbell–Hausdorff formula together 
with the identities (C.5) specialised to U ≡ xαβLαβ and V ≡ dU . Indeed, jb = e−U deU =∑∞ (−1)k adk (dU), and so
k=0 (k+1)! U
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eαβ = dxαβ − 2x − √
2 sinh(

√
2x)

4x3 (x2dxαβ − 2xγ
αxδ

βdxγ δ) +
2i sinh2 ( x√

2

)
x2 xγ

(αdxβ)γ .

(3.18a)

where

xγ
αxβ

γ = − 1
2δβ

αxγ δx
γ δ =: − 1

2δβ
αx2 ⇒ x2 = xαβxαβ . (3.18b)

Note that the series in (3.18a) are in powers of x2 only.
Upon inserting these expressions into (2.6) and using (3.13), we eventually find

S = − 1
2

∫
�

{
jαβ ∧ �jαβ + ijα ∧ �jα

}

= − 1
2

∫
�

{
eαβ ∧ �eαβ − eαβ ∧ �θ(αdθβ) + i

(
1 − i

16θ2)dθα ∧ �dθα

}
.

(3.19)

Furthermore, in the metric-like form, the action reads as

S =
∫
�

{
1
2 dxγ δ ∧ �dxαβgαβ,γ δ + dxβγ ∧�dθαgα,βγ + 1

2 dθβ ∧ �dθαgα,β

}
(3.20a)

with the components

gαβ,γ δ := gγ δ,αβ := g1εα(γ εδ)β + g2xα(γ xδ)β ,

gα,βγ := gβγ,α := [
g3εα(βεγ )δ + g4xα(βxγ )δ + g5(xα(βεγ )δ + xδ(βεγ )α)

]
θδ ,

gα,β := −gβ,α := εαβ

(
i + θ2

16

) (3.20b)

and the coefficient functions

g1 := −1 − x2 − cosh (
√

2x)

2x2 , g2 := −1 + x2 − cosh (
√

2x)

x4 ,

g3 := 2x + √
2 sinh (

√
2x)

8x
, g4 := −2x + √

2 sinh (
√

2x)

4x3 , g5 := i

2x2 sinh2
(

x√
2

)
.

(3.20c)

T-dual sigma model action We now perform super non-Abelian T-duality along OSp(1|2)

corresponding to the left action (2.3a). The general expression for the T-dual action of the unde-
formed principal chiral model is given in (3.5) with D
̃ replaced with ad
̃. Moreover, since we 
are gauging the whole group, we can fix a gauge in which g = 1. Therefore, the T-dual action 
becomes

S̃ = 1
2

∫
�

〈
d
,

1

1 − ad


(d
 + �d
)

〉
. (3.21)

In order to compute it explicitly, we rearrange the integrand as outlined in Appendix C. In par-
ticular, upon specialising the identities (C.12) to U ≡ 
 and V ≡ d
 with 
 expanded in terms 
of a set of dual coordinates x̃αβ and θ̃ α as 
 =: x̃αβLαβ + θ̃ αQα , we obtain
16
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1

1 − ad


(d
) = 1

1 − 2x̃2

[
(1 − x̃2)Zαβ − 2x̃γ

αx̃δ
βZγ δ − 2ix̃γ

(αZβ)γ
]
Lαβ

+ 2

2 − x̃2 ζ α(δα
β − ix̃α

β)Qβ ,

(3.22a)

where

Zαβ = dx̃αβ + 2

2 − x̃2

[
dθ̃ (α − idθ̃ γ x̃γ

(α
]
θ̃ β)

+ i

(2 − x̃2)(1 − 2x̃2)

[(
1 − 1

2 x̃2)dx̃αβ − 3x̃γ
αx̃δ

βdx̃γ δ − 3ix̃γ
(αdx̃β)γ

]
θ̃2 ,

ζ α = dθ̃ α − i

1 − 2x̃2

[
(1 − x̃2)dx̃αβ − 2x̃γ

αx̃δ
βdx̃γ δ − 2ix̃γ

(αdx̃β)γ
]
θ̃β

− i

(2 − x̃2)(1 − 2x̃2)

[
3
2 dθ̃ α − i

( 7
2 − x̃2)dθ̃ β x̃β

α
]
θ̃2

(3.22b)

and x̃2 is as defined in (3.18b). Therefore, summing everything and using the inner prod-
uct (3.13), the explicit expression for the T-dual action (3.21) eventually reads

S̃ = −1

2

∫
�

{
dx̃αβ ∧ �

[
(1 − x̃2)Zαβ − 2x̃γ

αx̃δ
βZγ δ − 2ix̃γ

(αZβ)γ
]

1 − 2x̃2

+ dx̃αβ ∧ [(1 − x̃2)Zαβ − 2x̃γ
αx̃δ

βZγ δ − 2ix̃γ
(αZβ)γ

]
1 − 2x̃2

+ 2idθ̃ α ∧ �ζβ(εαβ − ix̃αβ)

2 − x̃2 + 2idθ̃ α ∧ ζ β(εαβ − ix̃αβ)

2 − x̃2

}
.

(3.23)

In the metric-like form, the action takes the following form in which one can immediately notice 
the presence of a two-form superfield B̃2 which was absent in the original OSp(1|2) model,

S =
∫
�

{
1
2 dx̃γ δ ∧ �dx̃αβ g̃αβ,γ δ + dx̃βγ ∧�dθ̃ αg̃α,βγ + 1

2 dθ̃ β ∧ �dθαg̃α,β

+ 1
2 dx̃γ δ ∧ dx̃αβB̃αβ,γ δ + dx̃βγ ∧ dθ̃ αB̃α,βγ + 1

2 dθ̃ β ∧ dθαB̃α,β

}
(3.24a)

with the components

g̃αβ,γ δ := g̃γ δ,αβ := (
g̃1 + g̃3θ̃

2)εα(γ εδ)β + (
g̃2 + g̃4θ̃

2)x̃α(γ x̃δ)β ,

g̃α,βγ := g̃βγ,α := (
g̃5x̃α(βεγ )δ + g̃6x̃δ(βεγ )α

)
θ̃ δ ,

g̃α,β := −g̃β,α := εαβ

(
g̃7 + g̃8θ̃

2) ,

B̃αβ,γ δ := −B̃γ δ,αβ := (
b̃1 + b̃2θ̃

2)(x̃α(γ εδ)β + x̃β(γ εδ)α) ,

B̃α,βγ := −B̃βγ,α := (
b̃3εα(βεγ )δ + b̃4x̃α(β x̃γ )δ

)
θ̃ δ ,

B̃α,β := B̃β,α := x̃αβ

(
b̃5 + b̃6θ̃

2)
(3.24b)

and the coefficient functions
17
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g̃1 := 1 − x̃2

