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Abstract

We study singular perturbations of eigenvalues of the polyharmonic operator on bounded do-
mains under removal of small interior compact sets. We consider both homogeneous Dirichlet and
Navier conditions on the external boundary, while we impose homogeneous Dirichlet conditions on
the boundary of the removed set. To this aim, we develop a notion of capacity which is suitable
for our higher-order context, and which permits to obtain a description of the asymptotic behaviour
of perturbed simple eigenvalues in terms of a capacity of the removed set, in dependence of the
respective normalized eigenfunction. Then, in the particular case of a subset which is scaling to a
point, we apply a blow-up analysis to detect the precise convergence rate, which turns out to de-
pend on the order of vanishing of the eigenfunction. In this respect, an important role is played by
Hardy-Rellich inequalities in order to identify the appropriate functional space containing the limit-
ing profile. Remarkably, for the biharmonic operator this turns out to be the same, regardless of the
boundary conditions prescribed on the exterior boundary.

1 Introduction
The aim of the present work is to study perturbations of the eigenvalues of the polyharmonic operator
(−∆)m,m ≥ 2, when from a given bounded domain Ω ⊂ RN an interior compact setK is removed,
thus introducing a singular perturbation. We focus on the case in which K is small, in the sense that
its capacity is asymptotically near 0, with respect to a notion of capacity suitably developed for our
higher-order setting. More specifically, for m ≥ 2 we consider the eigenvalue problems{

(−∆)mu = λu in Ω,

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂Ω,

resp.

{
(−∆)mu = λu in Ω,

u = ∆u = · · · = ∆m−1u = 0 on ∂Ω,
(1.1)
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with Dirichlet and Navier boundary conditions (BCs) respectively, and, given a compact setK ⊂⊂ Ω,
we are interested in the corresponding eigenvalue problems in case K is removed from Ω, that is{

(−∆)mu = λu in Ω \K,
u = ∂nu = · · · = ∂m−1

n u = 0 in ∂(Ω\K),
(1.2)

in the Dirichlet case, and 
(−∆)mu = λu in Ω \K,
u = ∆u = · · · = ∆m−1u = 0 on ∂Ω,

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂K,

(1.3)

where, instead, Navier BCs on ∂Ω are considered. Note that in both cases we always deal with
Dirichlet BCs on ∂K. The goal is to investigate spectral stability and sharp asymptotic estimates for
the eigenvalues of problems (1.2) and (1.3) when K vanishes in a capacitary sense.

Qualitative properties of solutions to higher-order problem are deeply related to the boundary
conditions that one prescribes. The most common ones in the literature are Dirichlet BCs

u = ∂nu = · · · = ∂m−1
n u = 0 on ∂Ω, (1.4)

and Navier BCs
u = ∆u = · · · = ∆m−1u = 0 on ∂Ω. (1.5)

Indeed, from the point of view of the applications, they correspond to the simplest Kirchhoff-Love
models of a thin plate, either clamped or hinged at the boundary, respectively in the Dirichlet and the
Navier case.

While the existence and regularity theory for linear problems is essentially the same in both cases
(see e.g. [GGS]), however solutions have relevant differences, even when Ω is a smooth domain.
The most striking and famous one is regarding positivity. In the Navier case the solution inherits its
sign from the data, since one can decouple the problem into a system of second-order equations, for
which a maximum principle holds. Instead, positivity preserving is in general lost in the Dirichlet
case, even for smooth and convex domains, except for peculiar situations in which one can rely on a
global analysis of the Green function, such as for the case of the ball and its smooth deformations,
see [GGS, GR]. On the other hand, functions which undergo Dirichlet BCs can be trivially extended
by 0 outside the domain, so that the extension continues to belong to the same higher-order Sobolev
space, while this is not true anymore for solutions of Navier problems because of possible jumps
on ∂Ω of the normal derivative. Motivated by these arguments, we investigate perturbations of the
eigenvalues of (−∆)m in both context of Dirichlet and Navier BCs on ∂Ω. Since we rely more on
extension properties rather than positivity issues, our analysis will be harder in the Navier case.

In the second-order case (i.e. m = 1), spectral stability under removal of small (condenser)
capacity sets is proved in [Co] in a very general context, see also [BC] and [Fl]. More specifically, in
[Co] it is shown there that the function λ(Ω\K)−λ(Ω) is differentiable with respect to the capacity
of the removed set K relative to Ω. A sharp quantification of the vanishing order of the variation of
simple eigenvalues is given in [AFHL], when concentrating families of compact sets are considered:
the precise rate of convergence is asymptotic to the u-capacity associated to the limit eigenfunction u
(see [BC, Definition 2.1] and [Co, (14)] for the notion of u-capacity) and sharp asymptotic estimates
are given in terms of the diameter of the removed set if the limit set is a point in R2, and either
if the eigenfunction does not vanish there, or in case of specific concentrating sets such as disks
or segments. Asymptotic estimates of u-capacities and eigenvalues of the Dirichlet Laplacian, on
bounded planar domains with small holes of the more general form εω with ε → 0, are given in
[ABLM]. In both [AFHL] and [ABLM], a tool that helps to provide precise asymptotic estimates in
dimension two is given by elliptic coordinates, which allow rewriting the equations satisfied by the
capacitary potentials in a rather explicit way and which however do not have a simple analogue in
higher dimensions. In the complementary case N ≥ 3, an approach based on a blow-up argument
is used in [FNO] to derive sharp asymptotic estimates of the u-capacity, and consequently of the
eigenvalue variation, for general families of sets which may also concentrate at the boundary. This
method has been applied also to fractional problems in [AFN].
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Higher-order problems m ≥ 2 are studied in [CN, KLW, LWK], where asymptotic expansions
of eigenvalues of biharmonic operators are obtained under removal of a family of sets which are
uniformly vanishing to a point {x0}. All these papers deal with the two-dimensional case and only
Dirichlet boundary conditions, both on ∂Ω and on ∂K, are considered. The main difference with
the corresponding two-dimensional second-order problem, is that the limiting problem involves the
punctured domain Ω \ {x0}. In [CN] formal recursive asymptotic expansions are found in the non-
degenerate case, namely when the gradient of the corresponding eigenfunction does not vanish at x0,
as well as in the degenerate case. In the former case, these expansions are justified in a suitable func-
tional setting which makes use of weighted Sobolev spaces, named after Kondrat’ev, in order to deal
with the point constraint. On the other hand, motivated by the study of MEMS-devices, in [KLW],
the asymptotic behaviour of eigenpairs is formally obtained, in both nondegenerate and degenerate
cases, using the method of matching asymptotic expansions. A more delicate situation is taken into
account in [LWK], when both the removed subdomain is vanishing, as well as the biharmonic part
of the operator, provided a second-order term is introduced in the equation. In all these works, the
asymptotic expansions of the perturbed eigenvalues are of logarithmic kind, fact that recalls the ex-
pansion in the two-dimensional case for the Laplace operator given in [AFHL, Theorem 1.7]. We
note however that, unlike what happens for the second order problem, capacities cannot play there
the role of perturbation parameters, since in dimension 2 the higher order capacity of a point (defined
as in (1.11)) is different from zero; this is also the reason why the limiting problem is formulated in
the punctured domain. We mention that the spectral behavior of higher order elliptic operators upon
domain perturbation is investigated also in [AL] for Dirichlet, Neumann and intermediate boundary
conditions.

The first aim of the present paper is a rigorous description of the asymptotic behaviour of the
perturbed eigenvalues for polyharmonic operators (−∆)m for any m ≥ 2 and for a large class of
removed sets, in the spirit of [AFHL, FNO, AFN]. Since we deal with sets of vanishing capacities,
we are focused on the high dimensional case N ≥ 2m. Furthermore, as second important objective,
we investigate whether and how different boundary conditions on ∂Ω affect the analysis. As already
remarked, in the present work we consider Dirichlet boundary conditions on ∂K. In order to have a
complete picture of the influence of the boundary conditions, the complementary situation of Navier
BCs on ∂K should be addressed. However, the techniques developed in the present work strongly
rely on extension properties which are characteristic of the Dirichlet case, so that a different approach
should be devised to treat the Navier case on ∂K. We plan to address this in a future work.

In order to give the precise statements of the main results, we first describe the functional setting
and the notation we are going to use throughout the paper.

Notation We denote the normal derivative of the function u by ∂nu. For a set D ⊂ RN , U(D)
denotes some open neighbourhood ofD,C∞0 (D) is the space of the infinitely differentiable functions
which are compactly supported in D, and Lp(D) with p ∈ [1,+∞] is the space of p-integrable
functions. The norm of Lp(D) is denoted simply by ‖ · ‖p whenever the domain is clear from the
context. For everym ∈ N and u : D → R withD ⊂ RN , we denote asDmu the tensor ofm-th order
derivatives of u and define |Dmu|2 =

∑
|α|=m |Dαu|2, where |α| is the length of the multi-index α.

The symbol . is used when an inequality is true up to an omitted structural constant, and we
write f = O(g) (resp. f = O(g)) as x → x0 when there exists a constant C > 0 such that
|f(x)| ≤ C|g(x)| in a neighbourhood of x0 (resp. f(x)

g(x) → 0 as x→ x0).

1.1 The functional setting
Let Ω be a bounded smooth domain in RN . In order to treat at once different boundary conditions on
∂Ω, i.e. the settings of problems (1.2) and (1.3), we introduce the following notation. For m ≥ 2 the
set V m(Ω) ⊂ Hm(Ω) is defined either as

V m(Ω) := Hm
0 (Ω)

in case Dirichlet boundary conditions (1.4) are prescribed on ∂Ω, where Hm
0 (Ω) is the closure in

Hm(Ω) of C∞0 (Ω), or by
V m(Ω) := Hm

ϑ (Ω)
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if Navier boundary conditions (1.5) are assumed on ∂Ω. Here Hm
ϑ (Ω) is the closure in Hm(Ω) of

the space
Cmϑ (Ω) :=

{
u ∈ Cm(Ω)

∣∣ ∆ju|∂Ω = 0 for all 0 ≤ j < m
2

}
and it can be characterized as

Hm
ϑ (Ω) =

{
u ∈ Hm(Ω)

∣∣ ∆ju|∂Ω = 0 in the sense of traces for all 0 ≤ j < m
2

}
.

Note that for m = 2 we have H2
ϑ(Ω) = H2(Ω)∩H1

0 (Ω). In both cases V m(Ω) is a closed subspace
of Hm(Ω). Moreover, for a bounded domain Ω ⊂ RN , the norms

‖ · ‖Hm(Ω) :=
∑
|α|≤m

‖Dα · ‖L2(Ω)

(with the multi-index notation) and

‖∇m · ‖L2(Ω), where ∇mf :=

{
∆

m
2 f for m even,

∇∆
m−1

2 f for m odd,

are equivalent on both Hm
0 (Ω) and Hm

ϑ (Ω), see e.g. [GGS, Theorem 2.2] for the Dirichlet case and
[GGS1] for the Navier case. In particular, there exists a positive constant C = C(N,m,Ω) > 0,
depending only on N , m, and Ω, such that

‖u‖Hm(Ω) ≤ C‖∇mu‖L2(Ω) for all u ∈ V m(Ω). (1.6)

Note also that in the Dirichlet case all boundary conditions are stable, and therefore they are all
included in the definition of the space Hm

0 (Ω); on the other hand, only the first half of the Navier
conditions are stable, while the boundary conditions ∆ju|∂Ω = 0 for m2 ≤ j ≤ m−1 are natural and
thus do not appear in the definition of Hm

ϑ (Ω). For a comprehensive discussion, see [GGS, Sec.2.4].

The next spaces are relevant when a “hole” is produced in the domain. For a compact setK ⊂ Ω,
we define

V m0 (Ω \K) :=

{
Hm

0 (Ω \K) in the Dirichlet case,
Hm
ϑ,0(Ω \K) in the Navier case.

Here Hm
ϑ,0(Ω\K) denotes the space suitable for Navier BCs on ∂Ω and Dirichlet BCs on ∂K. More

precisely, Hm
ϑ,0(Ω \K) is the closure in Hm

ϑ (Ω) of

Cmϑ,0(Ω \K) :=
{
u ∈ Cmϑ (Ω)

∣∣ suppu ∩ U(K) = ∅ for some U(K)
}
.

In case ∂K is smooth, u ∈ Hm
ϑ,0(Ω \K) if and only if u ∈ Hm(Ω \K) and

∆ju|∂Ω = 0 for all 0 ≤ j < m
2 and ∂hnu|∂K = 0 for all 0 ≤ h ≤ m− 1

in the sense of L2-traces. Note that we have the following chain of inclusions

Hm
0 (Ω \K) ( Hm

ϑ,0(Ω \K) ( Hm
ϑ (Ω) ( Hm(Ω), (1.7)

where the second inclusion holds by extending to 0 in K functions defined in Ω \ K, thanks to
the Dirichlet conditions imposed on ∂K. For the same reason, note also that, for any compact sets
K1,K2 such that K1 ⊂ K2 ⊂ Ω, one has

V m(Ω \K2) ⊂ V m(Ω \K1).

All such spaces are Hilbert spaces with scalar product1 qm(u, v) :=
∫

Ω
∇mu∇mv. Note that,

unlike the general case, qm(·, ·) does not involve boundary integrals, see [GGS, Sec.2.4]. By standard
arguments [GGS, Theorem 2.15], the linear problem (−∆)mu = f in Ω \K, with f ∈ L2(Ω \K)

1We always omit to indicate the scalar product in RN with ·.
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and boundary conditions either (1.4) or (1.5), admits a unique weak solution u ∈ V m0 (Ω \K), in the
sense that ∫

Ω

∇mu∇mϕ =

∫
Ω

fϕ for all ϕ ∈ V m0 (Ω \K).

