
S C U O L A D I D O T T O R AT O
Università degli Studi di Milano-Bicocca

Department of Informatics, Systems and Communication

PhD program in Computer Science Cycle XXXV

A RT I F I C I A L I N T E L L I G E N C E F O R
P R O G R A M C O M P R E H E N S I O N :

D I S C L O S I N G N E U R A L M O D E L S T R A I N E D O N S O U R C E C O D E

martina saletta

736106

Supervisor: Prof. Claudio Ferretti

Tutor: Prof. Leonardo Mariani
Coordinator: Prof. Leonardo Mariani

Academic Year 2021-2022

Martina Saletta: Artificial Intelligence for Program Comprehension: Dis-
closing Neural Models Trained on Source Code, A.Y. 2021-2022

A B S T R A C T

The field of Artificial Intelligence (AI) has made significant advance-
ments in recent years and has been applied to various domains in-
cluding that of program comprehension. In this thesis, the main in-
terest consists in devising AI approaches to deal with source code,
in order to be able to extract knowledge from it. The featured work
is developed along two main research lines, namely 1. the automatic
recognition of particular source code properties which can range from
the presence of particular syntactic patterns or constructs to higher
level features such as the functional purpose of code snippets, and
2. the study of how existing neural models trained in different source
code-related tasks make their predictions. In this case, the main goal
is to investigate which elements are mostly involved in the decision
process of a network.

The carried out work allowed to obtain insightful research out-
comes, including the design of a source code embedding able to cap-
ture specific properties, a thorough analysis of the internal dynamics
of neural networks trained on source code, the investigation of the de-
cision process of state of the art neural transformers in terms of iden-
tification of which source code features, or high-level concepts, are
more relevant to make a prediction, and the definition of a method to
synthesise adversarial instances able to deceive a network.

iii

R I A S S U N T O

L’intelligenza artificiale ha avuto un grande sviluppo negli ultimi an-
ni, ed è stata applicata a vari domini, tra cui quello della program
comprehension. L’obiettivo principale di questa tesi è quello di svi-
luppare approcci basati sull’intelligenza artificiale che operino su co-
dice sorgente, in modo da poterne estrarre conoscenza. Il lavoro si
sviluppa su due principali linee, ovvero 1. il riconoscimento automa-
tico di particolari proprietà che possono spaziare dalla presenza di
specifici pattern sintattici a caratteristiche più di alto livello, come
l’obiettivo funzionale di frammenti di codice, e 2. lo studio di come
modelli neurali esistenti addestrati per differenti scopi fanno le loro
predizioni. In questo caso, l’obiettivo principale è quello di analizzare
quali elementi sono più coinvolti nel processo di decisione della re-
te. Il lavoro sviluppato ha permesso di ottenere risultati promettenti,
tra cui lo sviluppo di un embedding per codice sorgente capace di co-
gliere diverse proprietà, una profonda analisi delle dinamiche interne
di reti neurali addestrate su codice sorgente, lo studio del processo
di decisione di moderni transformer in termini di identificazione di
caratteristiche, o concetti ad alto livello, sono più importanti per la
predizione, e la definizione di un metodo per sintetizzare istanze ad-
versarial per ingannare una rete neurale.

v

P U B L I C AT I O N S

Some of the results and ideas contained in this thesis have been pre-
viously appeared in the following works that are currently published
(•) or submitted (*):

• M. Saletta, C. Ferretti. A Neural Embedding for Source Code: Se-
curity Analysis and CWE Lists. In: Proceedings of 18th IEEE In-
ternational Conference on Dependable, Autonomic and Secure
Computing (DASC) DASC-PICom-CBDCom-CyberSciTech, pp.
529-536. 2020.

• C. Ferretti, M. Saletta. Deceiving Neural Source Code Classifiers:
Finding Adversarial Examples With Grammatical Evolution. In: Pro-
ceedings of GECCO 21 The Genetic and Evolutionary Compu-
tation Conference, Companion Volume, pp. 1889-1897. 2021.

• M. Saletta, C. Ferretti. Towards the Evolutionary Assessment of
Neural Transformers Trained on Source Code. In: Proceedings of
GECCO 22 The Genetic and Evolutionary Computation Confer-
ence, Companion Volume, pp. 1770-1778. 2022.

• M. Saletta, C. Ferretti. A Grammar-based Evolutionary Approach
for Assessing Deep Neural Source Code Classifiers. In: Proceedings
of IEEE Congress on Evolutionary Computation (CEC). 2022.

• 1C. Ferretti, M. Saletta. Do Neural Transformers Learn Human De-
fined Concept? An Extensive Study Source Code Processing Domain.
In: Algorithms 15(12):449. 2022.

* M. Saletta, C. Ferretti. Exploring Neural Dynamics in Source Code
Processing Domain. Submitted to Information.

Below a list of other works published (•) or submitted (*) during the
doctorate, but whose content is not discussed in the thesis:

• L. Mariot, M. Saletta, A. Leporati, L. Manzoni. Exploring Semi-
bent Boolean Functions Arising from Cellular Automata. In: Proceed-
ings of 14th International Conference on Cellular Automata for
Research and Industry (ACRI), pp. 56-66. 2020.

• L. Mariot, M. Saletta, A. Leporati, L. Manzoni. Heuristic Search
of (Semi-)Bent Functions based on Cellular Automata. In: Natural
Computing 21(3), pp. 377-391. 2022.

* C. Ferretti, M. Saletta. Naturalness in Source Code Summarization.
How Significant is it? Submitted to 31st IEEE/ACM International
Conference on Program Comprehension, ICPC 2023 [accepted].

1 Selected as cover story of Algorithms, Volume 15, issue 12 (December 2022)

vii

C O N T E N T S

i preliminaries 1

1 introduction 3

1.1 Thesis Outline . 4

2 literature overview 7

2.1 Machine Learning for Source Code Analysis 7

2.1.1 Source Code Embedding 8

2.1.2 Vulnerability Detection 9

2.2 Formal Grammars and Evolutionary Algorithms 10

2.2.1 Evolutionary Program Synthesis 10

2.3 Explaining Machine Learning Models 12

2.3.1 Classification Errors 12

2.3.2 Analysis of Single Neurons 12

2.3.3 Saliency, Features and Concepts 13

2.3.4 Adversarial Approaches 13

3 background notions 15

3.1 Transformers for Source Code Processing 15

3.2 Grammar-based Evolutionary Algorithms 17

3.2.1 Grammatical Evolution 18

3.2.2 Dynamic Structured Grammatical Evolution . . 20

ii research 23

4 a neural source code embedding 25

4.1 Introduction and Motivations 25

4.2 Embedding Design . 26

4.3 Experimental Settings 27

4.3.1 Preprocessing . 28

4.3.2 Training . 29

4.3.3 Inference . 29

4.4 Embedding evaluation 31

4.4.1 Cluster Analysis 32

4.4.2 Qualitative Assessment 34

4.4.3 Supervised Classification 37

4.5 Discussion . 40

4.5.1 CWE Views . 40

4.5.2 Significance and Limitations 40

4.5.3 Further Directions 41

5 neural dynamics and concept mining 43

5.1 Introduction . 43

5.2 Approach Overview . 44

5.3 Experimental Settings 46

5.3.1 Network Architecture 46

5.3.2 Dataset and Training 46

5.4 Task-based Experiments 47

5.4.1 Problems Definition 48

5.4.2 Classification . 50

ix

x contents

5.5 Neurons Ranking . 52

5.5.1 Entropy of Single Neurons 52

5.5.2 Pairwise comparison 53

5.6 Results . 54

5.6.1 Classification Experiments 54

5.6.2 Entropy-based Experiments 55

5.6.3 Pairwise Comparison Experiments 57

5.7 Final Remarks . 59

5.7.1 Insights and Limitations 60

5.7.2 Further Directions 60

6 evolutionary approaches for adversarial attacks 63

6.1 Robustness and Adversarial Attacks 63

6.2 Work Overview . 65

6.3 Experiments . 66

6.3.1 Vulnerability Detection Model 66

6.3.2 Grammatical Evolution 69

6.3.3 Evolutionary Runs 70

6.3.4 Classification of Evolved Instances 71

6.4 Discussion . 72

6.4.1 Threat Model . 72

6.4.2 Neural Fitness Functions: Further Perspectives . 74

7 input space sampling and decision boundaries 75

7.1 Introduction . 75

7.2 Methods . 76

7.2.1 The CuBERT Source Code Classifier 77

7.3 Two-stage Evolutionary Search 77

7.3.1 DSGE and Neural Fitness Functions 78

7.3.2 Mutations and Fitness Variations 79

7.4 Results . 81

7.4.1 Sampling the solution space 81

7.4.2 Moving across decision boundaries 82

7.4.3 Blind Spots and Salient Features 85

7.5 Discussion . 87

8 concept-based explainability 89

8.1 Motivations and Work Overview 89

8.2 Approach Description 90

8.2.1 Input instances and sub-concepts 90

8.2.2 Activations space, linear SVCs and concept-based
neural fitness function 91

8.2.3 Sensitivity to sub-concepts 93

8.3 Experiments . 93

8.3.1 Data Preparation and Fine-tuning 94

8.3.2 Sub-concepts formulation 95

8.3.3 SVCs and activations spaces 96

8.3.4 Evolutionary search along sub-concepts directions 97

8.3.5 Measuring sensitivity to sub-concepts 98

8.4 Results . 99

8.5 Discussion and Final Remarks 101

contents xi

iii closing remarks 103

9 conclusions 105

9.1 Outcomes Summary . 105

9.1.1 AST-based source code embedding 105

9.1.2 Analysis of single internal neurons 106

9.1.3 Evolving adversarial input instances 106

9.1.4 Evolving along concept directions 106

9.1.5 Salient features 107

9.2 Further Research Directions 107

9.2.1 “Augmented” programming 107

9.2.2 Source code summarization 108

bibliography 111

L I S T O F F I G U R E S

Figure 1 Transformer architecture 16

Figure 2 Example of genotype to phenotype mapping
in GE . 20

Figure 3 DSGE overview 21

Figure 4 DSGE genotype to phenotype decoding 22

Figure 5 Embedding generation outline 26

Figure 6 Node to word conversion example 28

Figure 7 Silhouette of different models 31

Figure 8 Silhouette for weaknesses categories 33

Figure 9 2D visualization of vectors representing differ-
ent weaknesses. 35

Figure 10 CWE classification accuracy of different super-
vised algorithms 37

Figure 11 SVM confusion matrix 39

Figure 12 Autoencoder architecture 46

Figure 13 Neurons’ classification accuracy 56

Figure 14 Distribution of the neurons’ entropies 56

Figure 15 Activations of neurons having different entropies 56

Figure 16 Comparison between high entropy and low en-
tropy neurons 57

Figure 17 Best neuron in a classification task compared
with neurons performing bad on the same task 57

