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Abstract

It has recently been claimed that a Cardy-like limit of the superconformal index of 4d N = 4 SYM 
accounts for the entropy function, whose Legendre transform corresponds to the entropy of the holographic 
dual AdS5 rotating black hole. Here we study this Cardy-like limit for N = 1 toric quiver gauge theories, 
observing that the corresponding entropy function can be interpreted in terms of the toric data. Furthermore, 
for some families of models, we compute the Legendre transform of the entropy function, comparing with 
similar results recently discussed in the literature.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The possibility of counting black hole microstates using the CFT dual picture is one of the 
most attractive consequences of the AdS/CFT correspondence [1]. A recent result in this field is 
the relation between the entropy of AdS5 rotating black holes [2–6] and the superconformal index 
(SCI) [7,8]. The black hole entropy is given by the Benekstein-Hawking formula, SBH = A

4G5
, 

being A the area of the black hole horizon and G5 the five dimensional Newton constant. The 
problem has been for a long time how to take into account the gravitational exponential growing 
ensemble of states from the dual CFT perspective. The potential candidate, the SCI, correspond-
ing to the partition function computed on the conformal boundary S3 × R, led to a puzzle: the 
growth of asymptotic states was not large enough to reproduce the entropy obtained from the 
gravitational side; the final result was of order O(1) instead of the expected O(N2) [7]. For long 
time it was believed that the main reason behind this phenomenon is that the index counts ei-
ther bosonic or fermionic operators weighted by the fermion number operator (−1)F , inducing 
a huge cancellation of states. However it has been recently pointed out that the problem actually 
comes from the fact that the fugacities were taken to be real. In spite of this, the saddle point 
approximation of the index is able to reproduce the predicted exponential growth of the states 
in the index when allowing for complex valued fugacities [9,10]. One may also perform some 
explicit calculations based on a different partition function, that can be obtained by manipulating 
the SCI. In this approach, the existence of a deconfinement transition due to the extended range 
of fugacities was observed in [10].

A breakthrough in the analysis has been recently given by [11], where the authors associated 
the black hole entropy to a CFT extremization problem. They focused on the maximally super-
symmetric case with two angular momenta and three conserved global charges. Moreover, the 
authors conjectured an expression for the grand canonical BPS partition function such that the 
Legendre transform of its logarithm reproduces the entropy of the black hole (as in the cases of 
[1,12,13]). By reformulating the problem in term of a grand canonical BPS partition function, 
ZBPS, they conjectured the black hole entropy as a Legendre transform of the logarithm of ZBPS
(as in the cases of [1,12,13]). A concrete proposal for such a BPS partition function has been ob-
2
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tained on the field theory side [14]. Furthermore in [15] it was realized that ZBPS can be obtained 
on the gravitational side by considering the complexified on-shell action.

Moreover the authors of [16] exploited a reformulation of the SCI of 4d N = 1 theories as a 
finite sum over the solution of the so-called Bethe Ansatz equation [17].

Using these ideas the authors of [9,14,16,18–20] have obtained the BPS entropy function 
SE(�1, �2, �3, ω1, ω2) of [11] from the SCI of N = 4 SYM. At large N this function reads

SE = −iπN2 �1�2�3

ω1ω2
(1.1)

where �I and ωa are the fugacities conjugated to the charges QI and Ja of the SO(6)R
R-symmetry and the SO(4) ⊂ SO(4, 2) conformal symmetry respectively. Furthermore these 
fugacities are constrained by the relation 1 �1 + �2 + �3 − ω1 − ω2 = 1, that corresponds, on 
the supergravity dual, to a stability condition on the killing spinor [15].

A natural question regards the extension of this result to other families of 4d N = 1 SCFT 
with an holographic dual description. Recent attempts in this direction has been given in [18], 
for the case of necklace N = 2 models, in [20] for the case of Ypp family and in [14] for more 
general classes of superconformal quivers. In all these cases the authors considered a subgroup 
of the full global symmetry and found interesting extensions of the results, showing also that the 
Legendre transform led to the expected entropy of the dual black hole.

In this paper we focus on infinite families of models, denoted as toric quiver gauge theories, 
that include the cases considered so far. These models describe the low energy dynamics of a 
stack of N D3 branes probing the tip of a toric cone over a five dimensional Sasaki-Einstein 
manifold. We study the large N index in the Cardy-like limit with complex fugacities discussed 
above and we give evidences of a general relation of the form

SE = −iπN2 CIJK�I�J �K

6ω1ω2
(1.2)

where the fugacities �I are read from the toric data and they satisfy the constraint 
∑d

I=1 �I −∑2
a=1 ωa = 1. This result has been already conjectured in [21,22], where it was proposed that 

the numerator of (1.2) has the functional structure of the conformal anomaly of the 4d theory ex-
tracted from the gravitational (or geometric) data. The coefficients CIJK in (1.2) correspond 
to the Chern-Simons couplings of the holographic dual gravitational description. Under the 
AdS/CFT correspondence they are associated to the triangle anomalies of the SCFT as shown in 
[23].

The paper is organized as follows. In section 2 we review the main aspects of our calculation 
focusing on the Cardy-like limit of the superconformal index and on the relation between the 
toric data and the global symmetries of the dual field theory. In section 3 we study the case of the 
conifold, computing the Cardy-like limit of the SCI and giving some evidences for the general 
conjecture on the behavior of the gauge holonomies at the saddle point. In section 4 we study 
other simple examples of toric quiver gauge theories, showing the validity of (1.2) for each case. 
In section 5 we focus on some infinite families, Ypq , Lpqr and Xpq theories, and also in these 
cases we give evidences of (1.2). In section 6 we discuss the Legendre transform of the formula 
for the entropy of N = 2 necklace quivers and for quivers in the Ypp family. In both cases we 
extend the results already computed in the literature by turning on all the global symmetries. In 
section 7 we conclude, discussing possible future lines of research.

1 See [15] for a detailed explanation on the sign.
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2. The Cardy-like limit of toric quivers

In this section we explain the general aspects of the calculation of the Cardy-like limit of the 
SCI with complex fugacities for toric quiver gauge theories.

Toric quiver gauge theories describe the low energy dynamics of a stack of N D3 branes 
probing the tip of a toric cone over a five dimensional Sasaki-Einstein manifold. The toric data 
describing the singularity can be associated with the field theory data obtained by studying the 
moduli space [24,25]. In order to obtain these data starting from a gauge theory one has to first 
embed the quiver in a two dimensional torus. In this way one obtains a planar diagram, that can be 
transformed in a dimer, by exchanging faces and nodes. On this structure one defines the notion 
of perfect matching (PM): the PMs are collections of fields that represent all the possible dimer 
covers. By weighting the PMs with respect to the one-cycles of the first homology group of the 
torus one defines two possible intersection numbers for each PM. One can then assign a vector 
VI = (·, ·, 1) to each PM, such that the first two entries are the intersection numbers discussed 
above and the last one is fixed to 1. The toric diagram corresponds to the convex integral polygon 
constructed from the VI vectors. Using this construction it is possible to assign a basis of global 
symmetries of the quiver directly from the toric diagram. This consists of assigning a U(1)I
symmetry, denoted as QI , to each external point of the toric diagram. One can construct the 
R-symmetry and the flavor (and baryonic symmetries) by combining these U(1)I as follows.

First one assigns a set of coefficients aI ≡{a(R)
I , a(i)

I } to each PM. Then it is necessary to 

impose the constraints 
∑d

I=1 a(R)
I = 2 and 

∑d
i=1 a(i)

I = 0 ∀i, where d is the number of external 
points in the toric diagram. The charges of the fields are associated to the ones of the PM with 
the prescription of [26]. Furthermore, the areas of the triangles obtained by connecting three 
external points of the toric diagram coincide with the triangular anomalies between the three 
U(1)I symmetries associated to such points [23]

N2

2
|det(VI ,VJ ,VK)| = Tr(QIQJ QK) ≡ N2CIJK (2.1)

As an example let us discuss the simplest toric quiver gauge theory, corresponding to N = 4
SU(N) SYM. We look at this theory as an N = 1 theory with superpotential

W = �1[�2,�3] (2.2)

where �I are in the adjoint gauge group. In this case we have three U(1) trial R-symmetries, 
denoted as 2U(1)1,2,3, and each U(1)I assigns charge 1 to the I -th field and zero to the others:

U(1)1 U(1)2 U(1)3

�1 1 0 0

�2 0 1 0

�3 0 0 1

(2.3)

There are three PM as shown in (2.4), corresponding to the three fields �I .
4
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1

1

1

1

1

1

1

1

1

1

1

1

(2.4)

The toric diagram is then generated by the three vectors

V1 = (0,0,1), V2 = (0,1,1), V3 = (1,0,1) (2.5)

The three trial R-symmetries are associated to the three corners of the toric diagram generated 
by three vectors in (2.5). Combining these symmetries we can extract the U(1)R symmetry and 
the other two flavor symmetries associated to the Cartan of the SU(4)R symmetry group of 
N = 4 SYM. For example we can choose as an R-symmetry the combination 2