Analogously, we define the eigenvalues of problems (1.2) and (1.3) in the weak sense. We say that
(λ, u) is an eigenpair of (1.2) (resp. (1.3)) if (λ, u) ∈ R× V m0 (Ω \K) satisfies

u 6≡ 0 and
∫

Ω

∇mu∇mϕ = λ

∫
Ω

uϕ for all ϕ ∈ V m0 (Ω \K). (1.8)

By classical spectral theory, problems (1.2) and (1.3) admit a diverging sequence of positive eigen-
values

0 < λ1(Ω \K) ≤ · · · ≤ λj(Ω \K) ≤ · · · → +∞,

where each one is repeated as many times as its multiplicity. Of course the same holds for the unper-
turbed problems (1.1), whose eigenvalues are denoted as (λj(Ω))j∈N. We recall that the eigenvalues
may be variationally characterized as

λj(Ω \K) = min
Xj⊂Vm0 (Ω\K)

dimXj=j

max
v∈Xj

∫
Ω\K |∇

mv|2∫
Ω\K |v|2

. (1.9)

Finally, for Ω and K as before, we define

Xm(Ω) :=

{
C∞0 (Ω) in the Dirichlet case,
Cmϑ (Ω) in the Navier case

(1.10)

and

Xm
0 (Ω \K) :=

{
C∞0 (Ω \K) in the Dirichlet case,
Cmϑ,0(Ω \K) in the Navier case,

for the sake of a compact notation in some of the proofs.

1.2 Main results
In the spirit of the previously cited works [AFHL, AFN, FNO], asymptotic expansions of eigenvalues
under removal of small sets can be established treating as a perturbation parameter a suitable notion
of capacity. Extending to the higher-order Sobolev framework the classical definition in the second-
order case, for every compact set K ⊂ Ω we define the (condenser) V m-capacity of K in Ω as

capVm,Ω(K) := inf

{∫
Ω

|∇mf |2
∣∣∣ f ∈ V m(Ω), f − ηK ∈ V m0 (Ω \K)

}
, (1.11)

where ηK is a fixed smooth function such that supp ηK ⊂ Ω and ηK ≡ 1 in a neighbourhood of
K. The V m-capacity of a set K gives an indication about its relevance for the higher-order Sobolev
space V m, in the sense that zero V m-capacity sets do not affect the space V m(Ω) when they are
removed from Ω, and hence nor the spectrum of the polyharmonic operator (Proposition 2.1).

In our analysis, a notion of “weighted” capacity, which represents the higher order analogue of
the u-capacity introduced in [BC, Definition 2.1] and [Co, (14)] for second order problems, will be
significant too. Given a function u ∈ V m(Ω), we define the (u, V m)-capacity of K in Ω as

capVm,Ω(K,u) := inf

{∫
Ω

|∇mf |2
∣∣∣ f ∈ V m(Ω), f − u ∈ V m0 (Ω \K)

}
. (1.12)

Note that u is relevant only in a neighbourhood of K. Hence, capVm,Ω(K,u) = capVm,Ω(K, ηKu)
for any cut-off function ηK as before. This permits to extend the notion of (u, V m)-capacity to
functions u ∈ Hm

loc(RN ).
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For those cases in which we need to distinguish the capacities according to the boundary condi-
tions on ∂Ω, we use the following notation:

capm,Ω(K) := capHm0 ,Ω(K) and capm,ϑ,Ω(K) := capHmϑ ,Ω(K),

for the Dirichlet and Navier BCs on ∂Ω, respectively. Similarly we denote

capm,Ω(K,u) := capHm0 ,Ω(K,u) and capm,ϑ,Ω(K,u) := capHmϑ ,Ω(K,u). (1.13)

We point out that the V m-capacity as well as the (u, V m)-capacity of a compact set K are attained
by a unique minimizer, which is called capacitary potential, and which we denote by WK and WK,u

respectively. The proof of the attainment of both capacities, together with some basic properties
which will be used throughout the paper, is presented in Section 2.

Our first result is about the stability of the spectrum of (−∆)m, once a set of small V m-capacity
is removed.

Theorem 1.1. Let N ≥ 2m and Ω ⊂ RN be a smooth bounded domain. Suppose one of the
following:

(D) V m(Ω) = Hm
0 (Ω) and K ⊂ Ω is compact;

(N) V m(Ω) = Hm
ϑ (Ω) and the exists K0 ⊂ Ω compact such that K is compact and K ⊂ K0.

Denote by λj(Ω) and λj(Ω \K), j ∈ N \ {0}, the eigenvalues respectively for (1.1) and (1.8). For
all j ∈ N \ {0}, there exist δ > 0 and C > 0 (which depends on K0 in the Navier case (N)) such
that, if capVm,Ω(K) < δ, one has

|λj(Ω \K)− λj(Ω)| ≤ C
(
capVm,Ω(K)

)1/2
.

In particular λj(Ω \K)→ λj(Ω) as capVm,Ω(K)→ 0.

The proof of Theorem 1.1 is based on the variational characterization of the eigenvalues (1.9) and
it is detailed in Section 3.1. We remark that spectral stability in a more general higher-order context
was also established in [AL] with a different approach. Here we propose a self-contained and simple
proof for our Dirichlet and Navier-Dirichlet settings.

Aiming now at a more precise estimate of the convergence rate, we introduce the following notion
of convergence of sets.

Definition 1.1. Let {Kε}ε>0 be a family of compact sets contained in Ω. We say that Kε is concen-
trating to a compact set K ⊂ Ω as ε→ 0 if, for every open set U ⊆ Ω such that U ⊃ K, there exists
εU > 0 such that U ⊃ Kε for every ε ∈ (0, εU ).

An example is given by a decreasing family of compact sets, see e.g. [FNO, Example 3.7]. Note
that this property alone is not sufficient to have the standard (i.e. metric) convergence of sets. For
instance, the uniqueness of the limit set is not assured (e.g. if Kε is concentrating to K then Kε is
concentrating also to K̃ for any compact set K̃ which contains K). However, as for second-order
problems, in the case of a 0-capacity limit set, this concept of convergence of sets is enough to prove
the continuity of the capacity (Proposition 3.1) and the Mosco convergence [Da, Mo] of the respective
V m-spaces (Proposition 3.2). These will be the tools needed for a sharp asymptotic expansion of a
perturbed simple eigenvalue λJ(Ω\Kε) in terms of the (uJ , V

m)-capacity of the vanishing compact
sets Kε, where uJ is a normalized eigenfunction relative to λJ(Ω).

Theorem 1.2. Let N ≥ 2m and Ω ⊂ RN be a smooth bounded domain. Let λJ(Ω) be a sim-
ple eigenvalue of (1.1) and uJ ∈ V m(Ω) be a corresponding eigenfunction normalized in L2(Ω).
Let {Kε}ε>0 be a family of compact sets concentrating, as ε → 0, to a compact set K with
capVm,Ω(K) = 0. Then, as ε→ 0,

λJ(Ω \Kε) = λJ(Ω) + capVm,Ω(Kε, uJ) + O(capVm,Ω(Kε, uJ)). (1.14)

Theorem 1.2 is the higher-order counterpart of [AFHL, Theorem 1.4] and its proof is presented
in Section 3.2. In the expansion (1.14), the asymptotic parameter is the (uJ , V

m)-capacity of the
vanishing set. The next aim is to quantify capVm,Ω(Kε, uJ) as a function of the diameter of Kε.
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In this respect, we focus on the particular case in which the limit set K is a point x0 ∈ Ω (which
in dimension N ≥ 2m has zero V m-capacity, see Proposition 2.3); without loss of generality, we
consider x0 = 0. We deal with a uniformly shrinking family of compact sets Kε, the model case
being Kε = εK 3 0 for some fixed compact set K ⊂ RN . In this case, assuming 0 to be an
interior point of Ω, and having the operator (−∆)m − λ constant coefficients, the eigenfunction uJ
is analytic at 0, see [Jo], and hence it does not have infinite order of vanishing there. Therefore, there
exist γ ∈ N and a γ-homogeneous polyharmonic polynomial U0 ∈ Hm

loc(RN ) such that

Uε :=
uJ(ε ·)
εγ

→ U0 in Hm(BR(0)) (1.15)

for all R > 0 as ε→ 0. This fact follows from a general result about elliptic equations by Bers [Be,
Sec.4 Theorem 1], see also [Ch, Theorem 2.1], provided - as in our case - one discards the possibility
of an infinite order of vanishing.

In light of (1.15), our strategy to find an asymptotic expansion of capVm,Ω(Kε, uJ) is based
on a blow-up argument: we rescale the boundary value problem defining the capacitary potential
WKε,uJ , find a limit equation on RN \ K, and prove the convergence of the family of rescaled
capacitary potentials to the one for the limiting problem. To this aim, a suitable notion of capacity
in RN , involving homogeneous higher-order Sobolev spaces Dm,2

0 (RN ) and denoted by capm,RN ,
will be needed, see Section 2.2. The asymptotic expansion of capVm,Ω(Kε, uJ) obtained by these
arguments turns out to depend on the order of vanishing of uJ at the point 0. More precisely, we
have the following results, which we state below for the model case Kε = εK and prove in more
generality in Section 4.1. For the Dirichlet case we have the following:

Theorem 1.3 (Dirichlet case). Let N > 2m and Ω ⊂ RN be a bounded smooth domain with 0 ∈ Ω.
Let K ⊂ RN be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be an eigenvalue of (1.1)
with Dirichlet boundary conditions and uJ ∈ Hm

0 (Ω) be a corresponding eigenfunction normalized
in L2(Ω). Then

capm,Ω(Kε, uJ) = εN−2m+2γ
(
capm,RN (K, U0) + O(1)

)
(1.16)

as ε→ 0, with γ and U0 as in (1.15).

The dimensional restriction N > 2m is mainly due to the possibility of characterizing higher-
order homogeneous Sobolev spaces as concrete functional spaces satisfying Sobolev and Hardy-type
inequalities (see Sections 2.2.1 and 2.2.2). In the conformal case N = 2m such spaces are instead
made of classes of functions defined up to additive polynomials, see [Ga, II.6-7]. In the Navier
setting, we need to restrict to the biharmonic case m = 2.

Theorem 1.4 (Navier case). Let N > 4 and Ω ⊂ RN be a bounded smooth domain with 0 ∈ Ω.
Let K ⊂ RN be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be an eigenvalue of (1.1)
with Navier boundary conditions and uJ ∈ H2

ϑ(Ω) be a corresponding eigenfunction normalized in
L2(Ω). Then

cap2,ϑ,Ω(Kε, uJ) = εN−4+2γ
(
cap2,RN (K, U0) + O(1)

)
as ε→ 0, with γ and U0 as in (1.15) with m = 2.

It is remarkable that the same asymptotic expansion (1.16) form = 2 holds true for both Dirichlet
and Navier BCs on ∂Ω. As a consequence, imposing different conditions on the external boundary
does not affect the first term of the asymptotic expansion of the perturbed eigenvalues. In the proof of
Theorems 1.3 and 1.4 we will need to distinguish between the two settings. If in the case of Dirichlet
BCs on ∂Ω the natural candidate as functional space for the limiting problem is Dm,2

0 (RN \ K),
on the other hand, in the Navier case, because of the impracticability of the trivial extension of a
function outside Ω, this is not evident and follows after a more involved analysis which makes use
of suitable Hardy-Rellich inequalities. In Section 2.2.2 we give the precise statement and proofs of
such inequalities. This is the main reason for the restriction to the case m = 2, see Section 4.1.

Braiding together Theorem 1.2 and Theorems 1.3-1.4, we obtain the following sharp asymptotic
expansions of λJ(Ω \Kε), stated here for the model case Kε = εK.

Theorem 1.5 (Dirichlet case). Let N > 2m and Ω ⊂ RN be a bounded smooth domain containing
0. Let K ⊂ RN be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be a simple eigenvalue
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of (1.1) with Dirichlet boundary conditions and let uJ ∈ Hm
0 (Ω) be a corresponding eigenfunction

normalized in L2(Ω). Then

λJ(Ω \Kε) = λJ(Ω) + εN−2m+2γ
(
capm,RN (K, U0) + O(1)

)
as ε→ 0, with γ and U0 as in (1.15).

Theorem 1.6 (Navier case). Let N > 4 and Ω ⊂ RN be a bounded smooth domain containing 0.
Let K ⊂ RN be a fixed compact set and, for all ε > 0, Kε = εK. Let λJ be a simple eigenvalue
of (1.1) with Navier boundary conditions and let uJ ∈ H2

ϑ(Ω) be a corresponding eigenfunction
normalized in L2(Ω). Then

λJ(Ω \Kε) = λJ(Ω) + εN−4+2γ
(
cap2,RN (K, U0) + O(1)

)
as ε→ 0, with γ and U0 as in (1.15) with m = 2.

Theorems 1.3-1.6 deal with the model case Kε = εK. Section 4.1 will be devoted to the proof of
their analogues for a more comprehensive setting of general families of concentrating compact sets
{Kε}ε>0 which uniformly shrink to a point, see Theorems 4.4-4.7.

The asymptotic expansion provided by Theorems 1.5-1.6 detects the sharp vanishing rate of the
eigenvalue variation whenever capm,RN (K, U0) 6= 0. In Section 4.2 we establish sufficient condi-
tions for this to hold. In particular, this will always be the case when the Lebesgue measure of K
is positive (Proposition 4.8), or when either the eigenfunction uJ does not vanish at the point x0

(Proposition 4.9) or it does vanish but the compactum K and the null-set of the limiting polynomial
U0 in (1.15) are “transversal enough” (Proposition 4.10).

The paper is then concluded by the short Section 5 which contains a discussion about questions
which are left open by our analysis and possible directions in which our results may be extended.

2 Definition of higher-order capacity with Dirichlet and Navier
BCs and first properties
The aim of this section is to introduce a notion of capacity which agrees with the higher-order frame-
work of the problem and which turns out to be an important tool in order to study the asymptotics
of the eigenvalues of the perturbed problems (1.2)-(1.3). The concept of (condenser) capacity, well-
known for the second-order case, was first considered in the higher-order setting by Maz’ya for
bounded domains on which Dirichlet boundary conditions are imposed, or for the whole space, see2

e.g. [Ma1, Ma]. In Section 2.1 we propose an unified treatment for both Dirichlet and Navier settings
and establish the main properties of the capacities defined by (1.11)-(1.12). In Section 2.2 we recall
the main properties of the homogeneous Sobolev spaces and establish a Hardy-Rellich inequality
with intermediate derivatives. Moreover we introduce the notion of capacity of a compact set in the
whole space RN for large dimensions N > 2m.

