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Abstract The physics potential of massive liquid ar-

gon TPCs in the low-energy regime is still to be fully

reaped because few-hits events encode information that

can hardly be exploited by conventional classification

algorithms. Machine learning (ML) techniques give their

best in these types of classification problems. In this pa-

per, we evaluate their performance against conventional

(deterministic) algorithms. We demonstrate that both

Convolutional Neural Networks (CNN) and Transformer-

Encoder methods outperform deterministic algorithms

in one of the most challenging classification problems of

low-energy physics (single- versus double-beta events).

We discuss the advantages and pitfalls of Transformer-

Encoder methods versus CNN and employ these meth-

ods to optimize the detector parameters, with an em-

phasis on the DUNE Phase II detectors (“Module of

Opportunity”).

Keywords liquid argon TPC · machine learning ·
particle identification · Transformer-Encoder

1 Introduction

Liquid argon detectors play a prominent role in neu-

trino physics and - thanks to experiments like DUNE

[1,2] and DarkSide [3,4] - will be one of the technolo-

gies of choice for the next generation of accelerator

neutrino experiments and direct search of dark mat-

ter. Such prominence is grounded on scalability. DUNE,

in particular, has brought the liquid argon TPC tech-

nique (LArTPC) to an unprecedented scale after the

development of cryostats that do not need to be evac-

uated to reach the purity needed in TPCs (membrane

ae-mail: roberto.moretti@mib.infn.it
be-mail: marco.rossi@cern.ch

cryostat) [5,6,7]. Similarly, DarkSide is commissioning

high-throughput facilities for depleted underground ar-

gon extraction, purification, and distillation [8,9].

In the last few years and, notably, in the course of

the 2021 Snowmass process, several collaborations have

formed to fill the gap between LarTPC for beam neu-

trinos and detectors for rare event searches [10,11,12,

13,14]. The first and second DUNE modules were engi-

neered to achieve maximum performance for the obser-

vation of GeV-scale neutrinos but a wealth of DUNE

physics resides in the observation of MeV events. Some

of these channels are being actively pursued by DUNE

because the event threshold E is located at E > 10

MeV. They are supernova neutrinos, sub-GeV atmo-

spheric neutrinos, and the neutrinos originating from

the sun from helium-proton fusion (”hep neutrinos”)

[15,16]. Other channels are currently outside the DUNE

scope but may be addressed by the DUNE Phase II

modules (third and fourth modules). Recent studies

conducted in the framework of the Module of Oppor-

tunity (MoO) R&D effort [17] indicate that a module

with improved radiopurity, light collection efficiency,

and granularity can access a rich physics portfolio: en-

hance the sensitivity to solar neutrinos produced by the
8B branch of the pp-chain, perform neutrinoless dou-

ble beta decay searches, boosted dark matter, and the

direct detection of WIMP-like dark matter candidates

[13,18,19].

The possibility of making DUNE the most sensitive

neutrinoless double beta decay experiment in the world

is still speculative because of the need for a large 136Xe

mass to be dissolved in liquid argon with a few-percent

concentration. Moreover, this search is hindered by the

presence of radioactive isotopes of argon. Still, results

on small prototypes that were doped at the level of 2%
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are very encouraging [20]. Further, the ProtoDUNE-SP

detector at CERN (700 tons of high-purity liquid argon)

was doped in 2021 with ' 100 ppm and recorded no in-

stability or performance deterioration [21]. The DUNE

second module will be doped with (non-enriched) xenon

even if the concentration of the double beta decay iso-

tope 136Xe and the detector radiopurity and granularity

cannot address the 136Xe →136 Ba∗ 2e− channel (Q-

value: ∼ 2.458 MeV) in a competitive manner. Several

collaborations are addressing these challenges, which

require high-throughput facilities for the extraction of

underground argon depleted in both 39Ar and 42Ar [12]

or the development of dedicated systems for the distil-

lation of atmospheric argon to remove 42Ar [22].

At the time of writing, the main obstacle toward

large-mass LArTPCs in the few-MeV energy range is

scalability. Charge readout in LArTPC is carried out

by wires or pixels, whose dimensions cannot be reduced

below 1 mm. Given the density of liquid argon, a few-

MeV event will range out in ∼ 1 cm and will produce

just a few hits in the LArTPC. Bringing this number

to a level comparable with supernova neutrinos would

require a miniaturization of the charge readout system

(< 1 mm) that is either impossible with wires or too

expensive with pixels. In addition, the large increase in

the number of readout channels impacts front-end elec-

tronics, data rate, and trigger complexity, and makes

such a miniaturization approach cost-ineffective.