3(U(1)1 +U(1)2 +
U(1)3). In this case this assigns R-charge 2

3 to each fields and it gives accidentally also the exact 
R-symmetry of the model. More generally the exact R-symmetry is given by a-maximization 
[27], where the conformal anomaly in this language corresponds to the function [26,28]

ageom ∝ CIJKa(R)
I a(R)

J a(R)
K (2.6)

The other two global symmetries can be obtained by the combinations U(1)′1 = U(1)1 − U(1)3
and U(1)′2 = U(1)2 − U(1)3. In this way we assign the charges as

U(1)′1 U(1)′2 U(1)R

�1 1 0 2
3

�2 0 1 2
3

�3 −1 −1 2
3

(2.7)

Using these ideas one can read the parameterization of the global symmetries entering in 
the superconformal index from the toric diagram. We just have to linearly combine the U(1)I
symmetries in order to obtain the non-R, either flavor or baryonic symmetries. In the following 
we will choose the d −1 combinations U(1)i −U(1)d , with i = 1, . . . d −1 as our basis of non R-
global symmetries. Furthermore the R-symmetry (not necessarily the exact one) will correspond 
to the combination 2

d

∑d
I=1 U(1)I . Using this basis of charges and symmetries we can write the 

SCI of a toric quiver gauge theory in the form

I = TrBPS (−1)F e−βH pJ1+ 1
d

∑d
i=1 Qi qJ2+ 1

d

∑d
i=1 Qi

d−1∏
i=1

ui
Qi−Qd (2.8)

Then we shift the chemical potentials ui → ui(pq)− 1
d obtaining

I = TrBPS (−1)F pJ1qJ2(pq)
1
d

∑d
i=1 Qi

d−1∏
i=1

u
Qi−Qd

i (pq)
Qd−Qi

d (2.9)

Then by defining p = e2πiω1 , q = e2πiω2 , ui = e2πi�i (for i = 1 . . . d − 1) and (−1)F = e2iπQd

(using the fact that this is an R-symmetry as well) we can express the index as
5
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I = TrBPS e2πiω1J1e2πiω2J2

d∏
I=1

e2πi�I QI (2.10)

with the constraint

d∑
I=1

�I − ω1 − ω2 = 1 (2.11)

The Cardy limit of the SCI [29] and its generalization in [30,31] are obtained by shrinking the 
circle on which the index is defined as a partition function S3 × S1. This can be done with 
complex fugacities by taking the limit |ω1|, |ω2| → 0 [9,18,19]

lim|ω1|,|ω2|→0
I 	 e

− iπ(ω1+ω2)

12ω1ω2
TrR

∫ rankG∏
i=1

daie
V (a) (2.12)

where

V (a) = iπ

2ω1ω2

(
V1(a)(ω1 + ω2) + V2(a)

3

)
(2.13)

In this formula rankG refers to the dimension of the maximal abelian torus of the gauge group, 
that is parameterized by the gauge holonomies e2πiai . The functions V1 and V2 are

V1(a) =
G∑

k=1

N∑
m,n=1

θ
(
a(k)
m − a(k)

n

)
+

∑
k→k′

N∑
m,n=1

(Rkk′ − 1)θ
(
a(k)
m − a(k′)

n +
d−1∑
i=1

qi
kk′�i

)

V2(a) = −
∑
k→k′

N∑
m,n=1

κ
(
a(k)
m − a(k′)

n +
d−1∑
i=1

qi
kk′�i

)
(2.14)

Let us explain these formulas. In the first line G refers to the number of gauge groups. It is ob-
tained from a toric diagram by the formula G = 2I + d − 2, where I is the number of internal 
points. In the formula for V1 there are two contributions, the first comes from the vector multi-
plets while the second from each bifundamental multiplet connecting the k-th to the k′-th node. 
Adjoints matter fields have k = k′. The function V2 takes contributions only from the matter 
fields. Each matter field has R-charge Rkk′ and global charges qi

kk′ . The fugacities �i are the 
ones defined above. In this paper we will always refer to SU(N) gauge theories, and this will 
impose the constraint 

∑N
i=1 a

(k)
m = 0. Moreover, the functions θ(x) and κ(x) are given by

θ(x) = {x}(1 − {x}), κ(x) = {x}(1 − {x})(1 − 2{x}), (2.15)

with the fractional part {x} = x − [x], and can be rewritten as

θ(x) = |x| − x2, κ(x) = 2x3 − 3x|x| + x (2.16)

for |x| ≤ 1. The next step consists of evaluating the integral (2.12). We start by ignoring the 
contribution of TrR. This is because in this paper we always consider toric quivers with a weakly 
coupled gravity dual. It follows that the gravitational anomaly, proportional to TrR, is order 
O(1), while we restrict to the leading large N contribution of the Cardy-like limit of the index. 

Furthermore, we focus on the regime Re 
(

i
ω1ω2

)
> 0. This is the regime discussed in [9,14,18–

20] where it was shown that there is a saddle point at vanishing holonomies when considering 
6
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N = 4 SYM. Computing the Cardy-like limit of the SCI using the charges (2.7) we obtain the 
entropy function

SE = −iπN2 �1�2�3

ω1ω2
(2.17)

where with a slight abuse of notation we defined a new set of charges �I = 2
ω1+ω2−1 {�I }. The 

new charges �I appearing in (2.17) are associated to the symmetries U(1)I with I = 1, 2, 3 and 
the result holds provided we impose the constraint �1 + �2 + �3 − ω1 − ω2 = 1.

Here we study more general classes of quiver gauge theories. The first problem corresponds to 
find arguments in favor of the existence on an universal saddle point with vanishing holonomies 
as already discussed in [9,14,18,19]. Here we will confirm this expectation, observing in exam-
ples on increasing complexity that there is always a regime of fugacities that allows the existence 
of such a universal saddle.

Furthermore in each example we compute the Cardy-like limit of the index at large N , and 
we observe that it is controlled by the function

SE = −iπN2 CIJK�I�J �K

6ω1ω2
(2.18)

where �I are the fugacities appearing in (2.10) and the constraint (2.11) is imposed. This result 
can be proved by considering the relation obtained in [15,20] for the Cardy-like limit of the SCI 
of a generic N = 1 gauge theory in presence of flavor fugacities. The relation is

SE = −iπN2 Tr(�R + xiFi)
3

6ω1ω2
(2.19)

that holds imposing the constraint

2� − ω1 − ω2 = 1 (2.20)

where � represents the R-symmetry fugacity, while xi are the flavor symmetry fugacities. We 
can express the R-symmetry and the flavor symmetries Fi as

R =
d∑

I=1

QI a(R)
I , Fi =

d∑
I=1

QI a(i)
I ∀i (2.21)

with the constraints 
∑d

I=1 a(R)
I = 2 and 

∑d
I=1 a(i)

I = 0, ∀i. The combination appearing in (2.19)
can be expressed in terms of these redefinitions as

�R + xiFi =
d∑

I=1

QI

(
�a(R)

I +
d−1∑
i=1

xia
(i)
I

)
≡

d∑
I=1

QI�I (2.22)

where in the last equality we defined the new fugacities �I . These fugacities are constrained as

d∑
I=1

�I =
d∑

I=1

(
�a(R)

I +
d−1∑
i=1

xia
(i)
I

)
= 2� = ω1 + ω2 + 1 (2.23)

where in the last equality we used the constraint (2.20). In terms of the QI symmetries the 
entropy function reads
7
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SE = − iπN2

6ω1ω2
Tr

( d∑
I=1

QI�I

)3 = − iπN2

6ω1ω2
Tr(QIQJ QK)�I�J �K

= − iπN2

6ω1ω2
CIJK�I�J �K (2.24)

with the constraint (2.23) and the last equality follows from the relation (2.1). We are going to 
verify (2.24) in the rest of the paper by explicitly studying the Cardy-like limit of the SCI for 
many toric quiver gauge theories.

3. The conifold

The conifold represents an ideal arena where testing, at finite rank, the Cardy formula and 
show the agreement with our general proposal (2.18), once the charges are parametrized from a 
geometric point of view.

