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ABSTRACT: Nuclear magnetic resonance (NMR) spectroscopy is a
key technique for molecular structure determination in solution.
However, due to its low sensitivity, many efforts have been made to
improve signal strengths and reduce the required substrate amounts.
In this regard, dissolution dynamic nuclear polarization (DDNP) is a
versatile approach as signal enhancements of over 10 000-fold are
achievable. Samples are signal-enhanced ex situ by transferring
electronic polarization from radicals to nuclear spins before dissolving
and shuttling the boosted sample to an NMR spectrometer for
detection. However, the applicability of DDNP suffers from one major
drawback, namely, paramagnetic relaxation enhancements (PREs)
that critically reduce relaxation times due to the codissolved radicals.
PREs are the primary source of polarization losses canceling the signal improvements obtained by DNP. We solve this problem by
using potassium nitrosodisulfonate (Freḿy’s salt) as polarization agent (PA), which provides high nuclear spin polarization and
allows for rapid scavenging under mild reducing conditions. We demonstrate the potential of Freḿy’s salt, (i) showing that both 1H
and 13C polarization of ∼30% can be achieved and (ii) describing a hybrid sample shuttling system (HySSS) that can be used with
any DDNP/NMR combination to remove the PA before NMR detection. This gadget mixes the hyperpolarized solution with a
radical scavenger and injects it into an NMR tube, providing, within a few seconds, quantitatively radical-free, highly polarized
solutions. The cost efficiency and broad availability of Freḿy’s salt might facilitate the use of DDNP in many fields of research.

■ INTRODUCTION
Dynamic nuclear polarization (DNP) is a hyperpolarization
technique aiming to boost nuclear magnetic resonance (NMR)
signals and overcome their intrinsically weak intensities. DNP
is based on transferring the high magnetization of unpaired
electrons to nuclei in their vicinities1 by microwave irradiation
at low temperatures.2 DNP applications for high-field solution-
state NMR is possible via the dissolution DNP (DDNP)3

approach. The sample is hyperpolarized at low temperatures
and rapidly dissolved before being injected into an NMR
magnet.3 Applicable to a wide array of target molecules, from
small metabolites4−8 to nucleic acids,9 proteins,10−13 and
inorganic ions,14 DDNP is an asset in many research programs,
from preclinical imaging,15,16 to cancer screening17,18 and
analytical applications in chemistry19−21 and physics.22,23

However, despite its versatility and regularly achieved signal
enhancements of >10 000-fold,3 this method suffers from one
main drawback: the radical providing the unpaired electron
needed for DNP at low temperatures becomes an unwanted
source of rapid nuclear spin relaxation at ambient temperatures
in solution.24−26

To overcome this problem and the related paramagnetic
relaxation enhancements (PREs) tremendous efforts have
recently been made to scavenge the radicals after dissolution,
for example, through reduction,27 filtration,28,29 solvent

extraction,30 phase separation, electrochemical removal,31 or
annealing of photoinduced radicals.32 It should be noted that,
in particular, tailored polarization agents (PAs) immobilized
on thermoresponsive polymers,33 hydrogels,34,35 or solid
matrices36,37 have received ample attention, as these can be
in-line filtered upon dissolution. This strategy has the
advantage that no scavenging reagent is needed for quantitative
radical removal. However, the availability of the special PAs is
limited, and custom filters are required. Hence, PA reduction
arguably remains the most apparent and ready-to-implement
solution, not requiring specifically synthesized or expensive
materials. However, when working with stable radicals, the
neutralization kinetics are often much slower than the nuclear
relaxation,27 imposing the use of harsh reducing conditions or
large excesses of scavenger reagents. However, this solution is
rarely applicable since the target molecule is likely attacked,
too.
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Herein, we propose a straightforward solution to the
problem of paramagnetic contamination in DDNP: the well-
known radical Freḿy’s salt (FS). Using FS as a PA, we
demonstrate that not only can 1H and 13C polarization of
∼30% be achieved at 1.4 K in generic solutions but also that
quantitative radical scavenging is possible within a few seconds
with only 1 equiv of a mild reducing agent such as sodium
ascorbate. Hence, with this broadly available PA, the
performance (in terms of maximal low-temperature hyper-
polarization) of current cutting-edge PAs can be matched
while providing the additional possibility of simple radical
removal.
Due to its widespread use in synthetic chemistry, FS is a

cost-efficient and readily available PA that renders DNP
experiments effective and economical. At the same time, it
provides the potential to simultaneously polarize 1H and 13C
nuclei, rendering FS applicable to a comprehensive set of target
molecules. Furthermore, with FS, radical-free DDNP-boosted
NMR becomes possible for reduction-sensitive compounds,
such as proteins containing Cys residues or oxidation agents,
due to very mild scavenging conditions while not requiring any
specialized designer PAs or a customized filter.