Figure 18 Ratio of successful Mann-Whitney U tests . . . 58

Figure 19 Attack scenario 64

Figure 20 Evolution of pure individuals 67

Figure 21 Evolution of hybrid individuals 67

Figure 22 Classification experiments 67

Figure 23 Example of individual evolved with GE (mini-
mized) . 68

Figure 24 Example of individual evolved with GE (max-
imized) . 68

Figure 25 BNF C grammar to evolve adversarial instances 68

Figure 26 Fitness of the evolved individuals 71

Figure 27 Simplified Python grammar 78

Figure 28 Fitness values over the DSGE runs 83

Figure 29 Results of the mutation based experimental phase 83

Figure 30 Examples for the mutation based experimental
phase . 84

Figure 31 Concept-based experiments overview 91

Figure 32 Simplified Java grammar 94

Figure 33 CuBERT encoder block 96

Figure 34 Fitness of instances evolved with DSGE 98

Figure 35 SVC results . 99

Figure 36 SVC results (random) 100

xii

L I S T O F TA B L E S

Table 1 Properties of the trained ast2vec models 30

Table 2 Summary of the CWE categories 30

Table 3 Silhouette score obtained by different models . 32

Table 4 Statistics of the silhouette score obtained for
different CWEs 34

Table 5 Description of the discussed CWE 36

Table 6 Single CWEs considered for classification . . . 38

Table 7 Best accuracy score for each problem instance 51

Table 8 Classification results 73

Table 9 Confusion matrix (Original) 73

Table 10 Confusion matrices (Modified) 73

Table 11 Sensitivity to different concepts 100

Table 12 Sensitivity of the models to different strength
of concepts . 102

xiii

A C R O N Y M S

ast Abstract Syntax Tree

bnf Backus-Naur Form or Backus Normal Form

cav Concept Activation Vector

cfg Context Free Grammar

cwe Common Weakness Enumeration

dsge Dynamic Structured Grammatical Evolution

ea Evolutionary Algorithm

ge Grammatical Evolution

gp Genetic Programming

ml Machine Learning

nlp Natural Language Processing

sge Structured Grammatical Evolution

svc Support Vector Classifier

tcav Testing with Concept Activation Vectors

xiv

Part I

P R E L I M I N A R I E S

1
I N T R O D U C T I O N

Program comprehension, in its historical and standard connotation [21,
96], concerns the studies performed in the field of software engineer-
ing for providing effective software maintenance and evolution. In
general, it consists in studying how programmers comprehend the
source code they are working on, by analysing, for instance, the cogni-
tive processes behind tasks such as reading and understanding source
code written by other programmers, and in the design of representa-
tions or approaches that can ease the programmers in activities such
as writing, correcting or reusing source code. Classical examples [24]
are aimed at defining cognitive complexity models, and at easing the
effort required to understand source code when performing related
processes such as those of chunking and tracing. In general, given the
underneath goal to help the work of software developers, the stud-
ies in the field of program comprehension often needed a validation
on groups of programmers, in some cases also with the aid of so-
phisticated facilities such as functional magnetic resonance imaging
(fMRI) [133].

In recent years, the diffusion of machine learning approaches al-
lowed to automatize the analysis of artifacts such as images or texts.
These kind of analysis concerned a wide variety of objectives, from
sentiment analysis [99] in natural language processing (NLP) to im-
age understanding and pattern recognition [64]. One of the key as-
pects that is common to all these approaches, is that they are con-
ceived to automatically extract some information from the object be-
ing analysed. With the growing impact that artificial intelligence (AI)
systems – and especially those based on artificial neural networks –
are having in everyday lives, also the way how these automation pro-
cesses in the field of source code analysis are conceptualised and de-
signed is inevitably changing, and thus their applicability, usefulness
and purposes are undergoing a radical transformation. Recent works
in the field of program comprehension are related to more semantic
tasks instead of strictly engineering ones, such as source code summa-
rization [153], feature location [41], or code generation [136]. There-
fore, in general, besides the traditional goal of assisting the develop-
ers in their programming works, also the development of AI models
that can somehow substitute (or significantly assist) the humans is
becoming very common.

The ideas that underlie the work developed in this thesis are set in
this context. Starting from the program comprehension notion as set
out above, the main interest is to devise new ways to deal with source
code, in order to be able to extract knowledge from it. Following
the trend that leads the recent scientific research in many areas, the
investigations will be based on artificial neural networks, and the
goals will be manifold:

3

4 introduction

• the design of source code representations that are able to cap-
ture specific properties, so as to possibly use them to feed neu-
ral models to ease their work and to strengthen their robustness
and reliability;

• the study of approaches to investigate the internal dynamics of
the neural networks. The aim is to enhance the knowledge that
can be obtained from a network, by adding information to that
which naturally derives from the inference done with respect to
the original training task;

• the investigation of the decision process of state of the art net-
works in terms of identification of which source code features,
or high-level concepts, are more relevant for a network to make
a prediction. The effect is to obtain evidence on possible mis-
conceptions or blind-spots raised in the training phase;

• the exploitation of these evidence to devise methods to synthe-
sise instances able to deceive a network, with the aim to attack
the models from an adversarial perspective.

1.1 thesis outline

This section provides a road-map for the reading of this thesis, which
presents a progress in the field of program comprehension, intended
in its meaning and purposes as described above. First, the literature
overview of Chapter 2 introduces the topics involved in the discus-
sion in terms of approaches and key results. Due to the range of
diverse subjects covered, it is not to be intended as a systematic re-
view, but more as a summary that is useful to guide the reader in
the broad scientific scenario of the topics involved, and to focus on
the perspective that concerns the study. Then, Chapter 3 moves to
a more technical standpoint, and describes some of the models and
algorithms used to design the experiments.

With Chapter 4 begins the core part of the thesis, which contains
the studies and the research work carried out during the PhD, to
investigate and explore the ideas outlined in the introduction. Specif-
ically, Chapter 4 illustrates the conceptualization and design of a gen-
eral purpose source code embedding (namely, a vector representation
for source code able to capture and to preserve in the embedding
space some semantic properties), and details the experimentation per-
formed as a proof of concept, which points out its effectiveness when
used as input for supervised classification models. Chapter 5 presents
an extensive study on how the internal dynamics of neural networks
trained on source code can be investigated, and proposes methods to
use the knowledge learned by the internal neurons also for tasks dif-
ferent from those the network was originally trained on. In Chapter 6

an evolutionary approach is used to generate adversarial source code
instances able to deceive a state of the art neural network trained
in the detection of software vulnerabilities. The study of the inter-
nal behaviour of the neural networks is also investigated in the two

1.1 thesis outline 5

next chapters, but from different perspectives: in Chapter 7, by means
of a mutation-based evolutionary algorithm the decision process of
the network is explored by studying how the decision changes when
mutations involving different syntactical elements are applied, while
in Chapter 8, by considering the input instances as points in the
high-dimensional vector space yielded by the activations of the in-
ternal neurons in specific regions (e.g. layers), the interest is moved
in searching evidence of how human-defined concepts affect the final
prediction.

Finally, in the closing part, Chapter 9 resumes and discusses the
results obtained, and provides some insights for possible further re-
search directions.

2
L I T E R AT U R E O V E RV I E W

This thesis in set into a broad research area, that draws on a wide
range of varied topics, from that of source code analysis by means
of machine learning models, to the endeavour of explaining some
of the internal dynamics and operation of such models, even with
the aid of evolutionary techniques based on formal grammars. This
chapter provides a summary of the scientific works related to the
scenario in which the presented studies will roam, with the intention
to both introduce the reader to the topics involved, and to present
the main results and approaches that are available in the scientific
scene. In particular, an overview of how machine learning has been
utilised in the field of source code analysis will be tabled, with a focus
on vulnerability detection and program comprehension. Then, some
evolutionary approaches built around the use of formal grammars
will be showcased, specifically when designed to synthesise programs
written in high-level languages (some technical details will be thereto
given in Chapter 3.2). Finally, an outlook on the field of explainable
artificial intelligence will be featured, with an interest on the methods
that will be devised in the thesis.

2.1 machine learning for source code analysis

Chasing the success achieved in a wide range of domains, such as
those of images and NLP, systems based on machine learning are be-
coming popular also for dealing with source code (see e.g. [80] and
[4]) and, more in general, with software artifacts [38]. To this end, the
recent literature features several examples of ML models trained in
solving tasks related to the source code processing domain, including
code completion [22, 81, 89], code summarization [6, 141, 142], and
classification [15, 52, 102]. The choice of the input representation for
feeding such models is, in general, a crucial aspect in this scope, since
it is not always effective to use the pure textual representation as in
classical NLP models. It is common that more structured program
encodings, such as the abstract syntax tree, the dataflow graph [69],
the call graph [124] or the control-flow graph [7] are used for these
kind of applications. Besides the aforementioned standard graph rep-
resentations, there also exist attempts to study more powerful arti-
facts. Classical examples are the vector representations, known as pro-
gram embeddings, that will be presented with more details in the next
Section 2.1.1, but also other kinds of structures are possible. To this
end, several works are focused in the design of program encodings or
representations that are able to capture different properties, to prop-
erly convey the seized information and to help in the solution of a
specific task. Interesting approaches in this direction are, for instance,
the work described in [5], where a graph-based representation for pro-

7

8 literature overview

grams derived from the abstract syntax tree (AST) is used for solving
classical software engineering tasks such as predicting the name of a
variable or if a variable has been misused, and that of [155], where
a novel AST-based neural network is proven effective to address the
problem of clone detection and software classification.

