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Abstract
Theories of grounded cognition assume that conceptual representations are grounded in sensorimotor experience. However, 
abstract concepts such as jealousy or childhood have no directly associated referents with which such sensorimotor experi-
ence can be made; therefore, the grounding of abstract concepts has long been a topic of debate. Here, we propose (a) that 
systematic relations exist between semantic representations learned from language on the one hand and perceptual experience 
on the other hand, (b) that these relations can be learned in a bottom-up fashion, and (c) that it is possible to extrapolate from 
this learning experience to predict expected perceptual representations for words even where direct experience is missing. To 
test this, we implement a data-driven computational model that is trained to map language-based representations (obtained 
from text corpora, representing language experience) onto vision-based representations (obtained from an image database, 
representing perceptual experience), and apply its mapping function onto language-based representations for abstract and 
concrete words outside the training set. In three experiments, we present participants with these words, accompanied by two 
images: the image predicted by the model and a random control image. Results show that participants’ judgements were 
in line with model predictions even for the most abstract words. This preference was stronger for more concrete items and 
decreased for the more abstract ones. Taken together, our findings have substantial implications in support of the grounding of 
abstract words, suggesting that we can tap into our previous experience to create possible visual representation we don’t have.

Keywords  Grounded Cognition · Deep Learning · Distributional Semantics · Abstract concepts · Abstract words · 
Concreteness

Introduction

One of the most debated topics of cognitive science con-
cerns the way conceptual representation are acquired and 
organized. This issue became even more central over the 
last two decades due to the influence of the grounded cogni-
tion framework, which claims that concepts are represented 
at a sensorimotor level (Barsalou, 1999; Fischer, 2012; 
Glenberg, 2015; Zwaan & Madden, 2005). According to 

this view, our semantic memory cannot be a self-contained 
system in which all the representations are abstract, amodal 
symbols that are defined exclusively by their relations to one 
another (see for example Collins & Quillian, 1969; Kintsch, 
1988). The best-known argument against this conceptualiza-
tion is provided by Harnad’s (1990) adaptation of Searle’s 
(1980) Chinese room argument: If a monolingual English 
speaker suddenly finds herself in China, only equipped with 
a monolingual Chinese-Chinese dictionary, she will never 
be able to understand anything. In this case, whenever she 
looks up any symbol, it is only ever linked to other symbols 
that have no meaning for her. At some point, she needs the 
symbols to be grounded in a format she is able to under-
stand—in this concrete example, this could be English words 
or pictures. This argument directly translates to our semantic 
memory: At some point, semantic representations need to be 
grounded in a primary format of our cognitive system. This 
is the core assumption of theories of grounded cognition 
(e.g. Barsalou, 1999; Glenberg & Kaschak, 2002; Glenberg 
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& Robertson, 2000; Zwaan & Madden, 2005), which pos-
tulate that perceptual and motor systems take on this vital 
grounding role. Simply speaking, in order to understand a 
word such as horse, the cognitive system re-activates sen-
sorimotor experience with the word referent, such as visual 
experience with a horse standing in a stable or running on 
a field. This sensorimotor experience can be linked to lin-
guistic experience by systematic patterns of co-occurrence 
(for example, by hearing the word horse while seeing a horse 
on a field; Zwaan & Madden, 2005), with several studies 
suggesting this connection to be established as the result of 
Hebbian learning at the brain level (see also Pulvermüller 
2005; Hoenig et al., 2011; Kiefer et al., 2007; Trumpp and 
Kiefer, 2018).

Such a co-occurrence-based grounding mechanism 
appears to be straightforward for concrete words, which refer 
to clearly identifiable objects that can be perceived with our 
senses. However, it is far less obvious how grounding would 
be achieved when this is not the case (Barsalou 2016; Borghi 
et al. 2017). One prime example are abstract words such 
as libertarianism, jealousy, or childhood, which by defini-
tion do not refer to a distinct class of physical objects (for 
an overview, see Borghi et al. 2017). However, it should 
be noted that these issues already arise for concrete words 
whose referents one has never experienced directly, such as 
Atlantis or supernova (Günther, Dudschig, & Kaup, 2018; 
Günther and Nguyen, et al., 2020). The question of how can 
we achieve grounding in the absence of any direct senso-
rimotor experience is of central importance for theories of 
grounded cognition (Borghi et al. 2017); if they can account 
for only a fraction of words that are directly experienced, the 
usefulness and adequacy of grounded cognition theories as a 
general-level cognitive theory stands in question.

Over the recent years many different proposals have 
been made addressing this issue (see Barsalou, Santos, 
Simmons, & Wilson, 2008; Borghi & Binkofski, 2014; 
Glenberg, Sato, & Cattaneo, 2008; Harpaintner, Trumpp, 
& Kiefer, 2018; Harpaintner, Sim, Trumpp, Ulrich, & 
Kiefer, 2020; Hoffman, McClelland, & Lambon Ralph, 
2018; Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 
2011; Lakoff & Johnson, 2008; Wilson-Mendenhall, Sim-
mons, Martin, & Barsalou, 2013, for different theoretical 
approaches). One possible mechanism of how grounding 
can be established in the absence of experience (referred to 
as acquired embodiment by Hoffman et al., 2018 and indi-
rect grounding by Günther, Nguyen, et al., 2020) is best 
illustrated by an example: Assume a friend tells you, “On 
my way here, I saw a little wibby chirping in a tree!”. You 
have never heard the word wibby before, but it does not 
seem difficult to imagine how it would look like: A small 
animal with feathers, wings, and a beak. Thus, due to the 
way wibby was used in language—similar to bird, robin, 
or sparrow—its semantic representation is similar to these 

words for which visual experience is available (Landauer 
and Dumais 1997; Lenci 2008), and you can draw on 
this information to predict a likely visual representation. 
In other words, one can map a semantic representation 
formed through linguistic experience onto perceptual 
experience, by exploiting systematic language-to-vision 
relations learned before. Note that this is not restricted to 
simply substituting a word with an already grounded one 
and retrieving the associated experience: If your friend 
adds the sentence “They used to build these wibbies from 
white steel, but nowadays it’s just aluminium.”, the visual 
representation probably changed to some robotic bird—
something you most likely have never seen before. Thus, 
from this purely linguistic input, one can extrapolate from 
available experience, draw inferences about what a wibby 
would most likely look like, and simulate the correspond-
ing visual experience.

In the present study, we investigate whether such a map-
ping can be reliably achieved for word meanings learned 
from language alone (i.e. without any accompanying direct 
experience, be it sensorimotor or emotional)—for concrete 
words, and crucially also for abstract words (see Hoffman 
et al., 2018). More specifically, we test whether language-
based representations in our semantic memory along with 
their relation to their associated vision-based represen-
tations provide the necessary structural information to 
reliably map remaining language-based representations 
(i.e., the ones for which no vision-based representations 
is available) onto the visual domain. This can be achieved 
by exploiting (a) systematic relations between language-
based semantic representations and visual representa-
tions (for example, birds usually have wings), and (b) the 
structure of similarity among language-based representa-
tions themselves (in the example above, wibby is used in 
a similar way as words denoting birds). To test this, we 
implement a data-driven, computational model in which 
both language-based and vision-based representations are 
conceptualized in a high-dimensional vector format. In 
the following section, we will first describe the model in 
detail; we will then discuss the perspective it provides on 
the grounding problem for abstract words, before putting 
it to empirical test.

The mapping model

In the model presented here, we employ a distributional 
semantics framework to model language-based semantic 
representations, a deep neural network computer-vision 
approach to model visual representations, and train a sim-
ple linear function to establish a mapping from the former 
to the latter.
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Language‑based semantic representations

Language-based representations were obtained via the distri-
butional semantics framework (Günther, Rinaldi, & Marelli, 
2019; Landauer & Dumais, 1997; Turney & Pantel, 2010). 
These models are based on the distributional hypothesis that 
words with similar meanings are used in a similar manner 
(Wittgenstein 1953) and thus occur in similar (linguistic) 
contexts (Harris, 1954; Lenci, 2008). Consequently, distri-
butional semantic models estimate a word meaning from its 
distribution over linguistic contexts in large corpora of natu-
ral language, resulting in a representation of word meanings 
as high-dimensional numerical vectors. Over the past dec-
ades, these models have received strong empirical (e.g. Bar-
oni, Dinu, & Kruszewski, 2014; Jones, Kintsch, & Mewhort, 
2006; Mandera, Keuleers, & Brysbaert, 2017;Pereira, Ger-
shman, Ritter, & Botvinick, 2016) and theoretical support 
(Günther et al. 2019; Jones et al. 2015; Westbury 2016) as 
models of human semantic memory.