■ RESULTS AND DISCUSSION
Potassium nitrosodisulfonate (K2[NO(SO3)2]), i.e., FS, is a
well-established radical in electron paramagnetic resonance
(EPR) applications and oxidative reactions.38 It was also
successfully used as PA for solution-state Overhauser DNP at
high magnetic fields.39−41 However, the use of FS in low-
temperature DNP has not been reported yet. We benchmarked
its DNP capabilities at 1.4 K using a solution of 1.5 M sodium
pyruvate-1-13C supplemented with 40 mM of Freḿy’s salt in
glycerol-d8:D2O:H2O 5:4:1 (v/v). The DNP setup operating at
a magnetic field of B0,DNP = 6.7 T is described in ref 42.
We achieved high DNP 13C enhancement upon continuous

microwave irradiation at 188.112 GHz. The extrapolated
steady-state polarization at t → ∞ reached P(13C) = 31 ± 7%
at an FS concentration of 40 mM. (The values extrapolated for
t → ∞ are buildup time independent. Hence, they render the
polarization comparison more general as values taken at one
specific time point.) Next, we compared these results to the
“gold standard” OX063, a triaryl methyl (trityl) radical. At a
typical concentration of 15 mM, we found a steady-state
polarization of P(13C) = 17 ± 8% in our home-built DNP
system, agreeing qualitatively with a previous study by Lumata
et al.43 when taking the differences in experimental magnetic
fields (3.3 vs 6.7 T) into account. Higher concentrations of 40
mM led to a faster and better polarization of P(13C) = 21 ±
5%. Note that for neat pyruvic-1-13C acid, carbon polarization
up to P(13C) > 70% can be achieved with OX063.44−48 With
another nitroxide, namely, 40 mM TEMPOL (as often used in
multicontact cross-polarization DNP),49 the polarization
plateaued at only 1 ± 0.3% (see the Supporting Information
Figure S1).
Summarizing the above, not only is FS a better polarizing

agent for carbon-13 nuclei compared to TEMPOL, but the
polarization can compare with that of the “gold standard”
OX063 for generic solutions of a target molecule, albeit with
slower buildup kinetics (see the Supporting Information for
the kinetics data).
Besides, FS provides the additional benefit of enhancing

proton polarizations to a substantial degree. We achieved a
proton polarization of 29 ± 5% by direct irradiation at 187.912

GHz. With TEMPOL we obtained 48 ± 5% at 1.4 K (without
microwave modulation).50−52 Hence, FS can be used for direct
13C hyperpolarization as well as multicontact 1H−13C cross-
polarization-based DNP.49 OX063 was not found efficient for
proton DNP in our hands. Table 1 lists all reported
polarizations.

It should be noted that other absolute steady-state
polarizations can be achieved with other DNP systems
featuring, for example, lower base temperatures or microwave
delivery systems.53 However, relative comparisons between
PAs under similar conditions are not influenced by such
differences.
Interestingly, the DNP-frequency profile (Figure S4) of FS is

markedly different from those of other nitroxides like
TEMPOL.54,55 The positive lobe is significantly more intense
than the negative one. This might explain the good DNP
performance of FS.
After low-temperature DNP buildup, we tested the

neutralization kinetics of FS upon dissolution. In powder
form, the radical is stable, but dissolved in water it becomes
particularly reactive. We monitored the neutralization by time-
resolved UV/vis spectroscopy using a 5 mM FS solution in
water (corresponding to the conditions in a DDNP experiment
after dissolution at pH 7) with 1 equiv of sodium ascorbate.
For FS, we found a biexponential decay with time constants of
0.15 ± 0.03 s and 2.14 ± 0.08 s. 95% of the radicals were
reduced within 5 s. For comparison, the same experiment
performed with TEMPOL resulted in time constants of 21.48
± 0.05 s and 131.5 ± 0.2 s (Figure 1a). Hence, on the time
scale of a DDNP experiment, where detection must start a few
seconds after dissolution, FS can be quantitatively scavenged
due to its low persistence under mild reducing conditions.
(The very high reactivity of FS must also be considered when
preparing the DNP sample. FS degrades within minutes when
the DNP samples are left at room temperature.)
However, combining the dissolution step of a DDNP