Recently, besides the use of networks that need as input specific
program representations, also the models commonly known as trans-
formers [140], widely used for NLP applications, are becoming pop-
ular in the source code processing domain [2, 28, 48, 65]. There are
many advantages in using such kind of models. The two most evident
are the convenience in the preprocessing, since the source code needs
only a simple standard tokenization, and the fact that they only need
to be pre-trained (in a self-supervised way) once on large corpora of
data, and then fine-tuned to address specific supervised tasks. The
benefit resides in the fact that, even though the pre-training phase
usually requires many days and a large supply of computational re-
sources, the fine-tuning is computationally simple, and this allows
to easily operate on pre-trained models that are available in public
repositories, e.g. CuBERT1, CodeBERT2 and PLBART3. More techni-
cal details on transformers for source code, along with a discussion
on some of the limitations that they present will be given in Chap-
ter 3.1.

2.1.1 Source Code Embedding

Particular emphasis in this thesis is given to vector representations
of programs, namely on source code embedding, since many state-
of-the-art neural models require a preprocessing that, in some way,
maps the source code into a vector space, and then such vectors are
used to feed the models and to address the deemed problem. The
core idea behind these kind of approaches is the same that underlies
their NLP counterparts (i.e. document embedding), that is to produce
something similar to a semantic hashing [125] for source code, mean-
ing a system that maps similar code snippets into nearby vectors. The
value of this insight is particularly clear in works such as that of [74],
where the similarity of the vectors in the embedding space is used to
implement a search engine for source code. A similar idea is tackled
in [10], where the authors propose a vector representation for pro-
grams for predicting the name of a method. Such embedding aims
to preserve the formal structure of the code using, for the training,
the possible leaf-to-leaf paths on the AST [9], and labels which cor-
respond to the names of the methods (this approach produces vec-
tors representing methods). The main motivation in addressing the
method naming task is related to the idea that, since in most cases the
name of a method is given by the programmer in order to summarize
its purpose, the fact of being able to predict that name corresponds
somehow in being able to understand what a snippet of code does.

1 https://github.com/google-research/google-research/tree/master/cubert

2 https://github.com/microsoft/CodeBERT

3 https://github.com/wasiahmad/PLBART

https://github.com/google-research/google-research/tree/master/cubert
https://github.com/microsoft/CodeBERT
https://github.com/wasiahmad/PLBART

2.1 machine learning for source code analysis 9

In fact, all the works described above aim to associate a small and
meaningful information, for example a word or a short sentence, to
parts of the source code in order to capture some semantic informa-
tion. A comparable intention is tackled for instance in [102], where a
tree-based embedding is used to feed a convolutional neural network
for classifying programs accordingly to their functionalities.

Applications of source code embedding also exist in the field of
cybersecurity: in [146], for instance, the API symbols and common
API usage patterns are used to define a source code embedding to
assist in the discovery of known vulnerabilities in given C functions,
while in [33] different embedding are used to identify correct pro-
gram patches.

In this thesis, a new general purpose source code embedding de-
signed to integrate both structural and semantic features will be pro-
posed in Chapter 4, along with some evidence of its effectiveness in
classifying programs according to the software vulnerability they ex-
hibit. Thereto, further discussion on benefits and limitations in using
program embeddings will be given in Chapter 5.

2.1.2 Vulnerability Detection

In the field of cybersecurity, aside from the classical static and dy-
namic analysis techniques for detecting malware [63] or vulnerabil-
ities [88], in the context of this thesis the main interest lies in the
approaches based on machine learning. The detection of software vul-
nerabilities, in particular, plays a key role in the design of secure com-
puting systems. One of the aspects that contribute in the security of a
system is the quality of the underlying program source code. For this
reason, many studies have been devised to assess the reliability of
the source code. Many examples can be mentioned: the embedding
proposed in [146] is used to identify C functions that are vulnera-
ble to known weaknesses; the authors of [47] propose a Long Short
Term Memory network for detecting vulnerabilities in PHP programs.
VulDeePecker [82] and its extension SySeVR [84] are aimed to be com-
plete deep learning-based frameworks for identifying weaknesses in
C programs. These last approaches are based on a code representa-
tion that aggregates code gadgets, that basically are lines of codes that
are semantically related to each others, on the basis of the data flow
associated to the arguments of some library function calls. Beyond
the mentioned examples, the reader is referred to [83] for a compar-
ative study and to [86] for a comprehensive survey on deep learning
based methods for vulnerability detection.

Despite the growing interest in applying deep learning techniques
for automated vulnerability detection, and the very good accuracies
that such systems prove to have, recent research tells that their per-
formance drastically drops when they are used in real world scenar-
ios [26]. State of the art models, in general, suffer from issues with the
training data, such as data duplication and unrealistic distribution of
vulnerable classes, and also with the model choices, for instance the

10 literature overview

simple token-based input representations that are becoming almost
a standard in the very recent years, probably due to the convenience
in the preprocessing phase (almost no preprocessing is needed) com-
bined with the growing popularity of NLP models that use similar
representations for the input texts [87]. As a result, these approaches
often do not learn features related to the actual cause of the vulnera-
bilities. Instead, they learn unrelated artifacts from the dataset, such
as identifiers of functions and variables or, more in general, “natural”
elements that are included in the code.

For this reason, one of the key topics of this thesis will be the study
of the internal states of neural networks trained to address specific
source code-related issues, to eventually identify what are the fea-
tures that most affect the prediction (Chapters 7 and 8) or to possibly
deceive them (Chapter 6).

2.2 formal grammars and evolutionary algorithms

Evolutionary algorithms are a family of metaheuristic optimization
algorithms [94] which draw their inspiration from the biological prin-
ciple of evolution, where a population of individuals evolves through a
number of generations, by mutating and recombining the individuals
so that the best individuals (according to a fitness function, that is a
measure of goodness) ideally have more chances to survive than the
others. During the years many evolutionary algorithms have been de-
signed to address many different issues (see for instance [32] for a
survey) with successful results, since they basically allow to explore
a solution space whose shape is not known a priori, meaning that
no assumptions on the fitness landscape are needed in general, even
though studies aimed at analysing such landscapes have been pro-
posed [111].

In the context of this thesis, where the focus is in the field of source
code analysis, particular concern is given to evolutionary algorithms
designed to evolve individuals that represent programs. Specifically,
given the fact that source code is usually written in an high-level pro-
gramming language, and that a programming language is defined by
a context-free formal grammar [73], the interest is naturally diverted
to the grammar-based algorithms, that allow to evolve individuals
that are compliant with a given formal grammar. Technical details
on the two algorithms involved in the reported studies, namely GE
and DSGE can be found in Chapter 3.2, while a literature overview
of evolutionary techniques for evolving programs is outlined in the
next section.

2.2.1 Evolutionary Program Synthesis

Grammatical Evolution (GE) [106, 123], first proposed in 1998, is an
evolutionary algorithm that, similarly to what Genetic Programming
(GP) [76] does with syntax trees, can evolve programs that comply
with a given formal grammar expressed in Backus-Naur Form (BNF).

2.2 formal grammars and evolutionary algorithms 11

The main difference with GP lies in how the genotypes of individuals
are represented: while in GP the objects to evolve are in the form of
syntax trees, and thus operators like crossover and mutation operate
on trees, in GE the individuals are represented as vector of integers
(as detailed in Chapter 3.2), and thus crossover and mutation are de-
fined as in standard evolutionary algorithms (EA) [13, 150]. In GE,
the evolutionary process operates on genotypes in the form of vectors,
and for such vectors there exist a procedure that maps it into its corre-
sponding phenotype, namely a string that is compliant with a formal
grammar [30]. Hence, for its inherent nature, GE can be applied for
addressing the problem of program synthesis [35]. Although a recent
work [135] illustrates some of its limitations in effectively solving gen-
eral tasks, other works point out its effectiveness under certain con-
ditions. In particular, since the process of synthesising a program is
evidently connected to the features of the specific programming prob-
lem to be solved, the authors of [61] show how the knowledge of the
problem domain can be used for designing a grammar that effectively
features productions that enable actions useful towards the solution
of the problem itself. A similar intuition is exploited in [105], where
GE is used for synthesising programs that solve the classical problem
of integer sorting.

Despite the insightful results obtained, GE suffered some criticism.
The major featured problems are redundancy, meaning that many
genotypes are mapped into the same phenotype, and low locality,
which entails that a small perturbation in a genotype leads to signif-
icant changes in the corresponding phenotype in the genome repre-
sentation. Locality in particular has been object of studies [25, 119],
in which it is pointed out that the more a change (e.g. a mutation) is
applied in the left part of the genotype, the more it is disruptive in
terms of modifications that occur in the phenotype (this is discussed
in Chapter 3.2), an also that mutation-based searches are not effec-
tive when applied to GE genotypes. In order to face these drawbacks,
adjustments on GE have been proposed: structured grammatical evo-
lution (SGE) [92] and its improved dynamic version (DSGE) [91] have
proven to outperform GE in solving the problems on which they have
been compared. This approach seems to be very promising since, as it
is detailed in Chapter 3.2, the changes introduced in the genotype rep-
resentation, that in DSGE becomes a list if integers vectors in which
each position is referred to a non-terminal symbol in the grammar,
significantly reduce the locality and redundancy issues that affect
standard GE.

In this thesis, both GE and DSGE will be used, always through the
application of fitness functions derived from the output or from the
internal activations of an artificial neural network trained for source
code processing applications. In particular, in Chapter 6 GE will be
applied to look for adversarial examples to deceive a network trained
in the detection of software vulnerabilities, while in Chapters 7 and 8

DSGE will aid the analysis of the elements that affect the decision
process of a neural models.

12 literature overview

2.3 explaining machine learning models

With the great diffusion that machine learning models played in the
recent years, the fields of Explainable Artificial Intelligence (XAI) [58],
and of interpretable machine learning [101] are becoming growing
research areas that aim to explain and interpret how machine learning
models make their predictions. This thesis presents a set of studies
related to the source code processing domain, always with the aid
of machine learning models. For this reason, the explanation of the
internal dynamics of such models is of interest in this scope. This
section provides a concise literature overview of the topics involved
in the works described in the next chapters, namely the search of
adversarial examples for a vulnerability detection system (Chapter 6),
the identification of the syntactic features to which a network is more
sensitive (Chapter 7), the analysis of how the neurons can be ranked
according to their ability to detect some human concepts (Chapter 5)
and the study of how similar concepts emerge in the internal states
of modern neural networks (Chapter 8).

2.3.1 Classification Errors

Machine learning models based on neural networks classify input
through a non linear mapping of input instances to output class prob-
abilities [75]. The mapping function is shaped by the trained weights
of internal connections, and classification errors arise when this func-
tion has areas of input space which generate unexpected outputs.