ML-assisted algorithms have been proven to be the

most effective choice to extract information in low-gra-

nularity detectors. Machine learning techniques were

successfully applied to GeV neutrinos in LArTPC [23]

and at lower energy in small-size devices [24]. A wealth

of novel techniques for supervised and unsupervised

machine learning already found applications in parti-

cle physics [25] and they are particularly well suited to

extract information when it is stored in variables that

are non-trivially correlated, often surpassing the perfor-

mances of non-ML approaches tailored for the task at

hand. Few-hits low-energy events are thus an ideal tar-

get for these methods, which can compensate for the

lack of detector granularity and relieve the burden of

designing and operating a large number of channels in

a cryogenic underground detector.

This paper addresses such a challenge by identi-

fying a class of machine learning approaches that are

suited for low-energy LArTPC. The physics benchmark

we employed in our study is the separation capability

of one versus two electrons emerging from single and

double beta decay. We chose this benchmark because

it represents an important but challenging handle to

suppress background events from radioactive argon iso-

topes in any low-energy physics channel of LArTPCs.

β versus ββ separation is also useful to suppress 42K

beta decay signals originating from 42Ar in the region-

of-interest (ROI) for the neutrinoless double beta decay

of 136Xe. After identifying the optimal machine learn-

ing approaches, we show that these techniques relieve

the requirement to invest for pixel miniaturization thus

reducing the cost and complexity of the next-generation

LArTPCs and of MoO.

The main feature of LArTPCs of relevance for this

study and the benchmark channels are introduced in

Sec.2. Sec.3 presents the feature extraction and clas-

sification techniques for few-hits LArTPC events and

the rationale of the different methods considered in

this study. The performance of the methods against

the benchmark channel (β-ββ separation) is discussed

in Sec.4. In this section, we also discuss the impact on

pixel miniaturization by comparing the overall effec-

tiveness of deep learning algorithms with respect to a

system that does not employ ML-assisted β-ββ separa-

tion techniques. We draw our conclusions in Sec.5.

2 Few-MeV events in LArTPC

A liquid argon TPC is a cryogenic device that pro-

vides the full reconstruction of neutrino interactions in

a broad energy range. The detectors that have been de-

veloped so far at large scale (> 100 tons) are mostly

based on wire anodes. Here, the electrons produced by

ionization losses in LAr drift toward the anode driven

by a constant electric field of ∼ 500 V/cm. The drift

velocity at such a field amounts to 1.6 mm/µs and

the electrons travel for several meters. In this paper,

we will mostly consider the electric field configuration

of the first DUNE module (FD1-HD), where electrons

drift horizontally (”Horizontal Drift” - HD) between

the cathode and the anode for a maximum distance

of 3.5 m. FD1-HD is a 65.8 m × 17.8 m × 18.9 m

LArTPC segmented in four drift volumes for a total

(fiducial) mass of 17 (10) kton. Electron recombination

due to electronegative impurities has been addressed by

decade-long R&D. The purity of the argon achieved in

a LArTPC is usually expressed in terms of the electron

lifetime τ . The lifetime is derived from the number of

electrons that crosses a drift length x = vdt and it is

given by:

N(t) = N0 exp− t
τ

= N0 exp− x

vdτ
(1)

where N0 is the number of electrons (and ions) pro-

duced by a charged particle in a given volume of the

detector, x is the distance from the anode, vd is the

drift velocity and t is the drift time, i.e. the time the
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electron travels in LAr before reaching the anode. The

electron lifetime thus characterizes the electron survival

probability against electronegative impurities. In 2014,

ICARUS observed a record lifetime of > 15 ms, corre-

sponding to 20 parts per trillion (ppt) of O2-equivalent

contamination using a vacuum-tight cryostat [26]. More

recently, the DUNE collaboration reached an even longer

lifetime using a membrane cryostat. Data collected by

the FD1-HD demonstrator (ProtoDUNE-SP) indicate

a lifetime > 30 ms over a maximum drift length of 3.5

m [7]. Such a bold result boosted the DUNE ”Verti-

cal Drift” concept that will be employed for the second

DUNE module (FD2-VD). FD2-VD is based on a 10

kton LAr volume whose maximum drift length corre-

sponds to 6 m. In the following, we will test our classi-

fication algorithms in a drift volume equivalent to one

of the drift volumes of FD1-HD, properly accounting

for electron losses due to residual impurities. Thanks

to the outstanding purity reached by ProtoDUNE-SP,

we anticipate that results hold for a drift length compa-

rable with the maximum drift length of FD2-VD, too.