The theory we are going to study has been proposed originally in [32] as the theory living 
on a stack of N D3-branes probing the tip of the conical singularity xy − zt = 0; taking the 
near-horizon limit, the theory turns out to be holographically dual to AdS5 × T 1,1 background 
where T 1,1 is what is properly named conifold. T 1,1 can be seen as an U(1) fibration over 
CP 1 ×CP 1 with the U(1) fiber playing the role of Reeb vector; the manifold admits a Sasaki-
Einstein structure and has the topology of S2 × S3 More importantly for our discussion, T 1,1 is 
also toric, with the toric diagram identified by the following four vectors:

V1 = (1,0,0), V2 = (1,1,0), V3 = (1,1,1) , V4 = (1,0,1). (3.1)

The dual theory can be summarized by the following quiver and superpotential:

W ∝ εij εkl Tr
(
AiBkAjBl

)
(3.2)

The isometries of T 1,1 suggest the global symmetries of the CFT: a U(1)R factor (the R-
symmetry generated by action of the Reeb vector) and two SU(2) factors to be identified with the 
isometries of CP 1 ×CP 1; finally, we need to add a U(1)B baryonic symmetry associated to the 
unique non-trivial three-cycle of the geometry2. The charges of the fields under U(1)R , U(1)B
and (a combination of) the Cartan generators U(1)1,2 of the SU(2) factors are summarized in 
the table below:

U(1)R U(1)B U(1)1 U(1)2

A1 1/2 1 1 1

A2 1/2 1 −1 −1

B1 1/2 −1 1 −1

B2 1/2 −1 −1 1

(3.3)

2 As we said, the topology of T 1,1 is actually the same of S2 × S3. The unique three-cycle can be understood as this 
S3.
8
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We will turn on fugacities �F1,2 for the flavor symmetries U(1)1,2 and fugacity �B for the 
baryonic symmetry U(1)B .

We want to study now the Cardy formula in the rank-1 case, i.e. for SU(2) gauge groups; 
in fact, a crucial point is understanding the behavior of the saddle points with respect to the 
holonomies. In low-rank cases it is possible to prove the main conjecture, i.e. it is possible to find 
charge configurations where the dominant saddle-point contribution is unique and corresponds 
to putting to zero all the holonomies; then, we will generalize to arbitrary N assuming the con-
jecture to be true at any rank. This fits with the discussions on the existence of such and universal 
saddle point in [14,19,20]. Moreover, we want to show that the choice of range for the fugacities 
is crucial and not all of them are suitable for our purpose. Let us start evaluating:

V2 = −
N∑

m,n=1

(
κ

[
a(1)
m −a(2)

n + �F1 + �F2 + �B

]
+κ

[
a(1)
m − a(2)

n − �F1 −�F2 + �B

]
+

κ
[
a(2)
m −a(1)

n + �F1 −�F2 − �B

]
+κ

[
a(2)
m − a(1)

n − �F1 + �F2 − �B

])
,

(3.4)

where a(1)
m and a(2)

m are the holonomies for the first and second gauge group respectively. In 
the SU(2) case we also need to enforce the condition a(k)

2 = −a
(k)
1 so that we are actually 

left with just two independent variables; in the following it will be more convenient to use the 
combinations:

a± = a
(1)
1 ± a

(2)
1 . (3.5)

After some algebraic manipulation, (3.4) can be reduced to

V2 = − (f [a+] + f [a−]) , (3.6)

where the function f is defined as follows:

f [x] =κ[x + �F1 + �F2 + �B ] − κ[x − �F1 − �F2 − �B ]+
+κ[x − �F1 − �F2 + �B ] − κ[x − �F1 − �F2 − �B ]+
+κ[x + �F1 − �F2 − �B ] − κ[x − �F1 + �F2 + �B ]+
+κ[x − �F1 + �F2 + �B ] − κ[x + �F1 − �F2 + �B ] .

(3.7)

Extremizing V2 amounts to find extrema of f [x]. Observe that this function is invariant under 
permutations of fugacities �F1 , �F2 and �B . It follows that we can choose an ordering of the 
charges without loss of generality, let us say 0 ≤ �F1 ≤ �F2 ≤ �B . Furthermore, using the 
property κ[x] = κ[x + 1] we can move to a region where −1/2 ≤ �F1 + �F2 + �B ≤ 1/2. We 
want to focus for simplicity on a particular “chamber”, where we fix 0 ≤ �B, �F1, �F2 ≤ 1/2; 
this choice almost fixes completely the chamber and an ordering for all possible combinations 
�F1 ± �F2 ± �B . We are left with two possibilities:

�F1 + �F2 ≥ �B or �F1 + �F2 ≤ �B . (3.8)

Now we are able to analytically evaluate f [x] in the “fundamental regions” |x| < 1 − �F1 −
�F2 + �B and |x| < 1 + �F1 + �F2 − �B respectively, where we can use the simplified ex-
pression (2.16). We proceed to study the behavior of f [x] and we will see that these regimes are 
physically different and do not share the same properties.
9
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Fig. 1. Plot of f [x] for {�F1 ,�F2 ,�B } = {0.04 ,0.9 ,0.27}

• �B ≥ �F1 +�F2 : In this case the fundamental region is |x| < 1 +�F1 +�F2 −B and f [x]
reads:

f [x] =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

48�F1�F2(2�B − 1) 0 < x < x1

6
((

x + �F1 + �F2 − �B

)
2 + 8(2�B − 1)�F1�F2

)
x1 < x < x2

24�F1

((
4�F2 − 1

)
�B + x − �F2

)
x2 < x < x3

6
(
16�B�F1�F2 − (

x − �B − �F1 − �F2

)
2
)

x3 < x < x4

96�B�F1�F2 x > x4

(3.9)

where x1 = �B − �F1 − �F2 , x2 = �B + �F1 − �F2 , x3 = �B − �F1 + �F2 , and x4 =
�B + �F1 + �F2

We can observe that in a whole neighborhood of x = 0 the function is constant; thus, for 
vanishing holonomies, f [x] exhibits a plateaux of extrema, rather than a unique minimum 
or maximum, as we can see from its plot in Fig. 1. As a consequence, in order to evaluate the 
index, we should perform an integration over the whole plateaux, making the study harder. 
For this reason, we exclude this case from our analysis but we will comment more about this 
point in the conclusions.

• �B ≤ �F1 + �F2 : In this case the fundamental domain is |x| < 1 − �F1 − �F2 + �B and 
f [x] reads:

f [x] =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

12(�2
B + (�F1 − �F2)

2 − 2�B�F2 + �B�F1(8�F2 − 2) + x2) 0 < x < x1

6((x + �F1 + �F2 − �B)2 − 8(1 − 2�B)�F1�F2) x1 < x < x2

24�F1(x − �F2 + �B(4�F2 − 1)) x2 < x < x3

6(16�B�F1�F2 − (x − �F1 − �F2 − �B)2) x3 < x < x4

96�B�F1�F2 x > x4

(3.10)
10
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Fig. 2. Plot of f [x] for {�F1,�F2 ,�B } = {0.05 ,0.15 ,0.19}

where x1 = �F1 + �F2 − �B , x2 = �B + �F1 − �F2 , x3 = �B − �F1 + �F2 , and x4 =
�B + �F1 + �F2 . This time, we can observe that f [x] is manifestly non-constant in a 
neighborhood of x = 0, where a unique minimum is located (see Fig. 2). Reminding that V2
is actually, −f [x] − f [y], we discover that this extremal point a+ = a− = 0, i.e. vanishing 
holonomies, dominates the Cardy-like limit in the regime:

Re

(
i

ω1ω2

)
> 0 . (3.11)

We showed that not all the chambers lead to honest isolated extrema and a similar analysis must 
be always performed. A numerical analysis for higher ranks still validates the work-hypothesis 
of vanishing holonomies and from now on we will consider arbitrary rank N following this 
assumption3.

In order to exploit the geometric insight, from now on we prefer to take a suitable basis of field 
charges that are directly suggested by the toric diagram, as discussed in section 2; in this basis 
flavor and baryonic symmetries get mixed and can be considered on equal footing. We will label 
the three U(1) global symmetries simply as U(1)1,2,3 and the associated fugacities as �1,2,3; 
R-symmetry will be denoted by U(1)R instead. Following the discussion in section 2 we can 
parameterize the global charges from the geometry using perfect matchings.

2

1

2 1

2 1

1
•

2

1

2 1

2 1

1
•

2

1

2 1

2 1

1
•

2

1

2 1

2 1

1
•

(3.12)

3 In appendix A we perform a similar analysis for the conifold at rank 2; we show that it is reasonable to extend to this 
case the results of our rank-1 study
11



A. Amariti, I. Garozzo and G. Lo Monaco Nuclear Physics B 973 (2021) 115571
In this case there are four perfect matchings associated to the four external points of the toric 
diagram. They are listed in (3.12), where it is possible to observe that in this case each PM 
corresponds to a bifundamental chiral field. The charges of these fields can be parameterized in 
terms of the PMs as

A1 B1 A2 B2

a1 a2 a3 a4
(3.13)

The charges of the fields with respect to the symmetries suggested by the geometric data can be 
taken then as follows

U(1)1 U(1)2 U(1)3 U(1)R

A1 1 0 0 1/2

A2 0 0 1 1/2

B1 0 1 0 1/2

B2 −1 −1 −1 1/2

(3.14)

We want to stress that, as in the N = 4 case discussed in section 2, the R-symmetry that we 
consider here accidentally coincides with the exact R-symmetry at the conformal fixed point. 
However this will not be the case in the models that we are going to discuss in the next section. 
Observe that the new conjugated fugacities �i can thought as linear combination of the flavor
and baryonic ones:

�1 = �B + �F1 + �F2 , �2 = −�B + �F1 − �F2 , �3 = �B − �F1 − �F2 .