In the literature, the goal to understand the overall input-output
behavior of a trained network, or just to discover input areas where
the model delivers wrong predictions, are pursued by estimating the
shape either of the manifold corresponding to the learned function
or of the error function. In [137], for instance, the input space of a
network in the regions around known positive instances is studied to
look for adversarial examples, while the authors of [60] look for adver-
sarial example images against which a defense is harder, by searching
input space for points strategically distant from decision boundaries.
Also working on images as input, [67] develops a method to gener-
ate borderline instances, and also discusses how to generate instances
moving far from decision boundaries to explore how the classification
behavior of the network changes around that space.

2.3.2 Analysis of Single Neurons

Also the study of the internal behaviour of neural models is becom-
ing popular, and many research results in this direction show how
the analysis of the activation patterns that a neuron exhibits is of in-
terest, both in terms of the internal representations it develops and
when considered only for its inherent dynamics. A recent work [149],
for instance, proposes a study of these dynamics from an information
theoretic perspective, while in the area of image analysis an interest-

2.3 explaining machine learning models 13

ing approach for studying the internal representations developed by
the neurons is proposed in [79], where each neuron of an unsuper-
vised trained network was evaluated with respect to a given image
classification task, with insightful results. More recently, results have
been obtained for evaluating single neurons for sentiment analysis
tasks [114], or in networks trained to model natural languages [34].

2.3.3 Saliency, Features and Concepts

In many realistic scenarios, numeric scores such as accuracy and pre-
cision are not sufficient for valuing the quality of machine learning
predictions [43]. Particularly, such metrics only give information on
the amount of times a model gives a correct or a wrong answer, but
do not provide insights on what is important for the model for mak-
ing its predictions. Therefore, the literature shows several examples
in the direction of identifying which features are important for a net-
work for making its decision [45]. Input features, however, are often
meaningless for a human being, whose decision processes involve
concepts at an higher level.

To this end, the literature presents several works aiming at iden-
tifying which features are important for a network to make its deci-
sion [45, 104, 107]. The basic idea of such approaches, is to compute
the gradient of the output with respect to the input features. This is
suitable for domains such as that of image processing [132, 152], but
in other fields (e.g. Natural Language Processing (NLP)), where the
object to analyse is a point in a discrete space and it needs a trans-
formation to be used as input for a neural model, it is less effective.
The main problem is that, in general, such transformation from the
object to a numeric input vector is not invertible, and thus operating
directly on the input features is not convenient. In literature, we find
an approach to this problem when instances are graphs in [157].

In this regard, identifying if human understandable concepts emerge
in the internal states of a deep model (i.e. in its neural activations) is
an intriguing and growing research topic. In the image processing do-
main, a past work [79] shows how the internal neurons of a deep au-
toencoder can be effectively used as classifiers for patterns not taught
during the training phase (e.g. cats or faces). More recently, concept-
based explainability of networks has been investigated by means of
concept activation vectors (CAVs) [71], which have proven to be effec-
tive to model human-understandable concepts in the internal states
of a network, and that have been effectively applied also in many
different domains, such as that of chess [98].

2.3.4 Adversarial Approaches

Any machine learning result obtained by using deep neural networks
has one limit: it suffers the fact that the neural network is mostly a
black box, with respect to the explainability of how it is producing its
output and whether it hides problematic decision points. Evidence

14 literature overview

of this is discussed in works related to adversarial examples, which
are input instances crafted to fool state-of-the-art neural networks. In
addition, another key element is that such adversarial instances can
also be only slightly different from instances which instead are cor-
rectly classified by the same machine. This is especially apparent in
the field of image recognition [56], where some research results show
how to find images which are strong adversarial examples, usually by
examining the gradient of the cost function of the given backpropa-
gation network [56]. Also evolutionary approaches have been applied
to address the problem of finding adversarial instances. In the image
processing field, for instance, in [103] the adversarial examples are
generated both by gradient ascent and by using evolutionary algo-
rithms.

Adversarial examples can be even constructed for models built for
source code processing, simply by applying basic semantic-preserving
perturbations to the source code, for instance by renaming some iden-
tifiers or by introducing unused variables [147, 154], or more sophis-
ticated ones, such as by using different control flow structures or by
changing the API usage [113]. In general, when looking for adversar-
ial examples, new knowledge is gathered about the behavior of the
network, and this knowledge helps us in the explanation of what is
happening inside it [42].

Given the increasing role of machine learning systems in many de-
cisions impacting the society, or just the security of many modern
systems, the explainability of artificial intelligence tools is a growing
research area [1, 115].

3
B A C K G R O U N D N O T I O N S

This chapter gathers some technical background notions that accom-
panied the work carried out during the development of this thesis.
Then, it is not intended as a complete manual, but a collection of
information that can ease and enhance the reading of the core chap-
ters. In particular, the upcoming sections report the details that de-
fine the evolutionary algorithms involved in the discussion, namely
GE (Chapter 6) and DSGE (Chapters 7 and 8), and the CuBERT trans-
former for source code (Chapters 7 and 8).

3.1 transformers for source code processing

Neural transformers [140] are deep learning models that have been
originally designed in 2017 to deal with sequential data (e.g. natural
language) but that in recent years gained popularity also in different
domains, such as that of image understanding [70] and, notably for
the purposes of this thesis, that of source code processing [2, 48, 65].

The architecture of a transformer, which is reported in Figure 1 con-
sists in an encoder-decoder structure, in which the encoder maps an
input sequence of symbol representations (x1, . . . , xn) into a sequence
of continuous representations z = (z1, . . . , zn), and the decoder gen-
erates from z an output sequence (y1, . . . , ym) of symbols, one ele-
ment at a time. The encoder is composed of a stack of N identical
layers, each having two sub-layers: one equipped with a multi-head
self-attention mechanism, and the other consisting in a simple feed-
forward layer. The symmetric decoder is in turn composed of a stack
of N layers, each with the same two sub-layers of the encoder, and a
third sub-layer, which performs multi-head attention over the output
of the encoder stack. The attention mechanism in the encoder lay-
ers, intuitively, ensures that, for each part of the input, the produced
embedding contains information about which parts of the inputs are
relevant to each other, and similarly, in the decoder layers the atten-
tion draws the same information information from the outputs of
previous decoders.

The benchmark model considered in this thesis, namely the CuBERT
transformer [65] released by Google Research1 is a version of the
popular BERT transformer model [39] for NLP, specifically designed
for code understanding purposes. In BERT, the self-supervised pre-
training is performed on two tasks:

mlm the Masked Language Model task, which consists in predicting
the correct token in a text where some words have been replaced
with a special token (e.g. [MASK]);

1 Available: https://github.com/google-research/google-research/tree/master/

cubert

15

https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research/google-research/tree/master/cubert

16 background notions

Figure 1: Structure of the transformer architecture. Image taken from the paper
“Attention is All You Need” [140].

nsp the Next Sentence Prediction task, that consists in predicting if
two sentences separated by a special token (e.g. [SEP]) follow
each other in some point of the training corpus.

CuBERT has the same structure of BERT-large, with 24 layers, each
having 16 attention heads and 1024 hidden units. The pre-trained
model (for the Python language) is trained on the MLM and NSP
tasks, with the caveat of considering as a sentence a logical line of code,
namely the shortest sequence of consecutive lines that constitutes a
legal statement. The authors of CuBERT have made available, in ad-
dition to the pre-trained model, six further models, each fine-tuned
on on a different supervised task related to program comprehension:

1. Function-docstring mismatch: a sentence-pair classification
problem where the function and its docstring form a pair of sen-
tences. The positive examples come from the correct function-
docstring pairs, while negative examples are obtained by replac-
ing correct docstrings with docstrings of other functions;

3.2 grammar-based evolutionary algorithms 17

2. Exception classification: multi-class classification problem con-
sisting in the prediction of the correct exception type (among
the 20 most common) raised by a function;

3. Variable-misuse classification: the same classification prob-
lem addressed in [139], that consists in predicting whether there
is a variable misuse at any location in a given function. To create
the buggy examples, in some points of the dataset a variable has
been replaced with another one defined within the function;

4. Swapped-operand classification: similar to the variable-misuse
task, but it consists in detecting if operands of non-commutative
binary operators are swapped;

5. Wrong-binary-operator classification: originally proposed
in [112], consists in detecting whether a binary operator in a
given expression is correct. The negative examples are created
by randomly replacing some binary operator with another type-
compatible operator;

6. Variable-misuse localization and repair: given a function,
the task is to predict one pointer to identify a variable-misuse
location, and another one to identify a variable from the same
function that is the right one to use at the faulty location.

The pre-training has been made by using all the .py files available
in the public GitHub repositories of Google’s BigQuery platform2,
which resulted, after having removed duplicated or similar files by
following the procedure described in [3], in a dataset of 7.4 millions
Python files; the fine-tunings are rather performed on the ETH Py150
corpus [116], consisting of 150K Python files from GitHub that, after
a preprocessing made as above, resulted in about 125K files.

In the work presented in this thesis, some of the described fine-
tuned models will be used in Chapter 7 to study if the syntactical
features to which a network is most sensitive depend to the underly-
ing task upon which the model is trained, and if such sensitivity is
the same that a human expert would expect. In Chapter 8, instead, a
pre-trained model will be fine-tuned in detecting different kinds of
software vulnerabilities.

3.2 grammar-based evolutionary algorithms

Evolutionary computation, and in general population-based optimiza-
tion methods, take inspiration from the natural principle of evolu-
tion: a population evolves through many generations by recombining
the genomes of the individuals (that, sometimes, can also experience
some small mutations), and the best genes, according to some crite-
rion, survive along the generations. For a complete overview of these
kind of optimization techniques, the reader is referred to [94].

2 https://cloud.google.com/bigquery

https://cloud.google.com/bigquery

18 background notions

Genetic algorithms (GA), invented by John Holland [62] and ge-
netic programming (GP), invented by John Koza [76], in particular,
can be roughly described by the following procedure:

1. randomly generate an initial population and assess the fitness of
each individual;

2. by applying crossover and mutation to the individuals, create a
new generation, and assess the fitness of the new individuals;

3. repeat point 2 until an ideal solution is found, or the maximum
number of generations is reached.