There are many different possible parametrizations for 
distributional semantic models (Jones et al. 2015). In the 
present study, we employed the model with the overall best 
performance in a systematic evaluation by Baroni et al. 
(2014): a system trained using the cbow algorithm (with 
400-dimensions vectors, negative sampling with k = 10 , 
and subsampling with t = 1e−5 as parameter settings) of 
the word2vec model (Mikolov et al. 2013, 2013). The cbow 
algorithm is aimed at predicting a target word from its con-
text (here, the context of a word is defined as the 5 words to 
its left and to its right), using a neural network model with 
one hidden layer (see the top left illustration in Fig. 1). The 
vector representing a given word meaning is then estimated 
as the activation level of the units in the hidden layer once 
the system is fed this target word. Besides its good empirical 
performance, several studies have also identified the cbow 
model as a psychologically plausible learning model for the 
acquisition of semantic representations (Hollis, 2017; Man-
dera et al. 2017).

This model was trained on an English ∼ 2.8 billion word 
source corpus (a concatenation of the ukWaC corpus, Bar-
oni, Bernardini, Ferraresi, & Zanchetta, 2009; an English 
Wikipedia dump; and the British National corpus, BNC 
Consortium, 2007), while considering the 300,000 most 
frequent words in the corpus as target and context words.

Vision‑based representations

Vision-based representations were obtained via a state-of-
the-art computer vision model (Krizhevsky, Sutskever, & 
Hinton, 2012). This model employs a deep neural network 
that is trained to predict (human-generated) image labels 
from a vector representation encoding the pixel-based RGB 
values of the respective image (see the upper-right part 

of Fig. 1). Besides excelling at image labeling (Chatfield, 
Simonyan, Vedaldi, & Zisserman, 2014; Krizhevsky et al., 
2012)—the task for which these neural-networks models are 
explicitly trained—they also provide high-quality measures 
of visual similarity (Petilli, Günther, Vergallito, Ciapparelli, 
& Marelli, 2019), which closely correspond to human intui-
tions (Bracci, Ritchie, Kalfas, & de Beeck, 2019; Lazaridou, 
Marelli, & Baroni, 2017; Phillips et al., 2018; Zhang, Isola, 
Efros, Shechtman, & Wang, 2018).

These models are trained on a large set of images that 
were annotated with noun labels by human raters, usually 
collected from the ImageNet database (Deng et al., 2009; 
see Krizhevsky et al., 2012). The pixel-based RGB val-
ues of the images serve as the input layer of an eight-layer 
deep convolutional neural network, and the image labels as 
the output to be predicted (see the top right illustration in 
Fig. 1). We extracted images for all 7801 labels for which (a) 
language-based representations were available (see above), 
and (b) at least 100 different images were available from 
the ImageNet database. For labels associated to a maximum 
of 200 of images in ImageNet, we extracted all the images 
available; if more images were available, 200 of them were 
randomly selected and extracted (the median original num-
ber of images per label was 1178; Q1 = 561 , Q3 = 1418 , max 
= 7908). In cases where a set of images was annotated with 
multiple labels in ImageNet, we only considered the label 
with the highest word frequency (the median original num-
ber of labels per set of images was 1; Q1 = 1 , Q3 = 2 , max 
=11; in cases where more than one label was used, these 
were mostly synonyms, such as abbess—mother superior—
prioress or albatross—mollymawk).

We then employed the pre-trained VGG-F model (Chat-
field et al. 2014), as implemented in the MatConvNet Mat-
lab toolbox (Vedaldi and Lenc 2015), to obtain visual rep-
resentations for these images. As established in previous 
studies, (e.g. Günther, Petilli, & Marelli, 2020; Lazaridou 
et al., 2017; Petilli et al., 2019), we extracted the activa-
tion values of the 4,096-dimensional second-to-last layer of 
the network as visual representations. In previous studies, 
the exact same model was already successfully employed to 
predict psychologically relevant phenomena, such as visual 
effects in priming (Petilli et al. 2019) and visual effects in 
conceptual combination (Günther et al. 2020). These pieces 
of evidence speak for the validity of the model, empirically 
showing it can be fruitfully applied to research in the cogni-
tive science domain.

Language‑to‑vision mapping

The final component of our model is a mapping function 
from the language-based semantic representations (in 
the form of distributional vectors) onto the vision-based 
representations associated to the respective label (see the 
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middle and lower part of Fig. 1). Such mapping functions 
between distributional vectors and sensorimotor infor-
mation have previously been successfully implemented 
for participant ratings on various sensorimotor features 
(Sommerauer and Fokkens 2018; Utsumi 2020) or emo-
tional features (Martínez-Huertas, Jorge-Botana, Luzón, 
& Olmos, in press) associated to words.

In the model presented here, we implemented one of 
the simplest possible mapping functions: a linear func-
tion m ∶ language → vision , so that v̂ = m(l) = M ⋅ l for 
l ∈ language and v ∈ vision ( ̂v being a predicted vision-
based representation). M is estimated as a matrix where the 
cell entries Mij specify how much each element li of the input 
vector influences each element v̂j of the predicted output 

Fig. 1   Graphical illustration of the workflow of the mapping model. 
A linear function is estimated from a training set that maps text-
based vectors onto image-based vectors. The trained function is then 

applied to text-based vectors outside the training set to predict vis-
ual representations. The closest image to this visual representation 
(marked here with a blue frame) is then taken as the predicted image
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vector (with v̂j =
∑

i Mij ⋅ li ). Note that such a linear func-
tion is equivalent to a linear regression with multiple predic-
tors and dependent variables. With this approach, we follow 
up on similar previous developments in the field of natural 
language processing and computer vision (Lazaridou et al. 
2015).

As a training set for this regression, we employed the 
complete set of 7801 words for which we had both lan-
guage-based vectors and vision-based vectors available. The 
weights are then estimated so that, on average, the differ-
ence between the predicted visual representation v̂ and the 
observed visual representation v is minimized, with respect 
to a least-squares criterion. We used the DISSECT toolkit 
to train the function (Dinu et al. 2013).

On an intuitive level, this training set can be thought of 
as the repeated presentation of a visual scene paired with a 
corresponding linguistic stimulus, in which both the visual 
representation of the scene and the language-based repre-
sentation of the word meaning are activated and associated 
(Zwaan and Madden 2005). The training process then cap-
tures the learning of the systematic relation between the two, 
if it exists.

While the cbow model provides one single vector repre-
senting the word meaning for each word, the VGG-F model 
provides an individual vector for each single image. Thus, as 
a consequence of our selection procedure, we have between 
100 and 200 VGG-F vectors for each label. We can hence 
set up two different frameworks to estimate the mapping 
function: A prototype-based approach and an exemplar-
based approach (following a classical distinction in concept 
research; Smith & Medin, 1981). In the prototype-based 
approach, we averaged all the 100-to-200 vectors for images 
with the same label to obtain a single visual representation 
for each word (Günther et al. 2020; Petilli et al. 2019). The 
resulting 7801 pairs of cbow vectors and prototype VGG-F 
vectors were then used to train the mapping function m. In 
the exemplar-based approach, we instead randomly selected 
20 images for each label1 and trained the mapping func-
tion m directly on these individual images. Thus, we had 
20 training items per word, resulting in a training set of 
156,020 pairs. The language part of the model was identi-
cal for both approaches (cbow vectors corresponding to the 
image labels).