1 − 2x̃2 , g̃2 := 2

1 − 2x̃2 , g̃3 := i(1 + 2x̃4)

(2 − x̃2)(1 − 2x̃2)2 , g̃4 := 4i

(1 − 2x̃2)2 ,

g̃5 := 2i

1 − 2x̃2 , g̃6 := 2i(1 + x̃2)

(2 − x̃2)(1 − 2x̃2)
, g̃7 := 2i

2 − x̃2 ,

g̃8 := (6 + 7x̃2 − 2x̃4)

2(2 − x̃2)2(1 − 2x̃2)
,

b̃1 := i

1 − 2x̃2 , b̃2 := − 5 + 2x̃2

2(2 − x̃2)(1 − 2x̃2)2 ,

b̃3 := 1

1 − 2x̃2 , b̃4 := 6

(2 − x̃2)(1 − 2x̃2)
,

b̃5 := − 2

2 − x̃2 , b̃6 := i(10 − 2x̃2)

(2 − x̃2)2(1 − 2x̃2)
,

(3.24c)

and x̃2 is as defined in (3.18b). Note that the remaining isometry group is OSp(1|2) as follows 
from the general discussion around (3.11). Hence, half of the supersymmetries of the original 
model are broken. As shown in Appendix E, this also happens when dualising only the maximal 
bosonic subgroup SL(2, R). This is in agreement with what was already established, for in-
stance, in the cases of purely bosonic non-Abelian T-duality along the AdS3- and S3-directions 
in AdS3 × S3 × CY2 backgrounds [15,14,90] (where CY2 is a Calabi–Yau two-fold).

T-dual supervielbeins We observe that the dual action (3.21) can be rewritten as

S̃ = 1
2

∫
�

{〈ẽ, �ẽ〉 + 〈ẽ, ad
(ẽ)〉} with ẽ := − 1

1 − ad


(d
) . (3.25)

Consequently, ẽ represents the T-dual supervielbein.8 A short calculation reveals that

dẽ = −1

2
[ẽ, ẽ] − 1

2

1

1 − ad


([ẽ, ẽ]) . (3.26)

Furthermore, from the action (3.25) we identify the B̃2-field as

B̃2 := 1
2 〈ẽ, ad
(ẽ)〉 . (3.27)

A short calculation then leads to

H̃3 := dB̃2 = 1

2

〈
ẽ,

1

1 − ad


([ẽ, ẽ])
〉
. (3.28)

To apply these formulæ to the OSp(1|2) case, we consider the expansions ẽ =: ẽαβLαβ + ẽαQα

and 
 =: x̃αβLαβ + θ̃ αQα , and compute

[ẽ, ẽ] = (2iẽγ (α ∧ ẽγ
β) − ẽα ∧ ẽβ)Lαβ + 2iẽαβ ∧ ẽβQα =: υαβLαβ + υαQα , (3.29)

the equations in (3.22) imply that

8 Note that 1 (d
) is an equivalent form for the supervielbeins as follows from the identity (3.4).
1+ad
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1

1 − ad


([ẽ, ẽ]) = 1

1 − 2x̃2

[
(1 − x̃2)Zαβ − 2x̃γ

αx̃δ
βZγ δ − 2ix̃γ

(αZβ)γ
]
Lαβ

+ 2

2 − x̃2 ζ α(δα
β − ix̃α

β)Qβ

(3.30a)

with

Zαβ = υαβ + 2

2 − x̃2

[
υ(α − iυγ x̃γ

(α
]
θ̃ β)

+ i

(2 − x̃2)(1 − 2x̃2)

[(
1 − 1

2 x̃2)υαβ − 3x̃γ
αx̃δ

βυγ δ − 3ix̃γ
(αυβ)γ

]
θ̃2 ,

ζ α = υα − i

1 − 2x̃2

[
(1 − x̃2)υαβ − 2x̃γ

αx̃δ
βυγ δ − 2ix̃γ

(αυβ)γ
]
θ̃β

− i

(2 − x̃2)(1 − 2x̃2)

[
3
2υα − i

( 7
2 − x̃2)υβx̃β

α
]
θ̃2 .

(3.30b)

Therefore, (3.26) becomes

dẽαβ = −1

2
υαβ − 1

2(1 − 2x̃2)

[
(1 − x̃2)Zαβ − 2x̃γ

αx̃δ
βZγ δ − 2ix̃γ

αZβγ
]

(3.31a)

and

dẽα = −1

2
υα − 2

2(2 − x̃2)
ζ α(δα

β − ix̃α
β) . (3.31b)

SL(2, R) T-dual model Note that upon setting θ̃ α = 0, the model (3.24) reduces to the T-dual 
model found in [12] when dualising the SL(2, R) principal chiral model. In particular, the target 
space metric g̃αβ ,γ δ for θ̃ α = 0 in (3.24) was interpreted in [12] as a black hole that is asymptot-
ically anti-de Sitter with the scalar curvature

R̃ = −2
4x̃4 − 6x̃2 + 9

(1 − 2x̃2)2 (3.32)

for the Levi-Civita connection. Furthermore, we observe that the B̃2-field B̃αβ ,γ δ for θ̃ α = 0
in (3.24) has a non-constant field strength

H̃3 = i

3

3 − 2x̃2

1 − 2x̃2 ẽα
β ∧ ẽβ

γ ∧ ẽγ
α , (3.33)

as follows from (3.28) together with (3.30a) after some algebra. Being non-constant, the curva-
ture (3.32) and the field strength (3.33) cannot be a solution of Einstein gravity coupled only to 
a B2-field. Indeed, the equations of motion for this theory are

Rμν − 1
2gμνR = − 1

4

(
HμκλHν

κλ − 1
6gμνHκλσ Hκλσ

)
,

∇μHμνκ = 0 ,
(3.34)

where Rμν is the Ricci tensor for the Levi-Civita connection of the metric gμν , ∇μ the covariant 
derivative with respect to the Levi-Civita connection, and Hμνκ the components of H3. The 
second equation implies that Hμνκ = c

√|g| εμνκ with εμνκ the Levi-Civita symbol and c ∈ R
some constant. Thus, H3 must be constant. Moreover, the trace over the first equation yields that 
R = 1HμνκHμνκ = 3c2 and so, also the scalar curvature must be constant. Since neither the 
4 2
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scalar curvature (3.32) is constant nor the three-form field strength (3.33) is of the desired form, 
we conclude that the bosonic T-dual model is not a solution of Einstein gravity coupled only to a 
B2-field. Therefore, the metric g̃αβ ,γ δ and the B̃2-field B̃αβ ,γ δ may only be solutions in a theory 
in which gravity and the B2-field couple to some other matter fields.9 It would be of interest to 
find this theory.

