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Two families of pro-p groups
that are not absolute Galois groups

Claudio Quadrelli*
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Abstract. Let p be a prime. We produce two new families of pro-p groups which are
not realizable as absolute Galois groups of fields. To prove this, we use the 1-smoothness
property of absolute Galois pro-p groups. Moreover, we show in these families, one has
several pro-p groups which may not be ruled out as absolute Galois groups employing the
quadraticity of Galois cohomology (a consequence of the norm residue theorem), or the
vanishing of Massey products in Galois cohomology.

1 Introduction

Throughout the paper, p will denote a prime number. For a field K, let NKs and
K.p/ denote respectively the separable closure of K, and the compositum of all
finite Galois p-extensions of K. The maximal pro-p Galois group of K, denoted
byGK.p/, is the maximal pro-p quotient of the absolute Galois group Gal. NKs=K/
of K, and it coincides with the Galois group of the extension K.p/=K. Describing
maximal pro-p Galois groups of fields among pro-p groups is one of the most
important – and challenging – problems in Galois theory (see, e.g., [15, § 3.12],
[21, § 2.2], and [22, § 1]). Already finding explicit examples of pro-p groups which
do not occur as maximal pro-p Galois groups – and thus also as absolute Galois
groups (see Remark 3.3) – of fields is considered a remarkable achievement (see,
e.g., [2,3,22]). One of the oldest known obstructions for the realization of a pro-p
group as GK.p/ for some field K is given by the Artin–Schreier theorem: the only
finite group realizable as GK.p/ for some field K is the cyclic group of order 2
(cf. [1]).

In this paper, we produce new examples of torsion-free pro-p groups which do
not occur as maximal pro-p Galois groups of fields containing a primitive p-th
root of 1, and thus neither as absolute Galois groups. Given two elements x; y
of a (pro-p) group G, let Œx; y� D x�1y�1xy denote the commutator between x
and y, and for n � 1, set

Œy;n x� D Œ: : : ŒŒy; x�; x�; : : : ; x„ ƒ‚ …
n times

�:
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Theorem 1.1. Let p be a prime, and let G be a finitely generated pro-p group,
with minimal pro-p presentation

G D hx1; : : : ; xd j r0; r1; : : : ; r�i; d � 3; � � 0;

where either

(i) r0 D x
q
1 � Œx1;n x2� � Œx2; x3� � � � Œxd�1; xd � � s, with d odd, or

(ii) r0 D x
q
1 � Œx1;n x2� � Œx3; x4� � � � Œxd�1; xd � � s, with d even,

and in both cases, q D pf with f 2 ¹1; 2; : : : ;1º (f � 2 if p D 2), n � 2, the
relations r1; : : : ; r� lie in the closed commutator subgroup S 0´ cl.ŒS; S�/, and s
lies in the closed subgroup cl.ŒS 0; S 0�/, where S denotes the closed subgroup of G
generated by x3; : : : ; xd .

Then G does not occur as the maximal pro-p Galois group of a field containing
a primitive p-th root of 1, and thus neither as the absolute Galois group of a field.

To prove Theorem 1.1, we employ the following formal version of Hilbert 90 for
pro-p groups, introduced in [4, § 14] and studied in [12, 28, 33]. A pro-p group G
is said to be 1-smooth if it may be endowed with a continuous G-module M ,
isomorphic to Zp as an abelian pro-p group, such that, for every open subgroup U
of G, the canonical map

H 1.U;MU =p
nMU /! H 1.U;MU =pMU /;

induced by the epimorphism of continuous U -modules

MU =p
nMU !MU =pMU ;

is surjective for every n � 1 (hereMU denotes the restriction of the G-moduleM
to U ). By Kummer theory, the maximal pro-p Galois group of a field K containing
a primitive p-th root of 1 is 1-smooth (see Theorem 2.8). We prove that the pro-p
groups defined in Theorem 1.1 are not 1-smooth.

After the positive solution of the celebrated Bloch–Kato conjecture given by
M. Rost and V. Voevodsky (with a “patch” of C. Weibel, see [37, 40, 41]), one
knows that the Fp-cohomology algebra of the maximal pro-p Galois groupGK.p/

of a field K containing a primitive p-th root of 1,

H �.GK.p/;Fp/´
M
n�0

Hn.GK.p/;Fp/;

with Fp the finite field of p elements considered as a trivial GK.p/-module, and
endowed with the cup-product, is a quadratic algebra: i.e., all its elements of posi-
tive degree are combinations of products of elements of degree 1, and its defin-
ing relations are homogeneous relations of degree 2 (see § 2.2). From this, it
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was possible to obtain new obstructions for the realization of a pro-p group as
maximal pro-p Galois group (see, e.g., [3, 27, 33, 36]). Subsequently, it has been
conjectured that the algebra H �.GK.p/;Fp/ has no external operations in addi-
tion to its “internal” ring structure with respect to the cup-product: namely, all
n-fold Massey products of H �.GK.p/;Fp/ vanish (see [23, Conjecture 1.1] and
§ 5.1–5.2). This conjecture has been shown to be true for n D 3 and in other rele-
vant cases (see [11, 16–18]).

We show that, from Theorem 1.1, one may produce several one-relator pro-
p groups (i.e., pro-p groups defined by a single relation) whose Fp-cohomology
algebra is quadratic and yields the vanishing of 3- and 4-fold Massey products,
and which are not absolute Galois groups of fields.

Theorem 1.2. Let G D hx1; : : : ; xd j r0i be a one-relator pro-p group with r0 as
in Theorem 1.1. Then the following hold.

(i) The Fp-cohomology algebra H �.G;Fp/ is quadratic.

(ii) (a) If r0 is of the first type, then every 3-fold and 4-fold Massey product van-
ishes in H �.G;Fp/, unless p D q D 3.

(b) If r0 is of the second type, then every 3-fold and 4-fold Massey product
vanishes in H �.G;Fp/, unless p D q D 3 or n D 2; 3.

Therefore, one may not employ these cohomological conditions to rule out the
pro-p groups defined in Theorem 1.2 as maximal pro-p Galois groups and abso-
lute Galois groups of fields. Moreover, most of these one-relator pro-p groups do
not belong to the family of pro-p groups which are not absolute Galois groups
introduced in [2, Corollary 1] (see § 4.3). Hence, Theorems 1.1–1.2 provide a big
wealth of genuine new examples of pro-p groups that are not absolute Galois
groups of fields – see also Remark 5.11.

The paper is structured as follows. In Section 2, we give basic definitions and
properties on the cohomology of pro-p groups (in particular, in Subsection 2.3, we
give the definition of 1-smooth pro-p group). In Section 3, we prove Theorem 1.1
(cf. Subsections 3.1–3.2). In Section 4, we prove Theorem 1.2 (i), and we show
that our one-relator pro-p groups are different to the pro-p groups defined in [2]
(cf. Proposition 4.4). In Section 5, we give a brief (and self-contained) treatment
of the group-theoretic interpretation of Massey products in Fp-cohomology of
pro-p groups (cf. Subsection 5.2), which we use to prove Theorem 1.2 (ii) (a)–(b)
(cf. Subsections 5.3–5.4).
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2 Pro-p groups and Galois cohomology

We work in the world of pro-p groups. Henceforth, every subgroup of a pro-p
group will be tacitly assumed to be closed, and generators of a subgroup will be
meant in the topological sense.

In particular, for a pro-p group G and a positive integer n, Gn will denote the
closed subgroup ofG generated by the n-th powers of all elements ofG. Moreover,
for two elements g; h 2 G, we set

hg D g�1hg and Œh; g� D h�1 � hg ;

and for two subgroups H1;H2 of G, ŒH1;H2� will denote the closed subgroup
of G generated by all commutators Œh; g� with h 2 H1 and g 2 H2. In particular,

(a) G0 will denote the commutator subgroup ŒG;G� of G;

(b) ˆ.G/ D Gp �G0 will denote the Frattini subgroup of G;

(c) .
n.G//n�1 will denote the descending central series of G, i.e., 
1.G/ D G,

2.G/ D G

0 and 
nC1.G/ D Œ
n.G/;G� for n � 2.

(d) G.3/ will denote the subgroup of G defined by

G.3/ D

´
Gp � 
3.G/ if p ¤ 2;
G4 � .G0/2 � 
3.G/ if p D 2;

i.e., G.3/ is the third term of the p-Zassenhaus filtration of G (cf., e.g., [9,
§ 1]) – note that ˆ.G/=G.3/ is a p-elementary abelian pro-p group.

Finally, recall that Zp denotes the ring of p-adic integers

Zp D ¹a0 C a1p C a2p
2
C � � � C anp

n
C � � � j 0 � ai � p � 1 for all i � 0º;

which is a cyclic pro-p group (endowed with the addition), which may be gener-
ated by any p-adic integer 1C p�, � 2 Zp.

For further properties of pro-p groups, we refer to [5, Chapters 1–4].

2.1 Cohomology of pro-p groups

In this subsection, we focus on finitely generated pro-p groups.
Let G be a pro-p group, and let Fp denote the finite field with p-elements. We

consider Fp also as a trivial G-module. For the zeroth and the first cohomology
groups of G with coefficients in Fp, we have isomorphisms of Fp-vector spaces
H 0.G;Fp/ ' Fp and

H 1.G;Fp/ D Homgp.G;Fp/ ' .G=ˆ.G//
�; (2.1)
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where Homgp._;Fp/ denotes the group of (pro-p) group homomorphisms to the
additive group of Fp, and _� D HomFp ._;Fp/ denotes the Fp-dual (cf. [25, Propo-
sition 3.9.1]). If X D ¹x1; : : : ; xd º is a minimal set generating G, then by (2.1),
one has d D dim.H 1.G;Fp//, and X yields a dual basis B D ¹�1; : : : ; �d º of
H 1.G;Fp/, i.e., �i .xj / D ıij for every 1 � i; j � d .

A short exact sequence of pro-p groups ¹1º ! N ! G ! G=N ! ¹1º in-
duces an exact sequence of Fp-vector spaces

0 H 1.G=N;Fp/ H 1.G;Fp/ H 1.N;Fp/G

H 2.G=N;Fp/ H 2.G;Fp/

inf1
G=N;G res1G;N

trg

inf2
G=N;G

(2.2)
(cf. [25, Proposition 1.6.7]).