experiment with mixing FS and a reducing agent is challenging,
particularly when precise control over the experiment is
desired. Indeed, the dissolution event is often chaotic due to
the speed of the process (typically only a few seconds from
dissolution to injection into the NMR spectrometer).
Previously, frozen beads of a DNP sample and of a neutralizing
solution were cofrozen; mixing was then achieved by the
simultaneous dissolution of both beads.27 However, sample
preparation becomes complex, and control over mixing both
components during the melting process is complicated to
establish. To improve control and simplify the scavenging
process, we designed a 40 mm diameter sample collector,
which degasses the dissolved hyperpolarized solution and

Table 1. Solid-State 1H and 13C Polarizations Obtained with
Different PA on 1.5 M Sodium Pyruvate-1-13C Samples at
1.4 K and 6.7 T at t → ∞a

PA P(1H) P(13C)

FS (40 mM) 29 ± 5% 31 ± 7%
OX063 (15 mM) 1 ± 0.1% 17 ± 8%
OX063 (40 mM) 1 ± 0.1% 21 ± 5%
TEMPOL (40 mM) 48 ± 5% 1 ± 0.3%

aThe reported errors are mainly due to uncertainties in the evaluation
of thermal equilibrium signal intensities at 1.4 K (see the Supporting
Information for details and a systematic error analysis).
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concertedly mixes it with the reducing agent (Figure 1b,c).
The collector is embedded in a hybrid pneumatic/hydraulic
sample shuttling system (HySSS; Figure 1d) that transfers
radical-free solutions into the NMR tube for detection. Mixing
and sample shuttling take place in three steps: 1. The incoming
hyperpolarized sample (at ca. 7 bar chase gas pressure)
accumulates in the collector, where a neutralizing solution is
waiting. 2. After mixing both solutions, the sample is degassed
by a vacuum line for 750 ms before being pushed out of the
collector. A “vortex breaker” (Figure 1b) guarantees that the
chase gas is not reintroducing any bubbles after the degassing
step. The collector is positioned between two magnetic plates
to ensure a magnetic field of >10 mT during mixing and
degassing (Figure 1d). 3. After leaving the collector/mixing
chamber, the sample is hydraulically (to avoid gas inclusions)
pushed through a capillary into the NMR tube, waiting in situ
in the NMR spectrometer, ready for detection. The volume of
the hydraulic driving liquid thereby precisely controls the
injection volume. The entire process takes <2.5 s. The HySSS
is described in detail in the Supporting Information.
The HySSS solves three problems: (i) Experimental control:

Mixing of the hyperpolarized sample with the D2O used to
dissolve it is typically not homogeneous (a strong concen-

tration gradient is generally observed along the liquid bolus
traveling toward the NMR spectrometer). Hence, FS reduction
through adding ascorbate to the dissolution solvent would lead
to uncontrolled experimental conditions. Within the HySSS
homogeneous mixing with the entire hyperpolarized solution is
guaranteed. (ii) Low scavenger concentrations: The homoge-
neous mixing minimizes the necessary quantities of the
reducing agent. Other approaches would require much higher
concentrations to guarantee quantitative FS reduction. (iii)
Mild conditions: The decomposition temperature of ascorbate
is typically below that of the used dissolution solvent (190 °C
vs 220 °C). Hence, adding ascorbate to the dissolution solvent
directly leads to the presence of contaminant side products.
Within the HySSS, the scavenger solution waits at room
temperature.
Note that other reported injectors for DDNP experiments

often depend on multigate valves and liquid collection
loops.57−59 Hence, most previously reported “mixing” experi-
ments were conducted by mixing the arriving hyperpolarized
solution with the target solution directly in the NMR tube used
for detection downstream to volume control and optional
degassing.30,60 The HySSS is fundamentally different, using a
collection chamber with a dedicated vortex breaker to degas