The readout of ionization electrons at the cathode

is generally performed by a set of wires that recon-

struct the electron position in the anode plane, that is

the plane perpendicular to the drift direction. In FD1-

HD, charge reconstruction is performed by a set of 6 m

× 2.3 m Anode Plane Assemblies (APAs). Each APA

comprises four wire planes and the spatial resolution

is dominated by the spacing of the wires inside the

plane plus charge diffusion in LAr. FD1-HD employs

152 µm diameter copper-beryllium wires and the wire

spacing on each layer is about 4.7 mm, corresponding

to a spatial resolution of ∼ 4.7 mm/
√

12 = 1.36 mm.

FD2-VD will replace the APA wires with a pair of per-

forated PCBs, etched with readout strips. The collec-

tion strip corresponds to the strip where electrons are

stopped and collected and it has a width of 5.1 mm.

Induction strips crossed by the electrons before collec-

tions have a width of 7.65 mm. As a consequence, the

space resolution of FD2-VD is comparable with FD1-

HD. A novel readout based on pixels (pixel width: 4

mm) is employed in the DUNE near detector (NDLAr

[27]) and is being considered for the third and fourth

DUNE far detector modules [14]. Unlike early LArT-

PCs, all DUNE modules will be operated employing

front-end electronics operated at liquid argon temper-

ature (87 K) because cold electronics boards located

next to the readout element (wire, strip, or pixel) of-

fer unprecedented noise immunity. The cold electronics

of FD1-HD operates with noise well below 800e− per

channel [28], corresponding to an energy threshold of

< 50 keV. The front-end electronics for the pixelated

system are under development and performance is ex-

pected to be comparable to or better than FD1-HD.

During the development and assessment of the ML-

assisted event classifiers presented in this paper, the

performance was estimated as a function of the spa-

tial resolution and energy threshold within the range

attainable by the technologies mentioned above.

Low energy (1-10 MeV) events in liquid argon are

recorded as a set of hits associated with an energy de-

posit per hit. The number of hits depends on the gran-

ularity of the LArTPC and, in particular, the size of

the readout element (pixel or 2D hits reconstructed

by the signals on wires). For a candidate neutrinoless

double beta decay of 136Xe (Q-value: 2.458 MeV) it

never exceeds 20 hits even in the most aggressive sce-

nario (pixel size: 1 mm). Solar neutrinos offer a richer

topology because the charged current interaction on
40Ar is accompanied by a de-excitation photon from the

νe
40Ar →40 K∗ e− reaction, while electron-neutrino

scattering creates a single electron-like track only.

The ML-assisted identification techniques discussed

below have been ranked against the most critical bench-

mark at the MeV scale: the identification of single ver-

sus double electrons in a given region-of-interest (ROI)

when no other energy deposits are identified as a de-

tached track (or hit) beyond the candidate electron

track. The width of the ROI is determined by the en-

ergy resolution of the LArTPC, which exploits the to-

tal energy deposited estimated from the total collected

charge and scintillation light. As a consequence, this

information is not used to test the electron hypothesis.

Further, we focused on backgrounds where the pulse-

shape of the scintillation light cannot be exploited to
identify the nature of the observed particle. This is a

powerful technique in LAr for α − β and n/γ separa-

tion using the time profile of the scintillation light [29].

Still, for β particles the identification can only rely on

the hit topology and the pattern of ionization (charge)

losses per hit. This situation comprises the two most

critical backgrounds at the MeV scale, both originating

from the radioactive isotopes of natural argon: single

beta decay of 42Ar and pile-up events from 39Ar.

The presence of radioactive isotopes in natural ar-

gon is considered the most serious drawback of LAr

detectors in low-energy physics and, in particular, to

search for rare events like WIMP interactions, the oc-

currence of neutrinoless double beta decay, and electron-

neutrino scattering. Moderate-size LArTPC can be fil-

led with underground argon, which is depleted from

radioactive isotopes, but the use of underground argon

represents a challenge to the scalability of LArTPC to

masses comparable with DUNE [30]. In particular, 39Ar

has a quite high natural abundance and contributes
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to an intrinsic activity of natural argon of 1.01 ± 0.08

Bq/kg. This beta emitter has a lifetime of 269 y. Its Q-

value (0.56 MeV) is immaterial for the physics processes

considered in this paper (1-10 MeV) except in the oc-

currence of pile-up (ββ events). The same consideration

holds for 42Ar, which contributes with a modest activity

(6×10−5 Bq/kg) and a sub-MeV Q-value (lifetime: 32.9

y). Unfortunately, the daughter isotope of 42Ar (42K)

is a beta emitter in secular equilibrium with 42Ar and

has a Q-value of 3.525 MeV. It thus represents the lead-

ing background to search for neutrinoless double beta

decay in DUNE [19].