A short exact sequence of pro-p groups

¹1º ! R! F ! G ! ¹1º; (2.3)

with F a free pro-p group, is called a minimal presentation ifR � ˆ.F / or, equiv-
alently, if the map inf1G;F induced by the epimorphism F ! G is an isomorphism.
Moreover, since H 2.F;Fp/ D 0 (cf. [25, Proposition 3.9.5]), the map trg induces
an isomorphism of Fp-vector spaces

trg�1WH 2.G;Fp/
�
�! H 1.R;Fp/

F
' .R=RpŒF;R�/�: (2.4)

If ¹ri ; i 2 Iº � R is a minimal set generating R as normal subgroup of F and if
X D ¹x1; : : : ; xd º is a minimal set generating G, we write

G D hx1; : : : ; xd j ri ; i 2 Ii;

and by (2.4), one has dim.H 2.G;Fp// D jIj. A pro-p group G with minimal pre-
sentation (2.3) is a one-relator pro-p group if R is generated as normal subgroup
of F by a single element r , i.e., if dim.H 2.G;Fp// D 1.

The Fp-cohomology of a pro-p group comes endowed with the cup-product

H s.G;Fp/ �H
t .G;Fp/

[
�! H sCt .G;Fp/; s; t � 0;

which is graded-commutative, i.e.,

ˇ [ ˛ D .�1/st˛ [ ˇ for ˛ 2 H s.G;Fp/; ˇ 2 H
t .G;Fp/

(cf. [25, Chapter I, § 4]).
For finitely generated one-relator pro-p groups, one has the following (cf. [30,

Propositions 4.2 and 4.6]).
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Proposition 2.1. LetGDhx1; : : : ;xd j ri be a finitely generated one-relator pro-p
group. If

r � Œx1; x2� � Œx3; x4� � � � Œxn�1; xn� mod G.3/; (2.5)

for some n even, with 2 � n � d , then H �.G;Fp/ is quadratic. In particular, if
B D ¹�1; : : : ; �d º is a basis of H 1.G;Fp/ dual to X D ¹x1; : : : ; xd º, then one
has

�1 [ �2 D �3 [ �4 D � � � D �n�1 [ �n;

�i [ �j D 0 for 1 � i � j � d; .i; j / ¤ .1; 2/; : : : .n � 1; n/;

and �1 [ �2 generates H 1.G;Fp/. Moreover, Hk.G;Fp/ D 0 for k � 3.

One-relator pro-p groups satisfying (2.5) generalize Demushkin groups, which
were studied by S. P. Demuškin, J.-P. Serre and J. P. Labute (cf., e.g., [25, Chap-
ter III, pp. 231–244]) – in fact, Proposition 2.1 is based on the description of the
cup-product for Demushkin groups.

For further facts on cohomology of pro-p groups, we direct the reader to [34,
Chapter I, § 3–4] and to [25, Chapter III, § 9].

2.2 Quadratic cohomology and the norm residue theorem

Let G be a pro-p group. The Fp-cohomology

H �.G;Fp/ D
M
n�0

Hn.G;Fp/;

endowed with the cup-product, is a non-negatively graded algebra over Fp. A spe-
cial class of non-negatively graded Fp-algebras is given by the following (cf. [26]).

Definition 2.2. LetA� D
L
n�0An be a (non-negatively) graded Fp-algebra, with

A0 D Fp. Then A� is said to be quadratic if one has an isomorphism of graded
algebras

A� '
T�.A1/

.�/
;

where T�.A1/ D
L
n�0A

˝n
1 denotes the Fp-tensor algebra generated by A1, and

.�/ is the two-sided ideal of T�.A1/ generated by �, with � � A1 ˝ A1.

Example 2.3. Let V be a finite-dimensional Fp-vector space. Then the symmetric
algebra S�.V / and the exterior algebra

V
�.V / are quadratic algebras.
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A consequence of the norm residue theorem is that the Fp-cohomology algebra
of the maximal pro-p Galois group of a field containing a primitive p-th root of 1
is quadratic (cf., e.g., [8, § 24.3] and [27, § 2]).

Theorem 2.4. Let K be a field containing a primitive p-th root of 1. Then the
Fp-cohomology algebra H �.GK.p/;Fp/ is a quadratic algebra.

A pro-p groupG such that the Fp-cohomology algebraH �.H;Fp/ is quadratic
for every subgroup H � G is called a Bloch–Kato pro-p group (cf. [27]). By
Theorem 2.4, the maximal pro-p Galois group of a field K containing a primitive
p-th root of 1 is Bloch–Kato, as every subgroupH � GK.p/ is the maximal pro-p
Galois group of an extension of K.

Remark 2.5. If p ¤ 2 andG is a finitely generated Bloch–Kato pro-p group, then

dim.H 2.G;Fp// �

�
dim.H 1.G;Fp//

2

�
(cf. [27, § 4.1]). Thus, ifG is as in Theorem 1.1 and � >

�
d
2

�
, thenG is not Bloch–

Kato.

By results of Ware (cf. [39]) and Engler, Koenigsmann and Nogueira (cf. [13,
14]), if K is a field containing a primitive p-th root of 1, then the maximal pro-p
Galois groupGK.p/ has the following properties: (i) ifGK.p/ is not meta-abelian
(i.e., GK.p/

0 is abelian), then GK.p/ contains a free non-abelian subgroup; and
(ii) GK.p/ contains a unique maximal abelian normal subgroup A, and

GK.p/ ' A Ì .GK.p/=A/:

The following result extends these properties of maximal pro-p Galois groups to
Bloch–Kato pro-p groups (cf. [27, Theorem B] and [33, Theorem 1.2]).

Proposition 2.6. Let G be a Bloch–Kato pro-p group.

(i) If G is not meta-abelian, then G contains a free non-abelian subgroup.

(ii) IfG is also 1-smooth, thenG contains a unique maximal abelian subgroup A,
and G ' A ÌG=A.

2.3 Kummerian pro-p pairs

Let 1C pZp D ¹1C p� j � 2 Zpº denote the pro-p Sylow subgroup of the group
of units of the ring of p-adic integers Zp. A pair G D .G; �/ consisting of a pro-p
group and a continuous homomorphism � WG ! 1C pZp is called a cyclotomic
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pro-p pair, and the morphism � is called an orientation ofG (cf. [7, § 3] and [33]).
A cyclotomic pro-p pair G D .G; �/ is said to be torsion-free if p is odd, or if
p D 2 and Im.�/ � 1C 4Z2. (Note that the pro-p groupG might have non-trivial
torsion even though G D .G; �/ is a torsion-free cyclotomic pro-p pair.) Given
a cyclotomic pro-p pair G D .G; �/, one has the following constructions:

(a) if H is a subgroup of G, we set G jH ´ .H; � jH /;

(b) if N is a normal subgroup of G contained in Ker.�/, then � induces an orien-
tation N� WG=N ! 1C pZp, and we set G=N ´ .G=N; N�/.

Given a cyclotomic pro-p pair G D .G; �/, the pro-p group G comes endowed
with a distinguished subgroup K.G /, introduced in [12, § 3] and defined by

K.G / D hh��.g/ � hg
�1

j g 2 G; h 2 Ker.�/i:

The subgroup K.G / is normal in G, and it is contained in Ker.�/. Moreover,
one has K.G / � Ker.�/0 and K.G / � ˆ.G/. Thus, the quotient Ker.�/=K.G / is
abelian.

Definition 2.7. Given a cyclotomic pro-p pair G D .G; �/, let Zp.�/ denote the
continuous G-module of rank 1 induced by � , i.e., Zp.�/ ' Zp as abelian pro-p
groups, and g:� D �.g/ � � for every � 2 Zp.�/. The pair G is said to be Kummer-
ian if, for every n � 1, the map

H 1.G;Zp.�/=p
nZp.�//! H 1.G;Fp/; (2.6)

induced by the epimorphism of G-modules

Zp.�/=p
nZp.�/! Zp.�/=pZp.�/ ' Fp;

is surjective. Moreover, G is 1-smooth if G jH is Kummerian for every subgroup
H � G.

We say that a pro-p group G may complete into a Kummerian, or 1-smooth,
pro-p pair if there exists an orientation � WG ! 1C pZp such that the pair .G; �/
is Kummerian, respectively 1-smooth.

Given a field K containing a primitive p-th root of 1, let �KWGK.p/! 1CpZp
denote the pro-p cyclotomic character, i.e., if � is a primitive pk-th root of 1, with
k � 1, then �.�/ D ��K.�/ for all � 2 GK.p/ (cf., e.g., [12, § 4]). The continu-
ous GK.p/-module Zp.�K/ is called the first Tate twist module, and usually, it
is denoted by Zp.1/ (cf. [25, Definition 7.3.6]). By Kummer theory, one has the
following (cf. [12, Theorem 4.2] and [33, Proposition 2.3]).
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Theorem 2.8. Let K be a field containing a primitive p-th root of 1. Then the
cyclotomic pro-p pair GK D .GK.p/; �K/ is 1-smooth.

Kummerian pro-p pairs and 1-smooth pro-p pairs were introduced in [12] and
in [4, § 14] respectively. In [33], if G D .G; �/ is a 1-smooth pro-p pair, the ori-
entation � is said to be 1-cyclotomic.

Remark 2.9. In [4, § 14.1], a pro-p pair is defined to be 1-smooth if the maps (2.6)
are surjective for every open subgroup of G, yet by a limit argument, this implies
also that the maps (2.6) are surjective also for every closed subgroup of G (cf.
[33, Corollary 3.2]).

Henceforth, we will restrict our attention to torsion-free cyclotomic pro-p pairs
whose pro-p group is finitely generated. One has the following group-theoretic
characterization of Kummerianity (cf. [12, Theorems 5.6 and 7.1]).

Theorem 2.10. Let G D .G; �/ be a torsion-free cyclotomic pro-p pair, with G
finitely generated. The following are equivalent.

(i) The pair G is Kummerian.

(ii) The quotient Ker.�/=K.G / is a free abelian pro-p group.

(iii) The pair G=N is Kummerian for every normal subgroup N of G contained
in K.G /.

Remark 2.11. Let G D .G; �/ be a cyclotomic pro-p pair with � � 1, i.e., � is
constantly equal to 1. Since K.G / D G0 in this case, by Theorem 2.10, the pair
G is Kummerian if and only if the quotient G=G0 is torsion-free. Moreover, G is
1-smooth if and only if H=H 0 is torsion-free for every subgroup H � G. Pro-p
groups with such a property are called absolutely torsion-free, and they were in-
troduced and studied by Würfel in [42].