What they differ in is how the individuals (or genomes) are repre-
sented: while in GP individuals are syntax trees, in GA they consist
in numeric vectors. In this dissertation, we will focus on GA, since the
used algorithms, namely GE and DSGE, are derived in their founding
ideas from GP, but act with genotypes and operators similar to that
of GA. The terminology that will be used in this section and in the
upcoming chapters is the following:

fitness function a measure of the quality of an individual

individual a candidate solution

genotype representation of an individual during the evolutionary
process

phenotype the actual representation of the candidate solution

gene a position in the genotype

crossover an operator to recombine two parent individual and
obtain two children

selection a method (based on the fitness) to select the parents

mutation an eventual alteration of a gene in a child, can occur after
the crossover

generation a complete cycle of fitness assessment, selection, crossover
and mutation

Starting from the outlined notation and high-level algorithmic overview,
we now provide the description of two population-based algorithms
that allow to evolve individuals whose genotypes can be decoded into
phenotypes represented by strings that are compliant with a given
formal grammar.

3.2.1 Grammatical Evolution

Grammatical evolution (GE), first proposed in [106], can evolve pro-
grams in an arbitrary language by using an algorithmic workflow sim-
ilar to that of GA, and by providing a procedure to map a genotype
into the corresponding phenotype by means of the production rules

3.2 grammar-based evolutionary algorithms 19

defined by a context-free grammar (CFG) expressed in Backus-Naur
form (BNF) [14], that consists in terminal symbols, that can appear in
the language, and non-terminal symbols, which can be expanded into
one or more terminals and non-terminals. Formally, a grammar G can
be expressed as a tuple G = (N, T,A, P), where N and T are the sets
of terminal symbols and non-terminal symbols, respectively, A ∈ N

is the axiom, or the starting symbol of G and P is the set of produc-
tion rules, that define how each non-terminal can be expanded in the
corresponding sequences of symbols. In the example reported in Fig-
ure 2a, for instance, we have N = {<expr>, <op>, <var>}, T = {+,−, ∗, :,
x, y, z}, and A =<expr>, and P = {Rule1, Rule2, Rule3}. GE can now
proceed as a standard GA [62], where the genotypes can be mapped
into the corresponding phenotypes by applying from left to right the
following function:

r = ci (mod nr)

where r ∈ P, nr is the total number of possible expansions that can
be applied to the non-terminal symbol associated to the rule r, and
ci is the i-th gene of the genotype being decoded. An full example
of the mapping process is reported in Figure 2 where given a BNF
grammar, the genotype represented by the sequence

14 7 5 12 3 9

into the corresponding phenotype

z+x

The other evolutionary operators and parameters are the same that
can be applied to standard GA [94]. Notice that, with this mapping
definition, the issues of redundancy and low locality of GE already
mentioned in Chapter 2.2 are now evident: the redundancy is due
to the use of modular operations. Moreover, since the genotype-to-
phenotype mapping is performed from left to right, not necessarily
all the genes in the right part of the genotype will be involved, since
if at a certain point all the non-terminals are resolved, the decoding
process ends and all the remaining genes are ignored. The problem
of low locality, instead, is related to the fact that even a small per-
turbation in the genotype, for instance a mutation that increment or
decrement of 1 a single gene, can drastically modify the phenotype,
just think to the case of a mutation occurring in the first gene, always
associated to the axiom of the grammar: in that extreme case, the
phenotype would be completely different.

In this thesis, GE will be used with insightful results in Chapter 6

to automatically generate C code snippets to be inserted in other func-
tions with semantic preserving transformation, with the aim to define
a method to automatically generate adversarial input instances for a
source code classifier.

20 background notions

(a) Example BNF grammar.

(b) Genotype to phenotype mapping process.

Figure 2: Example of the decoding process (b) of a genotype into the corresponding
phenotype in GE, according to the given BNF grammar (a).

3.2.2 Dynamic Structured Grammatical Evolution

Structured Grammatical Evolution (SGE) [93], is a grammar-based
algorithm derived from GE, which aims to overcome some of the
GE issues discussed in the previous section. It operates like GE, and
the difference lies in how the genotypes are represented – vectors of
lists of integers – so that each gene represents a specific non-terminal,
and each integer is referred to a possible expansion option for that
non-terminal, as reported in the example in Figure 3. Actually, SGE
requires the grammar to be pre-processed to remove recursion. For
this reason, a dynamic version called DSGE [91] has been introduced
to address this issue.

Given a grammar G = (N, T,A, P) defined as in the previous sec-
tion, each genotype is represented as a sequence S1, . . . , Sn, with
n = |N|. Each Si is an ordered list of integers r1, . . . , rk, where k is

3.2 grammar-based evolutionary algorithms 21

Figure 3: Genotype representation in DSGE.

the number of times the i-th non-terminal is expanded, and the values
correspond to the indices (in the grammar) of the applied expansion
rules. The mapping of a genotype to the corresponding phenotype,
starts from the first number of the list S1, which is always referred
to the axiom of the grammar, and then proceeds by expanding the
non-terminal symbols, from left to right, as in the example showed in
Figure 4. For what concerns the genetic operators, as detailed in [93],
mutation consists in changing an integer in a list Si with another
random one whose value is between 1 and the number of derivation
options available for the i-th non-terminal, while crossover is per-
formed by generating a random binary mask and by recombining the
genes of two parents according to this mask, without changing the
lists in the genes. In this thesis, DSGE will be customized with new
mutation operators in Chapter 7, and used to analyse the syntactical
elements to which a network is most sensitive, while in Chapter 8 sim-
ilar analysis will be performed, considering however human-defined
concepts instead of syntactic features.

22 background notions

Figure 4: Example of genotype to phenotype decoding in DSGE.

Part II

R E S E A R C H

4
A N E U R A L S O U R C E C O D E E M B E D D I N G

This chapter proposes the definition of a source code embedding, that
is a technique for mapping source code snippets into a vector space.
Besides, it shows its effectiveness in capturing program properties
that are useful when solving security analysis tasks. The ideas, ex-
periments and results described in this chapter have been previously
published in [126].

4.1 introduction and motivations

In NLP, there exist many techniques for producing representations
of words and phrases consisting in vectors of real numbers. Some of
these language modeling approaches, known as word embedding, aim
to seize some semantic properties of the object to be represented [27].
Due to the effectiveness that such models revealed to have in solving
several and different NLP tasks, similar ideas have been spreading
also in the field of source code analysis [80]. In particular, as dis-
cussed in Chapter 2.1.1, many works proposed vector representations
of source code to address specific issues: for instance, the code2vec
model [10] was designed to cope with software engineering prob-
lems such as predicting the name of a method; another AST-based
embedding [102] attempted to classify programs according to their
functionality; and the referenced names and types of C functions and
common API usage patterns has been used [146] to detect software
that is potentially vulnerable.

The work described in this chapter lies at higher abstraction level,
since it consists in a technique for producing a general-purpose source
code embedding which could assist whoever works with source code
(e.g. software developers, students, researchers) in solving various
tasks. As it will be detailed in the rest of this chapter, the results have
been satisfactory, since the embedding showed not only its ability to
map programs in vectors that preserve some structural and seman-
tic similarities (i.e. similar programs are mapped to nearby vectors),
but also its effectiveness in solving the concrete task of automatically
detecting and classifying software vulnerabilities. In summary, the
contribution and achieved results are the following:

• the design of a source code embedding technique based on the
information stored in the abstract syntax tree;

• the investigation of the vectors’ distribution in the space, that
prompted how similar programs are often mapped in specific
regions;

• the successful application of the yielded vectors to supervised
learning tasks.

25

26 a neural source code embedding

Figure 5: Schema of the approach. Starting from the source code, the AST is used
for producing a vector representation of programs. The obtained program embedding
can be used for solving different learning tasks.

4.2 embedding design

The main inspiration for the source code embedding design that is
going to be outlined in this chapter comes from [100], in which, in
a NLP context, the authors propose two algorithms (i.e. Continuous
Bag of Words and Skip-gram) for producing a word embedding. Such
method, commonly referred to as word2vec, is based on the distribu-
tional hypothesis, namely the assumption that words that often have
a similar context (i.e. that often are used, in natural language, close
to the same words) also have a similar meaning [121]. Accordingly
to this assumption, a simple two-layer artificial neural network is
trained for producing a vector space in which each word in the vo-
cabulary is mapped into a vector, and words with a similar meaning
are associated to nearby vectors. Combining the results obtained by
the word2vec model and the principles through which in [125] doc-
uments are mapped to memory addresses so as to obtain a semantic
hashing, a subsequent work [78] shows how it is possible to modify
the model for producing embedding of entire sentences or documents.
The results of this work are gathered in a model called doc2vec. An
intriguing property that arises in both these works is that, as well
as similarities among words, in the yielded vector space also more
complex relations like “Paris is to France as Rome is to Italy” are
preserved.

The source code embedding approach proposed here aims to ex-
ploit ideas used in the aforementioned word2vec and doc2vec NLP
models for producing a vector representation which is able to capture
some semantic information of the programs. The embedding is pro-
duced starting from the AST of a program, in a way that preserves
the structural dependencies between different parts. This is essential
since, differently from what happens in natural language, the struc-
tured nature of the source code leads to dependencies among parts of
a program that can be very far from one another. Since in this work
the same ideas used in word2vec and doc2vec models are applied,
it is necessary to map the concepts that are commonly used in NLP

4.3 experimental settings 27

(e.g. words and sentences) into the objects that are considered in this
context. If A = (V, E) is an AST, we define the following objects:

words : in this context, a word is defined, for each node of the
AST, as the node itself along with all its children. Formally, for each
v ∈ V , the word wv is a tuple (v, v1, . . . , vn) where, for each 1 ⩽
i ⩽ n it exists an edge e = (v, vi) ∈ E between v and vi. Notice that
we decided not to consider single nodes as words, this because such
choice would have led to a vocabulary with a too small number of
words;

sentences : in word2vec, models need a corpus of sentences for
the training, in order to apprehend the probability that a word is
used close to another one. Since here the words derive from the AST
of a program, the concept of neighborhood among words is related to
the distance between nodes of the AST. Due to this fact, a sentence is
defined as a sequence of words built starting from the nodes covered
by performing a walk on the AST. More precisely, a sentence is an
ordered sequence v1, . . . , vn in which it holds that (vi, vi+1) ∈ E for
each 1 ⩽ i ⩽ n;

documents : in this approach, documents are defined as parts of
programs with different granularities: a document can be a small snip-
pet of code, a method or a function, a class or an entire source code
file. In the performed experiments, a document will be a file contain-
ing Java source code.