(3.15)

V2 for arbitrary rank can be now expressed as:

V2 = −
N∑

m,n=1

(
κ

[
a(1)
m − a(2)

n + �1

]
+ κ

[
a(2)
m − a(1)

n + �2

]
+

κ
[
a(1)
m − a(2)

n + �3

]
+ κ

[
a(2)
m − a(1)

n − �1 − �2 − �3

])
.

(3.16)

In this basis we fix the fugacities such that 0 ≤ �1,2,3 < 1/2 and 0 ≤ �1 + �2 + �3 ≤ 1/2. In 
this chamber, f [x] enjoys a local maximum for vanishing holonomies and thus V2 exhibits a 
minimum4. The extremum dominates the Cardy-like limit if

Re

(
i

ω1ω2

)
< 0 . (3.17)

4 The range we fixed for �1,2,3 leads to slightly different features with respect to the one we chose for �F1,2 , �B

in our previous discussion; in the former case, V2 enjoys a local minimum while in the latter V2 possesses a local 
maximum, in both cases for vanishing holonomies. For this reason, the two extrema dominates the Cardy-like limit 
in different regimes, (3.17) and (3.11) respectively. Both fugacity ranges can be chosen, up to minimal changes to be 
performed in going from one regime to the other, as carefully shown in [19].
12
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In the fixed regime, we can evaluate the dominant saddle contribution:

V = i π

2ω1ω2

(
V2

3
+ (ω1 + ω2)V1

)∣∣∣∣
a

(I)
m =0

=

= πi N2

2ω1ω2

{
(ω1 + ω2)

(
�3(�3 − 1) + �1(�2 + �3 − 1) + �2

1 + �2
2 + �2(�3 − 1)

)
+

−
(
�2�3(�2 + �3 − 1) + �2

1(�2 + �3 + �1(�2 + �3 − 1)(�2 + �3))
)}

.

(3.18)

This equation gets further simplified performing a suitable shift of the fugacities

�1,2,3 → �1,2,3 − ω1 + ω2

4
(3.19)

and taking the leading order in the Cardy-like limit |ω1|, |ω2| → 0 ; let us stress that the shift 
(3.19) is actually dictated by the geometry: as we will test for other toric models in the next 
sections, the fugacities get always shifted by −ω1+ω2

d
where d is the number of external points 

in the toric diagram. After the shift, the entropy function can be expressed as

SE = − iπN2

ω1ω2
(�1�2�3 + �1�2�4 + �1�3�4 + �2�3�4) , (3.20)

where we have defined:

�4 ≡ ω1 + ω2 + 1 − �1 − �2 − �3 . (3.21)

The entropy function (3.20) enjoys the expected scaling behavior SE ∝ N2; moreover, it is in 
perfect agreement with our general proposal

SE = − iπN2

6ω1ω2
CIJK�I�J �K , (3.22)

where I, J, K run from 1 to 4 and CIJK is defined as in (2.1).

4. Other examples

In this section we test our proposal (2.18) in various cases of growing complexity. In each 
case we assign the charges using the prescription discussed in section 2 and we assume that the 
Cardy-like limit is dominated by a unique minimum where all the holonomies vanish. We have 
tested the last conjecture in the rank-1 cases of dP1, dP2, (P)dP4 and F0, finding evidence of its 
validity. In each case the minimum is found in a chamber where fugacities �i of the d − 1 U(1) 
global symmetries are taken such that:

0 ≤ �i ≤ 1

2
∀i , 0 ≤

d−1∑
i=1

�i ≤ 1 . (4.1)

Since in this range V2 enjoys a minimum, we restrict to the regime (3.17).
As a general remark let us stress that some of the theories that we are going to discuss admit 

more Seiberg dual realizations, denoted as phases. We specify for each model the Seiberg phase 
that we focus on. Finally, observe that we are not necessarily fixing the R-charges of the fields at 
the conformal fixed point, but we refer to a trial R-current, using the uniform prescription for all 
the models under investigation, as explained in section 2.
13



A. Amariti, I. Garozzo and G. Lo Monaco Nuclear Physics B 973 (2021) 115571
4.1. SPP

The suspended pinch point (SPP) gauge theory corresponds to the near horizon limit of a stack 
of N D3 branes probing the tip of the conical singularity, x2y = wz. This is the simplest example 
of a larger class of models, defined by the equation xayb = wz, denoted as Laba models. In the 
SPP case the toric Sasaki-Einstein base in described by the following vectors:

V1 = (1,1,1), V2 = (1,0,1), V3 = (0,0,1), V4 = (2,0,1), V5 = (1,0,1) . (4.2)

The vector V5 represents a point on the perimeter of the toric diagram and it turns out that two 
different perfect matchings can be associated to it and, consequently, we can get two different 
possible charge sets. Following the prescription of [26] we can associate a non vanishing set of 
charges to just one of them.

The theory living on a stack of N D3-branes at the SPP conical singularity is described by the 
following quiver:

(4.3)

with superpotential

W = Tr[X21X12X23X32 − X32X23X31X13 + X13X31φ − X12X21φ]. (4.4)

Each Xij transforms in the N representation of the i node and in the N of the j -th node; the field 
transforming in the adjoint of the first node is named, instead, φ. The charges of the fields can be 
parameterized in terms of the PMs using the assignation

φ X12 X21 X23 X32 X31 X13

a1 + a2 a4 a3 + a5 a2 a1 a4 + a5 a3
(4.5)

It follows that the charge assignment for U(1)R and the extra four U(1)i global can be taken as 
follows:

U(1)1 U(1)2 U(1)3 U(1)4 U(1)R

φ 1 1 0 0 4/5

X12 0 0 0 1 2/5

X21 -1 -1 0 -1 4/5

X23 0 1 0 0 2/5

X32 1 0 0 0 2/5

X31 -1 -1 -1 0 4/5

X 0 0 1 0 2/5

(4.6)
13

14
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Observe that as usual we took a combination of U(1) natural for toric geometry and we have 
not done any distinction between flavor and baryonic symmetries. We denote �i the fugacity 
associated to U(1)i . With this assignment, V2 admits a minimum for vanishing holonomies in a 
chamber where 0 ≤ �i ≤ 1/2 for each U(1)i and 0 < �1 + �2 + �3 + �4 < 1; we can evaluate

V = iπ

2ω1ω2

(
V1(ω1 + ω2) + V2

3

)
(4.7)

and, after performing a shift of the charges by a factor −ω1+ω2
5 and taking the leading order in 

|ω1|, |ω2| → 0, we get:

Vleading = iπN2

ω1ω2

(
�1((�2 + �3)(�2 + �3−ω1−ω2−1) + �2

4−�4(1+ω1+ω2−2�2))

+�2(�
2
3 − �3(1 + ω1 + ω − �2) + �4(�2 + �4 − 1 − ω1 − ω2))+

+�2
1(�2 + �3 + �4)

)
.

(4.8)

If we now define a new constrained fugacity:

�5 = 1 + ω1 + ω − �1 − �2 − �3 − �4 (4.9)

we obtain the following expression for the entropy:

SE = − iπN2

ω1ω2
(�1�2�3 + �1�2�4 + 2�1�3�4 + 2�2�3�4+

+�1�2�5 + �1�3�5 + �2�3�5 + �1�4�5 + �2�4�5) .

(4.10)

This result is in agreement with our expectation from toric geometry, encoded in formula (2.18).
Finally, as discussed at the beginning of this section, the SPP singularity can be thought as 

a particular case of a larger class of toric models, denoted as Laba , for a = 1 , b = 2. The toric 
diagram of an Laba singularity is depicted in (4.11).