Examples 2.12. (a) A cyclotomic pro-p pair .G; �/ with G a free pro-p group is
1-smooth for any orientation � WG ! 1C pZp (cf. [33, § 2.2]).

(b) A cyclotomic pro-p pair .G; �/ with G an infinite Demushkin pro-p group
is 1-smooth if and only if � WG ! 1C pZp is the canonical orientation of G,
defined as in [20, Theorem 4] (cf. [12, Theorem 7.6]).

(c) The only 1-smooth pro-p pair .G; �/ with G a finite p-group is the cyclic
group of order 2 G ' Z=2, endowed with the only non-trivial orientation

� WG� ¹˙1º � 1C 2Z2

(cf. [12, Example 3.5]).
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Remark 2.13. By Example 2.12 (c), if G D .G;�/ is a torsion-free 1-smooth pro-p
pair (i.e., Im.�/ is torsion-free), then G is a torsion-free pro-p group.

Kummerianity is inherited by certain quotients of pro-p pairs (cf. [29, Theo-
rem 1.1]).

Proposition 2.14. Let G D .G; �/ be a torsion-free Kummerian pro-p pair, an let
N be a normal subgroup of G satisfying

(i) G=N is a finitely generated pro-p group,

(ii) N � Ker.�/,

(iii) the map res1G;N WH
1.G;Fp/! H 1.N;Fp/G is surjective.

Then the pro-p pair G=N is Kummerian.

Remark 2.15. By (2.2), condition (iii) of Proposition 2.14 amounts to requir-
ing that the inclusion N � G induces a monomorphism of p-elementary abelian
pro-p groups N=NpŒG;N � ,! G=ˆ.G/.

Let G D .G; �/ be a cyclotomic pro-p pair. A continuous 1-cocycle from G to
the G-module Zp.�/ is a continuous map cWG ! Zp.�/ satisfying

c.xy/ D c.x/C �.x/ � c.y/ for every x; y 2 G (2.7)

(cf., e.g., [25, Chapter I, § 2]). One may employ continuous 1-cocycles to check
whether a given cyclotomic pro-p pair G is Kummerian (cf. [20, Proposition 6]).

Proposition 2.16. Let G D .G ; �/ be a torsion-free cyclotomic pro-p pair with G
finitely generated, and let X D ¹x1; : : : ; xd º be a minimal generating set of G.
Then G is Kummerian if and only if, for any sequence .�1; : : : ; �d / with �i 2 Zp
for every i D 1; : : : ; d , there exists a continuous 1-cocycle cWG ! Zp.�/ such
that c.xi / D �i for every i D 1; : : : ; d .

Examples 2.17. (a) For p ¤ 2, letG be the pro-p group with minimal presentation

G D hx; y; z j Œx; y� D zpi;

and let � WG ! 1C pZp be an arbitrary orientation. Then there are no continuous
1-cocycles cWG ! Zp.�/ satisfying c.x/ D c.y/ D 0 and c.z/ D 1, and thus the
pro-p pair .G; �/ is not Kummerian for any orientation � (cf. [12, Theorem 8.1]).
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(b) Let

H D

8̂<̂
:
0B@1 a c

0 1 b

0 0 1

1CA
ˇ̌̌̌
ˇ̌̌ a; b; c 2 Zp

9>=>;
be the Heisenberg pro-p group. By Remark 2.11, the pair .H; 1/ is Kummerian,
as H=H 0 ' Z2p, but H is not absolutely torsion-free. In particular, H contains an
open subgroupU which is isomorphic to the pro-p groupG as in (a), and therefore
H cannot complete into a 1-smooth pro-p pair (cf. [28, Example 5.4]).

3 Pro-p groups that are not absolute Galois groups

Let x; y; z be elements of a (pro-p) group G, and n � 1. Recall that, by commu-
tator calculus, one has the equalities

Œxy; z� D Œx; z�y � Œy; z�; Œx; yz� D Œx; z� � Œx; y�z;

Œxn; y� D Œx; y�x
n�1

� � � Œx; y�x � Œx; y�; Œx; yn� D Œx; y� � Œx; y�y � � � Œx; y�y
n�1

:

Lemma 3.1. Let x; y be elements of a (pro-p) group G. For n � 1, one has the
following:

Œy; xn� �

nY
iD1

Œy;i x�
.ni / mod G00; (3.1)

where G00 denotes the commutator subgroup of G0.

Proof. We proceed by induction on n. If n D 2, then

Œy; x2� D Œy; x� � Œy; x�x D Œy; x�2Œy;2 x�:

Now assume that (3.1) holds for n � 1. Then

Œy; xn� D Œy; x�Œy; xn�1�x D Œy; x�Œy; xn�1�ŒŒy; xn�1�; x�

� Œy; x� �

n�1Y
iD1

Œy;i x�
.n�1i / �

"
n�1Y
iD1

Œy;i x�
.n�1i /; x

#
mod G00

�

nY
iD1

�
Œy;i x�

.n�1i / � Œy;i x�
.n�1i�1/

�
mod G00

(here we set implicitly
�
n�1
n

�
D 0), and the well-known equality�
n � 1

i

�
C

�
n � 1

i � 1

�
D

�
n

i

�
yields (3.1).
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Also, we recall the following (cf. [12, Lemma 6.1]).

Lemma 3.2. Let G D .G; �/ be a torsion-free cyclotomic pro-p pair, and sup-
pose that cWG ! Zp.�/ is a continuous 1-cocycle. Then, for every x; y 2 G and
� 2 Zp, one has

c.x�/ D

8̂<̂
:
� � c.x/ if �.x/ D 1;
�.x/� � 1

�.x/ � 1
� c.x/ if �.x/ ¤ 1I

c.Œx; y�/ D �.xy/�1..1 � �.y//c.x/ � .1 � �.x//c.y//:

In particular, c.1/ D 0, and for n � 1, one has

c.Œy;n x�/ D .�.x/
�1
� 1/n�1c.Œy; x�/:

Finally, we underline the following straightforward Galois-theoretic observa-
tion.

Remark 3.3. Let K be a field. If p D 2, then clearly K contains the primitive
second root of 1, i.e., �1; on the other hand, if p ¤ 2 and K does not contain
a primitive p-th root of 1, say �p 2 NKs , then ŒK.�p/ W K� D p � 1, and the absolute
Galois group Gal. NKs=K/ is not a pro-p group. Therefore, if Gal. NKs=K/ is a pro-p
group, then �p 2 K.

This yields the following: if a pro-p group does not occur as maximal pro-p
Galois group of a field containing a primitive p-th root of 1, then it does not occur
as absolute Galois group of any field.

3.1 The first type of r0

In this subsection, G denotes a pro-p group with minimal presentation

G D hx1; : : : ; xd j r0; r1 : : : ; r�i

as in Theorem 1.1, with r0 of the first type, i.e., d is odd and

r0 D x
q
1 � Œx1;n x2� � Œx2; x3� � � � Œxd�1; xd � � s; with s 2 S 00;

where S is the subgroup of G generated by x3; : : : ; xd , while r1; : : : ; r� 2 S 0.
Our goal is to show that, for any orientation � WG ! 1C pZp, the pro-p pair
G D .G; �/ is not 1-smooth.

First, we establish what a suitable orientation � WG ! 1C pZp should be like.
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Proposition 3.4. Let � WG ! 1C pZp be an orientation of G such that the cyclo-
tomic pro-p pair G D .G; �/ is torsion-free. If G is Kummerian, then q D 0 and
�.xi / D 1 for i D 2; : : : ; d .

Proof. First, note that � jS 0 � 1, and thus, by Lemma 3.2, one has cjS 00 � 0 for
every continuous 1-cocycle cWG ! Zp.�/. From

1 D �.1/ D �.x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd � � s/ D �.x1/

q

we deduce �.x1/q D 1. Since Im.�/ is torsion-free, if q ¤ 0, one has �.x1/ D 1,
while one might have �.x1/ ¤ 1 only if q D 0.

For every i D 1; : : : ; d , let ci WG ! Zp.�/ be the continuous 1-cocycle such
that ci .xj / D ıij , with j 2 ¹1; : : : ; dº (such a continuous 1-cocycle always exists
by Proposition 2.16). Then

0 D ci .x
q
1 Œx1;n x2�Œx2; x3� � � � Œxd�1; xd � � s/

D ci .x
q
1 /C �.x1/

q
� ci .Œx1;n x2�Œx3; x4� � � � Œxd�1; xd � � s/

D ci .x
q
1 /C ci .Œx1;n x2�/C ci .Œx3; x4�/C � � � C ci .Œxd�1; xd �/: (3.2)

For i � 4, i even, from (2.7), Lemma 3.2, and (3.2), we get

0 D 0C � � � C ci .Œxi ; xiC1�/C � � � C 0 D �.xixiC1/
�1.1 � �.xiC1// � 1;

and hence �.xiC1/ D 1. Analogously, for i � 3, i odd, one gets

0 D 0C � � � C ci .Œxi�1; xi �/C � � � C 0 D �.xi�1xi /
�1.�1C �.xi�1// � 1;

and hence �.xi�1/ D 1. For i D 2, from (2.7), Lemma 3.2, and (3.2), we get

0 D 0C c2.Œx1;n x2�/C c2.Œx2; x3�/C � � � C 0

D ��.x1/.�.x2/
�1
� 1/n C �.x2x3/

�1.1 � �.x3//

D ��.x1/.�.x2/
�1
� 1/n C 0;

as �.x3/ D 1, and hence �.x2/ D 1. Finally, for i D 1, from (2.7), Lemma 3.2,
and (3.2), we get

0 D c1.x
q
1 /C c1.Œx1;n x2�/C 0 D

8̂<̂
:
q if �.x1/ D 1;
�.x1/

q � 1

�.x1/ � 1
if �.x1/ ¤ 1:

Therefore, q D 0, and one might have x1 … Ker.�/.
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Note that if G D .G; �/ is a Kummerian pro-p pair, then S � Ker.�/, and thus
Lemma 3.2 implies that cjS 0 � 0 for every continuous 1-cocycle cWG ! Zp.�/.
From now on, we assume that q D 0 so that G may be completed into a Kummer-
ian pro-p pair G D .G; �/.

Let �WG ! Z=pZ be the homomorphism of pro-p groups defined by xi 7! 0

for i D 1; 3; 4; : : : ; d and x2 7! 1, and set U D Ker.�/.