Figure 5 summarizes the described approach: starting from the
source code of a program, its tree-based representation (AST), that
naturally derives from the grammar of the programming language in
which the program is written, is used for producing a text file. Such
text file can be then processed with a standard NLP library (e.g. Gen-
sim [117]) in order to obtain a vector representation of that program.
The resulting vector representation can be used for solving different
learning tasks.

In the experiments, the proposed embedding, that from now on
will be referred to as ast2vec, is tested on a dataset of Java programs
on tasks related to program clustering and program classification.

4.3 experimental settings

This section describes the carried out experiments. Starting from the
preprocessing phase, in which Java source code is parsed in order
to produce a text suitable for NLP analysis, in the training phase a
model able to produce an embedding for Java programs is obtained.
Finally, in the last phase, the model is used for inferring vectors of
programs containing different kinds of vulnerabilities. The work was
easily performed on a Linux machine with 4 Intel Core i7 CPUs @
3.60GHz and 16GB of RAM.

28 a neural source code embedding

4.3.1 Preprocessing

The preprocessing phase is intended to transform a Java source file
into a text file. This step is implemented using the tools provided by
the library JavaParser [134]. The designed pipeline is able to convert
a Java source file in a text file to be used as input for a generic NLP
library. The different stages that such tool performs to represent a
program as simple text are the following:

1. Build the AST of a program

2. For each leaf in the tree, extract a random walk on the AST that
starts in that leaf and ends in another leaf

3. For each random walk on the AST, build a list of space-separated
words

4. Output a text file containing, in each row, a sentence consisting
in a list of words representing a path on the AST

n
(a)

c1 c2 c3

n_ATTR_a_C_c1_c2_c3

Figure 6: Example of word built starting from a node n.

Notice that, in this approach, a word is composed of a node n along
with all the children of n. For this reason, the construction of a word
is done by chaining the label of a node and the labels if its children,
using the “_” character as a separator. Moreover, since in JavaParser
some information in the nodes are stored as attributes, the tags ATTR

and C are used for separating attributes and children, respectively.
Figure 6 shows an example of a simple part of a tree and the con-
struction of the corresponding word.

The simple use of all the labels and attributes of the nodes would
yield a vocabulary with an unbounded number of words. This is due
to the fact that possible values and identifiers that can appear in the
source code are potentially unlimited. This fact could lead to prob-
lems related to the performance and to memory usage. In order to ad-
dress these issues, different data preprocessing have been performed,
each of them in compliance with a different design option:

identifiers : to handle the identifiers, two different alternatives
have been tested:

• Not to consider identifiers: if an identifier appears as attribute of
a node, only the tag identifier is written in the corresponding
word.

4.3 experimental settings 29

• To consider all the identifiers as they are in the source code: if an
identifier ID appears as attribute of a node, the tag identifierID

is written in the corresponding word.

values : similarly, two alternatives have been tested for managing
the values:

• To consider all the possible values. In this case, if the value 2907

appears as an attribute of a node, the tag value2907 is written
in the word.

• To consider only a small set of possible values. In this case, only
the values belonging to the set {0, 1, true, false} are considered.
In all the other cases they are mapped d to the generic value X.
In this case, the value 2907 used in the example above is written
as valueX in the corresponding word.

Experiments have been performed by considering all the possible
combinations of these design options. The results obtained will be
presented in Section 4.4.

4.3.2 Training

The ast2vec models have been trained on the same dataset Java-small
dataset used in [6], which contains some of the most popular Java
projects on GitHub, according to their number of watchers, stars and
forks. The dataset has been preprocessed to produce a corpus of
text files that it could be used as input for a document embedding
model. The gensim framework [117], provides an implementation of
the doc2vec algorithm, and starting from the preprocessed files, a
doc2vec model has been trained to produce source code vectors of
three different sizes: 10, 100 and 300. By considering all the possible
preprocessing options and dimensionality of vectors, the trainings re-
sulted in 12 different ast2vec models. Table 1 summarizes the features
of each trained model.

4.3.3 Inference

The last experimental phase consisted in inferring vectors of pro-
grams containing common known vulnerabilities, by means of the
trained ast2vec models. The inferred vectors came from the Juliet Test
Suite v1.3 for Java [17, 18], which is developed by the NSA specifically
for testing static analysis tools. In this dataset, programs are labeled
accordingly to the Common Weakness Enumeration (CWE)1 list.

In the experiments, in order to being able to operate a more accu-
rate qualitative analysis of the results, only the test cases that covered
with sufficient number of examples of one of the CWE categories
listed in the 2011 CWE/SANS Top 25 Most Dangerous Software Er-
rors have been considered. Table 2 shows the number of examples
available for each CWE category.

1 https://cwe.mitre.org/index.html

30 a neural source code embedding

Table 1: Properties of the trained ast2vec models

Model ID Size IDs Values Memory

00-10 10 No Subset 11M

00-100 100 No Subset 52M

00-300 300 No Subset 118M

01-10 10 No All 11M

01-100 100 No All 55M

01-300 300 No All 125M

10-10 10 Yes Subset 75M

10-100 100 Yes Subset 306M

10-300 300 Yes Subset 815M

11-10 10 Yes All 76M

11-100 100 Yes All 307M

11-300 300 Yes All 819M

Table 2: Summary of the CWE categories as represented in the Juliet dataset

Rank Description CWE Entries #Examples

1 SQL injection 89 2220

2 OS command injection 78 444

4 Cross-site scripting (XSS) 79, 80, 81, 83 1332

7 Use of hard-coded credentials 798, 259, 321 (148)

8 Missing encryption 311, 315, 319 407

13 Path traversal 22, 23, 36 888

19 Broken cryptographic algorithm 327 (34)

22 Open redirect 601 333

23 Uncontrolled format string 134 666

24 Integer overflow/underflow 190, 191 4255

25 One-way-hash without a salt 759 (17)

4.4 embedding evaluation 31

Figure 7: Overall silhouette score distributions obtained by the different models.

For each program representing one of the covered CWE categories,
the corresponding vector has been inferred by using each of the trained
models. The aim of this step is to figure out if the vector represen-
tation obtained with ast2vec is able to distinguish among different
categories of software vulnerabilities. Since different parameters com-
binations have been tested, to obtain a numeric score for the quality
of each model accordingly to the task, a measure related to cluster
analysis have been adopted. The silhouette score [120], which gives a
measure of the cohesion of each sample with the other samples in the
same cluster compared to the separation of that sample from samples
in other clusters, has been computed for each vector, accordingly to
the partitioning yielded by the CWE labels.

The box plots in Figure 7 show the silhouette values distribution
obtained by using different parameters combinations, while Figure 9

shows the spatial distribution of the vectors inferred by the model 10-
300, as represented by the two-dimensional visualization produced
with t-SNE [138], considering the cosine similarity as a metric.

4.4 embedding evaluation

This section describes the experiments performed to evaluate the
properties of the proposed code embedding, with a focus on its abil-

32 a neural source code embedding

Table 3: Silhouette score obtained by different models

Model Mean Median

00-10 −0.129 −0.095

00-100 −0.012 0.001

00-300 0.011 0.024

01-10 −0.127 −0.092

01-100 −0.006 0.008

01-300 0.013 0.016

10-10 −0.137 −0.114

10-100 0.012 0.011

10-300 0.057 0.073

11-10 −0.125 −0.137

11-100 0.032 0.034

11-300 0.061 0.074

ity in catching security flaws. Three kinds of evaluations have been
done: a statistical analysis of how the embedding is able to naturally
separate programs containing different weaknesses, a qualitative as-
sessment of the way in which the model places programs in the vector
space and the application of different supervised learning algorithms
on the inferred vectors to measure the accuracy in classifying the
CWEs.

4.4.1 Cluster Analysis

Figure 7 and Table 3 show in terms of silhouette score the perfor-
mance of each embedding model in spatially separating different
weaknesses, which assigns to each sample a value ranged from -1
to 1, where high values mean that a sample is well tied in its own
cluster and well separated from other clusters.

In general, the results show that the models that produce vectors
having 10 dimensions aren’t powerful enough for autonomously dis-
tinguishing among different classes of vulnerabilities. In fact, mean
and median silhouette scores in those cases have always negative
values. Best silhouette values are achieved by the models 0-300 and
11-300, whereby vectors have 300 dimensions and identifiers are all
considered. Such models only differ in the management of values
as discussed in Section 4.3. Since both mean and median of the two
models differ by less than 0.005, the model 10-300 has been used as
benchmark, in virtue of the reduction in terms of memory usage for
storing the model, the training time, and the better graphical results
obtained in the 2D visualization (Figure 9). All the following discus-
sion is thus made by considering 10-300 as the reference model.

For being able to obtain a numeric measure of the CWEs that are
better identified by means of the proposed embedding, the silhouette

4.4 embedding evaluation 33

Figure 8: Silhouette score distributions obtained by the model 10_300 grouped by
weaknesses categories. Refer to the legend in Figure 9 for the association between
colors and the different CWEs. Weaknesses with less than 150 examples in the
dataset (see Table 2) have been removed for this analysis.

34 a neural source code embedding

coefficient of the sets of vectors inferred by the model have been com-
puted. Results are showed in Table 4 and Figure 8. In general, the
silhouette scores obtained by programs representing different weak-
nesses are not equally distributed among the different groups of
CWEs: for instance, silhouette scores of samples in “Path traversal”
are, on average, much higher than values in “Uncontrolled format
string”. This means, as will it be discussed below, that not all the fea-
tures proper of different CWE categories are naturally seized in the
same way by the vectors embedding.