2.1 Higher-order capacities in V m
0

Let m ∈ N \ {0}, Ω be a bounded smooth domain in RN and K be a compact subset of Ω. First,
we observe that both capacities (1.11)-(1.12) are attained. Indeed, for any u ∈ V m(Ω), we have
that Su := {g ∈ V m(Ω) | g − u ∈ V m0 (Ω \K)} is an affine hyperplane in V m(Ω), so in particular a
convex set. This implies that there exists a unique element in V m(Ω) which minimizes the distance
from the origin, i.e. the norm ‖∇m · ‖2 in Su, which is called capacitary potential and is denoted by
WK,u (in case u is replaced by ηK , we simply denote it by WK). This means that WK,u is such that

capVm,Ω(K,u) =

∫
Ω

|∇mWK,u|2

2In these works the higher-order capacity is defined through the Lp-norm of the tensor of the m-th derivatives Dmu.
However, the two norms are equivalent on any bounded smooth domain.
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and it is the unique (weak) solution of the problem
(−∆)mWK,u = 0 in Ω \K,
WK,u ∈ V m(Ω),

WK,u − u ∈ V m0 (Ω \K),

(2.1)

in the sense that WK,u ∈ V m(Ω), WK − u ∈ V m0 (Ω \K) and∫
Ω\K
∇mWK,u∇mϕ = 0 for all ϕ ∈ V m0 (Ω \K).

In (2.1) we are in fact prescribing homogeneous Dirichlet or Navier boundary conditions on ∂Ω and,
in case ∂K is smooth, an “m-Dirichlet-matching” betweenWK,u and u on ∂K, i.e. them conditions
WK,u = u, ∂nWK,u = ∂nu, . . . , ∂m−1

n WK,u = ∂m−1
n u on ∂K.

In particular, the minimizer WK of the V m-capacity is such that

capVm,Ω(K) =

∫
Ω

|∇mWK |2

and it is the unique (weak) solution of the problem
(−∆)mWK = 0 in Ω \K,
WK ∈ V m(Ω),

WK − ηK ∈ V m0 (Ω \K).

in the sense that WK ∈ V m(Ω), WK − ηK ∈ V m0 (Ω \K) and∫
Ω\K
∇mWK∇mϕ = 0 for all ϕ ∈ V m0 (Ω \K). (2.2)

We observe that capVm,Ω(K) = 0 implies that 0 ∈ SηK , i.e. ηK ∈ V m0 (Ω\K). Since ηK ≡ 1 onK,
this can only hold true when the Sobolev space “does not see” K, i.e. when V m0 (Ω \K) = V m(Ω).
As a consequence, the eigenvalues of problems (1.2) and (1.3) coincide with those of (1.1). More
precisely, in the spirit of [Co, Propositions 2.1 and 2.2] (see also [FNO, Proposition 3.3]), we prove
the following.

Proposition 2.1. The following statements are equivalent:

i) capVm,Ω(K) = 0;
ii) V m0 (Ω \K) = V m(Ω);

iii) λn(Ω \K) = λn(Ω) for all n ∈ N.

Proof. To show (i) ⇒ (ii), by density of Xm(Ω) in V m(Ω), see (1.10), it is enough to prove
that each u ∈ Xm(Ω) may be approximated by functions in V m0 (Ω \ K) in the V m-norm. Since
capVm,Ω(K) = 0, there exists (wi)i ⊂ V m(Ω) with wi − ηK ∈ V m0 (Ω \K) so that ‖∇mwi‖22 → 0
as i → +∞. Hence, defining vi := u(1 − ηKwi), one has that vi ∈ V m0 (Ω \ K) and, in view of
(1.6),

‖∇m(u− vi)‖22 = ‖∇m(uηKwi)‖22 .
m∑
j=0

∫
Ω

|Dm−j(ηKu)|2|Djwi|2

≤ ‖ηKu‖2Wm,∞(Ω)

m∑
j=0

∫
Ω

|Djwi|2 = ‖ηKu‖2Wm,∞(Ω)‖wi‖
2
Hm(Ω)

≤ C2‖ηKu‖2Wm,∞(Ω)‖∇
mwi‖22 → 0

as i→ +∞.
The reversed implication (ii)⇒ (i) is due to the fact that ϕ = WK may be used as a test function

in (2.2) to obtain that ‖WK‖Vm0 (Ω\K) = ‖WK‖Vm(Ω) = 0, which is equivalent to (i).
(ii) ⇒ (iii) easily follows from the minimax characterization of the eigenvalues (1.9). The

converse is implied by the spectral theorem, because by (iii) one is able to find an orthonormal basis
of V m(Ω) made of V m0 (Ω \K)-functions.
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Remark 1. From Proposition 2.1, in particular from the implication (i) ⇒ (ii), one derives the
following equivalence:

capVm,Ω(K) = 0 ⇔ capVm,Ω(K,u) = 0 for all u ∈ V m(Ω).

Next, we investigate some properties of the above defined capacities, in particular the mono-
tonicity properties with respect to Ω and K, and the relation between the Dirichlet and the Navier
capacities.

Proposition 2.2 (Monotonicity properties of the capacity). The following properties hold.

i) If K1 ⊂ K2 ⊂ Ω, K1,K2 are compact, and h ∈ V m(Ω), then

capVm,Ω(K1, h) ≤ capVm,Ω(K2, h).

ii) If K ⊂ Ω1 ⊂ Ω2, K is compact, and h ∈ Hm(Ω2), then capm,Ω2
(K,h) ≤ capm,Ω1

(K,h).

iii) For every K ⊂ Ω compact and h ∈ Hm(Ω), there holds capm,ϑ,Ω(K,h) ≤ capm,Ω(K,h).

Proof. i) It is enough to notice that, for u ∈ V m(Ω), the condition u − h ∈ V m0 (Ω \ K2) is more
restrictive than u− h ∈ V m0 (Ω \K1).

ii) Any u ∈ Hm
0 (Ω1) can be extended by 0 to a function in Hm

0 (Ω2), so the minimization for
capm,Ω2

(K,h) takes into consideration a larger set of test functions than the one for capm,Ω1
(K,h),

and consequently the inf decreases.
iii) It follows directly from the inclusions in (1.7).

Remark 2. Note that the argument used in the proof of (ii) for Dirichlet BCs is no more available in
the case of Navier BCs on ∂Ω.

As an example, which is also relevant for our purposes, we compute the capacity of a point in RN .

Proposition 2.3 (Capacity of a point). Let x0 ∈ Ω. Then capVm,Ω({x0}) = 0 if N ≥ 2m, while
capVm,Ω({x0}) > 0 when N ≤ 2m− 1.

Proof. It is not restrictive to assume that x0 = 0 ∈ Ω. If N ≤ 2m − 1, then the embedding
V m(Ω) ↪→ C0(Ω) is continuous i.e. ‖∇mu‖2 ≥ C(m,N,Ω)‖u‖∞ for all u ∈ V m(Ω), with a
constant C(m,N,Ω) > 0 which does not depend on u. In particular for those functions in V m(Ω)
for which u(0) = 1, one has ‖∇mu‖2 ≥ C(m,N,Ω). Hence the infimum in the definition of
capVm,Ω(K) is strictly positive.

In view of Proposition 2.2(iii), it is sufficient to prove it for the Dirichlet case. Let N ≥ 2m+ 1
and take a sequence of shrinking cut-off in the following way: let ζ ∈ C∞0 (B2(0)) such that ζ ≡ 1
onB1(0) and consider ζk(x) := ζ(kx). One has that ζk ∈ C∞0 (B 2

k
(0)) and ζk ≡ 1 onB 1

k
(0), hence

supp ζk ⊂ Ω for k ≥ k0 = k0(dist(0, ∂Ω)). We compute∫
Ω

|∇mζk|2 =

∫
B 2
k

(0)

|km(∇mζ)(kx)|2dx = k2m−N
∫
B2(0)

|∇mζ|2 → 0

as k → ∞ since 2m − N < 0. Being such functions admissible for the minimization of capm,Ω,
we deduce capm,Ω({0}) = 0. The argument is similar for the case N = 2m, provided we choose
accurately the sequence of cut-off functions, see [Ma, Proposition 7.6.1/2 and Proposition 13.1.2/2].
For the sake of completeness, we retrace here the proof. Let α denote a function in C∞ ([0, 1]) equal
to zero near t = 0, to 1 near t = 1, and such that 0 ≤ α(t) ≤ 1. Define then ζε := α(vε), where

vε(x) :=


1 if |x| ≤ ε,
log |x|−log

√
ε

log ε−log
√
ε

if ε ≤ |x| ≤
√
ε,

0 if |x| ≥
√
ε.

Notice that vε is continuous but not C1; on the other hand ζε ∈ C∞0 (B√ε(0)), since α is constant in
a neighbourhood of 0 and in a neighbourhood of 1 by construction. Therefore ζε ∈ Hm

0 (B1(0)) for
any ε ∈ (0, 1). Moreover ζε ≡ 1 inBε(0) so that ζε is an admissible test function in the minimization
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of capm,Ω({0}). By direct calculations, there exists a constant C = C(m) > 0 (independent of ε)
such that

|∇mζε(x)| ≤ C

| log ε|
1

|x|m
for all ε < |x| <

√
ε,

whereas
∇mζε(x) = 0 if either |x| ≤ ε or |x| ≥

√
ε.

Therefore ∫
Ω

|∇mζε|2 .
1

log2 ε

∫ √ε
ε

1

r
dr =

1

2| log ε|
→ 0

as ε→ 0. The argument is concluded as above.

2.2 Homogeneous Sobolev spaces and capacities in RN

2.2.1 The homogeneous Sobolev spaces Dm,2
0 (RN)

So far, we defined the notion of V m-capacity for compact sets contained in an open bounded smooth
domain Ω ⊂ RN . An analogous definition can be given when Ω = RN , provided the underlined
space is of homogeneous kind. We introduce the homogeneous Sobolev spaces (sometimes referred
to as Beppo Levi spaces) Dm,2

0 (RN ) as the completion of C∞0 (RN ) with respect to the norm

‖u‖Dm,20 (RN ) :=

(∫
RN
|∇mu|2

) 1
2

.

Actually, the spaces Dm,2
0 (RN ) are more commonly defined as the completion with respect to the

norm ‖Dm · ‖2, i.e. with respect to the full tensor of all highest derivatives. However, the two
definitions are equivalent since, by integration by parts, ‖Dm · ‖2 and ‖∇m · ‖2 are equivalent norms
on C∞0 (RN ), see e.g. [GGS, Sec.2.2.1].

For large dimensions N > 2m, the following Sobolev inequalities are well-known: for every
0 ≤ j ≤ m there exists a positive constant S(N,m, j) > 0 (depending only on N , m and j) such
that

S(N,m, j)

(∫
RN
|Dju|2

∗
m,j

) 2
2∗
m,j ≤ ‖Dmu‖2L2(RN ) for all u ∈ C∞0 (RN ), (2.3)

where 2∗m,j := 2N
N−2(m−j) . In particular, for j = 0, there exists a positive constant S(N,m) > 0

such that

S(N,m)

(∫
RN
|u|2

∗
m

) 2
2∗m
≤ ‖u‖Dm,20 (RN ) for all u ∈ C∞0 (RN ),

where 2∗m := 2∗m,0 = 2N
N−2m , see [GGS, Theorem 2.3]. In view of (2.3), if N > 2m, one may also

characterize Dm,2
0 (RN ) as

Dm,2
0 (RN ) =

{
u ∈ L2∗m(RN )

∣∣Dju ∈ L2∗m,j (RN ) for all 0 < j ≤ m
}
.

Analogously, for K ⊂ RN compact, one may consider the exterior domain Ω = RN \K and define
Dm,2

0 (RN \ K) as the completion of C∞0 (RN \ K) with respect to the norm ‖∇m · ‖2, which is
characterized, for N > 2m, as

Dm,2
0 (RN \K) =

{
u ∈ L2∗m(RN \K)

∣∣ Dju ∈ L2∗m,j (RN \K) for all 0 < j ≤ m
and ψu ∈ Hm

0 (RN \K) for all ψ ∈ C∞0 (RN )

}
,

see [Ga, Theorem II.7.6].
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2.2.2 A Hardy-Rellich-type inequality with intermediate derivatives

Besides Sobolev inequalities, an important tool in the theory of Sobolev spaces in large dimensions
N > 2m is represented by Hardy-Rellich inequalities, which state that the Sobolev norm of the
highest order derivatives controls a singularly weighted Sobolev norm of the function. We refer to
[DH] for such inequalities in Hm

0 (Ω) and to [GGM, GGS1] for their extensions to Hm
ϑ (Ω). In this

section, inspired by [PP], we prove a Hardy-Rellich-type inequality for the space H2
ϑ(Ω) including

also the gradient term, which provides a further characterization of the space D2,2
0 (RN ) for N > 4.

It will be needed in Section 4.1 to identify the functional space containing the limiting profile in the
blow-up argument, when Navier BCs are imposed on ∂Ω.

Theorem 2.4. Let N > 4 and Ω ⊂ RN be a smooth bounded domain. Then, for every function
u ∈ H2(Ω) ∩H1

0 (Ω), one has that u
|x|2 ,

∇u
|x| ∈ L

2(Ω) and

(N − 4)2

∫
Ω

|u|2

|x|4
dx+ 2(N − 4)

∫
Ω

|∇u|2

|x|2
dx ≤

∫
Ω

|∆u|2 dx. (2.4)

Proof. Let u ∈ C∞(Ω) be such that u|∂Ω = 0. Let us assume that 0 ∈ Ω. Let us introduce a
parameter λ to be fixed later and, for ε > 0 small, let us denote Ωε := Ω \Bε(0). We have that

0 ≤
∫

Ωε

(
x

|x|
∆u+ λu

x

|x|3

)2

dx =

∫
Ωε

(∆u)2 + λ2

∫
Ωε

u2

|x|4
dx+ 2λ

∫
Ωε

u

|x|2
∆u dx. (2.5)

We can rewrite the third term as∫
Ωε

u

|x|2
∆u dx = −

∫
Ωε

∇u
(
∇u
|x|2
− 2u

x

|x|4

)
dx+

∫
∂Ω

u

|x|2
∂νu dσ −

1

ε2

∫
∂Bε

u∇u · x
ε
dσ

= −
∫

Ωε

|∇u|2

|x|2
dx+

∫
Ωε

∇(u2)
x

|x|4
dx+O(εN−3)

= −
∫

Ωε

|∇u|2

|x|2
dx− (N − 4)

∫
Ωε

u2

|x|4
dx+

∫
∂Ω

u2x · ν
|x|4

−
∫
∂Bε

u2

ε3
dσ +O(εN−3)

as ε→ 0. Since the third term vanishes and the second to last term is O(εN−4) as ε→ 0, from (2.5)
we get

0 ≤
∫

Ωε

(∆u)2 + λ2

∫
Ωε

u2

|x|4
dx− 2λ

∫
Ωε

|∇u|2

|x|2
dx− 2λ(N − 4)

∫
Ωε

u2

|x|4
dx+O(εN−4).