Lemma 3.5. The set

XU D

8̂̂̂̂
<̂
ˆ̂̂:

t ´ x
p
2 ;

x1; Œx1; x2�; : : : ; Œx1;l�1 x2�;

x3; Œx3; x2�; : : : ; Œx3;l 0�1 x2�;

xi ; Œxi ; x2�; : : : ; Œxi ;p�1 x2�; i D 4; : : : ; d

9>>>>=>>>>; ;

where l D min¹n; pº, and l 0 D p � n if n < p, l 0 D 1 if n � p, is a minimal gen-
erating set of U .

Proof. Set NU D U=U 0, and for g 2 U , let Ng D g � U 0 denote its image in NU . In
particular, we set vi;0 D Nxi and vi;k D Œxi ;k x2� 2 NU for i D 1; : : : ; d and k � 1.

The group U is generated as normal subgroup ofG by t and x1; x3; x4; : : : ; xd .
Since G0 � U , one has G00 � U 0. Also, S 0 � U 0, as S � U . By Lemma 3.1, for
every i D 1; 3; : : : ; d , one has

Œxi ; t � �

 
p�1Y
kD1

Œxi ;k x2�
.pk/

!
� Œxi ;p x2� mod U 0;

and since Œxi ; t � 2 U 0, it follows that, for every k � p,

vi;k D v
�1
i;1 � v

�2
i;2 � � � v

�p�2
i;p�2 � v

�p�1
i;p�1 (3.3)

for some �1; : : : ; �p�1 2 pZp. Hence, NU is generated as abelian pro-p group by
the set ¹Nt ; vi;kºi;k , with i D 1; 3; : : : ; d and 0 � k � p � 1.

In U , from the defining relation r0 D 1, one obtains p relations

r0 D Œx1;n x2�Œx2; x3� � � � Œxd�1; xd � D 1;

Œr0; x2� D ŒŒx1;n x2�Œx2; x3� � � � Œxd�1; xd �; x2� D 1;

:::

Œr0;p�1 x2� D ŒŒx1;n x2�Œx2; x3� � � � Œxd�1; xd �;p�1 x2� D 1:

(3.4)
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From relations (3.4), one deduces

ŒŒx1;n x2�Œx2; x3�;k�1 x2� � Œx1;nCk�1 x2� � Œx3;k x2�
�1
� 1 mod U 0 (3.5)

for every 1 � k � p. Note that one obtains the abelian pro-p group NU as the
quotient of the free Zp-module generated by ¹Nt ; vi;kº, with i D 1; 3; : : : ; d and
0 � k � p � 1, over the p relations (3.5), as the relations r1; : : : ; r� of G lie in
S 0 � U 0. Moreover, one has NU= NU p D NU=ˆ. NU/ ' U=ˆ.U /.

Suppose first that n � p. By applying (3.3) to the p relations (3.5), one obtains
p relations in NU ,

v3;k D v1;nC.k�1/ D

p�1Y
jD1

v
�j
1;j for k D 1; : : : ; p; (3.6)

for some �1; : : : ; �p�1 2 pZp depending on k. Consider the quotient NU= NU p. The
p relations (3.6) translate into

v3;k � 1 mod NU p for k D 1; : : : ; p:

Therefore, the cosets ®
Nt NU p; v3;0 NU

p; vi;k NU
p
¯
i;k
;

with i D 1; 4; : : : ; d and 0 � k < p, minimally generate the p-elementary abelian
group NU= NU p ' U=ˆ.U /, and thus XU minimally generates U .

Now suppose that 2 < n < p. By applying (3.3) to the p relations (3.5), one
obtains the following p relations in NU :

v1;nC.k�1/ D v3;k for k D 1; : : : ; p � n;

v3;k D v1;nC.k�1/ D

p�1Y
jD1

v
�j
1;j for k D p � nC 1; : : : ; p;

(3.7)

for some �1; : : : ; �p�1 2 pZp depending on k. Consider the quotient NU= NU p. The
p relations (3.7) translate into

v1;nC.k�1/ � v3;k mod NU p for k D 1; : : : ; p � n;

v3;k � 1 mod NU p for k D p � nC 1; : : : ; p:

Therefore, the cosets®
Nt NU p; v1;k NU

p; v3;k0 NU
p; vi;k00 NU

p
¯
i;k;k0;k00

;

with i D 4; : : : ; d and 0 � k � n � 1, 0 � k0 � p � n, 0 � k00 � p � 1, mini-
mally generate the p-elementary abelian group NU= NU p ' U=ˆ.U /, and thus XU

minimally generates U .
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Proposition 3.6. Suppose that G D .G; �/ is a Kummerian torsion-free pro-p pair,
and let N be the normal subgroup of U generated (as a normal subgroup) by the
elements Œxi ;k x2�, with i D 3; : : : ; d and k � 0. Then one has the following:

(i) N � Ker.� jU /;

(ii) the map res1U;N WH
1.U;Fp/!H 1.N;Fp/U induced by the inclusionN �U

is surjective;

(iii) the pro-p pairs G jU =N D .U=N; N� jU / and G jU D .U;� jU / are not Kummer-
ian.

Proof. Since xi 2 Ker.�/ for every i D 3; : : : ; d , one has that N � Ker.� jU /.
Moreover, S � N .

Let BU D ¹�t ; �1;k; �3;k0 ; �i;k00ºi;k;k0;k00 denote a basis of H 1.U;Fp/ dual to
XU , with i D 4; : : : ; d and 0 � k � l � 1, 0 � k0 � l 0 � 1, and 0 � k � p � 1,
where l; l 0 are as in Lemma 3.5. By duality (2.1), the image of the map

inf1U=N;U WH
1.U=N;Fp/! H 1.U;Fp/;

which is injective by (2.2), is the subspace of H 1.U;Fp/ generated by the set
¹�t ; �1;k j 0 � k � l � 1º. On the other hand, since the elements Œxi ;k x2� gener-
ate N as a normal subgroup of U , one has

dim.H 1.N;Fp/
U / D dim.N=NpŒU;N �/

D dim.H 1.U;Fp// � .1C l/

D dim.H 1.U;Fp// � dim.Im.inf1U=N;U //;

and therefore the exactness of (2.2) implies that the image of the map res1U;N is
the whole H 1.N;Fp/U , i.e., res1U;N is surjective.

SetwD Œx1;n�1 x2�, zD Œx1;n�1 x2�. Since Œz;x2�D Œw;2 x2�D Œx1;n x2� 2N ,
by Lemma 3.1, in U , one has

Œw; t � D Œw; x
p
2 � D Œw; x2�

p
� Œw;2 x2�

.p2/ � � � Œw;p x2�

D zp � Œz; x2�
.p2/ � � � Œz;p�1 x2�

� zp mod N: (3.8)

Since �t ;�1;n�2;�1;n�1 are linearly independent in Ker.res1U;N /D Im.inf1U=N;U /,
by duality, the quotient U=N has a minimal generating set containing tN;wN; zN
as distinct elements. Therefore, by (3.8) and by [12, Theorem 8.1], the pro-p
pair G jU =N is not Kummerian. Finally, by Proposition 2.14, also the pro-p pair
G jU D .U; � jU / is not Kummerian.
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Proposition 3.6, together with Theorem 2.8, yields Theorem 1.1 for r0 of the
first type.

Corollary 3.7. Let G D hx1; : : : ; xd j r0; r1; : : : ; r�i be as in Theorem 1.1, with
the relation r0 of the first type. Then G does not occur as absolute Galois group.

Proof. By Proposition 3.6, G cannot complete into a 1-smooth torsion-free pro-p
pair, and thus, by Theorem 2.8, G does not occur as maximal pro-p Galois group
of a field K containing a primitive p-th root of 1 (and also

p
�1 if p D 2).

Now suppose that p D 2. It is well known that a field K contains
p
�1 if and

only if, for every epimorphism 'WGK.2/� Z=2Z, there exists an epimorphism
Q'WGK.2/� Z=4Z such that ' D � ı Q', where � WZ=4Z� Z=2Z is the canon-
ical projection (see, e.g., [35, § 1.2]). This property holds for G, as

G=G0 ' Z=2f Z � Zd�12 ; with f � 2;

and thus G cannot occur as maximal pro-2 Galois group of a field K which does
not contain

p
�1.

Finally, by Remark 3.3, the pro-p groupG does not occur as the absolute Galois
group of any field.

3.2 The second type of r0

In this subsection, G denotes a pro-p group with minimal presentation

G D hx1; : : : ; xd j r0; r1 : : : ; r�i

as in Theorem 1.1, with r0 of the second type, i.e., d is odd and

r0 D x
q
1 � Œx1;n x2� � Œx3; x4� � � � Œxd�1; xd � � s; with s 2 S 00;

where S is the subgroup ofG generated by x3; : : : ; xd , while r1; : : : ; r� 2 S 0. Our
goal is to show that, for any orientation � WG ! 1C pZp, the pair G D .G; �/ is
not 1-smooth.

First, we establish what a suitable orientation � WG ! 1C pZp should be like.

Proposition 3.8. Let � WG ! 1C pZp be an orientation of G such that the cyclo-
tomic pro-p pair G D .G; �/ is torsion-free. If G is Kummerian, then �.xi / D 1
for i D 3; : : : ; d , and either

(i) �.x1/ D 1 and .�.x2/�1 � 1/n D �q, or

(ii) �.x1/ ¤ 1 and �.x2/ D 1 (this is possible only if q D 0).

In particular, if �q … .1C pZp/n, then G is not Kummerian for any orientation
� WG ! 1C pZp.
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Proof. First, note that � jS 0 � 1, and thus, by Lemma 3.2, one has cjS 00 � 0 for
every continuous 1-cocycle cWG ! Zp.�/. From

1 D �.1/ D �.x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd � � s/ D �.x1/

q;

we deduce �.x1/q D 1. Since Im.�/ is torsion-free, if q ¤ 0, one has �.x1/ D 1,
while one might have �.x1/ ¤ 1 only if q D 0.