Table 4: Statistics of the silhouette score obtained for different CWEs

CWE category Mean Median Variance

XSS 0.115 0.117 0.003

Path Traversal 0.173 0.322 0.060

SQL Injection 0.104 0.207 0.044

Missing Encryption 0.097 0.143 0.015

Open Redirect 0.114 0.188 0.021

Integer Overflow/Underflow 0.009 −0.006 0.012

OS Command Injection 0.088 0.086 0.022

Uncontrolled Format String −0.004 −0.031 0.013

Broken Cryptographic Algorithm 0.411 0.430 0.020

One Way Hash 0.256 0.282 0.021

Hard Coded Credentials 0.086 0.152 0.021

4.4.2 Qualitative Assessment

Figure 9 shows (in a 2D approximation) how the embedding pro-
duced with the technique described in Section 4.2 from the generic
dataset of popular Java projects on GitHub placed each document of
the Juliet Java dataset in the embedding space. The learning that de-
fined the embedding is unsupervised, with no required bias toward
the security features of the source code that tare associated to the in-
stances. Nonetheless, some types of vulnerabilities can be associated
to specific structures present in the source code, while others cannot.
For instance, dealing with integers, an overflow/underflow can be
often associated to lack of local checks on bounds, while vulnerabili-
ties of category as “Open Redirect” (CWE-601) are related to a set of
programming errors which can be far apart in source code, and find-
ing them could require analysis of separated Java files. Therefore, the
embedding developed on the generic Java data set, which has proven
to capture some semantics of source code fragments, is expected to
behave differently when the vectors represent vulnerable Java code
labelled with respect to different CWE categories.

The following discussion analyses the obtained behavior, to show
how the embedding captures security features better for some CWEs

4.4 embedding evaluation 35

Figure 9: 2D visualization of vectors representing different weaknesses.

than for others. The basic functioning of the referred vulnerabilities
is outlined in Table 5. In Figure 9 each point represents a Java file
of the Juliet data set, and the colors are assigned depending on the
CWE category it represents. We can immediately notice that the plac-
ing of each point, naturally determined by the embedding (and by
the 2-dimensional t-sne approximation), tends in general to sepa-
rate vectors of different vulnerabilities. CWE such as “XSS” (violet
points) and “Open redirect” (grey points) appear to behave badly;
these weaknesses can reasonably be associated to bad overall en-
gineering of software parts, and thus they cannot be detected by
analysing a single file. Therefore, vectors with these labels are placed
spread in the embedding space. Besides, we can notice that some col-
ors associated to CWE categories which are mostly well separated
in the embedding space, such as those of “Integer overflow/under-
flow” (khaki points) or of “SQL injection” (green points), in some
areas are mixed with points of different colors. A manual check on
these mixed points revealed that they are always associated to files
that in the dataset are base classes, that is files that contain only simple
Java classes which call other files, wherein the vulnerability is actually
present. Instead, those called files are in well separated areas of the
embedding space. For this reason, these base classes files have been
left out from the classification experiments presented in the following
section.

Finally, another observed behavior of the embedding is that the vec-
tors belonging to a single CWE category are placed in finer clusters,
each containing the points of a given CWE. This hints at the recogni-
tion of further differences between structural features of the different
Java files associated to the CWE categories. The behavior of the em-
bedding produced by means of this unsupervised learning approach,
allows to devise its use to select Java files in order to help manual

36 a neural source code embedding

Table 5: Description of the discussed CWE

Category Description

SQL injection Code injection technique [59] in
which SQL queries are sent (e.g.
through a web form or a search box)
from a client to a web application, to
execute operations on the database,
such as modify or steal sensitive
data.

Cross Site Scripting (XSS) Injection attack [57] in which mali-
cious code is sent (typically through
a web application) to a dynamic
website and then executed by the
browser of a web user.

Open Redirect This vulnerability [44] occurs when
a web application allows a (mali-
cious) user to control the redirect to
another URL.

Integer Overflow and

Underflow

It occurs when an arithmetic oper-
ation outputs a numeric value that
falls outside allocated memory space
or overflows (or underflows) the
range of the given value of the inte-
ger [23, 40].

Uncontrolled

Format String

The exploit for this vulnerability [31]
occurs when submitted data of an in-
put string are evaluated as a com-
mand by the application (i.e. by
means of format parameters).

Unchecked Return Value

to NULL Pointer Deref-
erence

Missing check for an error after call-
ing a function that can return with
a NULL pointer if the function fails,
which leads to a resultant NULL
pointer dereference, e.g. through a
user controlled input to a malloc()
call [148].

Uncontrolled Resource

Consumption

Lack in controlling the allocation of
a resource, thereby enabling an actor
to influence the amount of resources
consumed [11].

4.4 embedding evaluation 37

security assessment of a code base. Each set of clusters in Figure 9

containing points of a single color, defines a bigger cluster of vectors
associated to a single CWE, and thus can be used to select files of
interest for security analysis. This can be obtained by fist identifying
regions of interest in the embedding space (i.e. regions associated to
a given vulnerability), and then by computing the cosine similarity
between the point that represents the centroid of a region and the
vector inferred from the targeted file.

4.4.3 Supervised Classification

Figure 10: Accuracy score obtained by different algorithms in the classification of the top 8 CWE classes from
Table 4. Notation: the i-th element in each tuple is the number of nodes (neurons) in the i-th layer.

The final experimentation aims at measure the efficiency of the
embedding in being used as input for supervised learning models
trained in the classification of different CWE categories. The dataset
used for this test is the same subset of the Juliet test suite used for the
previous discussion (see Figures 8 and 9). After a preprocessing in
which all the base classes have been removed, (i.e. source files that do
not directly contain any CWE, see the previous section for an expla-
nation), only the CWE categories having at least 300 examples have
been retained. The result was an 8-class classification problem.

Five different classifiers have been tested: Support Vector Machine
(SVM) [19], k-Nearest Neighbors and Radius Neighbors [54], Random
Forest [20] and Multilayer Perceptron [118]. A random 80-20 split of
the dataset between training and test sets has been performed, and
each classifier has been trained by trying different parameters: four
different kernel functions for SVM, different values of k and r for
k-Nearest Neighbors and Radius Neighbors, respectively, variations
in the number of trees for random forest, and different numbers of
hidden layers and nodes per layer in the multilayer perceptron. As
reported in Figure 10, with four classifiers (out of the five tested) a

38 a neural source code embedding

classification accuracy higher than 90% is always obtained. The best
accuracy score, higher than 96%, is obtained by a multilayer percep-
tron with 2 hidden layers each having 50 nodes. The results sug-
gest that the proposed embedding, produced starting from generic
Java source code, together with a supervised learning model trained
on vectors representing programs which provide different classes of
known weaknesses, is powerful enough to capture the structural and
semantic information required to distinguish among different kinds
of vulnerabilities.

As a last assessment, the proposed embedding has been used for
solving another multi-class classification problem. The investigation
has been made on a subset of the CWEs considered in [12], in which
the authors use some of the CWE examples contained in the Juliet Test
Suite for C/C++ (i.e. the analogous of the aforementioned Juliet Test
Suite for Java) for solving similar classification tasks. The selected
CWE entries are the same that were considered in that work and
which also have a corresponding set of examples in the Java dataset,
thus resulting in a 13-class classification problem. The 13 CWEs con-
sidered are listed in Table 6.

Table 6: Single CWEs considered for classification

CWE ID CWE Name

CWE-23 Relative path traversal

CWE-36 Absolute path traversal

CWE-134 Use of externally-controlled format string

CWE-190 Integer overflow

CWE-191 Integer underflow

CWE-197 Numeric truncation error

CWE-369 Divide by zero

CWE-400 Uncontrolled resource consumption

CWE-476 NULL pointer dereference

CWE-563 Assignment to variable without use

CWE-606 Unchecked input for loop condition

CWE-617 Reachable assertion

CWE-690 Unchecked return value to NULL pointer dereference

The following assay analyses the ability of the embedding to better
capture the features proper of single weaknesses in a set of CWEs,
and also how, and why, its performance varies over them. To this end,
let’s consider the confusion matrix C yielded by the classification, in
which each entry Ci,j is equal to the number of instances in the test
set that are known to be in class i and predicted to be in class j. Even
if, in the previous comparison of different classification algorithms,
the multilayer perceptron obtained the best accuracy score, for this
last analysis SVM with polynomial kernel has been used. The reason
of this choice lies in the fact that the classification performed with

4.4 embedding evaluation 39

the SVM yields a confusion matrix with a greater number of zeros,
meaning that the errors are less scattered among the different CWEs,
and thus easing and making more interesting the discussion. Finally,
it is worth noting that with this setting we outperform the accuracy
score of [12] in 8 CWEs out of 13.

Let’s now consider the corresponding confusion matrix in Figure 11,
normalized over the true labels. The high values on the main diago-
nal indicate that the classification is overall performed with an high
level of accuracy. The worst accuracy value is the 68% resulting in
the classification of the CWE-36 (Absolute path traversal), but the
matrix shows that most of the errors are made by confusing CWE-
36 with CWE-23 (Relative path traversal). The confusion between the
two classes is also made in the inverse direction: in fact, in the 18% of
cases the classifier predicts CWE-36 instead of CWE-23. These kinds
of classification errors are to be expected, since CWE-36 and CWE-23

are strictly related weaknesses. A similar consideration can be made
while analyzing the low accuracy (76%) obtained for CWE-191 (In-
teger underflow): even in this case most of the errors are made by
predicting CWE-190 (Integer overflow). The last interesting outcome
is that the learned model misclassifies with a label CWE-190 a num-
ber of instances from other classes, for instance with a 20% error rate
for the seemingly unrelated CWE-369 (Divide by Zero), and that no
other predicted label has similarly spread errors.

Figure 11: Confusion matrix of the classification performed using SVM.

40 a neural source code embedding

4.5 discussion

This last section discusses the obtained results and gives some in-
sights for future research directions.

4.5.1 CWE Views

A first interesting discussion point concerns the relations between
the performance achieved in the classification experiments and the
structured views that the CWE community offers of the catalogued
vulnerabilities2.

The vulnerabilities types covered by the experiments, which are
listed in Table 6, are described in the CWE views as having proper-
ties which make them a varied set. For instance, two of them, namely
the use of externally controlled format string (CWE-134) and the
unchecked return value to null pointer dereference (CWE-690) are
mentioned to be very common in programs written in C language
and not common in other languages (while the other CWEs consid-
ered here are equally frequent in C as in Java). Moreover, interesting
views are those listing CWEs less related to the software development
lifecycle (e.g. CWE-400, uncontrolled resource consumption), or even
CWEs that are not associated to software fault patterns (e.g. CWE-
690). The supervised classification achieved good performance even
on them, and this opens to interesting further research inquiry. In gen-
eral, the use of ast2vec vectors allowed to reach good performance on
these examples, even if by only considering the syntactic structure of
code.