Supergravity constraints for the OSp(1|2) T-dual model We will not elaborate on the above 
issue of the bosonic SL(2, R) model here but instead ask the question whether the three-
dimensional black hole of [12] can be part of a conventional three-dimensional supergravity. 
In other words, we shall study whether the target superspace of the super non-Abelian T-dual 
model obtained from the OSp(1|2) principal chiral model may be interpreted as a supersymmet-
ric black hole which might be a solution of a three-dimensional N = 1 supergravity. For this to 
be possible, the target superspace of the T-dual model should respect an additional key feature: it 
should be understood as an appropriate supergravity background. Put differently, it should satisfy 
the superspace supergravity constraints, which in three-dimensions are off-shell constraints that 
do not imply the on-shell supergravity equations of motion.

A brief review of three-dimensional supergravity is given in Appendix D. In particular, we 
are interested in the torsion constraints (D.12c) and the constraint (D.13) on the three-form field 
strength H3 of the B2-field.

The target superspace of the original OSp(1|2) principal chiral model is an AdS3 solution of 
three-dimensional N = 1 supergravity. As such, it satisfies the constraints (D.12c). Indeed, the 
supervielbeins can be read off the flat current j = g−1dg given in (3.17). In particular, expanding 
j =: jαβLαβ + jαQα and using the algebra (3.12), the flatness equation (2.2) in components 
reads

djαβ + i jγα ∧ jγ
β = 1

2jα ∧ jβ and djα + i jβ ∧ jβ
α = 0 . (3.35)

It follows that the torsion constraints (D.12c) are satisfied, provided that we identify the super-
vielbeins, the connection one-form, and the non-vanishing components of the torsion as

eαβ = −jαβ , eα = −jα , ωα
β = − i

2 jα
β , and T αβ γ

δ = − εγ (αδβ)
δ . (3.36)

Since jαβ = jβα , the metric compatibility (D.12b) is also satisfied. Though the OSp(1|2) princi-
pal chiral model does not include the B2-field, its field strength H3 can be a dynamical source of 
the cosmological constant in the supergravity equations of motion ensuring the existence of the 
AdS3 superspace solution (see e.g. [87]). For the AdS3 solution,

H3 = eα ∧ eαβ ∧ eβ + 4i
3�

eα
β ∧ eβ

γ ∧ eγ
α , (3.37)

where � is proportional to the AdS3 radius. This H3 satisfies the constraint (D.13).
Now we would like to check whether the dual supergeometry satisfies the supergravity con-

straints. Let us focus on the first torsion constraint in (D.12c), that is, the projection (3.31a)
of (3.26) onto Lαβ . The torsion constraint is satisfied by the T-dual supervielbeins if and only if 
the right-hand side of (3.31a) equals the expression ẽγ (α ∧ ω̃γ

β) − 1
2 ẽα ∧ ẽβ . In particular, this 

implies that the terms in (3.31a) proportional to ẽα ∧ ẽβ have to sum up to a constant. From the 

9 Note that the T-dualisation also yields a non-trivial dilaton φ̃ = − log(1 − 2x̃2) but the standard coupling of the 
dilaton to Einstein gravity and a B2-field does not solve this issue for the scalar curvature (3.32) and three-form field 
strength (3.33).
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expressions above, we see that the desired ẽα ∧ ẽβ term is contained in υαβ defined in (3.29), 
which in turn appears in Zαβ . Therefore, focusing only on the υαβ terms, we obtain

dẽαβ = −1

2
υαβ − 1

2(1 − 2x̃2)

[
(1 − x̃2)υαβ − 2x̃γ

αx̃δ
βυγ δ − 2ix̃γ

(αυβ)γ
]

− i

2(2 − x̃2)(1 − 2x̃2)2

[
(1 + 2x̃4)υαβ − 4(2 − x̃2)x̃γ

αx̃δ
βυγ δ

− i(5 + 2x̃2)x̃γ
(αυβ)γ

]
θ̃2 + · · · ,

(3.38)

where the ellipses denote all the other terms that are irrelevant to the argument. Now, it is 
easy to realise that in (3.38) there are non-constant terms proportional to ẽα ∧ ẽβ such as 
ẽγ ∧ ẽδx̃(γ

(αx̃δ)
β). However, such terms can never sum up to a constant. Consequently, we 

may conclude that the T-dual supervielbeins ẽ do not satisfy the torsion constraints of three-
dimensional supergravity. In order to improve the situation, we could consider performing a 
local OSp(1|2)-transformation of the form ẽ 	→ ẽg := g−1ẽg for g ∈ C ∞(�, OSp(1|2)). Then, 
with 
g := g−1
g and A := g−1dg, the structure equation (3.26) becomes

∇Aẽg = −1

2
[ẽg, ẽg] − 1

2

1

1 − ad
g
([ẽg, ẽg]) . (3.39)

However, one quickly realises that whilst such transformations can in principle remove some of 
the unwanted terms in (3.38), they will never remove terms of the form ẽγ ∧ ẽδx̃(γ

(αx̃δ)
β) simply 

because A appears linearly in (3.39).
An additional confirmation of the incompatibility of the dual model with supergravity comes 

from considering the three-form curvature H̃3, which should have the particular structure (D.13)
in terms of an arbitrary scalar superfield. Using the formula (3.28) for H̃3 together with (3.30a), 
it is not too difficult to find the explicit expression of H̃3 generalising (3.33) to the supersetting. 
In particular, it turns out that it contains a non-constant term which is cubic in the fermionic 
components of the supervielbein,

H̃3 = ẽα ∧ ẽβ ∧ ẽγ 2

1 − 2x̃2

(
ix̃(αβ θ̃γ ) − 3

2 − x̃2 x̃(αβ x̃γ )δθ̃
δ

)
+ · · · . (3.40)

Such a term is not present in (D.13). This again shows that the T-dual model is incompatible with 
the supergravity constraints.

One may wonder whether this result is a peculiarity of dualising all of OSp(1|2). In Ap-
pendix E, we comment on the maximal bosonic subgroup SL(2, R) ⊆ OSp(1|2) and argue that 
also in this case the dualisation is not compatible with the supergravity constraints.