Since the dimensionality of the vectors will directly 
influence the number of free parameters for our mapping 
function, we reduced the original dimensionality of the 

visual representations in both training sets from d = 4096 to 
d� = 300 using Singular Value Decomposition (SVD; Martin 
& Berry, 2007), as implemented in the DISSECT toolkit 
(Dinu et al. 2013). This was done separately for the proto-
type-based and the exemplar-based approach. As indicated 
by a pre-test on the similarity structure within the visual rep-
resentations, this has a negligible effect on the informativity 
of these vectors (see Günther, Petilli, & Marelli, 2020). As 
a result, m is estimated as a 400×300-dimensional matrix, 
instead of a 400×4096-dimensional matrix.

Once the mapping function is estimated, it can take any 
cbow vector as input—including, and especially, those out-
side the training set—to predict a visual representation for 
the corresponding concept (see the bottom part of Fig. 1).

Identifying predictors of model performance

In the previous section, we described the language-to-
vision mapping system implemented for this study. Nota-
bly, “concreteness” is not explicitly encoded in this model 
and therefore is not implemented as an a-priori component: 
the model has no “concreteness feature” that is assigned to 
some concepts and not to others. The model only knows 
whether a word has any visual experience associated to itself 
(in technical terms, whether a word serves as a label for a 
set of images).

However, not all language-based vectors are the same: By 
definition, they have different dimensional values, and popu-
late different neighborhoods of the induced semantic space 
(see Martínez-Huertas, Jorge-Botana, Luzón, & Olmos, 
in press, for a conceptually similar distinction between a 
specific dimensionality hypothesis and a semantic neigh-
borhood hypothesis for the mapping between language and 
grounded information). Based on these properties, we can 
identify factors that potentially influence how well a vision-
based representation can be predicted from a language-based 
representation. On the one hand, there could just be inher-
ent, fundamental differences between language-based repre-
sentations for concrete and abstract concepts which emerge 
naturally during the training of the language-based model. 
Initial evidence for this assumption is provided by Hollis and 
Westbury (2016), who demonstrate that the dimensions of 
language-based distributional vectors contain concreteness 
information that can be extracted using adequate mathemati-
cal methods.

On the other hand, language-based representations for 
different concepts could inhabit fundamentally different 
areas of the semantic system. For example, assume that a 
speaker has newly learned the words stallion and jealousy 
without accompanying visual experience. Due to the way 
these words are used, stallion will have a language-based 
representation that is very similar to horse, steed, and pony. 
For all these neighbors of stallion, direct visual experience 

1  We could not select the complete set of 100–200 images due to 
computational limitations in the subsequent dimensionality reduction 
step.
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is available, which makes estimations of how a stallion looks 
like very easy (similar to a horse). The language-based rep-
resentation for jealousy on the other side will be similar to 
envy, hatred and resentment, and thus concepts for which no 
visual experience is available. Irrespective of the concrete-
ness of the word itself, it might be easier to extrapolate a 
visual representations for a word if its linguistic neighbor-
hood contains more other visually-grounded concepts that 
can provide “a bridge to visual experience” and an orienta-
tion on how the concept probably looks like. This difference 
between the relative position of visual neighbors (which we 
will from now on refer to simply as visual neighbors for 
brevity) might thus influence model performance.

In the following empirical studies, we test our model 
by deriving model-predicted images for words which are 
all outside the model training set (i.e., for which the model 
has no visual experience available). These model-predicted 
images are then paired with random control images. If our 
model matches human intuitions on which image better fits 
the word meaning (i.e., if participants systematically prefer 
the model prediction over the control image), this will dem-
onstrate that our linguistic and perceptual experience pro-
vides the necessary information to establish a link between 
the two (and that our model provides one possible, simple 
account on how this can be achieved). The model will be 
tested in different conditions which we expect to influence 
model performance: On the one hand, we test the model on 
both concrete and abstract words; on the other hand, we test 
it on words that do or do not have training items (i.e., words 
for which visual experience is available) in their immediate 
neighborhood. Since these two variables (concreteness and 
visual neighbors) are normally highly correlated, we apply 
item selection procedures to disentangle them (see the Meth-
ods sections of Experiments 1, 2, and 3). This will allow us 
(a) to evaluate if the model generally succeeds in predicting 
visual representations from language-based representations, 
(b) to test which factors influence its ability to do so, and 
(c) to examine potential limits of our approach and identify 
conditions it is not able to handle.

Experiment 1 and 2

We tested whether the model predictions generally matches 
human intuitions in two experiments: In Experiment 1, 
we employed the prototype-based mapping model, and in 
Experiment 2 we employed the exemplar-based mapping 
model.

Method

Participants

In Experiment 1, we initially collected data from 57 partici-
pants with normal or corrected-to-normal vision. Data from 
one non-native English speaking participant were excluded, 
as was data from three participants who gave a correct 
answer in less than eight of ten catch trials (see Materials) 
and were thus suspected to not have performed the task prop-
erly. Of the 53 remaining participants ( MAge = 37.9 years, 
SDAge = 12.3 years), 45 identified as female, seven as male, 
and one as genderfluid (in an open answer format). Partici-
pants received £2 for their participation in the study.

In Experiment 2, we initially collected data from 57 par-
ticipants who did not participate in Experiment 1. Data from 
two non-native English speaking participants was excluded, 
as well as data from one participant based on the catch-trial 
criterion. Of the 54 remaining participants ( MAge = 33.6 
years, SDAge = 10.8 years), 36 identified as female and 18 
as male. Participants received £1.50 for their participation 
in the study.

Participants were recruited via the Prolific crowdsourc-
ing platform (Palan and Schitter 2018). We would like to 
note here that, for an online crowdsourcing study, we had to 
exclude very few participants who did not reliably perform 
the task as expected, which is in line with previous studies 
highlighting the reliability and quality of workers on this 
platform (Peer et al. 2017).

Materials

Words The item set for this study was constructed by sys-
tematically manipulating the two independent variables 
discussed above: Concreteness and visual neighbors. The 
potential word candidates were taken from a large database 
containing concreteness ratings for 39,954 English words 
(Brysbaert et al. 2014). Only nouns were selected as poten-
tial candidates, since the ImageNet labels and therefore our 
training set only consisted of nouns. Further, we selected 
only medium-frequent words (SUBTLEX frequencies larger 
than 100 and smaller than 12,000; van Heuven et al. 2014) 
so that participants would most likely know the word, but not 
have extreme amounts of experience with it. The remaining 
4845 words were classified as concrete and abstract through 
a median split.2

2  For Experiment 1 and 2, both predictors—concreteness and visual 
neighbors—were classified into categorical variables. Potential impli-
cations of this approach are discussed in the Discussion section, and 
in Experiment 3, no such categorization is applied.
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As potential items, we only considered the 3080 words 
that did not have an initial corresponding visual representa-
tion, that is, only words outside the training set. For each 
of these words, we determined its (linguistic) semantic 
neighborhood as its 50 nearest neighbors according to the 
cbow model (i.e., the most similar words in terms of cosine 
similarity), using the LSAfun package (Günther et al. 2015) 
for R (R Core Team 2017). We then determined for each 
word how many of these neighbors had a visual representa-
tion in the VGG-F space. For both concrete and abstract 
words, we randomly selected 23 of the words that didn’t 
have a single visually-represented word in their neighbor-
hood (which we will refer to as the far condition, since the 
closest visual neighbor is far from the target word). In addi-
tion, we selected for both concrete and abstract items the 23 

words with the most visual neighbors. However, there were 
substantial differences between these concrete and abstract 
words with respect to this variable: While the concrete words 
on average had 15.0 of such visual neighbors, the abstract 
words only had on average 6.7 visual neighbors. Thus, in 
natural language, concreteness and the number of visual 
neighbors are severely confounded—which highlights the 
importance of manipulating them separately as independent 
variables in the present experiments. In order to control for 
this confounding, we created two different groups of con-
crete words: (1) a set of words that matched the number of 
visual neighbors found for the abstract words (on average 
6.3 such neighbors, the near condition), and (2) a set of 
concrete words with the most of such neighbors (the maxi-
mum condition). Item examples for the five conditions are 

Table 1   Examples for the triplets consisting of a word, the corresponding model prediction, and a random image (for the prototype-based model)

condition word model prediction random image

concrete/maximum stallion

concrete/near scout

concrete/far aspirin

abstract/near childhood

abstract/far jealousy
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presented in Table 1, and a complete list of the 115 resulting 
items (5 conditions à 23 items) is provided in Supplemen-
tary Material A (Experiment 1) and Supplementary Mate-
rial B (Experiment 2). The selected words can be expected 
to be very familiar to the vast majority of participants: In 
the large-scale study by Brysbaert et al. (2019) on vocabu-
lary knowledge, involving more than 220,000 participants, 
all words included here were known to between 93.0% and 
100.0% of participants ( M = 99.2%).