•

•

• •

••

⇒

•

• •

• •

a − 1 points on the perimeter

b − 1 points on the perimeter

••

(4.11)

In this case there are a+b gauge groups, and two flavor symmetries and a+b−1 non anomalous 
baryonic symmetries. This huge amount of baryonic symmetries reflects in the toric diagram 
onto the large number of external point lying on the perimeter. Each of these points contribute 
with triangle areas to reproduce the correct entropy function, following the general prescription 
(2.18). Observe that for a = 0 the models become N = 2 necklace quivers, corresponding to Zb

orbifolds of N = 4 SYM. The entropy for these models has been studied in [18], by turning off 
the baryonic fugacities. Here in section 6 we will study the most general situation.
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4.2. F0

The complex cone over the first Hirzebruch surface F0 is a Z2 orbifold of the conifold; the 
toric diagram is parametrized by the four vectors

V1 = (0,0,1), V2 = (1,0,1), V3 = (0,2,1), V4 = (−1,2,1). (4.12)

The corresponding theory in its phase I is described by the following quiver and superpotential:

•

•

•

•

X
(α)
34

X
(α)
41 X

(α)
23

X
(α)
121 2

34

W = εαβεγ δTr[X(α)
12 X

(β)
34 X

(γ )

23 X
(δ)
41 ]. (4.13)

One can assign charges to the fields in the theory directly from the geometry. The charges of the 
fields can be parameterized in terms of the PMs using the assignation

X12 X34 X23 X41

a1 a2 a3 a4
(4.14)

The model has three global U(1) symmetries in addition to one U(1)R and in this case one gets 
the following global charges

multiplicity U(1)1 U(1)2 U(1)3 U(1)R

X12 2 1 0 0 1/2

X23 2 0 1 0 1/2

X34 2 0 0 1 1/2

X41 2 −1 −1 −1 1/2

(4.15)

We now compute the Cardy-like limit of the superconformal index for this theory; if we denote 
the fugacities for the symmetries U(1)1,2,3 as �1,2,3 respectively, the expression that we find 
after shifting each fugacity by −ω1+ω2

4 is

Vleading = −2πiN2

ω1ω2

(
�2(1 + ω1 + ω2 − �2 − �3)�3 − �2

1(�2 + �3)

−� (� + � )(1 + ω + ω − � − � )
) (4.16)
1 2 3 1 2 2 3
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The entropy function in this case can be written as:

SE(�,ω) = −2πiN2

ω1ω2
(�1�2�3 + �1�2�4 + �1�3�4 + �2�3�4), (4.17)

and it exactly reproduces (4.16) by using the constraint

�4 = 1 + ω1 + ω2 − �1 − �2 − �3. (4.18)

Observe that the entropy function just obtained is twice the one for the conifold, as one should 
expect from the fact that we are dealing with a Z2 orbifold of the latter 5.

4.3. dP1

Let us consider the theory arising from a stack of N D3 branes at the tip of the complex 
Calabi-Yau cone whose base is the first del Pezzo surface. The toric diagram is generated by

V1 = (1,0,1), V2 = (0,1,1), V3 = (−1,0,1), V4 = (−1,−1,1). (4.19)

The corresponding quiver is as follows

•

•

•

•

X
(α)
34 , X

(3)
34

X
(α)
41 X

(α)
23

X12

X13

X42

1 2

34
(4.20)

and the superpotential for this theory reads

W = εαβTr[X(α)
34 X

(β)
41 X13 − X

(α)
34 X

(β)
23 X42 + X12X

(3)
34 X

(α)
41 X

(β)
23 ]. (4.21)

The charges of the fields can be parameterized in terms of the PMs using the assignation

X
(3)
34 ,X13,X42 X

(1)
23 ,X

(1)
41 X12 X

(2)
23 ,X

(2)
41 X

(1)
34 X

(2)
34

a1 a2 a3 a4 a2 + a3 a3 + a4
(4.22)

The charges for U(1)R and the three global U(1) symmetries of the model coming from the 
perfect matching are the following

5 To be more precise, the entropy function reproduces twice the conifold one because the orbifold action does not 
introduce new singularities or, equivalently, new symmetries. A non-chiral Z2 orbifold of the conifold like the L222

model does not have this property.
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U(1)1 U(1)2 U(1)3 U(1)R

X12 0 0 1 1/2

X
(1)
23 0 1 0 1/2

X
(2)
23 −1 −1 −1 1/2

X
(1)
34 0 1 1 1

X
(2)
34 −1 −1 0 1

X
(3)
34 1 0 0 1/2

X
(1)
41 0 1 0 1/2

X
(2)
41 −1 −1 −1 1/2

X13 1 0 0 1/2

X42 1 0 0 1/2

(4.23)

The expression for the entropy function in this case gives:

SE(�,ω) = − iπN2

ω1ω2
(2�1�2�3 + 2�1�2�4 + 2�1�3�4 + �2�3�4). (4.24)

Again, the same result can be obtained by taking the Cardy-like limit of the superconformal 
index. The leading order of the function

V = iπN2

2ω1ω1

(
V1(ω1 + ω2) + V2

3

)
, (4.25)

taken after shifting the charges by a factor −ω1+ω2
4 , is given by

Vleading = iπN2

ω1ω2

(
3�1�2(�1 + �2 − ω1 − ω2 − 1) − 2�1�3(1 + ω1 + ω2 − �1)

− (1 + ω1 + ω2 − 4�1)�2�3 + �2
2�3 + (2�1 + �2)�

2
3

)
.

(4.26)

If we now take the expression of the entropy function (4.24) and impose the constraint on the 
fugacities

�4 = 1 + ω1 + ω2 − �1 − �2 − �3, (4.27)

we obtain the expression (4.26) for the entropy function.

4.4. dP2

The toric diagram for the complex cone over the dP2 surface is generated by the following 
vectors

V1=(1,1,1), V2=(0,1,1), V3=(−1,0,1), V4=(−1,−1,1), V5 = (0,−1,1).

(4.28)

The charges of the fields can be parameterized in terms of the PMs using the assignation
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X13 X24 X
(1)
51 X23 X41 X

(2)
51 X

(2)
12 X45 X

(1)
12 X35 X34

a4 + a5 a5 a5 a2 a1 + a2 a2 + a3 a3 + a4 a4 a1 a1 a3

(4.29)

The theory arising from a stack of N D3 branes put at the tip of this toric Calabi-Yau cone admits 
two phases. The phase I can be described by a quiver with five nodes

(4.30)

and superpotential

W = Tr
[
X13X34X41 − X

(2)
12 X24X41 + X

(1)
12 X24X45X

(2)
51 − X13X35X

(2)
51

+X
(2)
12 X23X35X

(1)
51 − X

(1)
12 X23X34X45X

(1)
51

]
.

(4.31)

Here Xij denotes a bifundamental field connecting the i-th and j -th nodes. The charges assigned 
to the various fields in the quiver directly from the perfect matchings are

U(1)1 U(1)2 U(1)3 U(1)4 U(1)R

X13 −1 −1 −1 0 4/5

X24 −1 −1 −1 −1 2/5

X
(1)
51 −1 −1 −1 −1 2/5

X23 0 1 0 0 2/5

X41 1 1 0 0 4/5

X
(2)
51 0 1 1 0 4/5

X
(2)
12 0 0 1 1 4/5

X45 0 0 0 1 2/5

X
(1)
12 1 0 0 0 2/5

X35 1 0 0 0 2/5

X34 0 0 1 0 2/5

(4.32)

The entropy function obtained from toric geometry is:

SE(�,ω) = − iπN2

ω1ω2

(
�1�2�3 + 2�1�2�4 + 2�1�3�4 + �2�3�4

+2�1�2�5 + 3�1�3�5 + 3�1�3�5 + 2�2�3�5

+ 2� � � + 2� � � + � � �
) (4.33)
1 4 5 2 4 5 3 4 5
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The leading order of the Cardy-like limit of the superconformal index gives, after shifting the 
charges by a factor −ω1+ω2

5

Vleading = iπ

ω1ω2

[
(2�2

2(�3 + �4) + (�3�4 + 2�2(�3 + �4))(�3 + �4−1−ω1−ω2)+

+ �2
1(2�2 + 3�3 + 2�4) + 2�1�

2
2 − 3�1�3(1 + ω1 + ω2 − �3)+

−2�1�2(1 + ω1 + ω1 − 3�3 − 2�4) − 2�1�4(1 + ω1 + ω2 − 2�3)

+2�1�
2
4

]
.

(4.34)

This is the same expression that one gets by taking (4.33) and using the constraint on the fugaci-
ties

�5 = −�1 − �2 − �3 − �4 + ω1 + ω2 + 1. (4.35)

4.5. dP3

The toric diagram for the Calabi-Yau cone over the dP3 surface is generated by the following 
vectors

V1 = (1,1,1), V2 = (0,1,1), V3 = (−1,0,1),

V4 = (−1,−1,1), V5 = (0,−1,1), V6 = (1,0,1).
(4.36)

The charges of the fields can be parameterized in terms of the PMs using the assignation

X12 X13 X23 X24 X34 X35 X45 X46 X56 X51 X61 X62
a6 a2 + a3 a5 a1 + a2 a4 a1 + a6 a3 a5 + a6 a2 a4 + a5 a1 a3 + a4

(4.37)

The theory associated to this cone admits three phases; in its phase I , it can be described by 
the following quiver:

(4.38)

with superpotential

W = Tr
[
X12X24X45X51 − X24X46X62 + X23X35X56X62

−X35X51X13 + X34X46X61X13 − X12X23X34X45X56X61
]
,

(4.39)

where Xij denotes a bifundamental field connecting the i-th and j -th nodes. The charges as-
signed from the toric diagram to the various fields in the theory are
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U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 U(1)R

X12 −1 −1 −1 −1 −1 1/3

X13 0 1 1 0 0 2/3

X23 0 0 0 0 1 1/3

X24 1 1 0 0 0 2/3

X34 0 0 0 1 0 1/3

X35 0 −1 −1 −1 −1 2/3

X45 0 0 1 0 0 1/3

X46 −1 −1 −1 −1 0 2/3

X56 0 1 0 0 0 1/3

X51 0 0 0 1 1 2/3

X61 1 0 0 0 0 1/3

X62 0 0 1 1 0 2/3

(4.40)

The entropy function for this theory is

SE(�,ω) = − iπN2

ω1ω2

(
�1�2�3 + 2�1�2�4 + 2�1�3�4 + �2�3�4 + 2�1�2�5

+3�1�3�5 + 2�2�3�5 + 2�1�4�5 + 2�2�4�5 + �3�4�5

+�1�2�6 + 2�1�3�6 + 2�2�3�6 + 2�1�4�6 + 3�2�4�6

+2�3�4�6 + �1�5�6 + 2�2�5�6 + 2�3�5�6 + �4�5�6
)
.