Choosing now λ = N − 4, we obtain

(N − 4)2

∫
Ωε

u2

|x|4
dx+ 2(N − 4)

∫
Ωε

|∇u|2

|x|2
dx ≤

∫
Ωε

(∆u)2 +O(εN−4) as ε→ 0.

Inequality (2.4) follows by letting ε → 0 and by density of the set {u ∈ C∞(Ω) |u|∂Ω = 0} in
H2(Ω) ∩H1

0 (Ω). If 0 6∈ Ω the above argument can be repeated by considering directly in (2.5) the
integral on the whole Ω.

We observe that (2.4) holds also for all functions in C∞0 (RN ) (since any function u ∈ C∞0 (RN )
is contained in some H2

ϑ(Ω)). Therefore, by density of C∞0 (RN ) in D2,2
0 (RN ) and Fatou’s Lemma

we easily deduce that, if N > 4, then

(N − 4)2

∫
RN

|u|2

|x|4
dx+ 2(N − 4)

∫
RN

|∇u|2

|x|2
dx ≤

∫
RN
|∆u|2 dx

for all u ∈ D2,2
0 (RN ). In particular we have that D2,2

0 (RN ) is contained in the space

S2(RN ) :=

{
u ∈ H2

loc(RN )
∣∣∣ ∇2−ku

|x|k
∈ L2(RN ) for k ∈ {0, 1, 2}

}
.

We prove now that the two functional spaces coincide.
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Proposition 2.5. S2(RN ) = D2,2
0 (RN ) for all N > 4.

Proof. We have already observed above that S2(RN ) ⊇ D2,2
0 (RN ). Let now u ∈ S2(RN ), η be a

cutoff function with support in B2(0) and which takes the value 1 in B1(0), and define ηR := η
( ·
R

)
for all R > 0. Hence ηRu ∈ H2

0 (B2R(0)) and we claim that ‖∆(ηRu − u)‖2 → 0 as R → +∞.
Indeed,

‖∆
(

(ηR − 1)u
)
‖22 . ‖(∆ηR)u‖22 + ‖∇ηR∇u‖22 + ‖ (ηR − 1) ∆u‖22,

where
‖ (ηR − 1) ∆u‖22 ≤

∫
RN\BR

|∆u|2 → 0

as R→ +∞, and for k ∈ {1, 2},

‖∇kηR∇2−ku‖22 =

∫
R<|x|<2R

1

R2k

∣∣∣(∇kη) ( x
R

)∣∣∣2 |∇2−ku|2 dx

. 22k

∫
RN\BR(0)

|∇2−ku|2

|x|2k
dx→ 0

as R → +∞. By density of C∞0 (B2R(0)) in H2
0 (B2R(0)), this implies that C∞0 (RN ) is dense in

S2(RN ) in the D2,2
0 -norm, thus concluding the proof.

2.2.3 Capacities in RN

Similarly to the case of a bounded set Ω described in Section 2.1, for any compact set K ⊂ RN and
any u ∈ Dm,2

0 (RN ) with N > 2m, we define

capm,RN (K,u) := inf

{∫
RN
|∇mf |2

∣∣∣ f ∈ Dm,2
0 (RN ), f − u ∈ Dm,2

0 (RN \K)

}
, (2.6)

which we simply denote by capm,RN (K) when u = ηK . The argument for the attainability of the
capacity is easily adapted from the one for capVm,Ω(K,u). Analogous properties hold also in this
setting, in particular it is true that

Dm,2
0 (RN ) = Dm,2

0 (RN \K) if and only if capm,RN (K) = 0 (2.7)

which directly implies that

capm,RN (K) = 0 ⇔ capm,RN (K,u) = 0 for all u ∈ Dm,2
0 (RN ).

The analogue of (2.7) in the case of a bounded domain Ω is contained in Proposition 2.1 and its proof
relies on (1.6), which in turn is based on a Poincaré inequality, the latter being no longer valid in RN .
However, ifN > 2m, the role played by Poincaré inequalities can be replaced by the critical Sobolev
embedding. Although known, here we retrace the proof of (2.7) for the sake of completeness. Let
u ∈ C∞0 (RN ), set Σ := supp(u), and consider (wi)i ⊂ Dm,2

0 (RN ) with wi− ηK ∈ Dm,2
0 (RN \K)

such that ‖∇mwi‖22 → 0 as i → +∞. Then vi := u(1 − wi) ∈ Dm,2
0 (RN \ K) and, defining

qj := 2∗m,j = 2N
N−2(m−j) ≥ 2 for j ∈ {0, . . . ,m}, one has that

‖∇m(u− vi)‖22 = ‖∇m(uwi)‖2L2(Σ) . ‖u‖
2
Wm,∞(RN )

m∑
j=0

∫
Σ

|Djwi|2

.
m∑
j=0

(∫
Σ

|Djwi|qj
) 2
qj

≤
m∑
j=0

‖Djwi‖2Lqj (RN )

. ‖Dmwi‖2L2(RN ) . ‖∇
mwi‖2L2(RN ) → 0,

where in the last steps we used Hölder inequality, the Sobolev inequality (2.3), and the equivalence
of the norms ‖Dm · ‖2 and ‖∇m · ‖2.

For later use, we also recall the right continuity of the capacity, see [Ma, Sec. 13.1.1].
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Lemma 2.6. Let K be a compact subset of Ω ⊂ RN . For any ε > 0 there exists a neighbourhood
U(K) ⊂ Ω such that for any compact set K̃ with K ⊂ K̃ ⊂ U(K), there holds

capm,Ω(K̃) ≤ capm,Ω(K) + ε.

Although the notion of capacity needed for the blow-up analysis in Section 4.1 is the one given
in (2.6), sometimes it is useful to consider a second one defined as

Cap≥
m,RN (K) := inf

{∫
RN
|∇mf |2

∣∣∣ f ∈ Dm,2
0 (RN ), f ≥ 1 a.e. on K

}
, (2.8)

which is well-defined for N > 2m, and similarly Cap≥m,Ω for Ω ⊂⊂ RN , see [Ma, Ma1]. One of
the advantages in this approach is that the capacitary potential associated to Cap≥

m,RN is positive,

see [GGS, Sec. 3.1.2]. Note that for all Ω ⊂ RN one has Cap≥m,Ω(K) ≤ capm,Ω(K) because
the class of test functions considered in (2.8) includes the one considered for the minimization in
(2.6). Actually it turns out that the two definitions are equivalent, in the sense that the two capacities
estimate each other, as stated below. We report here the result for Ω = RN , referring to [Ma1] for
the general case Ω ( RN .

Lemma 2.7. ([Ma], Theorem 13.3.1) Let m ∈ N \ {0} and N > 2m. There exists a constant c > 0
such that

c capm,RN (K) ≤ Cap≥
m,RN (K) ≤ capm,RN (K)

for any compact set K ⊂ RN .

Remark 3. The constant c appearing in Lemma 2.7 can be taken 1 in the second-order case m = 1,
so the two definitions coincide, see e.g. [Ma, Sec. 13.3]. Whether this is the case also for the
higher-order case it is still an open question.
Remark 4. As an extension of Proposition 2.3, it is known that a regular manifold of dimension d
has zero capacity in the sense of (2.8) if and only if d ≤ N − 2m, see [AH, Corollary 5.1.15]. By
Lemma 2.7, this result holds also for the notion (2.6) of capacity.

3 Convergence and asymptotic expansion of the perturbed eigen-
values
In this section we study stability and asymptotic expansion of the perturbed eigenvalues of (1.2) and
(1.3), when from a bounded domain Ω ⊂ RN one removes a compact set K of small V m-capacity.
The main goal is to extend the results obtained in the second-order framework (in particular [AFHL,
Theorem 1.4]) to the higher-order settings described in the introduction. The first part is devoted to
the proof of the stability result of Theorem 1.1, which applies for rather general domains, while in
the second part we focus on the asymptotic expansion of simple eigenvalues contained in Theorem
1.2, for which we require the notion of concentrating family of compact sets.

3.1 Spectral stability: Proof of Theorem 1.1
We present here a simple and self-contained proof of the stability of the point spectrum of the poly-
harmonic operator with respect to the capacity of the removed compactum, in both Dirichlet and
Navier settings described in Section 1.1. It is essentially based on the variational characterization
of the eigenvalues (1.9) and on the properties of the capacitary potentials, and it follows some ideas
exploited for the same question in the second-order case in [AFN, Theorem 1.2].

Proof of Theorem 1.1. Denote by (ui)
∞
i=1 an orthonormal basis of L2(Ω) such that each ui is an

eigenfunction of problem (1.1) associated to the eigenvalue λi(Ω). By classical elliptic regularity
theory (see e.g. [GGS, Section 2.5]), the smoothness of ∂Ω yields ui ∈ Cm(Ω) for all i ∈ N. In
order to deal at once with both cases (D) and (N), we introduce the function H defined by H ≡ 1
in the Dirichlet case, and by H = ηK0

in the Navier case. Here ηK0
is a cutoff function which is
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equal to 1 in a neighbourhood on K0 and with support contained in some compact set K̃0 such that
K0 ⊂ K̃0 ⊂ Ω. The cutoff ηK0

is introduced in order to enforce the boundary conditions on ∂Ω in
the Navier case.

Fix j ∈ N \ {0}. For any ` ∈ {1, . . . , j}, we define Φ` := u`(1 − HWK) and introduce the
subspace Xj := span{Φ`}j`=1. Note that Φ` ∈ V m0 (Ω \K) by definition of the capacitary potential
WK , so Xj ⊂ V m0 (Ω \K). The aim is to prove that Xj is a j-dimensional subspace of V m0 (Ω \K)
so that the right hand side of (1.9) is smaller than the maximum of the Rayleigh quotient over Xj .
Note that, by trivially extending the functions {Φ`}j`=1 in K, the integrals may be evaluated on Ω.
First, ∫

Ω

ΦhΦ` =

∫
Ω

uhu` − 2

∫
Ω

uhu`HWK +

∫
Ω

uhu`H
2W 2

K ,

therefore, by orthonormality of {u`}j`=1 in L2(Ω) and (1.6),∣∣∣∣∫
Ω

ΦhΦ` − δh,`
∣∣∣∣ ≤ max

1≤h≤j
‖uh‖2L∞(Ω)

(
2|Ω|1/2‖WK‖2 + ‖WK‖22

)
.
(
capVm,Ω(K)

)1/2
+ capVm,Ω(K),

(3.1)

where δh,` stands for the Kroenecker delta. Let now (Wn)n ⊂ Xm(Ω), see (1.10), be a sequence of
smooth functions which approximates in the V m-norm the capacitary potential WK and satisfying
Wn = 1 in U(K). The existence of such a sequence is guaranteed by the definition of WK . Define
moreover Φ`n := u`(1−HWn) for n ∈ N. Note that Φ`n → Φ` in V m(Ω) as n→ +∞. We get∫

Ω

∇mΦhn∇mΦ`n =

∫
Ω

∇m (uh(1−HWn))∇m (u`(1−HWn))

=

∫
Ω

∇muh∇mu`(1−HWn)2 + Tm(uh, u`,Wn),

(3.2)

where the term Tm contains all remaining products between the derivatives of uh, u`, and 1−HWn.
To deal with the first term on the right in (3.2), consider u`(1 −HWn)2 ∈ V m(Ω) by regularity of
the factors, as a test function for the eigenvalue problem (1.8) for λh(Ω). One obtains

λh(Ω)

∫
Ω

ΦhnΦ`n = λh(Ω)

∫
Ω

uhu`(1−HWn)2 =

∫
Ω

∇muh∇m
(
u`(1−HWn)2

)
=

∫
Ω

∇muh∇mu`(1−HWn)2 +

∫
Ω

∇muhSm(u`,Wn),

where again all remaining products involving intermediate derivatives of u` and 1 −HWn are col-
lected in the term Sm (which is a vector if m is odd). Isolating the first term on the right hand-side,
and substituting it into (3.2), we get∫

Ω

∇mΦhn∇mΦ`n − λh(Ω)

∫
Ω

ΦhnΦ`n = −
∫

Ω

∇muhSm(u`,Wn) + Tm(uh, u`,Wn). (3.3)
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Moreover,∣∣∣ ∫
Ω

∇muhSm(u`,Wn)
∣∣∣

≤
m∑
i=1

i∑
τ=0

∫
Ω

|∇muh||Dm−iu`||Di−τ (1−HWn)||Dτ (1−HWn)
∣∣∣

≤ ‖∇muh‖∞‖u`‖Wm,∞(Ω)

m∑
i=1

i∑
τ=0

‖Di−τ (1−HWn)‖2‖Dτ (1−HWn)‖2

≤ max
1≤k≤j

‖uk‖2Wm,∞(Ω)

m∑
i=1

(
2‖Di(HWn)‖2‖1−HWn‖2

+

i−1∑
τ=1

‖Di−τ (HWn)‖2‖Dτ (HWn)‖2
)

≤ C(Ω, j,m)
(
‖H‖Wm,∞(Ω)‖Wn‖Hm(Ω)(|Ω|1/2 + ‖Wn‖2)

+ ‖H‖2Wm,∞(Ω)‖Wn‖2Hm(Ω)

)
. C(Ω, j,m)

(
‖H‖Wm,∞(Ω)

(
capVm,Ω(K) + on(1)

)1/2
+ ‖H‖2Wm,∞(Ω)(capVm,Ω(K) + on(1))

)
as n→∞,

(3.4)

having used the equivalence of the norms ‖ · ‖Hm(Ω) and ‖∇m · ‖2 in V m(Ω). Here on(1) denotes a
real sequence converging to 0 as n→ +∞. Analogously one may estimate the last term in (3.3):

|Tm(uh, u`,Wn)| ≤
∑

i,τ∈{0,...,m}
(i,τ)6=(0,0)

∫
Ω

|Dm−iuh||Di(1−HWn)||Dm−τu`||Dτ (1−HWn)|

≤ max
1≤h≤j

‖uh‖2Wm,∞(Ω)

(
2

m∑
τ=1

‖Dτ (HWn)‖2‖1−HWn‖2

+
∑

i,τ∈{1,...,m}

‖Di(HWn)‖2‖Dτ (HWn)‖2
)

≤ C(Ω, j,m)
(
‖H‖Wm,∞(Ω)‖Wn‖Hm(Ω)

(
|Ω|1/2 + ‖Wn‖2

)
+ ‖H‖2Wm,∞(Ω)‖Wn‖2Hm(Ω)

)
. C(Ω, j,m)

(
‖H‖Wm,∞(Ω)

(
capVm,Ω(K) + on(1)

)1/2
+ ‖H‖2Wm,∞(Ω)(capVm,Ω(K) + on(1))

)
as n→∞.