Images To generate visual predictions, we forwarded the 
cbow vectors for all the words in our item set to the trained 
mapping functions—both the prototype-based (Experiment 
1) and the exemplar-based function (Experiment 2). Note 
that, in almost all cases, there is no specific image corre-
sponding exactly to this predicted representation. In the 
exemplar-based approach (Experiment 2), we selected as 
predicted image the image whose VGG-F vector was most 
similar to the model prediction (in terms of cosine similar-
ity). In the prototype-based approach (Experiment 1), we 
determined the prototype vector that was most similar to the 
model prediction and selected within the respective category 
the individual image that was most similar to the prototype 
vector.3

To set up an experimental baseline, we additionally 
selected for each word a random image that was not included 
in the image set. If participants systematically prefer the 
model prediction over the random image, we will conclude 
that the model predictions are in line with human intuition. 
Examples for the triplets consisting of a word, the corre-
sponding model prediction, and a random image are dis-
played in Table 1. The complete item material for the experi-
ments is provided in Supplementary Material A (Experiment 
1) and Supplementary Material B (Experiment 2).

In addition, as catch trials to control that participants 
actually performed the task, we included 10 images for 
which visual representations were available, and whose ref-
erent is very clearly identifiable (such as guitar or cow). For 
these images, we manually selected one image that clearly 
represented the word referent and one that clearly did not.

Procedure

The study was administered as an online experiment, imple-
mented using the jsPsych library (de Leeuw 2015; de Leeuw 
and Motz 2016). After giving informed consent to partici-
pate in the study, participants received their instructions. 
Each experimental trial consisted of the target word, printed 

in uppercase letters in the upper center of the screen. Below 
the target word, two images were presented next to one 
another: The model prediction and the random image. The 
position of these images (left and right) was randomized. 
Participants were instructed to select the picture that, accord-
ing to their intuition, better represented the word meaning 
(by clicking on a button below the respective image).

The 125 items (115 experimental items and 10 catch tri-
als) were presented to the participants in random order. After 
a response was given, the next item was presented, with 
no possibility of revising previous responses. We did not 
impose time limits, did not ask participants to answer as fast 
as possible, and encouraged them to look up words whose 
meaning they didn’t know in a dictionary. Most participants 
took between 5 and 10 minutes to complete the experiment.

Results

We analyzed our data using a mixed-effect logistic regres-
sion (Jaeger 2008), using the packages lme4 (Bates et al. 
2015) and lmerTest (Kuznetsova et al. 2017) for R (R Core 
Team 2017). In each analysis, we fitted a model to predict 
whether or not participants chose the model-predicted image 
(we measure the mapping performance as proportion of 
participants who chose this model-predicted image over 
the random control image). As fixed-effect predictors in the 
mixed-effect model, we employed concreteness (concrete 
vs. abstract), visual neighbors (far vs. near vs. maximum), 
and their two-way interaction4. In addition, the model con-
tained random intercepts for both participants and items. 
Although indicated by the experimental design (Barr et al. 
2013), no by-participant random slopes for the fixed effects 
were included, since the model did not converge in that 
case (Bolker et al. 2009). To examine the significance of 
the fixed-effect terms, we then tested whether they could be 
removed from the model without a significant deterioration 
in model fit by employing likelihood-ratio tests.

The mapping performance per condition is displayed in 
Fig. 2 (left panel: Experiment 1; right panel: Experiment 2). 
In Experiment 1 (based on the prototype model), a model 
without the two-way interaction term did not perform signifi-
cantly worse than a model including this term ( X2(1) = 1.17 , 
p = 0.280 ). However, from the resulting model, neither con-
creteness ( X2(1) = 10.30 , p < 0.001 ) nor visual neighbors 
( X2(1) = 20.12 , p < 0.001 ) could be removed without sig-
nificant deterioration of model fit. The parameters of the 
resulting two-main-effect-model are displayed in Table 2. 

3  Similarities between the prototype vectors and the selected images 
were very high (all between 0.76 and 0.94, M = 0.86 ), and did not 
differ between experimental conditions. When included in the data 
analysis reported below as a covariate, these similarities did not pre-
dict model performance ( t = 0.72 , p = 0.47).

4  Note that no abstract/maximum condition exists, so the respective 
coefficient was dropped from the model matrix. The results of all 
analyses reported here remain the same when excluding the maximum 
level from the analysis to achieve a balanced 2 ×2-design.
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As can be seen in Table 2, the intercept of this model is 
not significantly different from zero, which implies that per-
formance in the condition serving as reference level—the 
abstract/far condition—is at chance level. However, all other 
conditions are significantly different from this condition, 
and thus by implication, performance in these conditions is 
above chance level.

In Experiment 2 (based on the exemplar model), a 
model without the two-way interaction term did also 
not perform significantly worse than a model including 
this term ( X2(1) = 0.41 , p = 0.522 ). However, also with 
respect to this two-main-effect-model, model fit did not 
deteriorate when concreteness was removed ( X2(1) = 2.17 , 
p = 0.140 ), and also not when the parameter for visual 
neighbors was removed ( X2(2) = 3.96 , p = 0.138 ). In fact, 

a model that included no fixed effect at all was neither 
improved significantly by including concreteness as the 
sole fixed-effect predictor ( X2(1) = 3.54 , p = 0.060 ) nor 
by including visual neighbors ( X2(2) = 5.33 , p = 0.070 ). 
The resulting final model thus only contained a signifi-
cant intercept ( � = 1.38 , z = 9.54 , p < 0.001 ; see Table 2). 
Importantly, the positive value of this intercept in the 
absence of any other effects indicates that mapping perfor-
mance is well above chance level across all experimental 
conditions.

In Table 2, we report the model parameters for the 
final models after removal of all non-significant predic-
tors, alongside their conditional and marginal R2 (Bartoń 
2018). A clear notable difference between the two Experi-
ments, is that the model for Experiment 2 only contains 
an intercept which is significantly different from zero, 
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Fig. 2   Mapping performance (means and 0.95-confidence intervals), defined as the proportion of trials where participants chose the model-
predicted image, in Experiment 1 and Experiment 2, by concreteness and visual neighbors. The dashed line represents chance level

Table 2   Final model parameters (after removal of all non-significant 
predictors) for the mixed effect logistic regression models predict-
ing whether participants chose the mapping models’ predictions, for 
Experiment 1 (prototype model) and Experiment 2 (exemplar model). 

The abstract/far condition serves as the reference level, so all parame-
ters have to be interpreted with respect to this condition (this includes 
the intercept, which codes this condition)

Experiment 1 Experiment 2

Parameter � z p � z p

Intercept − 0.06 − 0.22 .825 1.38 9.54 < 0.001

Concreteness 1.09 3.29 0.001
Neighborhood near 1.24 3.76 < 0.001

Neighborhood maximum 1.73 3.86 < 0.001

Conditional R2 (complete model) 0.50 0.39
marginal R2 (fixed effects only) 0.15 –
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indicating above-chance performance even the abstract/far 
condition. In Experiment 1, on the other hand, we observe 
above-chance performance in all conditions except for the 
abstract/far condition (see Fig. 2).