For every i D 1; : : : ; d , let ci WG ! Zp.�/ be the continuous 1-cocycle such
that ci .xj / D ıij , with j 2 ¹1; : : : ; dº (such a continuous 1-cocycle always exists
by Proposition 2.16, since we are assuming that G is Kummerian). Then

0 D ci .x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd �/

D ci .x
q
1 /C �.x1/

q
� ci .Œx1;n x2�Œx3; x4� � � � Œxd�1; xd �/

D ci .x
q
1 /C ci .Œx1;n x2�/C ci .Œx3; x4�/C � � � C ci .Œxd�1; xd �/: (3.9)

For i � 3, i odd, from (2.7), Lemma 3.2, and (3.9), we get

0 D 0C � � � C ci .Œxi ; xiC1�/C � � � C 0 D �.xixiC1/
�1.1 � �.xiC1// � 1;

and hence �.xiC1/ D 1. Analogously, for i � 4, i even, one gets

0 D 0C � � � C ci .Œxi�1; xi �/C � � � C 0 D �.xi�1xi /
�1.�1C �.xi�1// � 1;

and hence �.xi�1/ D 1. On the other hand, for i D 1, from (2.7), Lemma 3.2, and
(3.9), we get

0D c1.x
q
1 /C c1.Œx1;n x2�/C 0D

´
q C .�.x2/

�1 � 1/n if �.x1/ D 1;
0C �.x1/

�1.�.x2/
�1 � 1/n if �.x1/ ¤ 1

(recall that in the second case necessarily q D 0): in the first case, one deduces (i);
in the second case, one deduces (ii).

Note that if G D .G; �/ is a Kummerian pro-p pair, then S � Ker.�/, and thus
Lemma 3.2 implies that cjS 0 � 0 for every continuous 1-cocycle cWG ! Zp.�/.
From now on, we assume that �q D �n for some � 2 pZp so that G may be
completed into a Kummerian pro-p pair G D .G; �/.

Let �WG ! Z=pZ be the homomorphism defined by

xi 7! 0 for i D 1; 3; 4; : : : ; d and x2 7! 1;

and set U D Ker.�/.
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Lemma 3.9. The set

XU D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

t ´ x
p
2 ;

x1; Œx1; x2�; : : : ; Œx1;m�1 x2�;

x3; Œx3; x2�; : : : ; Œx3;p�1 x2�;

:::

xd ; Œxd ; x2�; : : : ; Œxd ;p�1 x2�

9>>>>>>>>=>>>>>>>>;
;

where m D min¹n; pº, is a minimal generating set of U .

Proof. Set NU D U=U 0, and for g 2 U , let Ng D g � U 0 denote its image in NU . In
particular, we set vi;0 D Nxi and vi;k D Œxi ;k x2� 2 NU for i D 1; : : : ; d and k � 1.

The group U is generated as normal subgroup ofG by t and x1; x3; x4; : : : ; xd .
Since G0 � U , one has G00 � U 0. Also, S 0 � U 0, as S � U . By Lemma 3.1, for
every i D 1; 3; : : : ; d , one has

Œxi ; t � �

 
p�1Y
kD1

Œxi ;k x2�
.pk/

!
� Œxi ;p x2� mod U 0;

and since Œxi ; t � 2 U 0, it follows that, for every k � p,

vi;k D v
�1
i;1 � v

�2
i;2 � � � v

�p�2
i;p�2 � v

�p�1
i;p�1 (3.10)

for some �1; : : : ; �p�1 2 pZp. Hence, NU is generated as an abelian pro-p group
by the set ¹Nt ; vi;kºi;k , with i D 1; 3; : : : ; d and 0 � k � p � 1.

In U , from the defining relation r0 D 1, one obtains p relations

r0 D x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd � D 1;

Œr0; x2� D
�
x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd �; x2

�
D 1;

:::

Œr0;p�1 x2� D
�
x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd �;p�1 x2

�
D 1:

(3.11)

From relations (3.11), one deduces�
x
q
1 � Œx1;n x2�;k x2

�
� Œx1;k x2�

q
� Œx1;nCk x2� � 1 mod U 0 (3.12)

for every 0 � k � p � 1. Note that one obtains the abelian pro-p group NU as
the quotient of the Zp-module A – where A is the free Zp-module generated by
¹Nt ; vi;kº, with i D 1; 3; : : : ; d and 0 � k � p � 1 – over the p relations (3.12), as
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the relations r1; : : : ; r� of G lie in S 0 � U 0, and this yields an epimorphism of
abelian pro-p groups � WA� NU . Moreover, one has

NU= NU p D NU=ˆ. NU/ ' U=ˆ.U /:

Suppose first that n � p. By applying (3.10) to the p relations (3.12), one ob-
tains p relations in NU ,

v
�q

1;k
D v1;nCk D

p�1Y
jD1

v
�j
1;j for k D 0; : : : ; p � 1;

for some �1; : : : ; �p�1 2 pZp depending on k. Since p j q, one has Ker.�/ � pA
(here we use the additive notation for A). Therefore, the set ¹Nt ; vi;kºi;k , with
i D 1; 3; : : : ; d and 0 � k < p, is a minimal generating set of NU , and the iso-
morphism U=ˆ.U / ' NU=ˆ. NU/ implies that XU minimally generates U .

Suppose now that 2 < n < p. By applying (3.10) to the p relations (3.12), one
obtains the following p relations in NU :

v1;nCk D v
�q

1;k
for k D 0; : : : ; p � n � 1;

v
�q

1;k
D v1;nCk D

p�1Y
jD1

v
�j
1;j for k D p � n; : : : ; p � 1;

(3.13)

for some �1; : : : ; �p�1 2 pZp depending on k. Consider the quotient

NU= NU p D NU=ˆ. NU/;

which is isomorphic to U=ˆ.U /. The p � n relations (3.13) translate into

v1;nCk � 1 mod NU p for k D 0;�; p � n � 1;

while the n relations (3.13) become trivial in NU= NU p. Therefore, the cosets®
Nt NU p; v1;k NU

p; vi;k0 NU
p
j i D 3; : : : ; d I 0 � k � n � 1I 0 � k0 � p � 1

¯
minimally generate the p-elementary abelian pro-p group NU= NU p ' U=ˆ.U /,
and thus XU minimally generates U .

Remark 3.10. Suppose that the pro-p pair G D .G; �/ is Kummerian. Since

G0 � Ker.� jU /;
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one has G00 � Ker.� jU /0. If x1 2 Ker.� jU /, then for every m � 1, one has

Œx
q
1 ;m x2� D

�
Œx1; x2�

x
q�1
1 � � � Œx1; x2�

x1 � Œx1; x2�;m�1 x2
�

�
�
Œx1; x2�

q;m�1 x2
�

mod Ker.� jU /0

� Œx1;m x2�
q mod Ker.� jU /0; (3.14)

as yx1 � y mod Ker.� jU /0 for every y 2 Ker.� jU /. On the other hand, if one has
x1 … Ker.� jU /, then q D 0 by Proposition 3.8, and (3.14) holds trivially.

Proposition 3.11. Suppose that G D .G; �/ is a Kummerian torsion-free pro-p
pair, and set N D Ker.� jU /0. Then the pro-p pairs G jU =N D .U=N; N� jU / and
G jU D .U; � jU / are not Kummerian.

Proof. Recall thatG00 �N , S 0 �N , and the commutators Œx3; x4�; : : : ; Œxd�1; xd �
lie in N . Moreover, one has pn j q, by Proposition 3.8.

Set w D Œx1;n�2 x2�, z D Œx1;n�1 x2� D Œw; x2�. Then, by Lemma 3.9, t; w; z
are distinct elements of the minimal generating set XU � U . Since

Œz; x1� � x
�q
1 mod N;

by Lemma 3.1 and by Remark 3.10, one has

Œw; t � � Œw; x2�
pŒw;2 x2�

.p2/ � � � Œw;p�1 x2�
pŒw;p x2� mod N

� zpŒz; x2�
.p2/Œz;2 x2�

.p3/ � � � Œz;p�2 x2�
pŒz;p�1 x2� mod N

� zp � x
�q.p2/
1 � Œx

�q
1 ; x2�

.p3/ � � �

� Œx
�q
1 ;p�3 x2�

pŒx
�q
1 ;p�2 x2� mod N

� zp � x
�q.p2/
1 Œx1; x2�

�q.p3/ � � �

� Œx1;p�3 x2�
�qpŒx1;p�2 x2�

�q mod N: (3.15)

Now we have three cases, depending on the value of n.

(a) If n � p, then from (3.15), one has

zp � Œw; t � � x
q.p2/
1 Œx1; x2�

q.p3/ � � � Œx1;p�3 x2�
qpwq mod N:

(b) If n D p � 1, then from (3.15), one has

Œw; t � � zp � x
�q.p2/
1 � Œx1; x2�

�q.p3/ � � �w�qp � z�q mod N;
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and thus

zp�q � Œw; t � � x
q.p2/
1 � Œx1; x2�

q.p3/ � � � Œx1;n�3 x2�
q. pp�2/ � wqp mod N:

Since pn j q, one has p � q ¤ 0.

(c) If n< p � 1, after iterating the replacement Œx1;k x2�� Œx1;k�n x2��q mod N
in the last line of (3.15) whenever k � n, one obtains

zpC�n�1 � Œw; t � � x
�0
1 � Œx1; x2�

�1 � � �w�n�1 mod N;

with �0; : : : ; �n�1 2 p2Zp, as p2 j q. In particular, p C �n�1 ¤ 0.

In all three cases, [12, Theorem 8.1] implies that the pro-p pair G jU =N cannot be
Kummerian.

Finally, asN � K.G jU /, by Theorem 2.10, also the pro-p pair G jU D .U; � jU /

cannot be Kummerian.

Proposition 3.11, together with Theorem 2.8, yields Theorem 1.1 for r0 of the
second type.

Corollary 3.12. Let G D hx1; : : : ; xd j r0; r1; : : : ; r�i be as in Theorem 1.1, with
the relation r0 of the second type. ThenG does not occur as absolute Galois group.

Proof. The proof is verbatim the same as the proof of Corollary 3.7.

4 One-relator pro-p groups that are not absolute Galois groups

In the next two sections, we focus on those pro-p groups defined in Theorem 1.1
with a single defining relation – i.e., � D 0.

4.1 Quadratic cohomology

Let G be a one-relator pro-p group of one of the two families defined in Theo-
rem 1.1. Then one has either

r0 � Œx2; x3� � � � Œxd�1; xd � mod G.3/ or

r0 � Œx3; x4� � � � Œxd�1; xd � mod G.3/:

Hence, the Fp-cohomology algebra H �.G;Fp/ of G is quadratic by Proposi-
tion 2.1. In particular, let B D ¹�1; : : : ; �d º be a basis of H 1.G;Fp/ dual to
X D ¹x1; : : : ; xd º. Then one has the following.