ML-assisted identification algorithms are thus re-

quested to separate single β from double β events ex-

ploiting the hit information mentioned above within a

given ROI. For the sake of concreteness, we defined the

true hypothesis considering the search for neutrinoless

double beta decay in DUNE. The signal is, therefore,

the occurrence of two electrons with an energy deposit

within an ROI centered at the Q-value of 136Xe. The

hypothesis is tested against a single electron, whose en-

ergy is located inside the ROI. The comparison is per-

formed among classification algorithms based on ma-

chine learning and compared with deterministic algo-

rithms as the blob method developed by NEXT to ad-

dress the same physics channel.

The performance of the classification techniques dis-

cussed in this paper is studied using two samples of

simulated events: one representing the background (β),

consisting of single electrons with energy equal to the
136Xe Q-value, and a second made of 136Xe neutrino-

less double β decay events (ββ) generated with energy

and angular correlations as in [31]. The primary par-

ticles (single or double electrons) are then propagated

inside a LAr volume using the Geant4 software package

[32,33,34] and the ionization energy loss simulated at

each step is used to compute the number of ionization

electrons to be propagated to the anode. Readout as

discussed in the following sections. For simplicity, we

consider in this work a pixel-based readout for it can

highlight the impact of the system’s spatial resolution

on the classification performance more intuitively than

a wire-based anode.

The pixel size and the lower limit on their threshold

energy significantly affect the quality of β and ββ events

spatial reconstruction in a LArTPC. We accounted for

these experimental limitations by spatially downsam-

pling the energy deposition profiles in order to match

a specific pixel size, removing the ones that don’t sat-

isfy the energy threshold requirement. We then account

for electron diffusion and recombination in liquid argon.

The implementation of these effects is described in more

detail in Sec.4.

3 Classification models and feature extraction

In this study, we considered three methods for classify-

ing β and ββ decays by using three-dimensional track-

ing information extracted from a LArTPC. The first

method does not employ machine learning techniques

and relies on a physics-informed extraction of highly

discriminating features based on blob detection, i.e. en-

ergy depositions in correspondence with the electron

(or positron) trajectory endpoints. A variation of this

technique, which we will refer to as “blob method”,

has already been applied by the NEXT collaboration

[35] for the β-ββ separation in a high-pressure 136Xe

gas TPC with satisfactory results for tracks of ∼ 15 cm

[36,37]. The second and third methods are Deep Learn-

ing architectures called Convolutional Neural Network

(CNN) [38] and Transformer-Encoder, a variant of the

Transformer [39]. CNNs are well-known models vastly

applied in Computer Vision, while Transformers excel

in Natural Language Processing problems thanks to the

mechanism of self-attention. In the present work, CNN

and Transformer solve the task of β-ββ binary classifi-

cation with different feature processing strategies: the

CNN analyses hit positions and energies as a set of pic-

tures, while the Transformer treats hits energies and

coordinates as sequences of correlated items. Moreover,

the CNN specialises in learning from local features (i.e.

pixel structures in a small neighbourhood) while the

Transformer, due to its structure, captures both long

and short-range dependencies equally [40].

Within this framework, the blob method has been im-

plemented to set a performance benchmark in class sep-

aration with respect to the Deep Learning models, as

well as to investigate its limits at different granulari-
ties of the LArTPC charge readout. In the following,

we describe in more detail the characteristics of the

blob method and the Neural Network architectures em-

ployed in our analysis.

3.1 The Blob method

Due to the inverse-square velocity dependence of the

average ionization energy loss per unit distance [41],

∼ 1 MeV electrons release more of their energy when

close to their trajectory endpoint, forming a blob. This

implies that the double-beta ionization pattern will ap-

pear as a unique track in the LArTPC with two end-

point blobs, whereas single-betas only feature one end-

point. We detected blob candidates by finding an ap-

propriate graph representation for each event and lo-

calizing the nodes corresponding to the blob position

using a Breadth-First Search (BFS) [42]. For a n-hits

track, the algorithm works as follows:
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Fig. 1: Workflow of the Blob detection algorithm. The

three-dimensional profile reconstructed at the LArTPC

(top) is transposed into the corresponding graph. The

red nodes represent the track endpoints, i.e. the candi-

date blob position (bottom left). We then integrate hit

energies within a radius r = 2 mm from the endpoints

pair to determine Eb1 and Eb2 (bottom right).