Discussion

Results from both experiments show that the mapping model 
produces intuitively plausible predictions in most experi-
mental conditions: Participants chose the model prediction 
over a random control image in the majority of cases. Criti-
cally, this is observed also for abstract words (the abstract/
near condition in Experiment 1, and both abstract condi-
tions in Experiment 2), and also for words without visual 
neighbors in their immediate semantic neighborhood (the 
concrete/far condition in Experiment 1 and both “far” condi-
tions in Experiment 2). This implies (a) the language-based 
representations have to contain relevant information about 
the visual domain and (b) that our mapping model is able 
to capture this information and to successfully map it onto 
vision-based representations.

The only condition where the model predictions break 
down is for abstract words without nearby training neighbors 
(the abstract/far condition) in the prototype model. However, 
this does not imply that the relevant information is absent in 
the respective language-based vectors: In this case, also the 
exemplar model should break down in this condition, but 
this is not the case. Hence, since the language-based side 
of both models is the same, the breakdown in performance 
has to be attributed to the vision-based side of the model, 
with the prototypization procedure being the most likely can-
didate. We suspect that this is due to the loss of information 
in the averaging process, which at the same time results in a 
far smaller training set for the mapping function. Crucially 
however, from the performance of the exemplar model, we 
can conclude that mapping is possible across all conditions, 
given an appropriate parametrization of the model.

In addition, the results of Experiment 1 suggest that 
both the concreteness of words and the relative position of 
visual neighbors in their semantic neighborhood influence 
the model performance and thus the success of language-
to-vision mapping. This is somewhat reflected (to a consid-
erably smaller degree) also in Experiment 2, where model 

performance is at least numerically lower for abstract words 
without nearby training neighbors (see Fig. 2). These results 
have important implications. For our model architecture, 
there is no fundamental a priori difference between the dif-
ferent experimental conditions; all items equally lack visual 
experience, as there are no images available for them (ren-
dering them virtually abstract from the model perspective). 
Nevertheless, we observe empirical differences between 
the conditions in the prototype model. We can therefore not 
simply equate “concreteness” with “availability of percep-
tual experience”—for some items, visual information can be 
more easily extrapolated from their language-based repre-
sentations, which implies that there are fundamental differ-
ences between these representations.

However, at this point we need to point out a few issues 
with the material selection of Experiments 1 and 2, espe-
cially concerning the operationalization of the independ-
ent variables, that could have potentially influenced these 
results. These experiments were intended to allow a first 
assessment of our model architecture; accordingly, we opted 
for a simple experimental setup. First, we operationalized 
concreteness by dichotomizing the ratings by Brysbaert et al. 
(2014) through a median split. However, such an artificial 
dichotomization can distort the results (MacCallum et al. 
2002): For example, the underlying continuous variable 
can still differ substantially between the conditions. And 
in fact, this was the case for our material: When consider-
ing concreteness as a continuous variable, the items in the 
“near” conditions had higher concreteness ratings than the 
“far” conditions (see Table 3). In addition to this point, our 
operationalization of the relative position of visual neigh-
bors – whether or not the word has such visual neighbors 
amongst its fifty nearest neighbors—sets a quite arbitrary 
criterion which does not consider the complete neighbor-
hood structure. We can think of a number of more nuanced 
and more comprehensive measures for the relative position 
of a word with respect to visually-grounded words (i.e., 
visual neighbors): The neighborhood rank of the nearest 
visual neighbor (i.e., when all words in the language-based 
semantic space are ordered by their cosine similarity to the 
target word, at which position does the first visual neighbor 
appears in this list) and its similarity to the target word, as 
well the mean neighborhood rank of all 7801 training items 

Table 3   Concreteness ratings 
and the relative position 
of visual neighbors by 
experimental condition

 n., nearest; train., training items (i.e., visual neighbors); sim., similarity

Condition Concreteness n. train. rank n. train. sim. all train. rank all train. sim.

Abstract/far 1.79 275.2 0.340 162338.2 0.056
Abstract/near 2.69 6.8 0.480 161220.1 0.067
Concrete/far 3.99 135.2 0 .386 161260.2 0.068
Concrete/near 4.40 7.0 0.502 140618.7 0.085
Concrete/maximum 4.70 3.3 0.546 128624.6 .095
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(i.e., visual neighbors) and their mean similarity to the target 
word. When considering all these variables, the concrete 
words consistently had better values than the abstract words 
(see Table 3). Thus, in Experiment 1 and 2, we were not as 
successful in operationalizing and in disentangling the two 
variables as it would be desired. This residual entanglement 
between concreteness and neighborhood could especially 
affect the performance of the prototype model due to its 
smaller training set. In order to address these issues, we set 
up a third experiment, implementing a new item selection 
procedure and also employing a considerably larger item set.

Experiment 3

While Experiment 1 and 2 demonstrated that language-
to-vision mapping is possible across several (more or less 
favorable) conditions, the influence of concreteness and 
visual neighbors cannot be reliably determined from these 
experiments, due to the problems with disentangling wither 
variable from the other that we discussed in the previous sec-
tion. Experiment 3 was designed to address these problems. 
First, we applied a more comprehensive measure for visual 
neighbors that considers the entire semantic space (in terms 
of the arrangement of all training items relative to the tar-
get word), instead of only the immediate neighborhood. For 
simplicity, we will still maintain the term visual neighbors 
(short for relative position of visual neighbors) to refer to 

this variable, although this “neighborhood” is now defined 
as the entire lexicon. Second, we considered both concrete-
ness and visual neighbors as the continuous variables they 
are, instead of introducing an artificial dichotomization Mac-
Callum et al. (2002).

Since the purpose of Experiment 3 was to thoroughly 
investigate the influence of concreteness and visual neigh-
bors on model performance, we employed only the prototype 
model in Experiment 3, where the effect of both variables 
was more prominent as compared to the exemplar model 
with its relatively even performance across conditions.

Method

Participants

We initially collected data from 164 participants with nor-
mal or corrected-to-normal vision. Data from one additional 
participant who did not provide information on their native 
language was excluded, as well as data from two partici-
pants who gave the correct answer in fewer than eight of 
the ten catch trials. Of these participants ( MAge = 34.7 
years, SDAge = 12.6 years), 113 identified as female, 49 as 
male, one as non-binary, and one as two-spirited (in an open 
answer format). Participants received £1.5 for their partici-
pation in the study. None of the participants had taken part 
in Experiment 1 or Experiment 2.

Fig. 3   The relation between 
concreteness and visual neigh-
bors, as measured by mean 
training item similarity. The 
red lines represent the bins 
considered for item selection; 
from each resulting cell within 
the boundaries of the black rec-
tangle, we sampled four random 
items (if available), which are 
marked in black. From cells 
with less than four items, we 
selected all available items
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Material

Words As in Experiments 1 and 2, we systematically manip-
ulated the two independent variables: Concreteness and 
visual neighbors. The potential target words were the same 
3080 words described in Experiments 1 and 2. We obtained 
the mean concreteness rating for each of these words from 
the Brysbaert et al. (2014) dataset.

Concerning the operationalization of neighborhood struc-
ture, of the four variables presented in Table 3, we opted 
to employ the mean similarity of the target word with all 
training words as the variable operationalizing the rela-
tive position of the visual neighbors, since (a) it considers 
the similarity between the target word and the entire train-
ing set (i.e., all words for which a visual representation is 
available), and (b) it has the overall highest correlations 
to the other three variables ( r = −0.80 with mean training 
item neighborhood rank, r = .42 with nearest training item 
similarity, and r = −0.17 with nearest training item neigh-
borhood rank). In formal terms, this measure is defined as 
1

n

∑n

i=1
cos (w, ti) , with w being the target word and ti being 

all n = 7801 training items.
However, as can be seen in Fig. 3, mean training item 

similarity and concreteness ratings are substantially cor-
related ( r = 0.53 ). Note again—as mentioned for Experi-
ment 1 and 2—that this is an interesting result in itself, as it 
demonstrates that concrete and abstract words inhabit very 
different regions of semantic memory, even when this latter 
is modeled on the basis of linguistic data only (i.e., without 
appeal to perception). Concrete words are, on average, much 
closer to words for which visual experience is available. In 
addition, this further highlights the importance of disentan-
gling these variables.