The above issue may be related to the fact that our starting point was not a three-dimensional 
Green–Schwarz superstring sigma model on AdS3, while the fermionic non-Abelian T-duality 
of stringy sigma models was argued in [48,49] to produce dual superbackgrounds that satisfy 
supergravity constraints. The AdS3 superstring sigma model is obtained by subtracting from the 
action (3.19) the term jα ∧ �jα and adding, instead of it, the Wess–Zumino term associated 
with the worldvolume pull-back of H3 in (3.37) with a relative coefficient k that ensures kappa-
symmetry,

SGS = − 1
2

∫
eαβ ∧ �eαβ + k

∫
H3 with ∂M3 = � . (3.41)
� M3
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In the presence of such Wess–Zumino terms the gauging procedure is however more delicate [91]
and the approach we took in this work would not be applicable. Note that the three-dimensional 
superstring sigma model under consideration is similar to ten-dimensional superstrings in an 
Neveu–Schwarz–Neveu–Schwarz background which are not described by sigma models on 
semi-symmetric Ramond–Ramond superbackgrounds. The B2-field of the AdS3 superstring is 
invariant under the super non-Abelian isometry only modulo a gauge transformation, and, as 
such, it falls out of the class of examples considered in [49]. For this reason, the dualisation of 
the three-dimensional Green–Schwarz superstring deserves further study. Another possibility of 
tackling this issue might be to generalise the above three-dimensional superspace construction 
to a type IIB Green–Schwarz superstring in an AdS3 ×S3 × CY2 Ramond–Ramond background 
(where CY2 is a Calabi–Yau two-fold). This would require the consideration of a semi-symmetric 
space sigma model with an isometry supergroup PSU(1, 1|2) ×PSU(1, 1|2) rather than a higher-
dimensional supergroup of the OSp series. The non-Abelian T-dualisation of the SL(2, R) isom-
etry subgroup in the bosonic string sigma model on this background was recently considered 
in [90], where it was shown that a dual background AdS2 × R × S3 × CY2 is a solution of 
massive type IIA supergravity. It would certainly be of interest to generalise this example to its 
super-non-Abelian T-dualised counterpart, and we postpone the study of this problem to future 
work.

4. Super non-Abelian T-duality of supercoset models

We shall now move on and discuss the super non-Abelian T-duality procedure for symmetric 
and semi-symmetric spaces from Sections 2.2 and 2.3. As indicated, the dualisation procedure for 
sigma models on coset superspaces G/H is affected by additional technical complications related 
to certain uniqueness issues when trying to solve the equation of motion for ω for the projection 
of jω onto h. This is simply due to the fact that the action for coset models does not involve 
the projection of j onto h. In addition, the non-invertibility can also be brought into the game 
by the fermionic coordinates which are intrinsically non-invertible. This peculiarity prevents us 
from presenting the super non-Abelian T-duality procedure in complete generality, as a case-by-
case analysis would be necessary. For this reason, we shall only present the general approach, in 
particular pointing out where the non-invertibility arises, and postpone to future work the study 
of specific models of physical relevance. Nevertheless, we can still discuss various properties 
of the T-dual model such as integrability and the exchange of the equations of motion with the 
Maurer–Cartan equations which is an identifier pattern of dualisation.

4.1. Symmetric space sigma models

Gauged sigma model action Starting point is the action (2.13). Upon gauging a subgroup K ⊆
G, we decompose the covariant current (2.39) as

jω = Aω + mω ,

Aω := Ph(jω) = A + Ph(g−1ωg) and mω := Pm(jω) = m + Pm(g−1ωg) ,
(4.1)

where A and m were introduced in (2.11) and the projectors Ph and Pm in (2.10), respectively. 
Consequently, the master action (2.43) becomes

Sω = 1
2

∫
〈mω,�mω〉 + 1

2

∫
〈D(jω), jω〉 +

∫
〈
̃,Fjω 〉 . (4.2)
� � �
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T-dual sigma model action The variation of (4.2) with respect to ω yields

�mω + ∇jω
̃ − D(jω) = 0 . (4.3a)

Upon decomposing 
̃ as 
̃ = 
̃h + 
̃m with 
̃h ∈ C ∞(�, h) and 
̃m ∈ C ∞(�, m), renaming 
Ã := Aω , using (2.36), and recalling that D : h ↔m, we can express (4.3) as

D
̃m
(mω) = ∇

Ã

̃h and mω − [
̃h, �mω] = −�

(
d
̃m − D
̃m

(Ã)
)
. (4.3b)

Next, with the help of the projectors (2.5), the second equation in (4.3b) is solved for mω as

mω = − 1

1 − ad
̃h

(
P +(d
̃m − D
̃m

(Ã)
)

+ 1

1 + ad
̃h

(
P −(d
̃m − D
̃m

(Ã)
))

. (4.4)

Finally, the substitution of this expression into the action (4.2) yields

S̃ =
∫
�

〈(
d
̃m − D
̃m

(Ã)
)
,

1

1 − ad
̃h

(
P +(d
̃m − D
̃m

(Ã)
)〉

+
∫
�

〈
̃h,F
Ã
〉 . (4.5)

Evidently, we have not yet used the first equation of (4.3b), and, as such, it is a hybrid action. To 
obtain the fully T-dualised action, we would have to substitute (4.4) into this equation to obtain 
a linear equation for Ã. However, generically, the resulting equation will not admit a unique 
solution for Ã as the linear operator one would have to invert may have a non-trivial kernel. This 
is the non-invertibility issue to which we have alluded before. Of course, in specific situations, 
there will be a unique solution, and in those cases we can substitute this solution into (4.5) to 
obtain the fully T-dualised action. Then, of the original coordinates, we can gauge-fix nH

b + nK
b

bosonic and nH
f +nK

f fermionic ones so that the T-dual model describes the dynamics of nG
b −nH

b
bosonic and nG

f −nH
f fermiomic degrees of freedom with nG

b −nH
b −nK

b and nG
f −nH

f −nK
f coming 

from original coordinates and nK
b and nK

f from the Lagrange multipliers, respectively.
In the following, we shall ignore this non-invertibility issue and proceed with (4.5). Note that 

the first equation of (4.3b) arises from varying (4.5) with respect to Ã. Note also that an advantage 
of this hybrid action is that it enjoys an H-gauge invariance by means of

Ã 	→ h−1Ãh + h−1dh and 
̃ 	→ h−1
̃h + h−1D(h) (4.6)

for all h ∈ C ∞(�, H), and this allows us to demonstrate the exchange of Maurer–Cartan equa-
tions and equations of motion momentarily. The transformation rule for 
̃ follows directly 
from (2.43) using (2.12). Note that h−1D(h) ∈ m for all h ∈ C ∞(�, H).

T-dual equations of motion and Lax connection The difficulty in solving the equations of mo-
tion for the gauge connection does not prevent from studying some properties of the T-dual model 
in complete generality. One of these properties is classical integrability, that is the existence of a 
dual Lax connection.