Figure 1. (a) UV time traces for neutralization reactions of Freḿy’s salt and TEMPOL using sodium ascorbate; absorbance monitored at 543 and
428 nm, respectively (Figure S5). Biexponential fits are shown in gray. Freḿy’s salt is quenched ca. 100 times faster than TEMPOL. (b)
Disassembled view of the individual collector/mixing chamber components. The vortex breaker is essential to avoid air inclusions. (c) Section of
the assembled mixing chamber in which the radical is neutralized before injection in the NMR tube. (d) Representation of the DDNP system with
a detailed drawing of the HySSS (details in the Supporting Information). The mixing chamber is visible between two gray magnetic plates on the
right site of the case.
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the sample, control the injection, and mix two solutions in a
single step.
Using the HySSS, DDNP experiments by FS were

performed with three different molecules: sodium acetate-
1-13C, sodium pyruvate-1-13C, and uniformly 13C-labeled
sodium pyruvate. All the samples were prepared at a
concentration of 1.5 M in glycerol-d8:D2O:H2O at a volumetric
ratio of 5:4:1. Upon injection into the NMR spectrometer, the
hyperpolarized signals were detected in parallel for 1H and 13C
every second at a magnetic field of 11.7 T. Representative
signal decay curves after injection are shown in Figure 2a.
In almost all cases, the relaxation times could efficiently be

prolonged by neutralizing the radical (blue curves) compared
to similar experiments without radical scavenging (purple
curves). The decays were fitted to exponential functions, and

the resulting T1 times are shown in Figure 2b for 1H and
Figure 2c for 13C nuclei. The most pronounced effects were
observed for the protons of sodium acetate, from T1 = 2.3 s to
7.5 s. A prolongation of 1.5 s was observed for pyruvate-1-13C.
The proton spins of fully enriched sodium pyruvate were
interestingly unaffected. Concerning 13C, the neutralization
strongly influences protonated moieties, with T1 being 3- to 4-
fold longer. Only signals of quaternary carbons remained
unaffected. The line-broadening of the enhanced signals was
dominated by injection inhomogeneities (e.g., microbub-
bles),57 such that paramagnetic relaxation enhancement was
not the major source of line broadening in our experiments. As
a result, radical scavenging did not strongly influence the line
shape.

Figure 2. Longitudinal relaxation times of the various observable spin species after injection in the detection spectrometer. Purple curves refer to
experiments without any neutralization (B0 = 11.7 T), while blue ones to experiments employing radical scavenging (for the full spectra, see Figure
S6). (a) Example of polarization decays with (blue) and without (purple) neutralization of FS (for the other signals, see Figure S7). (b) Proton
longitudinal relaxation times with (blue) and without (purple) neutralization of FS. (c) The same as in panel b, but for carbon-13 longitudinal
relaxation times (asterisks indicate signals that might be affected by cross-relaxation effects).56
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The solution-state enhancements were on the order of
10 000 for 13C and 100 for 1H nuclei. A significant fraction of
the polarization was lost during sample dissolution and transfer
due to fast relaxation during rapid low-field passage.61 It should
be noted, though, that solution-state enhancements depend
critically on the layout of the laboratory where the DDNP
system is situated and the effective magnetic fields during
sample transfer.62

The 3- to 4-fold prolonged relaxation times enable a
similarly extended detection time window. This feature might
be useful, for example, in DDNP experiments aiming to detect
metabolic conversion of hyperpolarized substrates. Indeed,
many metabolites appear only minutes after the uptake of a
hyperpolarized starting material by either an enzymatic cocktail
or a cell or even upon injection into living organisms.63−67 FS
might be a versatile asset to improve the sensitivity for delayed
metabolic processes.
At the same time, comparable advantages can be expected

for monitoring chemical reactions,68 materials formation,69 or
detecting hyperpolarized 2D and 3D spectra70,71 or chemical
exchange events.72 The sets of reactions, reaction conditions,
interactions, and conversions are significantly widened with a
3- to 4-fold longer detection time window.
On the contrary, it should be noted that before aiming to use

FS for in vivo experiments in animals or humans, the toxicity of
the reduction products needs to be determined first and a rapid
quality control procedure of the hyperpolarized solution needs
to be established (for OX063 this takes only 30 s).
Concluding, Freḿy’s salt provides favorable properties for

dissolution DNP experiments. Its ability to efficiently polarize
carbons and protons is useful for double detection experiments
and renders it a cost-efficient alternative for 13C DNP.
Furthermore, FS is very reactive, allowing for swift
neutralization and radical-free DDNP-boosted NMR samples
with long hyperpolarization lifetimes. Using the HySSS, a
functional device for controlled mixing and sample shuttling,
quantitative neutralization and reproducibility of the FS-
DDNP experiments are guaranteed.
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