In order to select items representing the range of both 
variables while also de-correlating them (see Günther and 
Marelli, 2020), we segmented the range of both of them into 
10 bins, resulting in 100 cells (see Fig. 3). We then selected 
four random items from each cell. However, due to the high 
correlation between both variables, we cannot simultane-
ously cover the whole range of both values and select the full 
amount of items for each combination of variable values (see 
Fig. 3).We aimed to establish a compromise between these 
two objectives of the item selection procedure, thus selecting 
371 items for which the variables were weakly correlated 
( r = 0.16 ). Again, the selected words can be expected to 
be very familiar to the vast majority of participants: In the 
study by Brysbaert et al. (2019), all words included here 
were known to between 86.3% and 100.0% of participants 

( M = 99.1% ; the only items with values under 90% being 
tong at 86.3% and shaman at 88.6%).

Images For each of the 371 words in our item material, 
we obtained images predicted by the prototype model as well 
as random images exactly as described in Experiment 1.5 To 
check whether participants actually performed the task, we 
further employed the same 10 “catch trials” described for 
Experiment 1. The complete item material for Experiment 
3 is provided in Supplementary Material C.

Procedure

In order to keep the experiment short, we randomly split the 
371 items into three different lists, two containing 124 items 
and one containing 123 items. The same 10 “catch trials” 
were included in each list, and each participant was only 
presented with exactly one list (54–56 participants per list). 
We thus collected the same number of data points per item 
as in Experiment 1 and 2.

Apart from this change due to the larger item set, the 
procedure of Experiment 3 was identical to Experiment 1.

Results and discussion

As in Experiments 1 and 2, we again fitted a mixed-effects 
model predicting participants’ responses from the predictors 
concreteness and visual neighbors (as measured by mean 
training item similarity), as well as their two-way interac-
tion, while the model also contained random intercepts for 
both participants and items to account for participant-spe-
cific variability and for item-specific idiosyncrasies (Baayen 
et al. 2008). In contrast to Experiment 1 and 2, concreteness 
and visual neighbors were entered as continuous instead 
of categorical variables. The minimum value of both vari-
ables was set to zero (by subtracting the original minimum 
value from all values), so that the model’s intercept can be 
interpreted as the predicted mapping performance for the 
item with the lowest concreteness value and the lowest mean 
training item similarity.

The interaction parameter could be removed from 
the model without a significant change in model fit 
( �2(1) = 1.81 , p = 0.179 ), and in a following step, the same 
was the case for visual neighbors ( �2(1) = 3.28 , p = 0.070 ), 
but not for concreteness ( �2(1) = 16.17 , p =< 0.001 ). In 
the resulting model the fixed effect for concreteness was 

5  Again, similarities between the prototype vectors and the selected 
images were very high (all between 0.75 and 0.94, M = 0.86 ). There 
was no correlation between these similarities and visual neighbors 
( r = 0.00 ), and a very small correlation with concreteness ( r = 0.09 ). 
When included in the data analysis reported below as a covariate, 
these similarities had an additional positive effect on model perfor-
mance ( t = 2.63 , p = 0.01 ), which did however not affect the pattern 
of results for any other variable.
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significant ( b = 0.36 , z = 3.80 , p < 0.001 ). This concrete-
ness effect with 0.95-confidence interval band Fox (2003) is 
displayed in Fig. 4; as can be seen, the mapping performance 
is consistently higher than chance level. This is confirmed 
by the significant intercept of the model ( b = 0.55 , z = 2.92 , 
p = 0.004)6. For the final model including only the concrete-
ness predictor, we obtained a conditional R2 = 0.48 and a 
marginal R2 = 0.02 (Bartoń 2018).

Experiment 3 yields two main results: first, and most 
importantly, we observe that the mapping performance 
is consistently well above chance level, even for the most 
abstract words in the prototype model. Second, we observe 
that the mapping performance increases for more concrete 
words, while no significant impact is found for the relative 
position of visual neighbors.

General discussion

In the present article, we addressed the question of how 
words encountered in purely linguistic contexts can be 
grounded in perceptual experience, by investigating whether 
we can exploit our existing linguistic and visual experience 
to predict visual representations for words whose refer-
ents we have never seen before. To this end, we employed 
computational models of language-based and vision-based 
representations, and trained a mapping function that takes 
as input a language-based representation and predicts a 

corresponding vision-based representation. We then tested 
the model’s predictions against human judgments, in order 
to investigate (a) whether the model, in general, produces 
predictions that are in line with human intuition, and (b) 
which factors influence model performance. Our three 
experiments yielded the following results:

First, the model is able to predict visual representations 
that are in line with human conditions across the board, even 
for the most abstract words that are far from any items the 
model was trained on (i.e., words for which direct visual 
experience is available). This has substantial implications for 
theories on the grounding of abstract words, as it shows that 
we can extrapolate from our available experience to predict 
possible visual representations that we haven’t yet acquired. 
Critically, in this respect, the difference between concrete 
and abstract words is not a qualitative, but instead a graded 
one, with model performance being lower for abstract words, 
but not breaking down for those items.

This directly brings us to the second main result: As dem-
onstrated by Experiment 3, the prototype model performance 
depends on word concreteness, not on the relative position 
of visual neighbors. Thus, the model does not work better 
just because a target word is close to other words with estab-
lished links to visual experience. Instead, concreteness—an 
inherent property of the word itself that needs to be captured 
in its dimensional values—influences model performance.

Of course, there might be other predictors of model per-
formance that we did not consider in out present study. For 
example, Harpaintner et al. (2018) identify different sub-
groups of abstract concepts, which are related to sensori-
motor information (visual: observation, gustatory: appetite, 
interoceptive: pain, etc.), social constellations (advice), 

Fig. 4   Mapping performance 
(i.e., proportion of trials 
where participants chose the 
mapping model-predicted 
image—predicted value with 
0.95-confidence interval band) 
as a function of concreteness in 
Experiment 3
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6  A logit value of b = 0.55 corresponds to a probability of P = 0.63 , 
see Fig. 4
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emotions/internal states (emotion), or verbal associations 
(revolution), with processing differences between these 
groups (Harpaintner et al. 2020). Since our model operates 
on visual information, it stands to reason that model perfor-
mance might be higher for words related to sensorimotor 
information and especially visual information as compared 
to the other subgroups. This potential influence can be inves-
tigated in future studies.

Differences between the experiments

In Experiment 1 (employing the prototype model), we 
observe an effect of concreteness and visual neighbors; how-
ever, more carefully operationalizing both variables, Experi-
ment 3 (also employing the prototype model) only yields 
an effect of concreteness. Still, this poses a difference with 
respect to Experiment 2 (employing the exemplar model), 
where we observe no effect of these variables, and model 
performance is consistently good across all conditions.

The initial purpose of testing both the prototype and the 
exemplar model was to ensure the robustness of our model 
architecture against different possible parametrizations in 
the model, which was confirmed by the empirical results. 
We did not have a-priori hypotheses concerning potential 
performance differences between these models; therefore, 
any interpretation remains speculative.

One such interpretation relies on the structural differ-
ence between the two models: While the exemplar model 
is trained on multiple individual images per word, the pro-
totype model is trained on an average visual representation. 
Therefore, in the prototype model information is averaged 
(and noise is reduced) at the output level, while in the 
exemplar model such averaging of information needs to 
take place within the linear function mapping one domain 
onto the other. Since this linear function has a very large 
number of parameters, the training process for the exemplar 
model might be able to pick up on more nuanced low-level 
information than the prototype model, while the prototype 
model might be more apt to pick up on high-level informa-
tion shared between the individual images in a category. 
This might lead to a higher performance of the exemplar 
model in the “low-performance” categories (the abstract and 
far conditions), since it has the possibility to recover some 
idiosyncratic visual information from a few images, and to 
a higher performance of the prototype model in the “high-
performance” categories (the concrete and near conditions), 
since it can recover very robust visual information based on 
general trends in the training data.