In particular, the variations of the action (4.5) with respect to 
̃h and 
̃m yield the equations 
of motion

F
Ã

+ 1
2 [m̃, m̃] = 0 and ∇

Ã
m̃ = 0 , (4.7a)

where we have used (3.4) and (3.6) and defined m̃ := mω with mω as given in (4.4). Furthermore, 
the variation with respect to Ã leads to

D ˜ (m̃) = ∇ ˜
̃h . (4.7b)

m A
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Taking into account that m̃ satisfies the second equation in (4.3b) identically and using the equa-
tions of motion above and the Jacobi identity, after a short calculation we obtain

∇
Ã
�m̃ = 0 . (4.8)

A comparison between the structure of the dual equations of motion (4.7) and the constraint (4.8)
with the ones of the original model (2.14) and (2.16), leads to the conclusion that also for sym-
metric space sigma models super non-Abelian T-duality exchanges equations of motion with the 
Maurer–Cartan equations. This allows to use

J̃ (z̃) := Ã + 1
2 (z̃2 + z̃−2) m̃ − 1

2 (z̃2 − z̃−2) �m̃ . (4.9)

as the T-dual Lax connection which ensures integrability.

4.2. Semi-symmetric space sigma models

Gauged sigma model action Finally, we discuss super non-Abelian T-duality for semi-
symmetric space sigma models on G/H. Since the procedure is exactly the same as the one 
for symmetric space sigma models we can be rather brief.

In the conventions of Section 2.3, upon gauging a Lie subsupergroup K ⊆ G, we decompose 
the current (2.39) as

jω = Aω + pω + mω + qω ,

Aω := Ph(jB) = A + Ph(g−1ωg) , mω := Pm(jω) = m + Pm(g−1ωg) ,

pω := Pp(jω) = p + Pp(g
−1ωg) , qω := Pq(jω) = q + Pq(g

−1ωg) ,

(4.10)

where A, p, m, and q were introduced in (2.21) and the projectors Ph, Pp, Pm, and Pq in (2.20), 
respectively. Therefore, the master action (2.43) becomes

Sω = 1
2

∫
�

〈mω,�mω〉 + 1
2

∫
�

〈pω,qω〉 + 1
2

∫
�

〈D(jω), jω〉 +
∫
�

〈
̃,Fjω 〉 . (4.11)

T-dual sigma model action Upon varying (4.11) with respect to ω, we obtain

�mω − 1
2pω + 1

2qω + ∇jω
̃ − D(jω) = 0 . (4.12a)

More explicitly, with 
̃ = 
̃h + 
̃p + 
̃m + 
̃q and 
̃h ∈ C ∞(�, h), 
̃p ∈ C ∞(�, p), 
̃m ∈
C ∞(�, m), and 
̃q ∈ C ∞(�, q), renaming Aω := Ã, using (2.36) and recalling that D : h ↔ m

and D : p ↔ q, we have

−[
̃q,pω] − D
̃m
(mω) − [
̃p, qω] = −∇

Ã

̃h ,

−[
̃h,pω] − [
̃q,mω] − D
̃m
(qω) − 1

2pω = −∇
Ã

̃p ,

mω − [
̃p, �pω] − [
̃h, �mω] − [
̃q, �qω] = −�
(
d
̃m − D
̃m

(Ã)
)
,

−D
̃m
(pω) − [
̃p,mω] − [
̃h, qω] + 1

2qω = −∇
Ã

̃q .

(4.12b)

Next, we solve the second and fourth equations in (4.12b) for pω and qω in terms of mω. 
Specifically, if we define
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R :=
( − 1

1+c+◦D

̃m

◦ c−◦D

̃m

◦ c+ − 1
1+c+◦D


̃m
◦ c−◦D


̃m

◦ c+ ◦ D
̃m
◦ c−

− 1
1+c−◦D


̃m
◦ c+◦D


̃m

◦ c− ◦ D
̃m
◦ c+ 1

1+c−◦D

̃m

◦ c+◦D

̃m

◦ c−

)

(4.13a)

with c± := 2
1±2 ad


̃h

, we can write

(
pω

qω

)
= R

(−∇
Ã

̃p + ad
̃q

(mω)

−∇
Ã

̃q + ad
̃p

(mω)

)
. (4.13b)

Upon substituting these expressions into the third equation of (4.12b) and using the projec-
tors (2.5), we can solve for mω to obtain

mω =
(

− 1

1 − S
◦ P + + 1

1 + S
◦ P −

)
(T ) (4.13c)

with

S := ad
̃h
+( ad
̃p

, ad
̃q

) ◦ R ◦
(

0 id
id 0

)
◦
(

ad
̃p

ad
̃q

)
,

T := d
̃m − D
̃m
(Ã) +

((
ad
̃p

, ad
̃q

) ◦ R
)(∇

Ã

̃p

∇
Ã

̃q

)
.

(4.13d)

We should now substitute these expressions in the first equation in (4.12b) to obtain a linear 
equation for Ã. However, as in the case of symmetric space sigma models, this equation will not, 
in general, admit a unique as the linear operator that needs to be inverted may have a non-trivial 
kernel. This would require a case-by-case analysis and so, we proceed with a hybrid formulation 
by only inserting the solutions for mω, pω, and qω into (4.11). We find

S̃ =
∫
�

〈
T ,

1

1 − S

(
P +(T )

)〉+ 1

2

∫
�

〈(∇
Ã

̃q

∇
Ã

̃p

)
,R

(∇
Ã

̃p

∇
Ã

̃q

)〉
+
∫
�

〈
̃h,F
Ã
〉 . (4.14)

The first equation in (4.12b) arises from varying this action with respect to Ã. Note that this 
action enjoys an H-gauge invariance by means of

Ã 	→ h−1Ãh + h−1dh and 
̃ 	→ h−1
̃h + h−1D(h) (4.15)

for all h ∈ C ∞(�, H). As before, the transformation rule for 
̃ follows directly from (2.43)
using (2.12). Note again that h−1D(h) ∈ m for all h ∈ C ∞(�, H).

T-dual equations of motion and Lax connection A lengthy but straightforward calculation re-
veals that the variations of the action (4.14) with respect to 
̃h, 
̃p, 
̃m, and 
̃q yield the 
equations of motion10

F
Ã

+ 1
2 [m̃, m̃] + [p̃, q̃] = 0 ,

∇
Ã
p̃ + [m̃, q̃] = 0 ,

∇
Ã
m̃ + 1

2 [p̃, p̃] + 1
2 [q̃, q̃] = 0 ,

∇
Ã
q̃ + [m̃, p̃] = 0 ,

(4.16a)

10 For details on the derivation of these equations we refer the reader to Appendix F.
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where m̃ := mω, p̃ := pω, and q̃ := qω with mω, pω, and qω as given in (4.13). Additionally, the 
variation with respect to Ã yields

−[
̃q, p̃] − D
̃m
(m̃) − [
̃p, q̃] = −∇

Ã

̃h . (4.16b)

Consequently, using this equation, the equations of motion (4.16) and the fact that m̃, p̃, and q̃
satisfy the second, third, and fourth equation in (4.12b) identically, and the Jacobi identity, some 
algebra shows that we also have

∇
Ã
�m̃ − 1

2 [p̃, p̃] + 1
2 [q̃, q̃] = 0 ,

[m̃, p̃ + �p̃] = 0 ,

[m̃, q̃ − �q̃] = 0 .