(3.5)

All in all, from (3.3)-(3.5), one concludes∣∣∣∣∫
Ω

∇mΦhn∇mΦ`n − λh(Ω)

∫
Ω

ΦhnΦ`n

∣∣∣∣
≤ C̃

((
capVm,Ω(K) + on(1)

)1/2
+ capVm,Ω(K) + on(1)

)
,

where C̃ depends on K0 in the Navier case. Letting now n → +∞ in both sides of the inequality,
and taking into account (3.1), one infers∣∣∣∣∫

Ω

∇mΦh∇mΦ` − λh(Ω)δh,`

∣∣∣∣ ≤ C̃ ((capVm,Ω(K)
)1/2

+ capVm,Ω(K)
)
. (3.6)

Hence, from (3.1) and (3.6) one sees that, when capVm,Ω(K) is small enough, the functions {Φ`}j`=1

are linearly independent in V m0 (Ω\K), and so the subspaceXj has dimension j. Therefore, recalling
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that λh(Ω) ≤ λj(Ω) for all h ∈ {1, . . . , j}, again from (3.1) and (3.6) one finally infers that

λj(Ω \K) ≤ max
(α1,...,αj)∈Rj∑j

i=1 αi=1

j∑
h,`=1

αhα`
∫

Ω
∇mΦh∇mΦ`

j∑
h,`=1

αhα`
∫

Ω
ΦhΦ`

≤ max
(α1,...,αj)∈Rj∑j

i=1 αi=1

j∑
h=1

α2
hλh(Ω) +O

((
capVm,Ω(K)

)1/2)
j∑

h=1

α2
h +O

((
capVm,Ω(K)

)1/2)

≤
λj(Ω) +O

((
capVm,Ω(K)

)1/2)
1 +O

((
capVm,Ω(K)

)1/2) = λj(Ω) +O
((

capVm,Ω(K)
)1/2)

as capVm,Ω(K)→ 0.

3.2 Asymptotic expansion of eigenvalues: Proof of Theorem 1.2
Let {Kε}ε>0 be a family of compact subsets of Ω and denote by λJ(Ω \ Kε) the J-th eigenvalue
of (−∆)m in V m0 (Ω \ Kε), i.e. of problem (1.8) with K = Kε. If there exists a limiting set K
for which capVm,Ω(Kε) → capVm,Ω(K) = 0, Theorem 1.1 and Proposition 2.1 guarantee that
λJ(Ω \Kε) → λJ(Ω \K) = λJ(Ω), if we denote by λJ(Ω \K) the corresponding eigenvalue of
the limiting problem in V m0 (Ω \ K) = V m0 (Ω). Moreover, Theorem 1.1 gives us a first estimate
on the eigenvalue convergence rate in terms of the V m-capacity of the removed set Kε. Inspired
by [AFHL], we are now going to sharpen this result, by detecting the first term of the asymptotic
expansion of λJ(Ω \Kε), provided the family of compact sets {Kε}ε>0 converges to K as specified
in Definition 1.1. Indeed, as the next two propositions show, this definition of convergence, although
very general, is enough to prove the stability of the (u, V m)-capacity in case capVm,Ω(K) = 0, as
well as the Mosco convergence of the functional spaces.

Proposition 3.1. Let {Kε}ε>0 be a family of compact sets contained in Ω ⊂ RN concentrating to
a compact set K ⊂ Ω with capVm,Ω(K) = 0 as ε → 0. Then, for every function u ∈ V m(Ω), one
has that WKε,u → WK,u = 0 strongly in V m(Ω) and capVm,Ω(Kε, u) → capVm,Ω(K,u) = 0 as
ε→ 0.

Proof. It is analogous to the one for the case m = 1 given in [AFHL, Proposition B.1]. It is in fact
essentially based on the fact that V m0 (Ω \K) = V m(Ω) for sets of null V m-capacity, as shown in
Proposition 2.1, and on the consequent Remark 1.

Definition 3.1. Let {Kε}ε>0 be a family of compact sets compactly contained in a bounded domain
Ω. We say that Ω\Kε converges to Ω\K in the sense of Mosco in V m0 if the following two conditions
are satisfied:

(i) the weak limit points in V m(Ω) of every family of functions uε ∈ V m0 (Ω \ Kε) belong to
V m0 (Ω \K);

(ii) for every u ∈ V m0 (Ω \ K), there exists a family of functions {uε}ε>0 such that, for every
ε > 0, uε ∈ V m0 (Ω \Kε) and uε → u in V m(Ω).

In order to stress the underlined functional space, we also say that V m0 (Ω \ Kε) converges to
V m0 (Ω \K) in the sense of Mosco.

Lemma 3.2. Let {Kε}ε>0 be a family of compact sets concentrating to a compact set K ⊂ Ω with
capVm,Ω(K) = 0 as ε → 0. Then V m0 (Ω \Kε) converges to V m0 (Ω \K) as ε → 0 in the sense of
Mosco.
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Proof. Verification of (i). Let {uε}ε ⊂ V m(Ω) be such that uε ∈ V m0 (Ω \ Kε) and uε ⇀ u in
V m(Ω). Since capm,Ω(K) = 0, we have that V m(Ω) = V m0 (Ω \ K) by Proposition 2.1, hence u
belongs to V m0 (Ω \K).

Verification of (ii). Let u ∈ V m0 (Ω\K) = V m(Ω). For every k ∈ N\{0}, by density there exists
χk ∈ Xm

0 (Ω\K) such that ‖∇m(χk−u)‖2 < 1
k . Note that, ifKε is concentrating toK in the sense

of Definition 1.1, for a chosen cutoff function ηK ∈ C∞0 (Ω) such that ηK ≡ 1 in a neighbourhood
of K, one has that ηK ≡ 1 in a neighbourhood of Kε for ε small enough. By definition of WK , one
may find (Wn)n ⊂ V m(Ω) and a sequence (εn)n ↘ 0 such that ‖∇mWn‖2 < 1

n and Wn ≡ 1 in a
neighbourhood of Kε for all ε ∈ (0, εn]. Defining, for all n, k ∈ N \ {0}, Zkn := χk (1− ηKWn),
one has that Zkn ∈ V m0 (Ω \Kε) for all ε ∈ (0, εn] and

‖∇m
(
Zkn − χk

)
‖2 . ‖ηK‖Wm,∞(Ω)‖Wn‖Vm(Ω)‖χk‖Wm,∞(Ω) ≤

Ck
n

for some Ck > 0 depending on k. Hence, for each k ∈ N \ {0}, there exists nk ∈ N such that
nk ↗∞ as k →∞ and ‖∇m

(
Zknk − χk

)
‖2 < 1

k . In order to construct the family required for the
Mosco convergence, for any ε ∈ (0, εn1

) it is sufficient to define uε := Zknk , choosing k such that
ε ∈ (εnk+1

, εnk ]. Indeed, for any δ > 0, letting k ∈ N \ {0} be such that 2
k < δ, we have that, for all

ε ∈ (0, εnk ], uε = Zjnj for some j ≥ k, so that

‖∇m (uε − u) ‖2 ≤ ‖∇m
(
Zjnj − χj

)
‖2 + ‖∇m (χj − u) ‖2 <

2

j
≤ 2

k
< δ,

thus proving that uε → u in V m(Ω) as ε→ 0.

Remark 5. Note that the Mosco convergence of sets implies the convergence of the spectra of the
polyharmonic operators, see [AL]. For the Dirichlet case, in particular this can be seen combining
[AL, Proposition 2.9, footnote 2 p.8, and Theorem 4.3].

Lemma 3.3. Let K ⊂ Ω be a compact set and {Kε}ε>0 be a family of compact subsets of Ω
concentrating to K as ε → 0. If capVm,Ω(K) = 0, then, for every f ∈ V m(Ω), we have that
‖WKε,f‖2Hm−1(Ω) = O(capVm,Ω(Kε, f)) as ε→ 0.

Proof. The proof is inspired by [AFHL, Lemma A.1]. Suppose by contradiction that there exist
C > 0 and a sequence εn → 0 such that

‖WKεn ,f‖
2
Hm−1(Ω) ≥ C capVm,Ω(Kεn , f) for all n. (3.7)

Let us consider

Zn :=
WKεn ,f

‖WKεn ,f
‖Hm−1(Ω)

.

We have

‖Zn‖Hm−1(Ω) = 1 and ‖∇mZn‖22 =
‖∇mWKεn ,f

‖22
‖WKεn ,f

‖2Hm−1(Ω)

≤ 1

C

with C > 0 as in (3.7). Then one may find a subsequence (still denoted by Zn) and Z ∈ V m(Ω),
so that Zn ⇀ Z in V m(Ω). By the compact embedding Hm(Ω) ↪→↪→ Hm−1(Ω), Z is also the
strong limit in the Hm−1(Ω) topology. This implies that ‖Z‖Hm−1(Ω) = 1. However, by the Mosco
convergence of Lemma 3.2 one may show that∫

Ω\K
∇mZ∇mϕ = 0 for all ϕ ∈ V m0 (Ω \K), (3.8)

and hence for all ϕ ∈ V m(Ω) by Proposition 2.1, since we assumed capVm,Ω(K) = 0. Indeed,
given ϕ ∈ V m0 (Ω \K) there exists a sequence {ϕεn}n so that ϕεn ∈ V m0 (Ω \Kεn) for each n ∈ N
and ϕεn → ϕ in V m(Ω), for which then∫

Ω\Kεn
∇mZn∇mϕεn = 0

for all n ∈ N by definition of Zn as a multiple of the capacitary potential WKεn ,f . Then, (3.8)
follows by weak-strong convergence in V m(Ω), yielding Z = 0, a contradiction.
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We are now in the position to prove the asymptotic expansion of the perturbed eigenvalues. The
suitable asymptotic parameter turns out to be the (uJ , V

m)-capacity of the removed set, where uJ is
an eigenfunction normalized in L2(Ω) associated to the eigenvalue λJ .

In the following, (−∆)mε stands for the polyharmonic operator acting on V m0 (Ω\Kε). Similarly,
to shorten notation, we write λε := λJ(Ω\Kε) and the corresponding (uJ , V

m)-capacitary potential
is denoted by Wε := WKε,uJ ∈ V m(Ω); we also write λJ := λJ(Ω).

Proof of Theorem 1.2. First note that the simplicity of λJ , i.e. of λJ(Ω \ K) by Proposition 2.1,
together with the convergence of the perturbed eigenvalues given by Theorem 1.1, implies the sim-
plicity of λε for ε sufficiently small.

Let ψε := uJ −Wε ∈ V m0 (Ω \Kε) and ϕ ∈ V m0 (Ω \Kε). Then∫
Ω

∇mψε∇mϕ− λJ
∫

Ω

ψεϕ =

∫
Ω\Kε

∇muJ∇mϕ− λJ
∫

Ω

ψεϕ = λJ

∫
Ω

Wεϕ.

This means that ψε satisfies weakly in V m0 (Ω \Kε) the equation

((−∆)m − λJ)ψε = λJWε. (3.9)

Since by Lemma 3.3 with f = uJ one has ‖Wε‖2 = O(capVm,Ω(Kε, uJ)1/2) as ε→ 0, we infer

dist(λJ , σ((−∆)mε )) ≤ ‖((−∆)m − λJ)ψε‖2
‖ψε‖2

= O(capVm,Ω(Kε, uJ)1/2)

as ε → 0. Since we know by Theorem 1.1 and Proposition 3.1 that the spectrum of (−∆)m in
V m0 (Ω \ Kε) varies continuously with respect to ε and that the eigenvalue λε is simple for ε small
enough, one first deduces

|λε − λJ | = O(capVm,Ω(Kε, uJ)1/2) as ε→ 0.

Denote now by Πε the projector (with respect to the scalar product in L2) onto the eigenspace related
to λε and take uε := Πεψε

‖Πεψε‖2 as normalized eigenfunction. The first goal is to estimate the difference
of the two eigenfunctions uJ and uε:

‖uJ − uε‖2 ≤ ‖uJ − ψε‖2 + ‖ψε −Πεψε‖2 +

∥∥∥∥Πεψε −
Πεψε
‖Πεψε‖2

∥∥∥∥
2

= ‖Wε‖2 + ‖ψε −Πεψε‖2 +
∣∣1− ‖Πεψε‖−1

2

∣∣ ‖Πεψε‖2.

Note that Lemma 3.3 yields ‖Wε‖2 = O(capVm,Ω(Kε, uJ)1/2) and, moreover, we have

‖Πεψε‖2 ≤ ‖ψε‖2 ≤ ‖uJ‖2 + ‖Wε‖2 = O(1) as ε→ 0.