Encoding perceptually related information 
in distributional vectors

Critically, as pointed out already, our language-based model 
gets no explicit information about concreteness whatso-
ever. And still, in order to explain our results, some form 
of perceptually-related information needs to be reflected 
in the language-based distributional vectors: The mapping 
model can only produce intuitively plausible predictions if 
its language-based input contains the necessary informa-
tion to pattern with the actual perceptual data. However, 
the language-based model was never trained to perform 
perceptually-related tasks. Therefore, the presence of any 
“visual” information in the language-based model has to 
naturally emerge from linguistic distributions. How can this 
be the case?

First, the implication that concreteness information is 
encoded in distributional vectors is in line with results by 
Hollis and Westbury (2016), who were able to extract a 
dimension distinctly correlated to the Brysbaert et al. (2014) 
concreteness ratings by applying a principal component 
analysis to a word2vec model (Mikolov et al. 2013) simi-
lar to the one employed here. The possibility to extract this 
piece of information via mathematical operations implies 
that it is encoded in the system in the first place.

Second, a whole line of research by Louwerse and col-
leagues has repeatedly demonstrated that perceptually-
related information is encoded in statistical patterns of 
language use: For example, Louwerse and Zwaan (2009) 
find that the similarities between distributional vectors cor-
responding to cities reflect their actual spatial arrangement 
in the physical world, and Louwerse and Connell (2011) 
demonstrate that modality-specific words can be categorized 
according to their modality based on their frequency of co-
occurrence in language. This is because language is not at all 
independent from the physical world we live in, but instead 
often used to communicate about this very world (Louw-
erse 2011). This leads to statistical redundancies between the 
structure of the physical, directly-perceivable world on the 
one hand, and the structure of language on the other hand, 
so that relations between words tend to reflect the relations 
between their referents (Johns and Jones 2012; Louwerse 
2011; Rinaldi and Marelli 2020)—which in turn influ-
ences the training of distributional semantic models and the 
dimensional values of the resulting distributional vectors. 
The possibility of encoding grounded information through 
language usage makes it possible for our model to work, by 
capturing this information and systematically linking it to 
information from the visual domain.
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On the mapping model

In our three experiments, the model predictions were non-
attested vision-based representations; and in each experi-
ment, we then selected as the most similar image to rep-
resent it (see the respective Methods sections). Thus, the 
experimental material of our present study was restricted 
to existing images. Consequently, one could argue that our 
model is not able to capture examples such as zebra = horse 
with stripes, which would correspond to new visual experi-
ence if we never encountered a zebra before. However, it is 
important to note that this shortcoming is a methodological 
rather than a fundamental one: The model predicts vision-
based representations, not images. Thus, the model predic-
tion could indeed be the visual representation corresponding 
to actual images of zebras drawn from sketch, if we forward 
them as new items to the VGG-F model.

We did not yet extend the model architecture to produce 
actual images that can be used as experimental material due 
to a uniqueness problem: Due to the excessive transforma-
tions and loss of information in the VGG-F model’s archi-
tecture, we cannot simply “reverse” the model to generate 
a new RGB pixel arrangement (i.e., a new image) from any 
vision-based representation. However, dedicated work in the 
field of computer vision has developed sophisticated meth-
ods to generate images from vector-based representations 
(e.g. van den Oord et al., 2016; Yan, Yang, Sohn, & Lee, 
2016), especially with the arrival of Generative Adversarial 
Networks (GANs; Radford, Metz, & Chintala, 2015; Zhang 
et al., 2017). We leave the further exploration and adaption 
of such methods for language-to-vision mapping to future 
research.

However, a genuine argument concerning the model 
architecture is that, while both the language-based cbow 
model (Mikolov et al. 2013) and the vision-based VGG-F 
model (Chatfield et al. 2014) are reasonably sophisticated, 
the mapping part of the architecture is almost awkwardly 
simple: A standard linear regression (Lazaridou et al. 2015). 
We are certain that more sophisticated and optimized map-
ping functions, for example based on deep neural network 
architectures that can deal with non-linear relations, would 
lead to an improvement in model performance. However, 
already our extremely simple mapping function is able to 
detect the relevant dimensions and successfully translate 
them from the language-based to the vision-based space. The 
simplicity of the mapping approach, rather than a shortcom-
ing of the model, thus represents one of its main strengths: 
it shows that sophisticated, overly optimized methods are 
not needed in order to capture the role of language in the 
grounding of abstract concepts. The extraction of immediate, 
linear statistical association in experience is enough to be in 
line with human intuitions.

On theories on the grounding of abstract concepts

The present work is informative about the debate on abstract 
concepts currently characterizing the embodied cognition 
literature, and provides a unique computational perspective 
on the issue. In the present section, we first categorize our 
model using the terminology proposed in the comprehensive 
review by Borghi et al. (2017), before discussing its relations 
and compatibility with the other approaches reviewed by 
Borghi et al. (2017).

Classifying our model

Borghi et al. (2017) classify existing accounts concerning 
the grounding of abstract concepts by employing a detailed 
terminology. First, they specify if a theory assumes a funda-
mental, qualitative difference between abstract and concrete 
concepts (as in the Words as Social Tools (WAT) account, 
Borghi & Binkofski, 2014), or if they are seen as in principle 
the same (as in the motor theory; Glenberg, Sato, & Cat-
taneo, 2008; Glenberg, Sato, Cattaneo, Riggio, et al.,2008). 
Second, Borghi et al. (2017) distinguish between theories 
that allow the possibility of multiple representations for a 
single concept (linguistic and sensorimotor, but also emo-
tional or social, as in the representational pluralism view, 
Dove, 2009, 2011; hybrid models of conceptual cognition, 
Kiefer & Pulvermüller, 2012; Kuhnke, Kiefer, & Hartwig-
sen, 2020; Patterson & Ralph, 2016; Popp, Trumpp, & 
Kiefer, 2019; or in the affective embodiment account; 
Kousta et al., 2011; Vigliocco et al., 2013) and theories that 
assume only a single type of representation (sensorimo-
tor) for all concepts (as in the conceptual metaphor theory; 
Lakoff & Johnson, 1980, 2008). Along similar lines, they 
also distinguish between theories adopting a strong embodi-
ment view (which assume that only the sensorimotor sys-
tem is activated during conceptual processing, such as the 
motor theory or conceptual metaphor theory) and theories 
adopting a weak embodiment view (which assume that both 
sensorimotor and linguistic systems are activated, as in the 
language and situated simulation (LASS) theory; Barsalou 
et al., 2008). Finally, Borghi et al. (2017) employ the open-
ended, qualitative category “role of acquisition” to describe 
how different theories account for the specific mechanisms 
of how abstract concepts are learned and grounded by speak-
ers (with the majority of theories leaving this unspecified).

First, does our model assume a fundamental difference 
between abstract and concrete concepts? As described in 
the Introduction, on the surface level, it could be assumed 
that concrete concepts are those for which visual experience 
is available. However, as demonstrated in our experiments, 
the complete picture is more complex than that: It is more 
adequate to say that, in terms of our model, a word is more 
concrete the more successfully it can be mapped onto visual 



2527Psychological Research (2022) 86:2512–2532	

1 3

experience (representing sensorimotor experience in gen-
eral), which does not necessarily require the availability of 
direct experience. Thus, our approach assumes the existence 
of a concreteness dimension, and characterizes concreteness 
as a graded variable rather than assuming a clear-cut differ-
ence between abstract and concrete concepts (compare, for 
example, Wiemer-Hastings and Xu 2005).

Second, the current version of the model presented here 
clearly assumes multiple representations for each concept; 
language-based representations are derived using the cbow 
model, while vision-based representations are derived using 
the VGG-F model, and the whole point of the model is to 
establish a mapping between these different representa-
tions. However, this representational pluralism is a work-
ing hypothesis of the current implementation of our model 
rather than a fundamental theoretical assumption: In prin-
ciple, the model architecture can be extended to take multi-
modal representations which integrate language-based and 
vision-based information as input or output (see Andrews, 
Vigliocco, & Vinson, 2009; Bruni, Tran, & Baroni, 2014; 
Lazaridou et al., 2015, 2017). In the present study, we made 
clear distinction between the two representations in order 
to test our hypotheses as directly as possible (see Günther, 
Petilli, & Marelli, 2020, for a discussion on this methodo-
logical approach when evaluating multimodal models).