(4.17)

Hence, we again obtain the exchange of equations of motion and Maurer–Cartan equations under 
super non-Abelian T-duality. Therefore, the T-dual Lax connection is given by

J̃ (z̃) := Ã + z̃p̃ + 1
2 (z̃2 + z̃−2) m̃ + z̃−1q̃ − 1

2 (z̃2 − z̃−2) �m̃ , (4.18)

which ensures the classical integrability of the T-dual model.

5. Conclusions

We have considered a general procedure of non-Abelian T-duality of sigma models on group 
manifolds, symmetric, and semi-symmetric spaces with the emphasis on the T-dualisation of 
sigma models whose target spaces are supermanifolds possessing non-Abelian superisometries. 
All these models are classically integrable, and since super non-Abelian T-duality exchanges the 
equations of motion with Bianchi identities (i.e. Maurer–Cartan equations), it is straightforward 
to write down the T-dual Lax connection. In general, super non-Abelian T-duality encounters 
a problem of integrating out all the variables of the initial model and getting the dual model 
described entirely with a dual set of coordinates.

We have considered in full detail the relatively simple example of the OSp(1|2) principal chi-
ral model in which this problem does not occur. We have, however, argued that even though 
the target superspace of the initial model is an AdS3 solution of three-dimensional N = 1
supergravity, the dual target superspace background does not satisfy the three-dimensional super-
gravity constraints. Such model cannot even be a solution of a generalised supergravity [21,22]
because also in that case the torsion supergravity constraints are the same. A reason for the 
breaking of such constraints may be related to the fact that the OSp(1|2) principal chiral 
model does not describe the dynamics of a string in three-dimensional N = 1 supergravity. The 
N = 1, d = 3 superstring action is of the Green–Schwarz type (see e.g. [92]) with the Wess–
Zumino term which in the case of the AdS3 superspace is a three-dimensional counterpart of an 
Neveu–Schwarz–Neveu–Schwarz background of ten-dimensional superstrings. To the best of our 
knowledge, non-Abelian T-duality of string sigma models in Neveu–Schwarz–Neveu–Schwarz 
super-backgrounds has not been studied in the literature, and this may be an interesting problem 
to address in future work.

Another point11 that deserves further investigation concerns the extension of the non-Abelian 
T-duality group defined in [57,93,94] to our super-non-Abelian-T-duality setting. Such a gen-
eralisation should exist as it would represent the non-Abelian analogue of the OSp(db, db|df)

11 We are grateful to the referee for bringing this point to our attention.
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action defined in [95,96]. The latter extends the bosonic O(db, db) symmetry [6] to backgrounds 
with bosonic and fermionic Abelian isometries.
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Appendix A. Cocycles and derivations

Consider the derivation D defined in (2.30) and let V ∈ g. Then, using es adV (U) =∑∞
k=0

sk

k! adk
V (U), it is easy to see that

D(eadV (U)) = eadV (D(U)) +
∞∑

k,l=0

1

(k + l + 1)! (adk
V ◦ adD(V ) ◦ adl

V )(U) (A.1)

because of the derivation property of D. Next, since 
∫ 1

0 dt (1 − t)kt l = k!l!
(k+l+1)! , we can rewrite 

the sum as
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∞∑
k,l=0

1

(k + l + 1)! adk
V ◦ adD(V ) ◦ adl

V =
1∫

0

dt

∞∑
k,l=0

1

k!l! (1 − t)kt l adk
V ◦ adD(V ) ◦ adl

V

=
1∫

0

dt e(1−t) adV ◦ adD(V ) ◦ et adV .

(A.2)

Consequently,

D(eadV (U)) = eadV

⎛
⎝D(U) +

1∫
0

dt
(

e−t adV ◦ adD(V ) ◦ et adV

)
(U)

⎞
⎠

= eadV

⎛
⎝D(U) +

⎡
⎣ 1∫

0

dt e−t adV (D(V )),U

⎤
⎦
⎞
⎠

= eadV

(
D(U) +

[ ∞∑
k=0

(−1)k

(k + 1)! adk
V (D(V )),U

])

= eV
(
D(U) + [

e−V D(eV ),U
])

e−V ,

(A.3)

where we have inserted the definition (2.33). This verifies (2.34).

Appendix B. Fermionic current

Let us derive (3.15b) which is a special case of a more general formula [97,98]. We consider 
the one-parameter family (t ∈R)

j (t) := etF jb e−tF + etFde−tF . (B.1)

Consequently,

∂t j (t) = et adF (−∇jbF) , (B.2)

where ∇jb is as defined in (2.4). Therefore,

j (t) = jb +
t∫

0

ds es adF (−∇jbF) ⇒ jf =
1∫

0

ds es adF (−∇jbF) (B.3)

since j (t = 1) = j . Upon using es adV (U) =∑∞
k=0

sk

k! adk
V (U), we conclude that

jf = −
∞∑

k=0

1

(2k + 1)! ad2k
F (∇jbF) +

∞∑
k=0

1

(2k + 2)! ad2k+1
F (∇jbF)

= − sinh(adF )

adF
(∇jbF) − 2

sinh2( 1
2 adF )

adF
(∇jbF) .

(B.4)

This establishes (3.15b).
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Appendix C. Useful identities for osp(1|2)

Here we derive the set of identities that have been used in Section 3.2 for the OSp(1|2) prin-
cipal chiral model. To this end, we introduce

U := uαβLαβ︸ ︷︷ ︸
=:Ub

+χαQα︸ ︷︷ ︸
=:Uf

and V := vαβLαβ︸ ︷︷ ︸
=:Vb

+ηαQα︸ ︷︷ ︸
=:Vf

. (C.1)

We wish to compute the action of the operator 1
1−adU

on V .

We start by expanding the operator 1
1−adU

in powers of adUf . Since adk
Uf

= 0 for k > 2, we 
obtain

1

1 − adU

= 1

1 − adUb

+ 1

1 − adUb

◦ adUf ◦ 1

1 − adUb

+ 1

1 − adUb

◦ adUf ◦ 1

1 − adUb

◦ adUf ◦ 1

1 − adUb

.

(C.2)

We then expand 1
1−adUb

in powers of adUb and apply it to Vb + Vf,

1

1 − adUb

(Vb + Vf) =
∞∑

k=0

adk
Ub

(Vb + Vf) . (C.3)

For the bosonic part we note that, defining u2 as in (3.18b) and using (3.12), we obtain

ad2
Ub

(Vb) = (u2vαβ − 2uγ
αuδ

βvγ δ)Lαβ . (C.4)

Consequently, acting recursively with adUb , we find

ad2k
Ub

(Vb) = (2u2)k−1(u2vαβ − 2uγ
αuδ

βvγ δ)Lαβ for k � 1 ,

ad2k
Ub

(Vb) = adUb(ad2k
Ub

(Vb)) = −2i(2u2)kuγ
αvβγ Lαβ for k � 0 .