Two pro-p groups that are not absolute Galois groups 47

(a) If r0 is of the first type, then

�2 [ �3 D � � � D �d�1 [ �d ¤ 0;

�i [ �j for 1 � i < j � d; .i; j / ¤ .2; 3/; : : : ; .d � 1; d/;
(4.1)

and �2 [ �3 generates H 2.G;Fp/. In particular,

H 1.G;Fp/
?
D ¹� 2 H 1.G;Fp/ j � [  D 0 for all  2 H 1.G;Fp/º

D SpanFp .�1/:

(b) If r0 is of the second type, then

�3 [ �4 D � � � D �d�1 [ �d ¤ 0;

�i [ �j for 1 � i < j � d; .i; j / ¤ .3; 4/; : : : ; .d � 1; d/;
(4.2)

and �3 [ �4 generates H 2.G;Fp/. In particular,

H 1.G;Fp/
?
D ¹� 2 H 1.G;Fp/ j � [  D 0 for all  2 H 1.G;Fp/º

D SpanFp .�1; �2/:

This proves Proposition 1.2 (i).

Remark 4.1. Since Hk.G;Fp/ D 0 for k � 3, the pro-p group G is torsion-free
(cf., e.g., [32, Proposition A]).

4.2 Free and abelian subgroups

Recall from Proposition 2.6 that Bloch–Kato pro-p groups contain a unique max-
imal normal abelian subgroups, and that if a Bloch–Kato pro-p group is not meta-
abelian, then it contains a free non-abelian subgroup. We prove that the one-relator
pro-p groups defined in Theorem 1.2 satisfy these two group-theoretic properties.

Proposition 4.2. Set G D hx1; : : : ; xd j r0i as in Theorem 1.2. Then

(i) G contains a free non-abelian subgroup;

(ii) G contains no normal abelian subgroups.

Proof. By [30, Proposition 4.10], one has a short exact sequence of pro-p groups

¹1º ! N ! G ! G=N ! ¹1º;
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where N is the normal subgroup of G generated by x1, respectively by x1; x2,
depending on the family of G, such that N is a free non-abelian pro-p group, and
G=N is a torsion-free Demushkin group on d � 1, respectively d � 2, generators.
This proves (i).

Suppose that A is a non-trivial normal abelian subgroup of G. Since G is
torsion-free by Remark 4.1, A is a free abelian pro-p group, i.e., A is isomor-
phic to the direct product of (possibly infinite) copies of Zp. Since N is free and
non-abelian, one has A \N D ¹1º, and thus

A D A=.A \N/ ' AN=N E G=N: (4.3)

It is well known that a torsion-free Demushkin group has a non-trivial normal
abelian subgroup if and only if it has 2 generators. Thus,

G=N ' h Nxi ; NxiC1 j Œ Nxi ; NxiC1� D 1i ' Z2p;

where i D 2, respectively i D 3, and Nxj D xjN denotes the image of xj in G=N
for j D i; i C 1. In particular, A ' Zap, with a 2 ¹1; 2º, since A E G=N by (4.3).

Since G=N is abelian and A is normal in G, one has

N � G0 � ŒG;A� � A;

and since A \N D ¹1º, one deduces ŒG;A� D ¹1º, i.e., A is contained in the cen-
ter Z.G/ ofG. Hence, for every x 2 G X A, the subgroup hxiA ofG is abelian and
torsion-free so that hxiA ' ZaC1p . In particular, if xp

k

2 A for some x 2 G and
k � 1, then x 2 A, and consequently, G=A is a torsion-free pro-p group. Since
the Fp-cohomology algebra H �.G;Fp/ is quadratic, from [33, Proposition 7.11],
one deduces that A 6� ˆ.G/, and G ' A � .G=A/. Then, by [25, Theorem 2.4.6],
one has

H 2.G;Fp/ '
M
sCtD2

H s.G=A;H t .A;Fp//

' H 2.G=A;Fp/˚H
1.G=A;Fp/˚H

2.A;Fp/;

as G=A acts trivially on H t .A;Fp/, t D 1; 2, and this contradicts (4.1)–(4.2).
Therefore, A D ¹1º, and this proves (ii).

Therefore, one may not employ Proposition 2.6 to show that the pro-p groups
of the two families defined in Theorem 1.1 are not Bloch–Kato – and thus that they
cannot occur as absolute Galois groups of fields. We ask the following.

Question 4.3. Are (some of) the one-relator pro-p groups defined in Theorem 1.2
Bloch–Kato pro-p groups?
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4.3 Benson–Lemire–Minac–Swallow’s examples

For x; y elements of a (pro-p) groups G and n � 1, set

Œxn; y� D Œx; : : : ; ŒxŒx„ ƒ‚ …
n times

; y�� : : :�:

Let p be odd, and let G be a finitely generated one-relator pro-p group G with
minimal presentation G D hy1; : : : ; yd j ti, d � 4, and defining relation

t D y
q
1 � Œy1n; y2�Œy3; y4� � � � Œym�1; ym� � Œy

p
1 ; yk1 � � � � Œy

p
1 ; yk� �;

where

(a) q D pf with f 2 ¹1; 2; : : : ;1º and 2 � n � p � 1,

(b) 4 � m � d is even,

(c) � � 0 and 3 � k1 < � � � < k� � d if � ¤ 0,

(d) ¹3; : : : ; mº [ ¹k1; : : : ; k�º D ¹3; : : : ; dº.

This family of one-relator pro-p groups was introduced by Benson et al. in [2] –
for short, we shall call these pro-p groups BLMS pro-p groups. In [2, Corollary 1],
it is shown that BLMS pro-p groups do not occur as maximal pro-p Galois groups
of fields containing a primitive p-th root of 1. We show that the intersection of the
family of BLMS pro-p groups with the family of one-relator pro-p groups defined
in Theorem 1.2 is rather small.

Proposition 4.4. Let G D hx1; : : : ; xd j r0i be a one-relator pro-p group as de-
fined in Theorem 1.2, and suppose that G may complete into a Kummerian pro-p
pair G D .G; �/. Then G is a BLMS pro-p group only if

r0 D Œx1;n x2�Œx3; x4� � � � Œxd�1; xd � � s: (4.4)

Proof. Suppose thatG is a BLMS pro-p group. Thus,G D hy1; : : : ; yd j tiwith t
as above. Since

t � Œy3; y4� � � � Œym�1; ym� mod G.3/;

by Proposition 2.1, the Fp-cohomology algebra H �.G;Fp/ is quadratic, and in
particular, one has dim.H 1.G;Fp/?/ D 2C d �m. Hence, by (4.1)–(4.2), one
has that dim.H 1.G;Fp/?/ D 2 so that r0 is necessarily of the second type, i.e.,

r0 D x
q
1 Œx1;n x2�Œx3; x4� � � � Œxd�1; xd � � s (4.5)

for some s 2 S 00, where S is the subgroup of G generated by x1; x3; : : : ; xd .
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We claim that, in (4.5), one has q D 0 so that r0 is as stated in (4.4). For this pur-
pose, let � WG ! 1C pZp be an orientation such that the pro-p pair G D .G; �/

is Kummerian. Then �.y1/q D �.t/ D 1, and moreover, Proposition 2.16 yields
c.t/ D 0 for every continuous 1-cocycle cWG ! Zp.�/. For every i D 1; : : : ; d ,
let ci WG ! Zp.�/ be the continuous 1-cocycle such that ci .yj / D ıij . Then one
has

0 D ci .y
q
1 Œy1n; y2�Œy3; y4� � � � Œyd�1; yd � � Œy

p
1 ; yk1 � � � � Œy

p
1 ; yk� �/

D ci .y
p
1 /C ci .Œy1n; y2�/C ci .Œy3; y4�/C � � � C ci .Œyd�1; yd �/

C

�X
jD1

ci .Œy
p
1 ; ykj �/: (4.6)

By Lemma 3.2, from (4.6), one obtains

0 D c2.t/ D c2.Œy1n; y2�/ D .1 � �.y1/
�1/n;

and thus �.y1/ D 1. For i � 3, i odd, by Lemma 3.2, from (4.6), one obtains

0 D

8̂̂̂̂
<̂
ˆ̂̂:
�.yiyiC1/

�1.1 � �.yiC1//

if i ¤ kj for all j D 1; : : : ; �;

�.yiyiC1/
�1.1 � �.yiC1//C �.yi /

�1.1 � �.y1/
p/

if i 2 ¹k1; : : : ; k�º;

and in both cases, one has �.yiC1/ D 1, as �.y1/ D 1. Analogously, one obtains
�.yi�1/ D 1 for i � 3, i even. Finally,

0 D c1.x
q
1 /C

�X
jD1

c1.Œy
p
1 ; ykj �/ D q C

�X
jD1

.�.ykj /
�1
� 1/ � p D q C 0;

and hence q D 0.

Therefore, most of the one-relator pro-p groups defined in Theorem 1.2 are not
BLMS pro-p groups.

5 Massey products

5.1 Massey products and pro-p groups

Let G be a pro-p group. For m � 2, the m-fold Massey product on H 1.G;Fp/ is
a multi-valued map

H 1.G;Fp/ � : : : �H
1.G;Fp/„ ƒ‚ …

m times

! H 2.G;Fp/:
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Form � 2 elements  1; : : : ;  m ofH 1.G;Fp/, we write h 1; : : : ;  mi for the set
of values of the m-fold Massey product of the elements  1; : : : ;  m. If m D 2,
then the 2-fold Massey product coincides with the cup-product, i.e.,

h 1;  2i D ¹ 1 [  2º � H
2.G;Fp/ for  1;  2 2 H 1.G;Fp/:

For further details on this operation in the general homological context, we direct
the reader to [6, 19], and to [9, 24, 38] for Massey products in the profinite and
Galois-theoretic context. In particular, the definition of m-fold Massey products
in the Fp-cohomology of pro-p groups may be found in [24, Definition 2.1]. For
the purposes of our investigation, the group-theoretic conditions given by Propo-
sition 5.3 below will be enough.

Given m � 2 elements

 1; : : : ;  m 2 H
1.G;Fp/;

the Massey product h 1; : : : ;  mi is said to be defined if it is non-empty, and it
is said to vanish if it contains 0. In the following proposition, we collect some
properties of Massey products (cf., e.g., [38, § 1.2] and [24, § 2]).

Proposition 5.1. Let G be a pro-p group and  1; : : : ;  m 2 H 1.G;Fp/, m � 3.

(i) If  k D 0 for some k 2 ¹1; : : : ; mº and the Massey product h 1; : : : ;  mi is
defined, then 0 2 h 1; : : : ;  mi.