(4.41)

In fact, evaluating V at the leading order in |ω1|, |ω2| → 0 we get

Vleading=− iπN2

ω1ω2

(
2�3�4(1+ω1+ω2−�3−�4)−2�2

3�5+2�3�5(1+ω1+ω2−2�4)

+�4�5(1+ω1+ω2−�4)+�2
5(2�3+�4)−�2

1(�2+2�3+2�4+�5)

−�2
2(2�3 + 3�4 + 2�5) − 2�2�

2
3 + 3�2�4(1 + ω1 + ω2 − �4)

+2�2�3(1 + ω1 + ω2 − 3�4 − 2�5) + 2�2�5(1 + ω1 + ω2 − 2�4)

−2�2�
2
5 − �1�

2
2 − 2�1(�3 + �4)(�3 + �4 − 1 − ω1 − ω2)

+�1�2(1 + ω1 + ω2 − 4�3 − 4�4 − 2�5) − �1�
2
5

+�1�5(1 + ω1 + ω2 − 2�3 − 2�4)
)
,

(4.42)

where we also shifted the fugacities by −ω1+ω2
6 , consistently with the general prescription. 

Again, by imposing the constraint

�6 = −�1 − �2 − �3 − �4 − �5 + ω1 + ω2 + 1, (4.43)

on (4.42) we obtain (4.41).
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4.6. (P)dP4

The fourth del Pezzo surface is defined as the blow-up of P 2 at four generic6 points. The 
(complex) cone over it possesses a Calabi-Yau structure and the theory living on N D3-branes 
probing the conical singularity is known; however the superpotential of the dual gauge theory is 
such that no non-anomalous flavor symmetries except U(1)R are admitted, so that the model is 
non-toric. Blowing-up P 2 at non-generic points, however, it is possible to build models where 
more symmetries are preserved.

One choice can be the toric model whose diagram is generated by the following vectors:

V1 = (0,0,1) ,V2 = (1,0,1) ,V3 = (2,0,1) ,V4 = (2,1,1) ,

V5 = (1,2,1) ,V6 = (0,2,1) ,V7 = (0,1,1) ,
(4.44)

and that we will denote as pseudo dP4 or (P)dP4. The dual gauge theory can be described by the 
following quiver:

(4.45)

with superpotential:

W = Tr [X61X17X74X46 + X21X13X35X52 + X27X73X36X62 + X14X45X51 +
− X51X17X73X35 − X21X14X46X62 − X27X74X45X52 − X13X36X61 ] ,

(4.46)

where each Xij must be understood as a field transforming in the bifundamental representation 
with respect to the i-th and j -th nodes. The charges of the fields can be parameterized in terms 
of the PMs using the assignation

X17 X21 X27 X73 X14 X74 X13 X62

a1 + a6 + a7 a7 a3 + a4 a2 a1 + a2 + a3 a5 a4 + a5 + a6 a5 + a6

X51 X61 X52 X36 X45 X46 X35

a4 + a5 a2 + a3 a1 + a2 a1 + a7 a6 + a7 a4 a3

(4.47)

Thus, the set of charges suitable for the underlying geometry is:

6 Meaning that none of the possible triples of points lies on a line.
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U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 U(1)6 U(1)R

X17 0 −1 −1 −1 −1 0 6/7

X21 −1 −1 −1 −1 −1 −1 2/7

X27 0 0 1 1 0 0 4/7

X73 0 1 0 0 0 0 2/7

X14 1 1 1 0 0 0 6/7

X74 0 0 0 0 1 0 2/7

X13 0 0 0 1 1 1 6/7

X62 0 0 0 0 1 1 4/7

X51 0 0 0 1 1 0 4/7

X61 0 1 1 0 0 0 4/7

X52 1 1 0 0 0 0 4/7

X36 0 −1 −1 −1 −1 −1 4/7

X45 −1 −1 −1 −1 −1 0 4/7

X46 0 0 0 1 0 0 2/7

X46 0 0 1 0 0 0 2/7

(4.48)

We assign a fugacity �i to each global U(1)i and, assuming V2 has a local minimum for vanish-
ing holonomies, we computed the entropy function following the same guide-line as before. By 
considering the |ω|1, |ω|2 → 0 and shifting each fugacity by −ω1+ω2

7 we obtain the following 
expression:

SE = − iπ N2

ω1ω2
(�1�2�3 + 2�1�2�4 + 2�1�3�4 + �2�3�4 + 2�1�2�5 +
+2�2�3�5 + 2�1�4�5 + 2�2�4�5 + �3�4�5 + �1�2�6 +
+2�1�3�6 + 2�2�3�6 + 2�1�4�6 + 3�2�4�6 + 2�3�4�6 +
+�1�3�7 + 2�2�3�7 + 2�1�4�7 + 4�2�4�7 + 3�3�4�7 +
+2�1�5�7 + 4�2�5�7 + 4�3�5�7 + 2�4�5�7 + �1�6�7 +
+3�1�3�5 + �1�5�6 + 2�2�5�6 + 2�3�5�6 + �4�5�6 +
+2�2�6�7 + 2�3�6�7 + �4�6�7) .

(4.49)

This is again in agreement with (2.18).

5. Infinite families

In this section we compute the Cardy-like like limit of the superconformal index at large 
N with complex fugacities, for infinite families of quiver gauge theories. We assume that the 
fugacities are in the regime 0 ≤ �1, . . . , �d−1 ≤ 1

2 and 0 ≤ ∑d−1
i=1 �i ≤ 1. In this regime we 

assume the validity of the conjecture on the existence of a universal saddle point associated to 
the vanishing of the holonomies. For each family we extract the entropy function and we verify 
the validity of the relation (2.18).
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5.1. Ypq

We start our analysis with the Ypq quiver gauge theories, introduced in [33]. They correspond 
to quiver gauge theories with 2p gauge groups and a chiral field content of bifundamental fields. 
When p and q are generic the models enjoy an SU(2) × U(1) flavor symmetry and in addition 
one non-anomalous U(1)B .

The toric diagram is parameterized by the four vectors

V1 = (0,0,1), V2 = (1,0,1), V3 = (0,p,1) V4 = (−1,p − q,1) (5.1)

As discussed in section 2 we can parameterize the global symmetries using the toric data. In this 
case there are four perfect matchings associated to the four external points of the toric diagram. 
The charges of the fields can be parameterized in terms of the PMs using the assignation

Y U1 Z U2 V1 V2

a1 a2 a3 a4 a2 + a3 a3 + a4
(5.2)

we can use this parameterization to construct the basis of U(1)i symmetries that we will use in 
the calculation of the index. Following the discussion in section 2 we have

multiplicity U(1)1 U(1)2 U(1)3 U(1)R

Y p + q 1 0 0 1
2

U1 p 0 1 0 1
2

Z p − q 0 0 1 1
2

U2 p −1 −1 −1 1
2

V1 q −1 0 0 1

V2 q −1 −1 0 1

(5.3)

We can assign a fugacity �i to the i-th U(1) in this table. Furthermore we assign an equal 
R-symmetry to each perfect matching, such that the R-charges of the fields are given in the 
table. Then we shift each fugacity by −ω1+ω2

4 , where 4 refers to the number of points in the 
toric diagram. After this shift we compute the Cardy-like limit of the index at the universal 
saddle point, i.e. by setting all the gauge holonomies to zero. In this way, at large N , the leading 
contribution to the index, corresponding to the entropy function

SE = − iπN2

ω1ω2

(
p�1�2�3 + ((p + q)�1�2 + p�1�3 +

+ (p − q)�2�3)(1 + ω1 + ω2 − �1 − �2 − �3)
)

(5.4)

Defining �4 ≡ 1 + ω1 + ω2 − �1 − �2 − �3 the entropy function in (5.4) becomes

SE = − iπN2

ω1ω2

(
p�1�2�3 + (p + q)�1�2�4 + p�1�3�4 + (p − q)�2�3�4

)
(5.5)

It is straightforward to check that the final form of the entropy function is then given by (2.18), 
where the coefficients CIJK , are computed from (2.1).
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5.2. Xpq

These models have been introduced in [34]. For generic values of p and q there are 2p + 1
gauge groups, there is a U(1)2 flavor symmetry and two non anomalous baryonic U(1) symme-
tries. The toric diagram is parameterized by the five vectors