Hence, we need to estimate ‖ψε − Πεψε‖2 and
∣∣1− ‖Πεψε‖−1

2

∣∣. We claim that both quantities are
O(capVm,Ω(Kε, uJ)1/2), obtaining thus

‖uJ − uε‖2 = O(capVm,Ω(Kε, uJ)1/2) as ε→ 0, (3.10)

and postpone the proof of such claim to the end of the proof. Then we have

capVm,Ω(Kε, uJ) =

∫
Ω

|∇mWε|2 =

∫
Ω

∇m(uJ − ψε)∇mWε =

∫
Ω

∇muJ∇mWε

= λJ

∫
Ω

uJWε = λJ

∫
Ω

uεWε + λJ

∫
Ω

(uJ − uε)Wε

(3.9)
=

∫
Ω

∇mψε∇muε − λJ
∫

Ω

uεψε + λJ

∫
Ω

(uJ − uε)Wε

= (λε − λJ)

∫
Ω

uεψε + λJ

∫
Ω

(uJ − uε)Wε,
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and therefore

(λε − λJ)

∫
Ω

uεψε = capVm,Ω(Kε, uJ)− λJ
∫

Ω

(uJ − uε)Wε. (3.11)

Since now ∫
Ω

uεψε = ‖uε‖22 +

∫
Ω

uε (ψε − uε) = 1 +

∫
Ω

uε (ψε − uε)

and ∣∣∣∣∫
Ω

uε (ψε − uε)
∣∣∣∣ ≤ ‖uε‖2‖ψε − uε‖2 = O(capVm,Ω(Kε, uJ)1/2),

where the last equality is again due to the claims above, from (3.11) and (3.10), we infer

λε − λJ =
capVm,Ω(Kε, uJ) + O(capVm,Ω(Kε, uJ))

1 + O(1)
= capVm,Ω(Kε, uJ) (1 + O(1))

as ε → 0, as desired. To conclude, we prove the claims above. Since λε is a simple eigenvalue,
denoting by Tε the restriction of (−∆)mε on ker Πε, we have that σ(Tε) = σ((−∆)mε ) \ {λε} and,
by simplicity, dist(λε, σ(Tε)) ≥ δ for some δ > 0, uniformly with respect to ε. Hence,

‖ψε −Πεψε‖2 ≤
1

δ
‖(Tε − λε) (ψε −Πεψε)‖2 . ‖ ((−∆)m − λε)ψε‖2

≤ ‖ ((−∆)m − λJ)ψε‖2 + |λJ − λε|‖ψε‖2 = |λJ |‖Wε‖2 + |λJ − λε|‖ψε‖2
= O(capVm,Ω(Kε, uJ)1/2).

Since, by definition of ψε and Lemma 3.3, ‖ψε‖2 = 1 + O(capVm,Ω(Kε,uJ )1/2) as ε → 0, one thus
finds that ‖Πεψε‖2 = 1 + O(capVm,Ω(Kε, uJ)1/2), which in particular yields the desired estimate
1− ‖Πεψε‖−1

2 = O(capVm,Ω(Kε, uJ)1/2). This concludes the proof.

Remark 6. We observe that, in the proof of Theorem 1.2, the following estimate for the normalized
eigenfunction uε ∈ V m0 (Ω \Kε) of (−∆)m relative to λJ(Ω \Kε) was established:

‖uε − uJ‖2 = O(capVm,Ω(Kε, uJ)1/2) as ε→ 0.

4 Sharp asymptotic expansions of perturbed eigenvalues: the
case of uniformly shrinking holes.

4.1 A blow-up analysis.
In Theorem 1.2 we obtained an asymptotic expansion of a perturbed simple eigenvalue in terms of
capVm,Ω(Kε, uJ), in case the limiting removed set has zero V m-capacity. However, in view of pos-
sible applications, the dependence on the removed set Kε is quite implicit using such an asymptotic
parameter. Therefore, we aim to understand how this quantity behaves with respect to the diameter
of the hole, in the case of a uniformly shrinking family of compact sets which concentrate to a point,
a set with zero V m-capacity in large dimensions by Proposition 2.3.

First, we only suppose that {Kε}ε>0 uniformly shrinks to a point, which is assumed to be 0 in
the following, in the sense that

Kε ⊂ BCε(0) (4.1)

for some constant C > 0 and ε small enough. The following is a generalization of [AFHL, Lemma
2.2] to the higher-order setting.

Proposition 4.1. Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω and let {Kε}ε>0 be
a family of compact sets satisfying (4.1). Let h ∈ Hm(Ω) be such that |Dkh(x)| = O(|x|γ−k) as
|x| → 0 for some γ ∈ N and all k ∈ {0, . . . ,m}. Then

capVm,Ω(Kε, h) = O(εN−2m+2γ) as ε→ 0. (4.2)
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Proof. By Proposition 2.2(iii), it is sufficient to prove (4.2) for the Dirichlet case V m(Ω) = Hm
0 (Ω).

Let ϕ ∈ C∞0 (RN ) with suppϕ ⊂ B2(0) and ϕ ≡ 1 in a neighbourhood of B1(0), and define
ϕε(x) := ϕ((Cε)−1x) for all ε > 0 small. Then hε := ϕεh coincides with h in a neighbourhood of
BCε(0). By monotonicity

capm,Ω(Kε, h) ≤ capm,Ω(BCε(0), h) ≤
∫

Ω

|∇mhε|2

.
m∑
k=0

∫
B2Cε(0)

|Dm−kϕε(x)|2|Dkh(x)|2 dx

.
m∑
k=0

(Cε)2k−2m

∫
B2Cε(0)

∣∣∣Dm−kϕ
( x

Cε

)∣∣∣2 |Dkh(x)|2 dx

.
m∑
k=0

(Cε)2k−2m+N

∫
B2(0)

|Dm−kϕ(y)|2|Dkh(Cεy)|2 dy

. εN−2m+2γ
m∑
k=0

∫
B2(0)

|Dm−kϕ(y)|2 dy . εN−2m+2γ ,

having used the assumption that ‖Dkh‖∞ . εγ−k in B2Cε(0).

Next, having in mind the model case Kε := εK for a fixed compactum K, we consider families
of compact sets which uniformly shrink to {0} as in (4.1) but enjoying a more specific structure. To
this aim we assume

(M1) there exists M ⊂ RN compact such that ε−1Kε ⊆M for all ε ∈ (0, 1) ;

(M2) there exists K ⊂ RN compact such that RN \ ε−1Kε → RN \ K in the sense of Mosco as
ε→ 0.

In our context (M2) means the following:

(i) if uε ∈ Dm,2
0 (RN \ε−1Kε) is so that uε ⇀ u inDm,2

0 (RN ) as ε→ 0, then u ∈ Dm,2
0 (RN \K);

(ii) if u ∈ Dm,2
0 (RN \ K), then there exists a family {uε}ε>0 such that uε ∈ Dm,2

0 (RN \ ε−1Kε)
for all ε > 0 and uε → u in Dm,2

0 (RN ) as ε→ 0.

In this case we also say that Dm,2
0 (RN \ ε−1Kε) converges to Dm,2

0 (RN \K) in the sense of Mosco.
Remark 7. Assumption (M1) is actually equivalent to the condition (4.1), since M ⊂ BC(0) for
some C > 0.

Lemma 4.2. Let N > 2m. Under the assumption (M1) the following are equivalent:

1. Dm,2
0 (RN \ ε−1Kε) converges to Dm,2

0 (RN \ K) in the sense of Mosco;

2. Hm
0 (BR(0) \ ε−1Kε) converges to Hm

0 (BR(0) \ K) in the sense of Mosco for all R > r(M),
where r(M) := inf{ρ > 0 |Bρ(0) ⊃M}.

We denote by (MR2.i) and (MR2.ii) the correspondent conditions (M2.i) and (M2.ii) which enter
in the definition of the Mosco convergence relative to the space Hm

0 (BR(0)). In the following we
use the shorter notation BR := BR(0).

Proof. 1) ⇒ 2). Verification of (MR2.i). Let {uε}ε>0 ⊂ Hm
0 (BR) be a family of functions such

that uε ∈ Hm
0 (BR\ε−1Kε) and uε ⇀ u inHm

0 (BR). We show that u ∈ Hm
0 (BR\K). Denoting by

uEε and uE the trivial extension of uε and u outside BR respectively, then uEε ∈ D
m,2
0 (RN \ ε−1Kε)

and uEε ⇀ uE in Dm,2
0 (RN ). Hence condition (M2.i) guarantees that uE ∈ Dm,2

0 (RN \ K), which
by construction implies that u ∈ Hm

0 (BR \ K).
Verification of (MR2.ii). Let v ∈ C∞0 (BR \ K) and Λ1,Λ2 ⊂ Ω be two open sets such that

supp v ⊂⊂ Λ1 ⊂⊂ Λ2 ⊂⊂ BR. Take η ∈ C∞0 (Λ2) with η ≡ 1 on Λ1. Since vE ∈ Dm,2
0 (RN \ K),

then by (M2.ii) there exists a family {vε}ε>0 ⊂ Dm,2
0 (RN ) with vε ∈ Dm,2

0 (RN \ ε−1Kε) for
all ε > 0 such that vε → vE in Dm,2

0 (RN ), i.e. ‖∇m(vε − vE)‖L2(RN ) → 0 as ε → 0. By
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construction, ηvε ∈ Hm
0 (BR \ ε−1Kε). We claim that ηvε → v in Hm

0 (BR). Indeed, denoting by
qj := 2∗m,j = 2N

N−2(m−j) ≥ 2 and pj := 2
( qj

2

)′
= N

m−j for j ∈ {0, . . . ,m}, one has

‖∇m(ηvε − v)‖L2(BR) = ‖∇m(η(vε − v))‖L2(BR) ≤
m∑
j=0

‖Dm−jη Dj(vε − v)‖L2(BR)

≤
m∑
j=0

‖Dm−jη‖Lpj (supp η)‖Dj(vε − vE)‖Lqj (RN )

≤
m∑
j=0

|supp η|
1
pj ‖Dm−jη‖∞‖Dm(vε − vE)‖L2(RN )

≤ C(m,N,R)‖η‖Wm,∞(RN )‖∇m(vε − vE)‖L2(RN ) → 0.

(4.3)

The last steps are due to the critical Sobolev embedding on RN (for which it is fundamental that
N > 2m), see (2.3), and to the equivalence of the norms ‖Dm · ‖2 and ‖∇m · ‖2, see e.g. [GGS,
Chp. 2.2].

The above argument and the density of C∞0 (BR \ K) in Hm
0 (BR \ K) imply that, fixing any

v ∈ Hm
0 (BR \ K), for every δ > 0 there exists a family {vδ,ε}ε>0 such that vδ,ε ∈ Hm

0 (BR \Kε)
and ‖vδ,ε − v‖Hm(BR) < δ for all ε ∈ (0, ε̄δ] for some ε̄δ > 0. Therefore there exists a vanishing
sequence (εn)n ↘ 0 such that

∥∥v 1
k ,ε
− v
∥∥
Hm(BR)

< 1
k for all ε ∈ (0, εk]. Defining vε = v 1

n ,ε
for

ε ∈ (εn+1, εn], we have that, for all ε ∈ (0, ε1], vε ∈ Hm
0 (BR \ Kε) and vε → v in Hm

0 (BR) as
ε→ 0.

2) ⇒ 1). Verification of (M2.i). Let {uε}ε>0 ⊂ Dm,2
0 (RN ) be a family of functions such that

uε ∈ Dm,2
0 (RN \ ε−1Kε) and uε ⇀ u in Dm,2

0 (RN ). Taking η ∈ C∞(RN ) and R > 0 such
that supp η ⊂ BR(0), due to the continuity of the map Dm,2

0 (RN ) → Hm
0 (BR), u 7→ ηu, which

can be easily proved arguing as in (4.3), one has that ηuε ⇀ ηu in Hm
0 (BR). Hence, (MR2.i)

implies ηu ∈ Hm
0 (BR \ K). Hence ηu ∈ Dm,2

0 (RN \ K) for every η ∈ C∞0 (RN ). Let us now take
η1 ∈ C∞0 (RN ) with 0 ≤ η1 ≤ 1, η1 ≡ 1 on B 1

2
and supp η1 ⊂ B1, and define ηk := η1

( ·
k

)
, so that

supp ηk ⊂ Bk. We are going to prove that ηku→ u in Dm,2
0 (RN ) as k → +∞, in order to conclude

that u ∈ Dm,2
0 (RN \ K). We estimate as follows:

‖∇m(ηku− u)‖2L2(RN ) ≤
∫
RN
|ηk − 1|2|∇mu|2 +

m−1∑
j=0

∫
Bk\B k

2

|Dm−jηk|2|Dju|2

≤
∫
RN\B k

2

|∇mu|2 +

m−1∑
j=0

‖Dm−jηk‖2Lpj (RN )‖D
ju‖2Lqj (RN\B k

2
)

=

∫
RN\B k

2

|∇mu|2 +

m−1∑
j=0

‖Dm−jη1‖2Lpj (RN )‖D
ju‖2Lqj (RN\B k

2
),

(4.4)

where we have used the fact that supp (Dm−jηk) ⊂ Bk \B k
2

if j ≤ m− 1 and

‖Dm−jηk‖2Lpj (RN ) = k−2(m−j)
(∫

RN
|Dm−jη1(x/k)|

N
m−j dx

)2(m−j)
N

=

(∫
RN
|Dm−jη1(y)|

N
m−j dy

)2(m−j)
N

.

Since u ∈ Dm,2
0 (RN ), the first term at the right-hand side of (4.4) converges to 0 as k → +∞;

moreover, the critical Sobolev embedding (2.3) implies that Dju ∈ Lqj (RN ) for all 0 ≤ j ≤ m, so
that also the second term goes to 0. We conclude that ηku → u in Dm,2

0 (RN ) as k → +∞, which
yields u ∈ Dm,2

0 (RN \ K).
Verification of (M2.ii). Let u ∈ Dm,2

0 (RN \ K). Let δ > 0. By density, there exists a function
v ∈ C∞0 (RN \ K) such that ‖∇m(u − v)‖L2(RN ) <

δ
2 . Take R > 0 so that supp v ⊂ BR. Then
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v ∈ Hm
0 (BR \ K) and by (MR2.ii) there exist ε̄δ > 0 and a family of functions {ϕδε}ε∈(0,ε̄δ) such

that ϕδε ∈ Hm
0 (BR \ ε−1Kε) and ‖∇m(v − ϕδε)‖L2(BR) <

δ
2 for all ε ∈ (0, ε̄δ). Hence, for all

ε ∈ (0, ε̄δ), (ϕδε)
E ∈ Dm,2

0 (RN \ ε−1Kε) and ‖∇m(u− (ϕδε)
E)‖L2(RN ) < δ.