1. Assign every track hit to a graph node and connect

every node pair corresponding to adjacent hits with

edges of unitary weights. Two hits are considered

adjacent if they share a surface, an edge or a vertex

in the three-dimensional lattice.

2. Perform a BFS search to find the shortest path length

between each pair of nodes in the graph i, j for

i, j = 1, ... n. Let D be the symmetric n×n matrix

collecting the pairwise path length.

3. Find the indices i′j′ such that Di′j′ ≥ Dij ∀ i =

1, ... n ∧ i < j < n.

4. Associate the track endpoints (i.e. the candidate

blobs centres) to the positions of hits i′ and j′.

5. Sum the energies of all hits within a blob radius r

from each centre, as depicted in Fig. 1, obtaining

the new variables Eb1 and Eb2, where b1 is the more

energetic blob candidate: Eb1 > Eb2.

For ββ events, both candidates are expected to be true

blobs, hence Eb1 ' Eb2. On the contrary, for β de-

cays Eb2 should be significantly smaller than Eb1. These

two variables allow for establishing a two-feature back-

ground rejection criterion. By leveraging the Neyman-

Fig. 2: Blob candidate energy distributions for the β

class (top) and the ββ class (bottom). Eb1 and Eb2 are

extracted from the three-dimensional LArTPC event

reconstruction considering a hit size of 1 × 1 × 1 mm3

and a hit energy threshold of 50 keV. As expected, the

ββ distribution centroid appears closer to the bisector
than the β’s one, allowing for class separation.

Pearson lemma [43], we employ the likelihood ratio as

the test statistics:

q =
P (Eb1, Eb2 |ββ)

P (Eb1, Eb2 |β)
(2)

where P (Eb1, Eb2 |ββ) and P (Eb1, Eb2 |β) are the prob-

ability distributions for an event with Eb1, Eb2 under

the ββ and β hypothesis, respectively. These probabil-

ities are unknown a priori and we performed a data-

driven estimation by sampling the Eb1, Eb2 distribu-

tions in the training dataset. Fig. 2 shows an example

of Eb1 and Eb2 feature distributions for the β and ββ

classes.

Despite its simplicity, the blob method has two draw-

backs:

– part of the track information is lost, i.e. only hits

near the endpoints deliver feature information.
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– the BFS fails in determining blob positions if the

track reconstructed by the LArTPC presents many

gaps, for example due to inefficiencies or trigger re-

quirements, like setting a lower limit energy thresh-

old for the hits, as described in Sec.4.

In addition, this method cannot be generalized to back-

ground reduction for other physics channels.

3.2 Convolutional Neural Network

The fundamental building block of CNNs is the convo-

lutional layer, which is a set of back-propagation learn-

able filters, i.e. tensors which perform a convolution

operation on a fixed-size input. Thanks to a stack of

convolutional layers, a CNN is able to process hier-

archical features that are significant for the learning

process [44]. In addition to convolutional layers, CNNs

typically include pooling layers, which downsample the

feature maps to reduce the computational training cost

of the network and limit overfitting. Fully connected

layers are then added to the network’s end to map the

high-level features to the desired output.

In order to define a scalable CNN architecture for

the task of track classification in LArTPC when higher

readout granularity rapidly increases the input dimen-

sion, we embedded the hit energy content into a three-

dimensional tensor according to their position in carte-

sian coordinates, setting all the other entries to zero.

We then integrated along the orthogonal axis X, Y, Z

to get the three planar views (YZ, XZ and XY planes,

respectively). At the cost of a dispensable loss of infor-

mation, this allows the CNN to support a wide range

of readout resolutions with fixed architecture and hy-

perparameters, with manageable computational costs

and resources (only two-dimensional filters are needed),

despite employing a large training dataset, containing

about 2×105 events. In this physics application, we were

also able to remove the pooling layers, which compro-

mise the performance for the low granularity configu-

rations. Fig. 3 illustrates a schematic representation of

the CNN architecture we designed for this study.