(C.5)

For the fermionic part, a similar calculation leads to

ad2k
Ub

(Vf) = ( 1
2u2)kηαQα and ad2k+1

Ub
(Vf) = −i

( 1
2u2)kuα

βηαQβ . (C.6)

We are now ready to compute 1
1−adU

(V ) using the expansion (C.2) and the previous identities. 
For the first term in the expansion we obtain

1

1 − adUb

(Vb + Vf) = 1

1 − 2u2

[
(1 − u2)vαβ − 2uγ

αuδ
βvγ δ − 2iuγ

(αvβ)γ
]
Lαβ

+ 2

2 − u2 ηα(δα
β − iuα

β)Qβ

=: v′αβLαβ + η′αQα .

(C.7)

From this structure, it easily follows that(
adUf ◦ 1

1 − adUb

)
(V ) = η′ (αχβ)Lαβ + iv′α

βχβQα . (C.8)

Simply repeating the same procedure a few more times, we obtain the second term in (C.2)
according to
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(
1

1 − adUb

◦ adUf ◦ 1

1 − adUb

)
(V ) =

= 1

1 − 2u2

[
(1 − u2)η′ (αχβ) − 2uγ

αuδ
βη′ (γ χδ) − 2iuγ

αη′ (βχγ )
]
Lαβ

+ 2

2 − u2 iv′α
γ χγ (δα

β − iuα
β)Qβ

=: v′′αβLαβ + η′′αQα ,

(C.9)

from which we easily find(
adUf ◦ 1

1 − adUb

◦ adUf ◦ 1

1 − adUb

)
(V ) = η′′ (αχβ)Lαβ + iv′′α

βχβQα , (C.10)

and the third term(
1

1 − adUb

◦ adUf ◦ 1

1 − adUb

◦ adUf ◦ 1

1 − adUb

)
(V ) =

= 1

1 − 2u2

[
(1 − u2)η′′ (αχβ) − 2uγ

αuδ
βη′′ (γ χδ) − 2iuγ

αη′′ (βχγ )
]
Lαβ

+ 2

2 − u2 iv′′α
γ χγ (δα

β − iuα
β)Qβ .

(C.11)

In summary,

1

1 − adU

(V ) = 1

1 − 2u2

[
(1 − u2)Zαβ − 2uγ

αuδ
βZγ δ − 2iuγ

(αZβ)γ
]
Lαβ

+ 2

2 − u2 ζ α(δα
β − iuα

β)Qβ

(C.12a)

with

Zαβ := vαβ + (η′ + η′′)(αχβ)

= vαβ + 2

2 − u2

[
η(α − iηγ uγ

(α
]
χβ)

+ i

(2 − u2)(1 − 2u2)

[(
1 − 1

2u2)vαβ − 3uγ
αuδ

βvγ δ − 3iuγ
(αvβ)γ

]
χ2 ,

ζ α := ηα − i(v′ + v′′)αβχβ

= ηα − i

1 − 2u2

[
(1 − u2)uαβ − 2uγ

αuδ
βvγ δ − 2iuγ

(αvβ)γ
]
χβ

− i

(2 − u2)(1 − 2u2)

[
3
2ηα − i

( 7
2 − u2)ηβuβ

α
]
χ2 .

(C.12b)

Appendix D. Three-dimensional supergravity

Cartan structure equations Consider a (p, q|2n)-dimensional supermanifold M with metric g
of Graßmann degree zero. The structure group of M is generically OSp(p, q|2n) which is the 
group preserving the canonical graded symmetric bilinear form on Rp,q|2n. In particular, we let 
A, B, . . . the Rp,q|2n-indices, and we denote the canonical graded-symmetric bilinear form on 
Rp,q|2n by ηAB . We have ηAB = (−1)|A||B|ηBA where | − | denotes the Graßmann degree. Note 
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that OSp(p, q|2n) is generated by 1
2 (p + q)(p + q − 1) + n(2n + 1) bosonic generators and 

2(p + q)n fermionic generators.
Let now EA be the supervielbeins on M . The structure functions fAB

C are given by

[EA,EB ] = fAB
CEC , (D.1)

where [−, −] denotes the (graded) Lie bracket. Furthermore, we define the dual supervielbeins 
eA by EA

¬
eB = δA

B where δA
B is the Kronecker symbol and ‘

¬
’ denotes the interior product. 

We set δA
B = (−1)|A||B|δA

B . Then, in the supervielbein basis we write

g = 1
2eB � eAηAB = eB ⊗ eAηAB , (D.2)

where ‘�’ denotes the graded symmetric tensor product. The inverse ηAB of ηAB is given by

ηACηCB = δA
B ⇔ (−1)|C|ηACηCB = δA

B . (D.3)

Let now ‘LX’ be the Lie derivative along a vector field X on M and ‘d’ the exterior derivative. 
Then, we have the standard Cartan formula LXω = d(X

¬
ω) + X

¬
dω for any differential form 

ω on M , and since LX is a graded derivation with respect to the tensor product, these then imply 
that

deA = 1
2eC ∧ eBfBC

A . (D.4)

Here, ‘∧’ denotes the graded antisymmetric tensor product.
Next, we define the torsion and curvature two-forms,

T A = 1
2eC ∧ eBT BC

A and RA
B = 1

2eC ∧ eBRBCA
B , (D.5)

by the Cartan structure equations

deA − eB ∧ ωB
A =: −T A and dωA

B − ωA
C ∧ ωC

B =: −RA
B , (D.6)

where ωA
B = eCωCA

B is the connection one-form.
The Ricci tensor and the scalar curvature are then given by

RAB := (−1)|B||C|RACB
C and R := ηBARAB , (D.7)

where ηAB is the inverse metric as defined in (D.3).

Connection one-form from metric compatibility The metric compatibility is expressed by

ωAB + (−1)|A||B|ωBA = 0 with ωAB := ωA
CηCB . (D.8)

Upon defining

FAB
C := fAB

C + T AB
C , (D.9)

the Cartan structure equation (D.6) together with the metric compatibility (D.8) yield the com-
ponents of the connection one-form as

ωAB
C = 1

2

(
FC

AB + (−1)|A||B|FC
BA + FAB

C
)
, (D.10)

where (−1)|C|(|A|+|B|)FC
AB = ηCDFDA

EηEB .
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Three-dimensional supergravity constraints Let M be a three-dimensional Lorentzian spin 
manifold. In that case, we have the factorisation TCM ∼= S � S of the tangent bundle where 
S is the spin bundle. This is equivalent to picking a conformal structure on M . In an orthonormal 
frame, the components of the metric on M are (ηab) = diag(−1, 1, 1) with a, b, . . . = 0, 1, 2, and 
because of the identification TCM ∼= S�S, we may write εα(γ εδ)β for ηab with the spinor indices 
α, β, . . . = 1, 2. Here, εαβ = −εβα is the standard symplectic structure on S with εαγ εγβ = δα

β

and δα
β the Kronecker symbol.