As a consequence, there exists a strictly decreasing and vanishing sequence {εn}n such that, for
every n ∈ N\{0}, there exists a family of functions {unε }ε∈(0,εn) such that unε ∈ D

m,2
0 (RN \ε−1Kε)

and ‖∇m(u − unε )‖L2(RN ) <
1
n for all ε ∈ (0, εn). For every ε ∈ (0, ε1), we define uε := unε if

εn+1 ≤ ε < εn. It is easy to verify that, by construction, uε ∈ Dm,2
0 (RN \ε−1Kε) for all ε ∈ (0, ε1)

and ‖∇m(u− uε)‖L2(RN ) → 0 as ε→ 0. (M2.ii) is thereby verified.

Before stating the main results of the section, we prepose a lemma about the stability of the
(h, V m)-capacitary potential with respect to the function h.

Lemma 4.3. LetK ⊂ Ω ⊂ RN ,K compact, {hn}n∈N ⊂ Hm
loc(Ω) and h ∈ Hm

loc(Ω). Let us suppose
that, for some U(K) ⊂ Ω open neighbourhood of K, hn → h in Hm(U(K)) as n→∞ and denote
by WK,hn (resp. WK,h) the capacitary potential for capVm,Ω(K,hn) (resp. capVm,Ω(K,h)). Then
WK,hn →WK,h in V m(Ω) and capVm,Ω(K,hn)→ capVm,Ω(K,h).

Proof. Being capacitary potentials, the functions WK,hn and WK,h satisfy∫
Ω

∇mWK,h∇mϕ = 0 and
∫

Ω

∇mWK,hn∇mϕ = 0 for all n ∈ N and ϕ ∈ V m0 (Ω \K).

Let ηK ∈ C∞(RN ) be a cutoff function such that 0 ≤ ηK ≤ 1, supp ηK ⊂ U(K) and ηK ≡ 1 in a
neighbourhood of K. Hence, by construction, one has that

WK,hn − ηKhn ∈ V m0 (Ω \K) and WK,h − ηKh ∈ V m0 (Ω \K).

Therefore

‖∇m(WK,hn −WK,h)‖22 =

∫
Ω

(∇mWK,hn −∇mWK,h) (∇mWK,hn −∇mWK,h)

=

∫
Ω

∇mWK,hn∇m (WK,hn − ηKhn) +

∫
Ω

∇mWK,hn∇m (ηKhn − ηKh)

+

∫
Ω

∇mWK,hn∇m (ηKh−WK,h)−
∫

Ω

∇mWK,h∇m (WK,hn − ηKhn)

−
∫

Ω

∇mWK,h∇m (ηKhn − ηKh)−
∫

Ω

∇mWK,h∇m (ηKh−WK,h)

=

∫
Ω

∇m (WK,hn −WK,h)∇m (ηKhn − ηKh)

≤ ‖∇mWK,hn −∇mWK,h‖2‖∇m (ηK (hn − h)) ‖2.

This yields

‖∇mWK,hn −∇mWK,h‖2 ≤ ‖∇m (ηK (hn − h)) ‖2 . ‖hn − h‖Hm(U(K)) → 0,

i.e. WK,hn → WK,h in V m(Ω), directly implying that capVm,Ω(K,hn) → capVm,Ω(K,h) as
n→∞.

Remark 8. In case Ω = RN the same result holds with WK,hn →WK,h in Dm,2
0 (RN ).

We are now in the position to prove the main results of this section, namely a generalized version
of Theorems 1.3-1.6, which take into account families of domains which satisfy (M1)-(M2), rather
than just the model case Kε = εK.

Motivated by the asymptotic scaling properties of the eigenfunctions (1.15), we apply a blow-
up argument to a rescaled problem, in order to find a limit equation on RN \ K and to prove the
convergence of the family of scaled capacitary potentials to the one for the limiting problem. The
capacity capVm,Ω(Kε, uJ) will behave then as the limit capacity on RN \K multiplied by a suitable
power of ε given by the scaling. In this argument, we work with the homogeneous Sobolev spaces
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and, in particular, for the Navier case the characterization via Hardy-Rellich inequalities of Section
2.2.2 will be needed. This is the main reason for the restriction to the fourth-order case in the Navier
setting, since, up to our knowledge, the extension of Proposition 2.5 to the full generality m ≥ 2 is
an open problem.

Theorem 4.4 (Asymptotic expansion of the capacity, Dirichlet case). Let N > 2m and Ω ⊂ RN
be a bounded smooth domain with 0 ∈ Ω. Let {Kε}ε>0 be a family of compact sets uniformly
concentrating to {0} satisfying (M1)-(M2) for some compact set K. Let λJ be an eigenvalue of (1.1)
with Dirichlet boundary conditions and uJ ∈ Hm

0 (Ω) be a corresponding eigenfunction normalized
in L2(Ω). Then

capm,Ω(Kε, uJ) = εN−2m+2γ
(
capm,RN (K, U0) + O(1)

)
(4.5)

as ε→ 0, with γ and U0 as in (1.15).

Theorem 4.5 (Asymptotic expansion of the capacity, Navier case). Let N > 4 and Ω ⊂ RN be
a bounded smooth domain with 0 ∈ Ω. Let {Kε}ε>0 be a family of compact sets uniformly con-
centrating to {0} satisfying (M1)-(M2) for some compact set K. Let λJ be an eigenvalue of (1.1)
with Navier boundary conditions and uJ ∈ H2

ϑ(Ω) be a corresponding eigenfunction normalized in
L2(Ω). Then

cap2,ϑ,Ω(Kε, uJ) = εN−4+2γ
(
cap2,RN (K, U0) + O(1)

)
(4.6)

as ε→ 0, with γ and U0 as in (1.15) with m = 2.

As a direct consequence, braiding together Theorem 1.2 and Theorems 4.4-4.5 respectively, and
recalling that for N ≥ 2m the point has null V m-capacity by Proposition 2.3, we obtain Theorems
4.6 and 4.7 below.

Theorem 4.6 (Asymptotic expansion of perturbed eigenvalues, Dirichlet case). Let N > 2m and
Ω ⊂ RN be a bounded smooth domain containing 0. Let {Kε}ε>0 be a family of compact sets
uniformly concentrating to {0} satisfying (M1)-(M2) for some compact set K. Let λJ be a simple
eigenvalue of (1.1) with Dirichlet boundary conditions and let uJ ∈ Hm

0 (Ω) be a corresponding
eigenfunction normalized in L2(Ω). Then

λJ(Ω \Kε) = λJ(Ω) + εN−2m+2γ
(
capm,RN (K, U0) + O(1)

)
(4.7)

as ε→ 0, with γ and U0 as in (1.15).

Theorem 4.7 (Asymptotic expansion of perturbed eigenvalues, Navier case). LetN > 4 and Ω ⊂RN
be a bounded smooth domain containing 0. Let {Kε}ε>0 be a family of compact sets uniformly con-
centrating to {0} satisfying (M1)-(M2) for some compact set K. Let λJ be a simple eigenvalue
of (1.1) with Navier boundary conditions and let uJ ∈ H2

ϑ(Ω) be a corresponding eigenfunction
normalized in L2(Ω). Then

λJ(Ω \Kε) = λJ(Ω) + εN−4+2γ
(
cap2,RN (K, U0) + O(1)

)
(4.8)

as ε→ 0, with γ and U0 as in (1.15) with m = 2.

The proofs of Theorems 4.4 and 4.5 follow a similar structure. We proceed hence to prove them
at once using the introduced unifying notation, detailing the differences when needed.

Proof of Theorems 4.4-4.5. Motivated by (1.15), we define the analogously scaled potentials

W̃ε :=
Wε(ε·)
εγ

, where Wε := WKε,uJ .

It is easy to verify that W̃ε is the capacitary potential for Uε in ε−1Ω \ ε−1Kε, i.e.
(−∆)mW̃ε = 0 in ε−1Ω \ ε−1Kε,

W̃ε ∈ V m(ε−1Ω),

W̃ε − Uε ∈ V m0 (ε−1Ω \ ε−1Kε),

(4.9)

24



where m = 2 in the Navier case. The first goal now is to prove that the so-rescaled capacitary
potentials weakly converge to some function W̃ and prove that W̃ is a capacitary potential in RN \K.
To this aim, we need to distinguish between Dirichlet and Navier conditions on ∂Ω. Indeed, by
extension by zero outside the rescaled domains, in the first case it is rather natural to prove that the
limit functional space is Dm,2

0 (RN \ K); that the same holds true in the Navier case is not evident
and requires a finer analysis. A fundamental role in this second case is played by the Hardy-Rellich
inequality discussed in Section 2.2.2, which is however available just for m = 2. The two cases will
converge then in the final step where the asymptotic expansions (4.5)–(4.6) are proved.

Step 1 (Dirichlet case V m = Hm
0 ). By (M1) there exists R > 0 such that, for ε small enough,

ε−1Kε ⊂M ⊂ BR(0) ⊂ ε−1Ω, and hence, in view of Proposition 2.2,

capm,ε−1Ω(ε−1Kε, Uε) ≤ capm,BR(0)(M,Uε).

Since Uε → U0 in Hm(BR(0)) by (1.15), applying Lemma 4.3 in BR(0), we infer that

capm,BR(0)(M,Uε)→ capm,BR(0)(M,U0) as ε→ 0.

This yields in particular that ‖∇mW̃ε‖2L2(ε−1Ω) = capm,ε−1Ω(ε−1Kε, Uε) is bounded uniformly

with respect to ε. Letting W̃E
ε be the extension by 0 of W̃ε outside ε−1Ω, we have thus that

‖W̃E
ε ‖Dm,20 (RN ) ≤ C. Since Dm,2

0 (RN ) is a Hilbert space, and so reflexive, for every sequence

εn → 0+ there exist a subsequence εnk and W̃ ∈ Dm,2
0 (RN ) such that

W̃E
εnk

⇀ W̃ weakly in Dm,2
0 (RN ) as k →∞. (4.10)

We claim now that ‖∇mW̃‖22 = capm,RN (K, U0).
Let ϕ ∈ C∞0 (RN \ K) and R > r(M) be such that suppϕ ⊂ BR, then by (MR2-ii) of Lemma

4.2, one may find a family {ϕε}ε>0 ⊂ Hm
0 (BR) such that ϕε ∈ Hm

0 (BR \ ε−1Kε) and ϕε → ϕ in
Hm

0 (BR) as ε→ 0. In particular, for ε small enough, one has that BR ⊂ ε−1Ω, so ϕε may be taken
as test function for the capacitary potential W̃ε. Hence,

0 =

∫
ε−1
nk

Ω\ε−1
nk
Kεnk

∇mW̃εnk
∇mϕεnk

=

∫
RN\ε−1

nk
Kεnk

∇mW̃E
εnk
∇mϕεnk →

∫
RN\K

∇mW̃ ∇mϕ as k →∞

by weak-strong convergence in Dm,2
0 (RN ). We are left to show that W̃ −ηU0 ∈ Dm,2

0 (RN \K), for
some cutoff function η which is equal to 1 in a neighbourhood of K. Let η ∈ C∞0 (RN ) be equal to
1 on an open set U with K ∪M ⊂ U ; hence η is also equal to 1 on neighbourhoods of each ε−1Kε

by (M1). Then W̃E
ε − ηUε ∈ D

m,2
0 (RN \ ε−1Kε) and W̃E

εnk
− ηUεnk ⇀ W̃ − ηU0 in Dm,2

0 (RN )

as k → ∞, and so by (M2-i) one infers that W̃ − ηU0 ∈ Dm,2
0 (RN \ K). All in all, we deduce that

W̃ is the capacitary potential relative to capm,RN (K, U0), i.e.

‖∇mW̃‖2L2(RN ) = capm,RN (K, U0). (4.11)

Since the limit W̃ in (4.10) depends neither on the sequence {εn} nor on the subsequence {εnk}, we
conclude that

W̃E
ε ⇀ W̃ weakly in Dm,2

0 (RN ) as ε→ 0. (4.12)

Step 1 (Navier case V 2 = H2
ϑ). We recall that here we are assuming m = 2. The boundedness

of ‖∆W̃ε‖L2(ε−1Ω) with a constant independent of ε follows from the Dirichlet case, by recalling
Proposition 2.2(iii). However, unlike the former case, one cannot now extend W̃ε to 0 outside ε−1Ω
and still obtain a function in D2,2

0 (RN ). To overcome this problem we rely on the Hardy-Rellich
inequality proved in Theorem 2.4. In fact, we have∫

ε−1Ω

|W̃ε|2

|x|4
dx+

∫
ε−1Ω

|∇W̃ε|2

|x|2
dx .

∫
ε−1Ω

|∆W̃ε|2 ≤ C
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and therefore, by a diagonal process of extracted subsequences, for every sequence εn → 0+ there
exist a subsequence εnj and W̃ ∈ H2

loc(RN ) for which

∇2−kW̃εnj

|x|k
⇀
∇2−kW̃

|x|k
in L2(BR) (4.13)

as j →∞ for any R > 0 and k ∈ {0, 1, 2}. By weak lower semicontinuity of the norm, we infer that

∫
BR

|∇2−kW̃ |2

|x|2k
dx ≤ lim inf

j→∞

∫
BR

|∇2−kW̃εnj
|2

|x|2k
dx ≤ C,

so that, letting R→ +∞, ∫
RN

|∇2−kW̃ |2

|x|2k
dx ≤ C for all k ∈ {0, 1, 2}.

By Proposition 2.5, this is equivalent to W̃ ∈ D2,2
0 (RN ).