3.3 Transformer and self-attention

The attention mechanism is the core of Transformers

[39], which allows the model to adaptively focus on

specific parts of the input sequence, i.e. hits that are

supposed to carry more information than others for

the classification task. In particular, we refer to the

Scaled Dot-Product attention [39] shown in equation 4.

Given an ensemble of input sequences, the self-attention

mechanism computes a set of query (Q), key (K), and

value (V) matrices for each input sequence via fully-

connected layers. These matrices are then used to com-

pute a weighted sum of the values, where the weights

are determined by the similarity between the query and

key matrices. More specifically, the attention weights

for a given query matrix are computed as a softmax

function [48] over the dot products of the query and

key matrices. The resulting weights are then used to

compute a weighted sum of the value matrices, result-

ing in a context vector [49,50] that captures the most

relevant information for the query.

The self-attention mechanism is often used in a multi-

head configuration, where multiple sets of query, key,

and value matrices are computed in parallel. The re-

sulting context vectors from each head are concatenated

and passed through a linear layer, which combines the

information from the different heads.

Transformers typically use an encoder-decoder ar-

chitecture, which consists of an encoder network that

processes the input sequence and a decoder network

that generates an output sequence. The encoder and

decoder both use stacked self-attention layers followed

by feedforward layers and are connected by means of

an additional attention layer that computes the con-

text vector based on the encoded input sequence.

For binary classification tasks, the network’s output

simply consists of a single prediction value. For this

reason, we employed a simplified architecture consisting

only of the encoding part of the Transformer, with a

stack of feed-forward layers mapping the encoded state

to the output. In this architecture, only self-attention

is needed. Self-attention is computed by:

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
V. (3)

Q = K = V are matrices ∈ Rdmodel×dk , where dmodel

is the embedding size and dk the sequence length. The

Transformer-Encoder we developed for this work is de-

picted in Fig. 4. The Transformer-Encoder takes as in-

put the full three-dimensional information. LArTPC

events are thus treated as weighted point clouds in

which every point corresponds to a hit position in space

and the weight is determined by the hit energy. The hit

energy and position are fed to the network as a unique

array per event with four entries per hit (XYZ coordi-

nates and its energy E). Zero-padding is required for

every training batch in order to preserve dimensions

through a forward-backwards pass. Compared to the

traditional CNN, this Transformer implementation al-

lows for more efficient memory management, with faster

training at higher spatial resolutions. This is due to the

fact that CNN needs to store progressively larger and
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Convolution
[3x3]

Batch norm.
Dropout

Concatenate

Dense

Prediction

Convolution
[3x3]

Batch norm.
Dropout

Convolution
[3x3]

Batch norm.
Dropout

Convolution
[3x3]

Batch norm.
Dropout

Convolution
[3x3]

Batch norm.
Dropout

Convolution
[3x3]

Batch norm.
Dropout

Sigmoid
Dense

First-order
features

Second-order
features

Fig. 3: Convolutional Neural Network scheme. A batch of LArTPC events split into three planar views are fed

to two independent stacks of convolutional, batch normalization [45] and dropout [46] layers. The stack outputs

merge into a single array, which passes through a fully connected layer. The output layer is a single neuron with

a sigmoid activation function, which returns a [0, 1] bounded Network predictive score. Each convolutional step

comprises 25 filters with [3× 3] dimensions, and all hidden layers are equipped with LeakyReLU activations [47].

Dropout layers were inserted to prevent overfitting of the model.

sparser two-dimensional tensors and suffers from the

increase in dimensionality.

4 Results

Particle ionization losses in liquid argon produce a num-

ber of charge carriers (electrons and ions) that is pro-

portional to the deposited energy. The carriers drift

across the medium thanks to the TPC electric field.

LArTPCs enable three-dimensional tracking by record-

ing the signal induced by ionization electrons as they

approach the anode plane. The quality of the event re-

construction depends on the granularity of the read-

out system, i.e. the anode wire pitch or pixel size, and

the sampling rate of the induced signal. The latter de-

termines the space precision along the drift coordinate

Z. Few-MeV tracking is also sensitive to the minimum

detectable charge by the front-end electronics as dis-

cussed in Sec.2. This limitation corresponds to an en-

ergy threshold of several tens of keV per hit.

In this work, we considered the same signal sampling

rate as DUNE (2 MHz [1]), which corresponds to ∼
1 mm spatial resolution in the drift direction for an

electric field of E = 500 kV/cm. We then trained the

classification models introduced in Sec.3 by varying the

pixel size w at different energy thresholds Et.