V1 = (1 − q,1,1), V2 = (−1,0,1), V3 = (q − p,−1,1), V4 = (0,−1,1), V5 = (p,1,1)

(5.6)

As discussed in section 2 we can parameterize the global charges as

multiplicity U(1)1 U(1)2 U(1)3 U(1)4 U(1)R

p + q − 1 1 0 0 0 2
5

1 0 1 0 0 2
5

1 0 0 1 0 2
5

p − q 0 0 0 1 2
5

p −1 −1 −1 −1 2
5

p − 1 0 1 1 0 4
5

1 0 0 1 1 4
5

q − 1 0 1 1 1 6
5

1 1 1 0 0 4
5

q −1 −1 −1 0 4
5

(5.7)

Then we shift each charge by −ω1+ω2
5 , where 5 refers to the number of points in the toric dia-

gram. We also assign a trial R-symmetry to each field as in the table above. Then we compute the 
Cardy-like limit of the index by setting all the holonomies to zero and supposing that there exists 
a regime of charges such that a minimum exists. In this way, at large N , the entropy function is

SE = − iπN2

ω1ω2

(
�1�5�3(p + q) + �4�5�3(p − q) + �1�2�5(p + q − 1)

+ �2�4�5(p − q + 1) + �1�4�5p + �1�4�3p + �1�2�4p

+ �1�2�3 + �2�4�3 + 2�2�5�3

)
(5.8)

where we defined �5 = 1 + ω1 + ω2 − �1 − �2 − �3 − �4.
This formula can be interpreted in terms of the geometric data by assigning the charges �I

the four corners of the toric diagram. The final form of the entropy function is then given by 
(2.18), where the coefficients CIJK are computed from (2.1).

5.3. Lpqr

These models have been introduced in [35–37]. The toric diagram is parameterized by the 
four vectors
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V1 = (0,0,1), V2 = (1,0,1), V3 = (P, s,1) V4 = (−k, q,1) (5.9)

where Pq = r − ks. If p 
= r we can parameterize the global charges as 7

multiplicity U(1)1 U(1)2 U(1)3 U(1)R

Y q 1 0 0 1
2

W2 s 0 1 0 1
2

Z p 0 0 1 1
2

X2 r −1 −1 −1 1
2

W1 q − s 0 1 1 1

X1 q − r −1 −1 0 1

(5.10)

where p + q = r + s.
Then we shift each charge by −ω1+ω2

4 , where 4 refers to the number of points in the toric 
diagram. We also assign a trial R-symmetry to each field as in the table above. Then we compute 
the Cardy-like limit of the index by setting all the holonomies to zero and supposing that there 
exists a regime of charges such that a minimum exists. In this way, at large N , we can show that 
the entropy function is equivalent to

SE = − iπN2

ω1ω2

(
s�1�2�3 + q�1�2�4 + r�1�3�4 + p�2�4�3

)
(5.11)

where �4 = 1 + ω1 + ω2 − �1 − �2 − �3.
This formula can be interpreted in terms of the geometric data by assigning the charges �I

the four corners of the toric diagram. The final form of the entropy function is then given by 
(2.18), where the coefficients CIJK are computed from (2.1).

6. Legendre transform and the entropy

In this section we obtain the entropy associated to some of the families discussed above. We 
focus on the Ypp and on the L0b0 cases. These two cases are similar to the N = 4 case because 
they can be constructed by an orbifold projection of C3. At the level of the toric diagram this 
reflects in the fact that there are three corners. The other external points are on the perimeter, 
signaling the presence of non smooth horizons induced by the orbifold. These models are anyway 
richer, because they have a higher amount of global, baryonic, symmetries. In this section we 
compute the Legendre transform of the entropy function for these models, by turning on all of the 
possible global symmetries. The ones discussed in this section are the only cases where we have 
found an expression for the entropy by computing the Legendre transform. For other geometries 
with more then three corners in the toric diagram and all the global symmetries turned on, we 
have not found a systematic way to compute the Legendre transform of the entropy function.

Let us also comment on the CIJK coefficients for the theories that we discuss below with 
respect to the multi-charge AdS5 black holes obtained from gauged supergravity in [6]. On the 
supergravity side the condition

7 In the case p = r the toric diagram gains a large amount of external points lying on the perimeter. It induces a large 
set of non-anomalous baryonic symmetries in the quiver.
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CIJKCJ ′(LMCPQ)K ′δJJ ′
δKK ′ = 4

3
δI (LCMPQ) (6.1)

was imposed, while here we have explicitly checked that the CIJK coefficients discussed in 
this section do not satisfy (6.1). This is a common feature of all the SE5 theories except the 
case of S5. On the other hand, in these cases there are not truncations available in the literature 
with all the global symmetries of the dual field theory appearing as massless vector multiplets 
in the gravitational description. This implies that we cannot compare the results discussed in 
this section with the ones expected from gauged supergravity. The only partial exception is the 
case of the conifold, where a truncation with one vector multiplet was found in [38]. This vector 
multiplet, denoted as Betti multiplet, corresponds to the baryonic symmetry of the dual field 
theory. In this case there is also an hypermultiplet, signaling the presence of a massive vector 
multiplet as well. The entropy for this model has been recently discussed in [39], and the result 
is in agreement with our result.

6.1. The Ypp family

In this section we study the Legendre transform of the entropy function obtained in the case 
of Ypp models. The entropy function is given by

SE = − iπpN2

ω1ω2
(�1�2�3 + �1�3�4 + 2�1�2�4) (6.2)

with 
∑

I �I = ω1 + ω2 − 1. The Legendre transform is computed in terms of the conjugate 
charges QI and angular momenta Ja and it corresponds to

S(Q,J ) = SE(X,ω) + 2πi(

4∑
I=1

�IQI +
2∑

a=1

ωaJa) + 2πi�(

4∑
I=1

�I −
2∑

a=1

ωa − 1) (6.3)

Observing that

SE(X,ω) =
(

4∑
I=1

�I

∂SE

∂�I

+
2∑

a=1

ωa

∂SE

∂ωa

)
(6.4)

we have that S(Q, J ) = 2πi�. The Lagrange multiplier can be obtained from the equation

(� + Q1)(2(2(� + Q3) + (� + Q4))(� + Q2)−(� + Q2)
2

−(2(� + Q3)−(� + Q4))
2) + 4N2p (� − J1) (� − J2) = 0 (6.5)

Reorganizing the polynomial on the LHS of this equation in the form �3 + �2p2 + �p1 + p0
we have two imaginary solutions if p0 = p1p2. The coefficients pi in this case are

p2 = N2p + Q1 + Q2 + Q4

p1 = (Q1 + Q3)(Q2 + Q4) + Q4Q2

2
− Q2

2

4
− Q2

3 − Q2
4

4
− N2p(J1 + J2) (6.6)

p0 = N2pJ1J2 − 1

4
Q1Q

2
2 + Q1Q3Q2 + 1

2
Q1Q4Q2 − Q1Q

2
3 − 1

4
Q1Q

2
4 + Q1Q3Q4

and the entropy corresponds to
27



A. Amariti, I. Garozzo and G. Lo Monaco Nuclear Physics B 973 (2021) 115571
S(Q,J ) = 2π

√
(Q1 + Q3)(Q2 + Q4) + Q4Q2

2
− Q2

2

4
− Q2

3 − Q2
4

4
− N2p(J1 + J2)

(6.7)

Furthermore this model has been recently analyzed by [20]. The authors studied the entropy 
by turning off the fugacity for the SU(2)L symmetry. It corresponds here to turn off the variable 
�2 in (6.2). In this case the entropy function becomes

SE(X,ω) = − iπpN2

ω1ω2
(�1�3�4) (6.8)

with the constraint �1 + �3 + �4 = ω1 + ω2 − 1. One can repeat the analysis discussed above. 
The relevant point of the discussion is that in this case the cubic equation for the Lagrange 
multiplier is

(� + Q1)(� + Q3)(� + Q4) + N2p

2
(� − J1)(� − J2) = 0 (6.9)

and the entropy becomes

S(Q,J ) = 2π

√
Q1Q3 + Q1Q4 + Q3Q4 − N2p

2
(J1 + J2) (6.10)

This result can be mapped to the one of [20] by mapping the charges QI to the ones discussed 
there.

6.2. The Laba family

Here we compute the Legendre transform of the entropy function of a family of necklace 
quivers, that correspond to the L0b0 family studied above. This class of models has already been 
discussed by [18], where it has been shown that the orbifold modifies just an overall contribution 
to the entropy function. This was proven by just studying the effect of the flavor symmetries, but 
in this case there are in addition G −1 non-anomalous baryonic symmetries, being G the number 
of gauge groups in the necklace. Here we study the entropy function for a generic parameteriza-
tion of the charges, taking care of all the non anomalous baryonic symmetries as well.