It remains to prove that W̃ is the capacitary potential relative to cap2,RN (K, U0). Let η be as in
the former case. Let ϕ ∈ C∞0 (B1) be such that ϕ ≡ 1 in B1/2(0) and consider the scaled functions
ϕR := ϕ

( ·
R

)
with R > r(M). Then ϕR

(
W̃εnj

−ηUεnj
)
⇀ ϕR

(
W̃ −ηU0

)
weakly in H2

0 (BR) and

ϕR(W̃ε−ηUε
)
∈ H2

0 (BR \ε−1Kε). By (MR2-i) we know then that ϕR
(
W̃ −ηU0

)
∈ H2

0 (BR \K).
Now we claim that ϕR

(
W̃ − ηU0

)
→ W̃ − ηU0 as R → +∞ in D2,2

0 (RN ), thus concluding that
W̃ − ηU0 ∈ D2,2

0 (RN \ K). Indeed,

‖∆
(

(ϕR − 1)
(
W̃ − ηU0

))
‖22 . ‖∆ϕR

(
W̃ − ηU0

)
‖22 + ‖∇ϕR∇

(
W̃ − ηU0

)
‖22

+ ‖ (ϕR − 1) ∆
(
W̃ − ηU0

)
‖22,

where
‖ (ϕR − 1) ∆

(
W̃ − ηU0

)
‖22 ≤

∫
RN\BR/2

|∆
(
W̃ − ηU0

)
|2 → 0

as R→ +∞, and, for any k ∈ {1, 2},

‖∇kϕR∇2−k(W̃ − ηU0

)
‖22 =

∫
R
2 <|x|<R

1

R2k

∣∣∣(∇kϕ) ( x
R

)∣∣∣2 |∇2−k(W̃ − ηU0

)
|2 dx

.
∫
RN\BR(0)

|∇2−k(W̃ − ηU0

)
|2

|x|2k
dx→ 0

as R→ +∞ since W̃ − ηU0 ∈ D2,2
0 (RN ) together with Proposition 2.5.

Next, we verify that ∫
RN\K

∆W̃ ∆ϕ = 0 for all ϕ ∈ D2,2
0 (RN \ K). (4.14)

By density, it is enough to prove (4.14) for all ϕ ∈ C∞0 (RN \ K). Letting ϕ ∈ C∞0 (RN \ K), there
existR > r(M) and ε0 > 0 such that suppϕ ⊂ BR ⊂ ε−1Ω for all ε < ε0, so that ϕ ∈ H2

0 (BR\K).
By (MR2-ii) there exists a family {ϕε}ε ⊂ H2

0 (BR) such that ϕε ∈ H2
0 (BR \ ε−1Kε) and ϕε → ϕ

in H2
0 (BR). Hence,

0 =

∫
ε−1
nj

Ω

∆W̃εnj
∆ϕεnj =

∫
BR

∆W̃εnj
∆ϕεnj →

∫
BR

∆W̃ ∆ϕ =

∫
RN\K

∆W̃ ∆ϕ

as j →∞, by weak-strong convergence inH2
0 (BR). We have thereby proved the claim that W̃ is the

capacitary potential relative to cap2,RN (K, U0). Since the limit W̃ in (4.13) depends neither on the
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sequence {εn} nor on the subsequence {εnk}, we conclude that the convergences in (4.13) actually
hold as ε→ 0, i.e.

∇2−kW̃ε

|x|k
⇀
∇2−kW̃

|x|k
in L2(BR) as ε→ 0 for all R > 0 and k ∈ {0, 1, 2}. (4.15)

Step 2. (m = 2 in the Navier case, m ≥ 2 in the Dirichlet). We aim now to prove the asymptotic
expansions (4.5)–(4.6). As above, let η ∈ C∞0 (RN ) be equal to 1 on an open set U withK∪M ⊂ U .
Let R > 0 be such that supp η ⊂ BR. Since W̃ε − ηUε ∈ V m0 (ε−1Ω \ ε−1Kε), by (4.9) and (4.11),
together with (4.12) or (4.15), we obtain that

‖∇mW̃ε‖2L2(ε−1Ω) =

∫
ε−1Ω

∇mW̃ε∇m (ηUε) =

∫
BR

∇mW̃ε∇m(ηUε)

→
∫
RN
∇mW̃ ∇m(ηU0) = ‖∇mW̃‖2L2(RN )

(4.16)

as ε→ 0 by weak-strong convergence. On the other hand, by rescaling one has that

‖∇mW̃ε‖2L2(ε−1Ω) =
1

ε2γ

∫
ε−1Ω

|∇m(Wε(εx))|2 dx = ε−N+2m−2γ

∫
Ω

|∇mWε(y)|2 dy

= ε−N+2m−2γcapVm,Ω(Kε, uJ).

(4.17)

Hence, from (4.11) and (4.16)-(4.17) we finally infer that

capVm,Ω(Kε, uJ) = εN−2m+2γ‖∇mW̃ε‖2L2(ε−1Ω) = εN−2m+2γ
(
capm,RN (K, U0) + O(1)

)
as ε→ 0.

4.2 Sufficient conditions for a sharp asymptotic expansion
Looking at the asymptotic expansions we have found in Theorems 4.6-4.7, one may ask whether the
results are sharp, in the sense that the vanishing rate of the eigenvalue variation λJ(Ω\Kε)− λJ(Ω)
is equal to N − 2m + 2γ. The next results provide sufficient conditions on K and U0 in order to
ensure that capm,RN (K, U0) 6= 0.

Proposition 4.8. Under the assumptions of Theorems 4.6 or 4.7, suppose that the Lebesgue measure
of K is positive. Then

lim
ε→0

λJ(Ω \Kε)− λJ(Ω)

εN−2m+2γ
= capm,RN (K, U0) > 0.

Proof. Denote by W (0)
K the capacitary potential for capm,RN (K, U0) and suppose by contradiction

that capm,RN (K, U0) = 0. Then, by the Hardy inequality for the polyharmonic operator (see [DH,
Theorem 12]), there exists a constant c = c(N,m) such that

0 = ‖∇mW (0)
K ‖

2
L2(RN ) ≥ c

∫
RN

|W (0)
K |2

|x|2m
dx ≥ c

∫
K

|W (0)
K |2

|x|2m
dx = c

∫
K

|U0|2

|x|2m
dx

since W (0)
K ≡ U0 on K. Since |K| > 0, this readily implies that U0 vanishes a.e. on K. However, by

construction, U0 is a polyharmonic polynomial on RN which is not identically zero (see [Be, Sec.4
Theorem 1]), so it cannot vanish on a set of positive measure (since nontrivial analytic functions
cannot vanish on positive measure sets). This, together with Theorems 4.6 and 4.7, concludes the
proof.

The next results apply to some specific situations in which, although K has vanishing Lebesgue
measure, one may anyway have that capm,RN (K, U0) 6= 0.
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Proposition 4.9. Let N > 2m and K ⊂ RN be a compactum with capm,RN (K) > 0. Suppose
moreover that uJ(0) 6= 0. Then, in the setting of Theorems 4.6 or 4.7, we have that

λJ(Ω \Kε) = λJ(Ω) + εN−2mu2
J(0)capm,RN (K) + O(εN−2m) (4.18)

as ε→ 0.

We mention that an expansion of type (4.18) was obtained in [Co, Theorem 1.4] and [AFHL,
Theorem 1.7] in the case N = 2m = 2, in which the vanishing rate of the eigenvalue variation is
logarithmic.

Proof of Proposition 4.9. Since {Kε}ε>0 is concentrating at {0} and uJ(0) 6= 0, then the degree γ
of the polynomial U0 is 0, and U0 = uJ(0). It is then easy to see that

capm,RN (K, uJ(0)) = u2
J(0)capm,RN (K) > 0,

so that (4.7) and (4.8) can be rewritten as in (4.18).

In the case uJ(0) = 0, the next result, inspired by [FNO, Lemma 3.11], may be useful. It tells
that, if the compactum K and the null-set of the polynomial U0 are “transversal enough”, then again
capm,RN (K, U0) > 0.

Proposition 4.10. Let N > 2m and K ⊂ RN be a compactum with capm,RN (K) > 0. Letting
f ∈C∞(RN ), let us consider the set ZKf := {x ∈ K | f(x) = 0}. If capm,RN (ZKf ) < capm,RN (K),
then capm,RN (K, f) > 0.

Proof. Let {Un} be a sequence of nested open sets in RN so that ZKf ⊂ Un for all n ∈ N and
ZKf =

⋂
n∈N Un and let Kn := K \ Un, which is a sequence of compact sets. By subadditivity and

monotonicity of the capacity (see e.g. [Ma]) one has that

capm,RN (K) ≤ capm,RN (Kn) + capm,RN (Un).

Moreover, fixing 0 < δ < capm,RN (K) − capm,RN (ZKf ), one may find a neighbourhood U(ZKf )

such that one has Un ⊂ U(ZKf ) by construction and capm,Rn(Un) ≤ capm,Rn(ZKf ) + δ by Lemma
2.6, provided n is large enough. This implies

capm,RN (Kn) ≥ capm,RN (K)− capm,RN (ZKf )− δ > 0 (4.19)

for n large enough. We define K+
n := {x ∈ Kn : f(x) > 0} and K−n := {x ∈ Kn : f(x) < 0} for

all n ∈ N. Noticing that Kn is the union of K+
n and K−n , necessarily either capm,RN (K+

n ) > 0 or
capm,RN (K−n ) > 0; let us e.g. consider the case capm,RN (K+

n ) > 0. By regularity of f and since
K+
n is compact, then c+n := infK+

n
f is attained and strictly positive. Take now any un ∈ Dm,2

0 (RN )

so that un − ηK+
n
f ∈ Dm,2

0 (RN \ K+
n ) and define vn := un

c+n
. Then it is clear that vn ∈ Dm,2

0 (RN )

and vn ≥ 1 a.e. on K+
n . Hence,

Cap≥
m,RN (K+

n ) ≤
∫
RN
|∇mvn|2 =

1(
c+n
)2 ∫

RN
|∇mun|2.

By arbitrariness of un this yields (c+n )
2

Cap≥
m,RN (K+

n ) ≤ capm,RN (K+
n , f) ≤ capm,RN (K, f),

since K+
n ⊂ K for all n ∈ N. Using now the equivalence of the capacities in RN stated in Lemma

2.7, one infers that
capm,RN (K, f) ≥ c

(
c+n
)2

capm,RN (K+
n ) > 0

by (4.19). This concludes the proof.

Remark 9. In view of Remark 4 it is immediate to see that, if capm,RN (K) > 0 and ZKU0
has

dimension d ≤ N − 2m, then the assumptions of Proposition 4.10 are fulfilled, thus ensuring that
capm,RN (K, U0) > 0.
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5 Open problems
We finally discuss possible generalizations and questions which are left open by our analysis and
which we believe of interest.

Higher-order Navier setting. The results in Section 3 for the Navier setting are obtained in
the general case m ≥ 2. On the other hand, Theorem 4.5 and its consequent Theorem 4.7 are
established only for m = 2. The main difficulty in their extension to higher orders relies in the
characterization of homogeneous Sobolev spaces via Hardy-Rellich inequalities. In our argument
this was necessary to compensate for the lack of a trivial extension, which is instead available in
the Dirichlet setting. Although we envision that a generalization of the Hardy-Rellich inequality of
Proposition 2.4 is reachable, the extension of the characterization contained in Proposition 2.5 seems
to be a non trivial problem. Indeed, for m = 2 the only intermediate derivative is the gradient and
∇u = Du; on the other hand for m ≥ 3 the Hardy-Rellich inequality would provide a weighted
estimate on the derivatives ∇ku, k ∈ {1, . . . ,m − 1}, while one would need to estimate the full
tensor of the derivatives Dku to be able to conclude that u ∈ Dm,2

0 (RN ).

Small dimensions. Most of our results deal with the high dimensional caseN ≥ 2m, because the
concentration of the family of sets {Kε}ε>0 to a zero V m-capacity compact set was needed. Recall
that for N < 2m all compact sets are of positive capacity, see Proposition 2.3. Nevertheless, in order
to prove that the asymptotic expansions given by Theorem 1.2 are sharp, in Theorems 1.3 and 1.4 we
have to restrict to N > 2m. The conformal case N = 2m seems not to be tratable with the blow-up
analysis, not only due to the different characterization of the spacesDm,2

0 (RN ) and the use of Hardy-
Rellich inequalities, but also because the m-capacity capm,R2m(K) of any compact set K in R2m

is null (see [Ma1]). A different approach for conformal (and smaller!) dimensions should be in fact
developed and we expect that the expansion involves the logarithm of the diameter of the shrinking
sets, in analogy with the results in [AFHL] for the case m = 1. We remark in particular that, when
our results are applied to the biharmonic operator, i.e. m = 2, we cover the case N ≥ 5, while the
two-dimensional case, from a completely different point of view, is studied in [CN, KLW, LWK].
The case N = 3 is left open and N = 4 only partially answered by Theorem 1.2.

Equivalent definitions of capacities. As described in Section 2, both capm,RN in (2.6) and
Cap≥

m,RN in (2.8) are good definitions of capacity, and they are also equivalent for N > 2m, see
Lemma 2.7. In the second order case, it is not difficult to prove that the two coincide, while - up to
our knowledge - this is still unknown in the higher-order setting. A weak question would be to ask
whether the two capacities are asymptotic for families of shrinking domains, e.g. for Kε = εK as
considered in Sec. 4.1. It would be also interesting to understand whether the equivalence remains
true for the weighted capacities capm,RN (·, h) and the analogue Cap≥

m,RN (·, h) for some class of
nonconstant functions h.

Boundary conditions. As mentioned in the introduction, it would be interesting to investigate
the complementary cases of prescribing Navier BCs on the removed set and either Navier or Dirichlet
BCs on the external boundary ∂Ω. Because of the lack of an extension by zero in case of Navier BCs,
which has consequences on the mutual relations between the spaces V m(Ω\K), a different argument
would be needed. More in general, it would be challenging to consider more general types of BCs,
which yield a different quadratic form associated to the polyharmonic operator, which would involve
also boundary integrals. An interesting case in the biharmonic setting, related to the physical model
of thin plates, is for example given by Steklov BCs u = ∆u − dκ∂nu = 0, d ∈ R and κ being the
signed curvature of the boundary.
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