We are now interested in a (1, 2|2)-dimensional supermanifold M whose tangent bundle 
decomposes as TCM ∼= S � S ⊕ S[1] where [1] denotes the Graßmann-degree shift of the 
fibres. Hence, the generic structure group OSp(1, 2|2) is reduced to SL(2, R) which is the 
three-dimensional tangent space Lorentz group. This is a general assumption for the form of 
supergravity geometry. Furthermore, we may decompose the index A as A = (αβ, α) so that 
ηAB is given by

(ηAB) =
(

εα(γ εδ)β 0
0 iεαβ

)
. (D.11)

Then, because of the identification TCM ∼= S � S ⊕ S[1], the components of the connection 
become related to each other

ωαβ
γ δ = 2ω(α

(γ δβ)
δ) , (D.12a)

where ωα
β is the one-form spin connection on S. The metric compatibility implies that

ωαβ = ωβα with ωαβ = iωα
γ εγβ . (D.12b)

In addition, to describe supergravity, one imposes on the supergeometry the following torsion 
constraints [99,100,87]

deαβ − 2eγ (α ∧ ωγ
β) = − 1

2eα ∧ eβ ,

deα − eβ ∧ ωβ
α = − 1

2eδε ∧ eβγ T βγ δε
α − eδ ∧ eβγ T βγ δ

α ,
(D.12c)

with no conditions on the torsion components T αβ γ δ
ε and T αβ γ

δ .
If three-dimensional N = 1 supergravity contains a two-form superfield B2, its three-form 

field strength H3 is constrained in such a way that its components are functions of a scalar 
superfield L and its derivatives (see e.g. [87]),

H3 = eα ∧ eαβ ∧ eβ L + eβ ∧ eγ
β ∧ eγα DαL − i

6eα
β ∧ eβ

γ ∧ eγ
α(iD2 + 8S)L (D.13)

where Dα is the superspace covariant derivative and S is a scalar ‘prepotential’ superfield which 
appears in the solution of the torsion constraints (D.12c).

Appendix E. T-dualisation of SL(2, R) ⊆ OSp(1|2)

Let us briefly discuss the dualisation of the maximal bosonic subgroup SL(2, R) ⊆ OSp(1|2)

of the OSp(1|2) principal chiral model. In particular, since H 2(sl(2, R)) = 0, we consider the 
T-dual action (3.5) with 
̃ = g−1
g and 
 =: x̃αβLαβ . By construction, in this case, (3.5)
possesses an SL(2, R) gauge symmetry. Given the parametrisation (3.14) for g, we can exploit 
this gauge invariance to set gb = 1. Then, a short calculation reveals that


̃ = g−1
gf = (
1 + i θ2)x̃αβLαβ + iθγ x̃γ

αQα =: yαβLαβ + χαQα . (E.1)
f 4
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This differs from the 
̃ used in the dualisation of OSp(1|2) in Section 3.2 by the changes x̃αβ →
yαβ and θ̃ α → χα . Therefore, we can rephrase the procedure given there by simply making 
these replacements. In particular, upon inspecting (3.38) once these replacements are made, it is 
evident that we cannot satisfy the first torsion constraint in (D.12c), exactly as in the case when 
dualising all of OSp(1|2). The same argument also applies to H3 in (3.40).

Appendix F. Semi-symmetric space sigma model

Let us provide some more details on the T-dualisation of semi-symmetric space sigma models.

T-dual action Firstly, let us explain as how to derive the T-dual action (4.14). In particular, 
using the decompositions jω = Ã+pω +mω + qω and 
̃ = 
̃h + 
̃p + 
̃m + 
̃q together with 
the fact that D : h ↔m and D : p ↔ q, we can rewrite (4.11) as

S̃ = 1
2

∫
�

〈mω,�mω〉 + 1
2

∫
�

〈pω,qω〉 +
∫
�

〈
̃h,F
Ã

+ 1
2 [mω,mω] + [pω,qω]〉

+
∫
�

〈
̃p,∇Ã
qω + [mω,pω]〉 +

∫
�

〈
̃q,∇Ã
pω + [mω,qω]〉

+
∫
�

〈
̃m,∇
Ã
mω + 1

2 [pω,pω] + 1
2 [qω, qω]〉

+
∫
�

〈D(Ã),mω〉 + 1
2

∫
�

〈D(pω),pω〉 + 1
2

∫
�

〈D(qω), qω〉 .

(F.1)

Next, we replace mω by the equation of motion in (4.12a), insert the second and fourth equations 
of motion in (4.12b), and successively use the explicit expressions of pω, qω, and mω given 
in (4.13). Ultimately, this yields the expression (4.14) for the dualised action.

T-dual equations of motion In order to compute the equations of motion (4.16), we recall the 
definition of the matrix R = (Rij ) from (4.13a) and the operator S from (4.13d), respectively. A 
quick calculation shows that

〈R12(U),V 〉 = −〈U,R12(V )〉 , 〈R21(U),V 〉 = −〈U,R21(V )〉 ,

〈R11(U),V 〉 = −〈U,R22(V )〉 ,
(F.2a)

and therefore,〈
1

1 ± S
(U),V

〉
=
〈
U,

1

1 ∓ S
(V )

〉
(F.2b)

for all U, V ∈ �p(�, g). Therefore, applying the general relation δ
( 1

1±S

) = ∓ 1
1±S

◦ δS ◦ 1
1±S

, 
the variation of the first term in (4.14) is

δ

〈
T ,

1

1 − S

(
P +(T )

)〉 = −〈δT , m̃〉 −
〈(

δS ◦ 1

1 − S

)
(T ),

1

1 + S

(
P −(T )

)〉
, (F.3)

where m̃ := mω with mω given in (4.13c). Upon inspecting the definitions of S and T given 
in (4.13d), the only non-trivial part when computing δS and δT is the variation of R. Some 
algebra shows that the only non-vanishing variations of R are
33
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δ
̃h
R = R ◦ adδ
̃h

◦R and δ
̃m
R = R ◦

(
0 id
id 0

)
◦ adδ
̃m

◦R . (F.4)

Using all these formulæ, it is now not too hard to derive the equations of motion (4.16).
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