As discussed in sub-section 4.1 the entropy function can be expressed in terms of the areas of 
the toric diagram, contracted with the fugacities �I , with I = 1, . . . , d runs over all the external 
points of the toric diagram. In this case the formula can be expressed as

SE = −iπN2
�1

∑d
i,j=2 |i − j |�i�j

2ω1ω2
(6.11)

The entropy is given by the Legendre transform

S(Q,J ) = SE(�,ω)+ 2πi(

d∑
I=1

�IQI +
2∑

a=1

ωaJa)+ 2πi�(

d∑
I=1

�I −
2∑

a=1

ωa − 1) (6.12)

The relation

SE =
d∑

�I

∂SE

∂�I

+
2∑

ωa

∂SE

∂Ja

(6.13)

I=1 a=1
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guarantees that

SQ = 2πi� (6.14)

By using the equations of motion we have induced a cubic relation satisfied by the Lagrange 
multiplier �. The cubic relation for � is

(Q1 + �)

(
d−1∑
i=2

(Qi + �)(Qi+1 + �) −
d−1∑
i=2

(Qi + �)2 + (Q2 + �)(Qd + �)

d − 2

+ (d − 1)(
(
Q2 + �)2 + (Qd + �)2

)
2(d − 2)

)
+ N2(� − J1)(� − J2) = 0

(6.15)

This equation is of the form �3 + p2�
2 + p1� + p0 = 0, with

p2 =(d − 2)
N2

2
+ Q1 + Q2 + Qd,

p1 =2Q1(Q2 + Qd) + Q2Qd − d − 1

2
(Q2

2 + Q2
d)

+ (d − 2)

( d−1∑
i=2

QiQi+1 −
d∑

i=2

Q2
i

)
− (d − 2)

N2

2
(J1 + J2)

p0 =(d − 2)
N2

2
J1J2 + 1

4
Q1

(
(d − 1)(Q2

2 + Q2
d) + 2Q2Qd

−2(d − 2)

d∑
i=2

Q2
i + 2(d − 2)

d−1∑
i=2

QiQi+1

)
.

(6.16)

There is an imaginary solution for p2p1 = p0, and in this case the entropy is given by � =
−i

√
p1, or more explicitly

S(Q,J ) =2π

(
2Q1(Q2 + Qd) + Q2Qd − d − 1

2
(Q2

2 + Q2
d)

+(d − 2)

( d−1∑
i=2

QiQi+1 −
d∑

i=2

Q2
i

)
− (d − 2)

N2

2
(J1 + J2)

) 1
2

(6.17)

Observe that such expression correctly gives us back the entropy for N = 4 SYM case for d = 3.

7. Conclusions

In this paper we studied the Cardy-like behavior of the SCI in presence of complex fugacities. 
This quantity has been recently observed to reproduce, in the case of N = 4 SYM, the entropy of 
an AdS5 rotating black hole, through a Legendre transform. Here we focused on infinite families 
of 4d N = 1 quiver gauge theories, describing stacks of D3 branes probing the tip of a toric CY3
cones over a 5d SE5 base. We showed that the general formula (2.18) for the entropy function 
of the models under investigation can be obtained from the Cardy-like limit of the SCI with 
complex fugacities. Furthermore we computed the Legendre transform for some of the models 
analyzed here, giving a prediction for the entropy of the dual black hole.
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In the analysis we left many open questions that deserve further investigation. First we conjec-
tured that it is always possible to find a regime of charges such that the holonomies are vanishing 
at the saddle point. This conjecture is consistent with the ones given in [9,18,19]. Further argu-
ments in favor of this idea has been recently given by [14]. In addition we have obtained the 
expected result in a regime of fugacities corresponding to the choices 0 ≤ �1, . . . , �d−1 ≤ 1

2

and 0 ≤ ∑d−1
i=1 �i ≤ 1. In other regimes we have not found a minimum of the potential V2(a)

but a plateau. Similar plateaux have been discussed in [18], but in that case they appeared for 

the choice Re
(

i
ω1ω2

)
< 0 and they were associated to the Stokes lines discussed also in [16]. 

Here the plateaux appear also in the regime Re
(

i
ω1ω2

)
> 0 and it should be interesting to have 

a deeper understanding of them and of their holographic dual interpretation. Furthermore, we 
did not find a general way to obtain the Legendre transform for entropy functions associated to 
toric diagram with more than three external corners if all the global symmetries are turned on. It 
should be interesting to see if this is just a technical obstruction or if is there a deeper physical 
reason. We conclude observing that a similar geometric relation between the Cardy-like limit of 
the SCI and the entropy function can be expected for non-toric cases, as the one discussed in 
[40]. It should be interesting to investigate along this line.
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Appendix A. Saddle point analysis for the conifold at higher-rank

In section 3 we studied the behavior of the minima of V2 with respect to the fugacity range 
in the case of SU(2) gauge groups. In this appendix we want to collect some evidence about 
the possibility of extending those considerations to higher ranks. Let us briefly remind the main 
results: V2 can be expressed as
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Fig. 3. V2 for SU(3) conifold with cyclically identified holonomies: on the left we fixed �F1 = 0.12, �F2 = 0.15, �B =
0.22 and we can observe that the function enjoys a local maximum at the origin; on the right we fixed �F1 = 0.05, �F2 =
0.1, �B = 0.3 and we can observe that V2 only possesses plateaux.

V2 = −
N∑

m,n=1

(
κ

[
a(1)
m −a(2)

n + �F1 + �F2 + �B

]
+ κ

[
a(1)
m − a(2)

n −�F1 −�F2 + �B

]
+

κ
[
a(2)
m −a(1)

n + �F1 −�F2 − �B

]
+ κ

[
a(2)
m − a(1)

n −�F1 + �F2 −�B

])
,

(A.1)

where a(k)
m are holonomies for k-th gauge group and �F1, �F2, �B are fugacities for flavor and 

baryonic symmetries. At rank N − 1 we have to enforce the constraint:

a
(k)
N = −

N−1∑
m=1

a(k)
m , k = 1,2 , (A.2)

so that in rank-1 case we are left with just two independent variables. We fixed a chamber where

0 ≤ �F1 ≤ �F2 ≤ �B ≤ 1/2 , 0 ≤ �F1 + �F2 + �B ≤ 1/2 , (A.3)

finding two possible behaviors for V2:

• �B > �F1 + �F2 : V2 admits only plateaux of minima and thus the index is hard to evaluate.
• �B < �F1 + �F2 : V2 admits a local maximum for vanishing holonomies that dominates in 

the Cardy-like limit.

Performing a similar analysis for higher rank is more complicated, because more variables are 
involved; however we can use the high symmetry of the model to simplify the computation: a 
natural expectation is that at high temperature, i.e. in the Cardy limit, all the global symmetries 
are preserved and no gauge symmetries are broken, so that no Higgs mechanisms are involved. 
In other words, we want to count the degrees of freedom of the theory in the deconfining phase. 
A symmetry that we expect to be preserved at high temperature is a Z2 discrete symmetry of the 
quiver, exchanging the two nodes and the two couples of bifundamental fields; in order to keep 
this symmetry, we impose the following cyclic condition:

a(1)
m = a(2)

m ∀m, (A.4)

as already suggested in [18].
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Fig. 4. V2 in the a(1)
1 − a

(1)
2 plane for SU(4) conifold with cyclically identified holonomies and �F1 = 0.1, �F2 =

0.15, �B = 0.2; from the top left in clockwise sense we fixed a(1)
3 = 0, a(1)

3 = 0.08 and a(1)
3 = 0.16. We notice a 

minimum whose lowest value is reached for a(1)
3 = 0.

Fig. 5. V2 in the a(1)
1 − a

(1)
2 plane for SU(4) conifold with cyclically identified holonomies and �F1 = 0.05, �F2 =

0.1, �B = 0.3 , a(1)
3 = 0; only plateaux are present.

For the rank-2 case this is enough in order to study numerically V2, that is again a function of 
two variables only, a(1)

1 and a(1)
2 . The plots of the function in Fig. 3 shows that V2 still shares the 

same properties as before.
We can perform a similar analysis at rank 3. In this case we have three independent variables, 

a
(1)
1 , a(1)

2 and a(1)
3 and thus we cannot make a single plot; we need to use a slightly different 

technique: we can make a plot V2 in the a(1)
1 − a

(1)
2 plane at fixed a(1)

3 and then vary the value 

of this last holonomy. If a minimum is located at the origin, V2 restricted to the a(1) − a
(1) plane 
1 2
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should have a minimum, as deep as we get closer to a(1)
3 = 0. This is the kind of behavior that we 

can observe in Fig. 4, where we fixed the fugacity in such a way the condition �F1 + �F2 > �B

to hold. When �F1 + �F2 < �B , instead, the presence of plateaux is already evident from a 
plot of V2 at a(1)

3 = 0, as shown in Fig. 5. Let us stress finally stress that, even relaxing the 
assumption (A.4), we can use other numerical tools such as FindMaximum/FindMinimum of 
Mathematica in order to understand the behavior of V2; this kind of study still returns the same 
results as before.
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