(ii) If the Massey product h 1; : : : ;  mi is defined, then  i [  iC1 D 0 for all
i D 1; : : : ; m � 1.

(iii) If the Massey product h 1; : : : ;  mi is defined, then one has the inclusion

h 1; : : : ;  mi � � C  1 [H
1.G;Fp/C  m [H

1.G;Fp/; (5.1)

where the right-side term of (5.1) is the set

¹� C  1 [ ' C  m [ '
0
j '; '0 2 H 1.G;Fp/º;

and � is any element of h 1; : : : ;  mi; if m D 3 then (5.1) is an equality.
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5.2 Massey products and unipotent representations

Massey products for a pro-p group G may be interpreted in terms of unipotent
upper-triangular representations of G as follows. For m � 2, let

UmC1 D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0BBBBBB@
1 a1;2 � � � a1;mC1

1 a2;3 � � �
: : :

: : :
:::

1 am;mC1

1

1CCCCCCA

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ ai;j 2 Fp

9>>>>>>=>>>>>>;
� GLmC1.Fp/

be the group of unipotent upper-triangular .mC 1/ � .mC 1/-matrices over Fp.
Then UmC1 is a p-group. Moreover, let ImC1; Ei;j 2 UmC1 denote respectively
the identity .mC 1/ � .mC 1/-matrix and the .mC 1/ � .mC 1/-matrix with 1
at entry .i; j / and 0 elsewhere, for 1 � i < j � mC 1.

Lemma 5.2. The group UmC1 has the following properties.

(i) The center Z.UmC1/ is the subgroup

ImC1 CE1;mC1Fp D ¹ImC1 C a �E1;mC1 j a 2 Fpº:

(ii) The exponent of UmC1 is pblogp.mC1/cC1.

(iii) The .mC 1/-th element 
mC1.UmC1/ of the descending central series of
UmC1 is trivial.

Proof. For (i), see, e.g., [24, § 3] or [12, p. 308]. For (ii), see [10, Proposition 2.3].
Item (iii) may be deduced from [24, Lemma 3.8].

One has the following group-theoretic result to check whether a given m-fold
Massey product of a pro-p groupG is defined or vanishes (e.g., [12, Lemma 9.3]).

Proposition 5.3. Let G be a pro-p group and  1; : : : ;  m 2 H 1.G;Fp/, m � 2.
Set NUmC1 D UmC1=Z.UmC1/.

(i) Them-fold Massey product h 1; : : : ;  mi is defined if and only if there exists
a continuous homomorphism N�WG ! NUmC1 such that N�i;iC1 D  i for every
i D 1; : : : ; m.

(ii) The m-fold Massey product h 1; : : : ;  mi vanishes if and only if there exists
a continuous homomorphism �WG ! UmC1 such that �i;iC1 D  i for every
i D 1; : : : ; m.

(Here N�i;iC1 and �i;iC1 denote the projection of N�, resp. �, on the .i; i C 1/-entry.)



Two pro-p groups that are not absolute Galois groups 53

Let K be a field containing a primitive p-th root of 1. In [23, Conjecture 1.1],
Minac and Tân conjectured that every defined m-fold Massey product for every
m � 3 on H 1.GK.p/;Fp/ vanishes. Roughly speaking, this conjecture says that
if K is a field containing a primitive p-th root of 1, the Fp-cohomology algebra
H �.GK.p/;Fp/ should allow no operations which are external with respect to
its quadratic algebra structure given by the cup-product. This conjecture has been
proved in the following cases:

(a) if m D 3 by Efrat–Matzri, and independently by Minac–Tân (cf. [11, 23]),

(b) if m D 4 and K is a local field containing also a primitive p2-th root of 1 by
Guillot–Minac (cf. [16]),

(c) for every m � 3, if K is a number field by Harpaz–Wittenberg (cf. [18]).

In [24, § 7], Minac and Tân produced some examples of pro-p groups with
defined and non-vanishing 3-fold Massey products, and hence which do not occur
as maximal pro-p Galois groups of fields containing a primitive p-th root of 1.

Example 5.4. Let G be the pro-p group with minimal presentation

G D hx1; : : : ; x5 j ŒŒx1; x2�; x3�Œx4; x5�i:

Then there is a 3-fold Massey product onH 1.G;Fp/which is defined but does not
vanish (cf. [24, Example 7.2]). Note that, by Proposition 2.1, the Fp-cohomology
algebra H �.G;Fp/ is quadratic.

5.3 The first type of r0

We split the proof of Theorem 1.2 (ii) (a) in the following two propositions.

Proposition 5.5. Let G D hx1; : : : ; xd j r0i be a one-relator pro-p group with r0
of the first type as defined in Theorem 1.1. Then every defined 3-fold Massey prod-
uct in H �.G;Fp/ vanishes if and only if q ¤ 3.

Proof. Pick three elements  1;  2;  3 2 H 1.G;Fp/ (by Proposition 5.1 (i), we
may assume that they are all non-trivial), and write

 1 D

dX
iD1

ai�i ;  2 D

dX
iD1

bi�i ;  3 D

dX
iD1

ci�i ;

with ai ; bi ; ci 2 Fp. Then, by Proposition 2.1, one has

 1 [H
1.G;Fp/C  3 [H

1.G;Fp/ D H
2.G;Fp/ 3 0; (5.2)

unless ai D ci D 0 for every i D 2; : : : ; d .
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Suppose that the Massey product h 1;  2;  3i is defined. If some of the coeffi-
cients ai ; ci are not 0 for i 2 ¹2; : : : ; dº, then by Proposition 5.1 (iii) and by (5.2),
the Massey product h 1;  2;  3i vanishes.

Assume that q ¤ 3 and ai D ci D 0 for every i D 2; : : : ; d . Set

A D I4 C a1E1;2 C b1E2;3 C c1E3;4 2 U4; Bi D I4 C biE2;3 2 U4

for i D 2; : : : ; d . By Lemma 5.2 (ii), the exponent of U4 is p2 if p D 2; 3, and
p if p � 5. Therefore, the exponent of U4 divides q (recall that 4 divides q if
p D 2, and we are assuming now that q ¤ 3 if p D 3), and Aq D I4. Also, by
Lemma 5.2 (c), one has 
4.U4/ D ¹1º. Finally, ŒA;2B2� D ŒBi ; BiC1� D I4 for
every 2 � i � d � 1, i even. Therefore,

Aq � ŒA;nB2� � ŒB2; B3� � � � ŒBd�1; Bd � D I4 (5.3)

for any n � 3. Hence, the assignment x1 7! A, xi 7! Bi for every i D 2; : : : ; d
yields a homomorphism �WG ! U4, and thus h 1;  2;  3i vanishes by Proposi-
tion 5.3 (ii).

Conversely, assume that q D 3, and pick  1;  2;  3 2 H 1.G;Fp/ such that

a1; b1; c1 ¤ 0 and ai D ci D 0 for i D 2; : : : ; d:

For every matrix A D .ah;k/ 2 U4, Bi D .b.i/h;k/ 2 U4 such that

a1;2 D a1; a2;3 D b1; a3;4 D c1;

b.i/2;3 D bi ; b.i/1;2 D b.i/3;4 D 0 for all i D 2; : : : ; d;

one has

ŒA;2B2� D ŒB2; B3� D � � � D ŒBd�1; Bd � D I4 and A3 D I4 C a1b1c1E1;4:

Therefore, equality (5.3) holds modulo Z.U4/, and the assignment

x1 7! NA; xi 7! NBi for every i D 2; : : : ; d

(where NX denotes the cosetX � Z.U4/ 2 NU4 forX 2 U4) yields a homomorphism
N�WG ! NU4 which cannot lift to a homomorphism �WG ! U4 as a1b1c1 ¤ 0.
Thus, by Proposition 5.3, the Massey product h 1;  2;  3i is defined but does
not vanish.

Proposition 5.6. Let G D hx1; : : : ; xd j r0i be a one-relator pro-p group with r0
of the first type as defined in Theorem 1.1. Then every defined 4-fold Massey prod-
uct in H �.G;Fp/ vanishes, unless p D q D 3.
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Proof. Pick four elements  1;  2;  3;  4 2 H 1.G;Fp/ (by Proposition 5.1 (i),
we may assume that they are all non-trivial), and write

 1 D

dX
iD1

ai�i ;  1 D

dX
iD1

bi�i ;  3 D

dX
iD1

ci�i ;  4 D

dX
iD1

di�i ;

with ai ; bi ; ci ; di 2 Fp. Then

 1 [H
1.G;Fp/C  4 [H

1.G;Fp/ D H
2.G;Fp/ 3 0; (5.4)

unless ai D di D 0 for every i D 2; : : : ; d .
Suppose that the Massey product h 1;  2;  3;  4i is defined. If some of the

coefficients ai ; di are not 0 for i 2 ¹2; : : : ; dº, then by Proposition 5.1 (iii) and
by (5.4), the Massey product h 1; : : : ;  4i vanishes. Hence, we assume now that
h 1;  2;  3;  4i is defined and that ai D di D 0 for every i D 2; : : : ; d , while
a1; d1 ¤ 0. By Proposition 5.3 (i), one has

0 D  2 [  3 D

.d�1/=2X
hD1

.b2hc2hC1 � b2hC1c2h/�2h [ �2hC1

D

 
.d�1/=2X
hD1

b2hc2hC1 � b2hC1c2h

!
�2 [ �3; (5.5)

and therefore
P
h b2hc2hC1 � b2hC1c2h D 0 – while both cup-products  1 [  2

and  3 [  4 are trivial because �1 [H 1.G;Fp/ D 0. Henceforth, we assume
q ¤ 3, and we analyze the following two cases: (a) n � 3, and (b) n D 2.
Case (a). Assume that n � 3, and set

A D I5 C a1E1;2 C b1E2;3 C c1E3;4 C d1E4;5 2 U5;

Bi D I5 C biE2;3 C ciE3;4 2 U5

for i D 2; : : : ; d . By Lemma 5.2 (ii), the exponent of U5 is p2, if p D 2; 3, and p
if p � 5. Therefore, the exponent of U5 divides q, and Aq D I5. Moreover, one
has ŒA;3B2� D I5, while ŒBi ; BiC1� D I5 C .biciC1 � biC1ci /E2;4, and thus

.d�1/=2Y
hD1

ŒB2h; B2hC1� D I5 CE2;4 �

.d�1/=2X
hD1

b2hc2hC1 � b2hC1c2h:

Therefore, by (5.5), one has

Aq � ŒA;nB2� � ŒB2; B3� � � � ŒBd�1; Bd � D I5; (5.6)

and also ŒŒBi ; Bj �; ŒBi 0 ; Bj 0 �� D I5 (5.7)
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for all i; j; i 0; j 0 2 ¹2; : : : ; dº so that the assignment

x1 7! A; xi 7! Bi for i D 2; : : : ; d

yields a homomorphism �WG ! U5. Hence, the Massey product h 1;  2;  3i
vanishes by Proposition 5.3 (ii).
Case (b). Assume that n D 2, and let A; Bi 2 U5 be as above. If b2 D 0 or
c2 D 0, then one has ŒA;2B2� D I5, and equality (5.6) holds also with n D 2.
Thus, the assignment x1 7! A, xi 7! Bi for i D 2; : : : ; d yields a homomorphism
�WG ! U5, and the Massey product h 1;  2;  3i vanishes by Proposition 5.3 (ii).
If b2 � c2 ¤ 0, then

ŒA;2B2� D I5 C a1b2c2E1;4 C b2c2d1E2;5 ¤ I5:

Set QB3 D B3 � a1b2E1;3 C c2d1E3;4. Then

ŒB2; QB3� D I5 � a1b2c2E1;4 C .b2c3 � b3c2/E2;4 � b2c2d1E2;5

D ŒA;2B2�
�1
C .b2c3 � b3c2/E2;4;

and equality (5.6) holds with nD 2 and QB3 instead ofB3. Also, equality (5.7) holds
after the replacement of B3. Thus, the assignment x1 7! A, x3 7! QB3, xi 7! Bi
for i D 2; 4; : : : ; d yields a homomorphism �WG ! U5, and the Massey product
h 1;  2;  3;  4i vanishes by Proposition 5.3 (ii).

5.4 The second type of r0

As for the first family of pro-p groups, we split the proof of Theorem 1.2 (ii) (b)
in the following two propositions.

Proposition 5.7. Let G D hx1; : : : ; xd j r0i be a one-relator pro-p group with r0
of the second type as defined in Theorem 1.1. Then every defined 3-fold Massey
product in H �.G;Fp/ vanishes if and only if q ¤ 3 and n � 3.

Proof. Pick three elements  1;  2;  3 2 H 1.G;Fp/ (by Proposition 5.1 (i), we
may assume that they are all non-trivial), and write

 1 D

dX
iD1

ai�i ;  1 D

dX
iD1

bi�i ;  3 D

dX
iD1

ci�i ;

with ai ; bi ; ci 2 Fp. Then, by Proposition 2.1, one has

 1 [H
1.G;Fp/C  3 [H

1.G;Fp/ D H
2.G;Fp/ 3 0; (5.8)

unless ai D ci D 0 for every i D 3; : : : ; d .
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Suppose that the 3-fold Massey product h 1;  2;  3i is defined. If some of the
coefficients ai ; ci are not 0 for i 2 ¹3; : : : ; dº, then by Proposition 5.1 (iii) and
by (5.8), the Massey product h 1;  2;  3i vanishes.

Assume that q ¤ 3, n � 3, and let  1;  3 be such that ai D ci D 0 for every
i D 3; : : : ; d . Set

Ai D I4 C aiE1;2 C biE2;3 C ciE3;4 2 U4 for i D 1; 2;

Bi D I4 C biE2;3 2 U4 for i D 3; : : : ; d:

By Lemma 5.2 (ii), the exponent of U4 is p2 if p D 2; 3, and p if p � 5. There-
fore, the exponent of U4 divides q, and Aq1 D I4. Also, by Lemma 5.2 (c), one has

4.U4/ D ¹1º. Finally, one has ŒBi ; BiC1� D I4 for every 3 � i � d � 1, i odd,
and ŒA1;3A2� D I3. Therefore, if n � 3, then

Aq � ŒA1;nA2� � ŒB3; B4� � � � ŒBd�1; Bd � D I4;

and the assignment xi 7! Ai and xj 7! Bj for i D 1; 2 and j D 3; : : : ; d yields
a homomorphism �WG ! U4. Thus, h 1;  2;  3i vanishes by Proposition 5.3 (ii).

Conversely, assume that q D 3 or nD 2, and let 1;  3 be such that ai D ci D 0
for i D 3; : : : ; d . For every matrix

Ai D .a.i/h;k/ 2 U4; with i D 1; 2;

Bj D .b.j /h;k/ 2 U4; with j D 3; : : : ; d;

such that

a.i/1;2 D ai ; a2;3.i/ D bi ; a.i/3;4 D ci ;

b.j /2;3 D bj ; b.j /1;2 D b.i/3;4 D 0 for all i; j;

one has
ŒBj ; Bj 0 � D I4 for everyj; j 0 2 ¹3; : : : ; dº;

ŒA1;2A2� D I4 C .a1b2c2 � 2a2b1c2 C a2b2c1/E1;4;

A31 D I4 C a1b1c1E1;4:

In this case, equality (5.3) holds modulo Z.U4/, and the assignment

xi 7! NAi and xj 7! NBj for every i D 1; 2; j D 3; : : : ; d

(where NX denotes the cosetX � Z.U4/ 2 NU4, forX 2 U4) yields a homomorphism
N�WG ! NU4, and therefore, by Proposition 5.3 (i), the Massey product h 1;  2;  3i
is defined. One has two cases.
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(a) If q D 3 and a1b1c1 ¤ 0, and moreover

a1b2c2 � 2a2b1c2 C a2b2c1 ¤ �a1b1c1 if n D 2;

then N� cannot lift to a homomorphism �WG ! U4.

(b) Similarly, if n D 2 and a1b2c2 � 2a2b1c2 C a2b2c1 ¤ 0, and moreover

a1b1c1 ¤ �a1b2c2 C 2a2b1c2 � a2b2c1 if q D 3;

then N� cannot lift to a homomorphism �WG ! U4.

In both cases, Proposition 5.3 (ii) implies that h 1;  2;  3i does not vanish.

Remark 5.8. If n D 2, then one may deduce that H �.G;Fp/ has defined Massey
products which do not vanish also from [24, Theorem 7.12].

Proposition 5.9. Let G D hx1; : : : ; xd j r0i be a one-relator pro-p group with r0
of the second type as defined in Theorem 1.1. If q ¤ 3 and n � 4, then every de-
fined 4-fold Massey product in H �.G;Fp/ vanishes.

Proof. Pick four non-trivial elements  1;  2;  3;  4 2 H 1.G;Fp/, and write

 1 D

dX
iD1

ai�i ;  1 D

dX
iD1

bi�i ;  3 D

dX
iD1

ci�i ;  4 D

dX
iD1

di�i ;

with ai ; bi ; ci ; di 2 Fp. Then

 1 [H
1.G;Fp/C  4 [H

1.G;Fp/ D H
2.G;Fp/ 3 0; (5.9)

unless ai D di D 0 for every i D 3; : : : ; d .
Suppose that the Massey product h 1;  2;  3;  4i is defined. If some of the

coefficients ai ; di are not 0 for i 2 ¹3; : : : ; dº, then by Proposition 5.1 (iii) and
by (5.9), the Massey product h 1; : : : ;  4i vanishes. Hence, we assume now that
h 1;  2;  3;  4i is defined and that ai D di D 0 for every i D 3; : : : ; d .

By Proposition 5.3 (i), one has

0 D  2 [  3 D

d=2X
hD2

.b2h�1c2h � b2hc2h�1/�2h�1 [ �2h

D

 
.d�1/=2X
hD1

b2hc2hC1 � b2hc2h�1

!
�3 [ �4; (5.10)
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and therefore
P
h b2h�1c2h � b2hc2h�1 D 0 – while both cup-products  1 [  2

and  3 [  4 are trivial because �1 [H 1.G;Fp/ D �2 [H 1.G;Fp/ D 0.
Assume that n � 4, and set

Ai D I4 C aiE1;2 C biE2;3 C ciE3;4 C diE4;5 2 U5;

Bj D I4 C bjE2;3 C cjE3;4 2 U5

for i D 1; 2 and j D 3; : : : ; d . By Lemma 5.2 (ii), the exponent of U5 is p2 if
p D 2; 3, and p if p � 5. Therefore, the exponent of U5 divides q, and Aq1 D I5.
Moreover, one has ŒA1;4A2�D I5 and ŒBj ;BjC1�D I5C .bj cjC1 � bjC1cj /E2;4
so that

d=2Y
hD2

ŒB2h�1; B2h� D I5 CE2;4 �

d=2X
hD2

b2h�1c2h � b2hc2h�1:

Therefore, by (5.10), one has

Aq � ŒA1;nA2� � ŒB3; B4� � � � ŒBd�1; Bd � D I5;

and also ŒŒBi ; Bj �; ŒBi 0 ; Bj 0 �� D I5

for every i; j; i 0; j 0 2 ¹3; : : : ; dº so that the assignment xi 7! Ai , xj 7! Bj for
i D 1; 2, j D 3; : : : ; d yields a homomorphism �WG ! U5. Hence, the Massey
product h 1;  2;  3;  4i vanishes by Proposition 5.3 (ii).

Remark 5.10. If n D 3, then the vanishing of 4-fold Massey products depends
also on d . For example, the Massey product h�1; �2 C �3; �2 C �3; �2i is always
defined and does not vanish if d D 4, while it vanishes if d � 6.

We conclude with the following observation.

Remark 5.11. From the two families of pro-p groups defined in Theorem 1.1, one
may produce several further examples of pro-p groups with more than one rela-
tion, whose Fp-cohomology algebra is quadratic, for example among mild pro-p
groups – e.g., if

G D hx1; : : : ; xd j r0; r1i; with r1 D Œxd�2; xd�1� �
Y
i;j

Œxi ; xj �

for some 3 � i < j � d , then G is mild and H �.G;Fp/ is quadratic, cf. [31,
Proposition 3.6]. It may be interesting to investigate the behavior of these pro-p
groups with respect to 3- and 4-fold Massey products and free and abelian sub-
groups in order to obtain results similar to Theorem 1.2 (ii) (a)–(b) and Proposi-
tion 2.6.
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[2] D. Benson, N. Lemire, J. Mináč and J. Swallow, Detecting pro-p-groups that are not
absolute Galois groups, J. Reine Angew. Math. 613 (2007), 175–191.
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[16] P. Guillot and J. Mináč, Extensions of unipotent groups, Massey products and Galois
theory, Adv. Math. 354 (2019), Article ID 106748.
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