The dataset consists of 2× 105 events, equally split

into the β and the ββ classes. Event distances from the

readout plane are uniformly distributed between 0 m

and the maximum drift length (3.5 m). Electron diffu-

sion was taken into account by applying longitudinal

and transversal dispersions according to:

σL =
√

2DLt (4)

σT =
√

2DT t (5)

where DL and DT are longitudinal and transversal dif-

fusion coefficients estimated for liquid argon from em-

pirical models [51] and t is the drift time. We estimated

a maximum standard deviation of σL ≈ 1.7 mm and
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Fig. 4: Transformer-Encoder scheme. LArTPC events consist of a collection of hits (h1 h2, ... hn), where n can

change for different events. Every hit comes with four variables (three space coordinates and the hit energy), and

the input vector size is 4m, where m is the largest hit number for the events in the batch. The encoder consists

of three stacks of multi-head attention layers and fully-connected layers followed by batch normalization and

dropout. Each multi-head step comprises four parallel self-attention heads. The encoder output is mapped into

the final prediction, i.e. a single-neuron layer with a sigmoid activation function. All hidden layers are equipped

with LeakyReLU activations.

σT ≈ 2.3 mm, corresponding to an event occurring at

3.5 m distance from the readout (maximum drift time).

As noted in Sec.2, we accounted for electron recombi-

nation by assuming an effective lifetime of τ = 30 ms.

Note that recombination plays a marginal role in

our study, being the maximum drift time ∼ 2.2 ms.

For each training at a different pixel size and energy

cutoff, we downsampled the MC simulation track infor-

mation by integrating the energy depositions into hits

of dimension w × w × 1 mm removing hits below the

energy threshold. We trained each model by randomly

partitioning the dataset into 140000 events for training

(70%), 30000 for validation (15%) and 30000 for testing

(15%). To establish the model performance, we chose

the accuracy metric as the fraction of events correctly

classified by the model. For a balanced dataset, i.e. with

the same number of samples for each label, the accu-

racy value ranges between the rates of true ββ event

acceptance and the true β event rejection. The CNN

and the Trasformer-Encoder training was carried out

with the Adam optimizer [52], a variant of the Stochas-

tic Gradient Descent (SGD), with an initial learning

rate of 10−3. The learning rate halves every 20 consec-

utive stall epochs, i.e. epochs in which the validation

accuracy does not increase with respect to the previous

one. 50 epochs for the Transformer-Encoder and 40 for

the CNN ensure a stable convergence of the learning
curves.

We note that in the case of no dropout layers, both

models exhibit significant overfitting, approximatively

after 15-20 epochs, especially at small pixel size (w).

Including dropout layers in our architecture is enough

to minimise the occurrence of overfitting to negligible

levels. We also observe that a dropout rate of 0.15 is

needed for the CNN, while for the Transformer-Encoder,

overfitting is prevented with a rate as small as 0.02. An

example is shown in Fig. 5.

Fig. 6 shows the classification accuracies of the Blob

method, the CNN, and the Transformer-Encoder for

the test set at different hit sizes and energy threshold

values of 10, 50, 100, and 200 keV. It is important to

notice that the average hit energy content scales with its

volume. Since we keep one dimension fixed (as we only

vary the wire pitch and not the sampling frequency),

the hit energies scale with w2. As a consequence, the

energy threshold has a bigger effect at low w.
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Fig. 5: Learning curves for the Convolutional Neural

Network (top) and the Transformer-Encoder (bottom),

considering w = 1 mm and Et = 50 keV. The dashed

lines show the performance in the absence of dropout

layers, while the solid lines include the effect of dropout

layers (inserted accordingly to Fig. 3 and 4), with a

dropout rate of 0.15 and 0.02 for the CNN and the

Transfomer-Encoder respectively. We observe that in

both cases the usage of dropout layers mitigates overfit-

ting without compromising the asymptotical validation

accuracy.

Overall, the Blob model is unable to reach Deep

Learning-competitive performances except for a hand-

ful of configurations with low energy cutoffs and small

pixel size (w between 0.50 mm and 1.25 mm at 10 keV,

w = 0.75 mm at 50 keV). As expected, the Blob model

performs at its best when tracks are fine-grained and

most of the hits pass the energy threshold. The presence

of gaps in the LArTPC track reconstruction severely

affects the graph connections described in Sec.3 and

compromises the blob candidate localization through

the BFS algorithm. ML algorithms, instead, are much

more robust to gaps in traces, showing little to no ac-

curacy losses where the Blob model fails.