Concerning the question of strong versus weak embodi-
ment, the model proposed here makes no specific assump-
tion about which cognitive systems or even brain areas are 
engaged in processing; it is conceived as a learning-oriented 
model about how grounding can be achieved, and not as 
a processing model. However, the multiple-representation 
view appears to imply a weak embodiment perspective: 
According to Borghi et al. (2017), all multiple-representa-
tion approaches are classified as adapting a weak embodi-
ment view.

Crucially however, due to its characterization of our 
model as a learning-oriented model, the present proposal 
excels in specifying the role of acquisition: We present a 
fully implemented and computational account of the ground-
ing of abstract words, which is entirely rooted in (an approxi-
mation of) experience. Thus, while the idea that abstract 
words (or, more generally, words whose referents were not 
directly experienced) are mapped onto another domain for 
grounding is certainly not a new one, we provide a precise 
and fully data-driven model of how this can be achieved. 
The language-based model is trained on large quantities of 
natural text, which simulates learning from language expe-
rience; the vision-based model is trained to classify large 
numbers of images, representing visual experience; and 
the mapping model is trained to predict one from the other, 
based on experienced co-occurrences between linguistic 
stimuli and visual stimuli (see Zwaan & Madden, 2005). 
On a theoretical level, this design of the model is in line with 

Hebbian learning mechanisms, which neuropsychological 
studies have shown to play an important role for the map-
ping between language and the sensorimotor system (Hoenig 
et al., 2011; Kiefer et al., 2007; Pulvermüller 2005; Trumpp 
& Kiefer, 2018). Thus, acquisition is the core component of 
our model, and its role is explicitly and formally described.

Relation to other approaches

The core idea of our model is quite similar in spirit to the 
conceptual metaphor theory (Lakoff and Johnson 1980, 
2008): we assume that one type of representation (concepts 
without visual experience) is mapped onto another type of 
representation (vision-based representations) in order to 
ground it and make it understandable. However, there are 
also notable differences between our model and the original 
metaphor approach: We do not assume a mapping that is 
strictly based on specific semantic domains, such as a struc-
tural mapping from concepts related to “time” onto concepts 
related to “space”; rather, the mapping takes place across the 
entire language-based and vision-based system, and if such 
structural mappings exist, they would naturally emerge due 
to the properties of these systems. Further, we do not need 
to rely on researcher intuition to hand-code specific types 
of mapping; rather, the mapping function learns these rela-
tions from experience in a purely data-driven way. However, 
this certainly does not prevent or speak against such specific 
structural mappings, which can manifest as special cases of 
a more general mapping system that is based on general-
purpose statistical learning approaches.

Furthermore, our model is very much in line with the 
assumptions underlying the LASS theory (Barsalou et al. 
2008; Wilson-Mendenhall et al. 2013) that both concrete 
and abstract concepts can activate a mixture of linguistic 
and sensorimotor representations, with different distribu-
tions among the two depending on the specific concept. We 
explicitly refer to assumptions, since the LASS theory itself 
is first and foremost a processing model concerned with 
the relative timing of this activation (Barsalou et al. 2008) 
which does not specify the role of acquisition (Borghi et al. 
2017). On the other hand, while our model is focused on 
way concepts are represented and acquired, it is completely 
agnostic when it comes to processing. This difference in 
focus between the two approaches brings with it the appeal-
ing possibility of combining them into a unified account 
of the acquisition (our model) and processing (LASS) of 
abstract concepts.

Determining whether our model is in line with a repre-
sentational pluralism view, such as proposed by (Dove 2009, 
2011), is not straightforward: Once it is implemented and 
trained, there surely are concepts for which the mapping 
apparently does not work (as suggested by the items below 
the dotted line in Fig. 4). Some of these low-performance 
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cases might result from our experimental methodology of 
using random control images, which in principle can some-
times also be a good fit for the word by sheer chance (for 
example proposal, with a model performance of 0.02 in 
Experiment 3; see Fig. 5). However, in other cases the pre-
dicted image is just not a plausible candidate (for example 
ecstasy, with a model performance of .07 in Experiment 
3; see Fig. 5). In the latter cases, we cannot assume that 
our model successfully links the representations of these 
concepts to sensorimotor experience. Therefore, in the 
absence of contrary evidence, it is plausible to assume in 
our framework that such concepts are represented in a purely 
language-based format. However, this all depends on the 
training and hence the experience available to the model, 
as well as the actual model architecture: If new experience 
is provided, by introducing new text to the language-based 
model or new images (maybe even with new labels) to the 
vision-based model, or if the model architecture is further 
optimized, the performance for items for which mapping 
previously failed could suddenly improve dramatically. 
Thus, the fairest assessment is that our model in its current 

implementation is empirically, but not necessarily by defini-
tion, in line with a representational pluralism view.

Interestingly, an unexpected finding of our study is that 
our model seems to align with the Words as Social Tools 
(WAT) theory (Borghi and Binkofski 2014)—also on an 
empirical level, rather than by definition. Upon inspecting 
the experimental material of our study, we noticed that the 
model shows a tendency to predict more and more images 
of humans, the more abstract the input words are (and, as 
indicated by our results, participants prefer to select these 
images over random controls). An example for this is already 
illustrated in Table 1.7 We want to emphasize that we did not 
expect this finding; this model behavior emerged naturally 
from the training data. However, it is surprisingly plausible 
in light of the WAT theory: Abstract words can only have a 
meaning in the presence of a conscious mind, which in our 
experience coincides with a human mind. Without a mind 

Fig. 5   Items with low model performance in Experiment 3, with two intuitive explanations for the low performance

7  The jealousy and childhood examples here are especially fitting, 
and while a number of these cases exist, there are also a several pic-
tures of humans that, in our opinion, have no evident relation to the 
meaning of the word that predicted them.
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perceiving and interpreting the world, there is no such thing 
as difference, value, or jealousy. Therefore, it seems ade-
quate for the model to predict that a word has something to 
do with humans or social interactions in cases missing infor-
mation that can be mapped onto a clear perceptual referent.

To conclude this section, our model is agnostic towards 
the Affective Embodiment Account (Kousta et al. 2011; 
Vigliocco et  al. 2013) or motor theories of grounding 
(Glenberg et  al. 2008, 2008), since these approaches 
assume grounding in domains (emotion or action) that are 
not implemented in this version of the model. We also 
want to emphasize explicitly that we and our model do not 
claim that vision is the only relevant domain for grounding. 
Indeed, we acknowledge that recent works highlighted the 
role played by perceptual modality ratings across the five 
senses in predicting human performance (see for example 
Lynott et al. 2019). Instead, we focused the vision domain 
as one instance of sensorimotor experience (for which the 
necessary technical means to represent it are conveniently 
available at this point in time). However, with adequate 
data from other domains (for example, fMRI data repre-
senting cerebral activation, Mitchell et al. 2008; EMG data 
measuring peripheral motor activity, Vergallito et al. 2019; 
or affective representations collected from emoji usage in 
texts, Rotaru et al. 2019), our general model architecture 
could also be extended to other domains.

Conclusion

How we can ground concepts in sensorimotor experience 
when this very experience is missing is one of the major 
challenges for theories of conceptual and semantic rep-
resentation, and especially crucial for the tenability of 
grounded cognition accounts (Borghi et al. 2017). In the 
present article we demonstrate that, once we have available 
a sufficiently large amount of experience, we can use it as 
a scaffolding tool to draw inferences and “build bridges” 
from language-based to vision-based, grounded infor-
mation. We can capture and learn structural (statistical) 
relations between the way we use language and the per-
ceptual experience we have of the world (Johns & Jones, 
2012; Louwerse, 2011; Zwaan & Madden, 2005), and then 
productively apply what we learned to extend our con-
ceptual system beyond what we have already encountered 
(Günther et al. 2020).
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