Transformer-Encoder and CNN present a similar

trend, especially at intermediate to high pixel sizes.

Their behaviour differentiates at the 1-2% level at w .
2.5 mm for Et = 10 keV and Et = 100 keV (CNN

outperforms here) and w . 1.5 mm for Et = 50 keV

and Et = 200 (Transformer-Encoder performs better).

This trend is justified by the fact that more informa-

tion is available when the number of hits increases and

the effectiveness of the Transformer-Encoder learning

method results in slightly better accuracy. We expect to

gain further improvements in the classification accuracy

for both models at small w, employing a larger training

dataset and ad hoc architecture and hyperparameter

optimization for each individual (w, Et) configuration.

For larger values of w, the analysis approaches the one-

dimensional limit, as the time-axis alone carries most of

the information, narrowing the improvement margin.

The results also emphasize how the accuracy depen-

dence on w flattens as Et increases. For Et = 200 keV,

reducing w from w = 7.5 mm to w = 0.5 mm – a sub-

stantial increase of the LArTPC complexity and cost –

the rate of correctly classified events improves by just

10%, going from 60% to 70%.

Figure 7 shows the confusion matrices for each of

the classification models, providing more complete in-

formation on two significant granularity-threshold com-

binations (w = 1 mm, Et = 50 keV and w = 5 mm,

Et = 200 keV) such as the tradeoffs between signal and

background acceptances. The first one (Fig.7a) corre-

sponds to a regime comparable to the ones expected

for FD1 HD and FD2 VD module, while the second

one (Fig.7b) to an optimal, yet achievable configura-

tion (see Sec.2).

Machine learning techniques offer additional insight

with respect to classic algorithms when detector op-

timization studies are considered. Both the CNN and

Transformer-based classification algorithms point to-

ward the prominence of readout electronics over gran-

ularity for sufficiently small values of w. This is an

important finding since the increase of granularity in

large-volume LArTPC is a major technical challenge.

Such an increase does not represent a viable option for

w < 1 mm due to the increase in the number of chan-

nels and the data throughput, while a reduction of Et

at the level of a few tens of keV is well within reach of

current technologies.

At Et = 100 keV and lower, the improvement in

accuracy achievable by lowering w is prominent and

drives the accuracy metric of the β vs ββ classification.
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Fig. 6: Accuracy of the Transformer-Encoder, the Convolutional Neural Network and the Blob method ad different

wire pitches (pixel sizes) w with a 0.25 mm step applying a hit cutoff energy of Et = 10 keV (a), 50 keV (b), 100

keV (c), 200 keV (c). The error bands account for ±2σ statistical fluctuations.

5 Conclusions

In this paper, we discussed the performance of two ma-

jor classes of machine learning algorithms for the iden-

tification of low-energy events in liquid argon and com-

pared these findings with the performance of conven-

tional techniques. In particular, we focused our atten-

tion on the most challenging classification problem, the

discrimination of single β versus ββ events. We thus

used as a benchmark the blob deterministic method de-

veloped by the NEXT Collaboration for the identifi-

cation of neutrinoless double beta decay modified to

operate in a LArTPC. Both classes of machine learn-

ing algorithms - Convolutional Neural Networks and

Transformer-Encoder - outperforms the blob algorithm.

The CNN and transformer performance are compara-

ble in most of the detector parameter space (see Fig.

6). Overfitting is mitigated in both cases by a dropout

layer and is negligible even for small values of the pixel

size w. Still, the Transformer-Encoder is more memory-

efficient and robust against overfitting even with a dropout

rate as small as 0.02. ML-assisted techniques are partic-

ularly effective for detector optimization studies since

the redefinition of conventional algorithms in a broad

detector parameter phase space is very cumbersome.

The CNN and Transformer-based classification algo-

rithms point toward the prominence of readout elec-

tronics over granularity for sufficiently small values of
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(a) w = 5 mm, Et = 50 keV.

(b) w = 1 mm, Et = 200 keV.

Fig. 7: Confusion matrices relative to different w and Et configurations for Transformer-Encoder, CNN and Blob

models, displaying the number of events correctly or incorrectly classified for both β and ββ classes in the test

set. Some of the test events (approximately 10%) were discarded because no hit survived the energy cutoff.

w. This is an important finding since the increase of

granularity in large-volume LArTPC is a major tech-

nical challenge, while a reduction of Et at the level of

a few tens of keV is well within reach of current tech-

nologies.
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