4.5.2 Significance and Limitations

The benchmark Juliet Test Suite has been built to evaluate tools for
both static and dynamic automated vulnerability detection, and it is
composed by synthetically generated examples. This can be useful
to pinpoint the characteristics of tools, but it also leads to a set of
examples with a simpler structure than real-life code. Moreover, the
programs in the dataset often share the whole structure, and they
only differ in single instructions, variable values, or very small code
fragments. At a first sight, this fact could constitute a threat to va-
lidity for the assessments discussed in Section 4.4, since the natural
separation among different classes of vulnerabilities resulted in the
vector space and also the good classification results should be caused
by the inherent similarities and not by features induced by the pres-
ence of given vulnerabilities. Actually, this is not a real concern, if we
consider the whole analysis as a generic investigation on the poten-
tial of the ast2vec model, instead of a direct evaluation on its ability
in classifying security flaws. In this second case, a deeper analysis
should have been performed to confirm the validity of the results. As
a matter of fact, the interest here was to test the ability of the ast2vec

2 https://cwe.mitre.org/data/#helpful_views

4.5 discussion 41

embedding to capture relevant source code properties that were of
some interest in different application settings, and the results have
met expectations.

4.5.3 Further Directions

Tu further extend this research, a natural follow-up is to test the appli-
cability of ast2vec in real-world scenarios. As already discussed, a vec-
tor representation can be used as input for general machine learning
models. A possible investigation should thus be train deep models on
some supervised task, similarly to what has been done in Section 4.4,
but with more sophisticated models and more reliable datasets, and
to compare the performance to that of traditional or state-of-the-art
tools performing the same task.

Moreover, in compliance with the NLP ideas that inspired the de-
sign of ast2vec, another interesting investigation should be to verify
if semantic similarities and analogies are preserved in the embedding
space. Finally, ast2vec has been applied to study the internal repre-
sentations that neural models build when learning a given task. This
study is thoroughly detailed in Chapter 5.

5
N E U R A L D Y N A M I C S A N D C O N C E P T M I N I N G

Deep neural networks have proven to be able to learn rich internal
representations, also for features that can also be used for differ-
ent purposes than those the networks are originally developed for.
This chapter, whose contents have been previously discussed in a
preprint [127], investigates such ability by studying the internal be-
haviour of networks trained for source code processing tasks.

5.1 introduction

Research results on the use of deep learning systems show how the
internal representation developed by a system during its training is
of value, even for tasks different than those it was trained for. Tech-
niques which exploit this fact are, for example, the methods for pre-
training [46], transfer learning [156] or issues related to internal in-
terpretability [53]. The research that aims at characterizing such inter-
nal representation is active for the domains of image processing [79]
and of NLP [34], while fewer results are, however, available in the
domain of source code processing. Given the growing diffusion of
neural networks in the source code processing domain [80], similar
studies deserve to be conducted also in this field.

The focus of this chapter is to examine the internal neurons of a
learning system, in order to look for those which exhibit interesting
behaviours, in terms of classification performance or activation pat-
terns. The study of the internal behaviour of neural models is becom-
ing popular, and many research results in this direction show how
the analysis of the activation patterns that a neuron exhibits is of in-
terest, both in terms of the internal representations it develops and
when considered only for its inherent dynamics. A recent work [149],
for instance, proposes a study of these dynamics from an information
theoretic perspective, while in the area of image analysis an interest-
ing approach for studying the internal representations developed by
the neurons is proposed in [79], where each neuron of an unsuper-
vised trained network was evaluated with respect to a given image
classification task, with insightful results. More recently, results have
been obtained for evaluating single neurons for sentiment analysis
tasks [114], or in networks trained to model natural languages [34].
The main goal is to define a general approach for discovering and
exploiting all the knowledge learned by a given model. For instance,
one can assume to have a neural model (trained on a main task) em-
bedded in a code editor or in a software repository that also allow to
tap into further parts of the internal representation developed while
being trained. To this aim, this study resulted in the following contri-
butions:

43

44 neural dynamics and concept mining

• a procedure for ranking neurons according to their ability in
solving arbitrary binary classification tasks. With the experi-
ments in this direction some neurons revealed to be able to
autonomously build internal representations for different pro-
gram properties:

• an information theoretic approach for identifying neurons which
exhibit interesting behaviours, with the aim to identify the most
informative neurons in the network and to discriminate among
neurons showing different activation patterns;

• a statistical measure for comparing the arbitrary binary tasks
defined by single neurons (namely by simply establishing a
threshold and by splitting the dataset according to the activa-
tion induced by each program instance), to identify neurons
which recognise unique (or uncommon) concepts.

It should be noted that the use of machine learning systems en-
tails the need of choosing in intermediate program representation to
feed the model. The choice of the input representation for feeding
such models is, in general, a crucial aspect in this scope, since it is
not always effective to use the pure textual representation as in classi-
cal NLP models. Besides the classical structured representations (e.g.
abstract syntax tree, call graph, control flow graph), also vector rep-
resentations (previously treated in Chapter 2.1.1) are common and
effective. In the following, we will consider as a benchmark model a
neural network trained in the generic task of reconstructing program
vectors.

5.2 approach overview

The proposed approach is devised at analysing the internal behaviour
of neural networks trained on source code, with the aim to express
its dynamics in a measurable way. Basically, it consists in the train-
ing of a simple autoencoder (i.e. an artificial neural network whose
purpose is the reconstruction of the input, see [55] for a complete ref-
erence) on two different source code embeddings, and in the design
and execution of three categories of experiments:

1. binary classification experiments, for ranking neurons consider-
ing their ability in solving specific tasks;

2. analysis of the relevance of the neurons for the network itself,
regardless of a given task;

3. pairwise comparison of the neurons’ dynamics, through the
adoption of statistical techniques.

For all these experimental approaches, the first step was to map the
source code to feature vectors, namely via a neural embedding, and
then to study the internal behaviour of a neural network trained on

5.2 approach overview 45

such vectors, by analysing the activation values of the neurons on dif-
ferent program instances. In the first two cases, the main interest is to
assign a score to each neuron, i.e. in ranking the neurons according to
different criteria, while the aim of the third point is to possibly define
a partition for the set of neurons, in order to discriminate different be-
haviours and to define an association among neurons sharing similar
patterns in terms of statistical distribution of the activation values.

In the classification experiments, the score assigned to each neuron
is represented by the accuracy obtained when used as a classifier for
given binary problems, as it will be detailed in Section 5.4. The basic
idea is to consider, for each neuron, different activation thresholds
and then to measure, for each threshold, the accuracy of the neuron in
classifying program instances from a balanced labelled sample, when
predicting a program to be in class 0 if the activation yielded by that
program is less than the threshold, and to be in class 1 otherwise. The
scoring mark for a neuron is the accuracy obtained while considering
the threshold that leads to the highest accuracy.

In the second class of experiments, the score of each neuron is in-
stead computed independently from any task. Similar studies, i.e. the
definition of a scoring measure for evaluating the importance of sin-
gle neurons in a network, have been already investigated in the lit-
erature [16, 34]. While in the referred works the core idea is to use
the correlation between the activation values of neurons in distinct
but isomorphic models (i.e. obtained by retraining the same model
on different training sets) for finding neurons that possibly capture
properties that emerge in different models, here the proposed rank-
ing is based on the concept of entropy used in information theory.
The reason is that, while by means of the correlation analysis one is
able to state which neurons are the most important with respect to
the task the network is trained on, with the proposed entropy-based
measure, the neurons are graded with regard to the importance they
have according to their behaviour in the network: since by definition
the entropy in information theory is the average level of information
emitted by a signaling system [131], computing the entropy of single
neurons is equivalent to measuring how much each neuron is infor-
mative.

Finally, in the third class of experiments, all the possible pairs of
neurons are considered, and for each pair, a nonparametric statisti-
cal test is performed to assess which neurons share some activation
patterns. This will also allow, as it will be detailed and formalized in
Section 5.5.2, to study if there exists a partition of the neurons based
on their entropy levels such that (intuitively) activation patterns of the
neurons belonging to the same part can be distinguished from those
of neurons belonging to the other parts. Since it will be showed how it
is possible to associate to each neuron an arbitrary concept, being able
to distinguish among different neurons’ behaviours could be some-
how comparable to detect different concepts that are autonomously
learned by the network, regardless to the original task it is trained on.

46 neural dynamics and concept mining

5.3 experimental settings

This section describes the experimental setting adopted to study both
the ability of the hidden neurons of a generic neural network in build-
ing an high-level representation for some specific source code-related
features, similarly to what the authors of [79] and [114] did for im-
ages and natural language, and to characterize (and distinguish) the
behaviour of the neurons in terms of their entropy and their activa-
tion patterns.

5.3.1 Network Architecture

The chosen work context is that of a simple neural model, namely
an autoencoder. Without any hyper-parameters optimization nor any
in-depth study on the network design, a simple dense autoencoder
has been implemented, with two hidden layers in the encoder, two
symmetrical hidden layers in the decoder and one code layer in the
middle, as shown in Figure 12. The ADADELTA optimizer [151] and
the Mean Squared Error as the loss function have been used. As the
activation function for the hidden layers, the Rectified Linear Unit
(ReLU) has been applied, which is defined, for all x ∈ R as max(0, x).
The model is implemented using the APIs provided by the Keras
library [29].

Input:
n neurons

Output:
n neurons

neurons
10

n

neurons
3

n

neurons
3

2n

neurons
3

n

neurons
3

2n

neurons tested
as classifiers

Figure 12: Network architecture. The sizes of the layers depend to the program
vectors dimension. In all these experiments, n = 300.

5.3.2 Dataset and Training

For the training phase, the adopted dataset is that also used in [6],
which is a collection of popular GitHub1 Java projects that contains
over 400000 methods, while for all the classification and ranking ex-
periments the data are a subset of the Java-med dataset described
in [8].

1 https://github.com

https://github.com

5.4 task-based experiments 47

Two independent trainings of the autoencoder have been performed,
by using two different source code embedding algorithms for prepro-
cessing all the methods in the dataset and to compute the correspond-
ing program vectors:

1. A 300-dimensional embedding obtained by simply applying the
doc2vec model [78] to the methods in the dataset using the
gensim framework [117]. To avoid inconsistencies related to for-
matting choices, such as the presence or absence of spaces be-
tween operands and operators, keywords and parentheses, the
doc2vec model has been applyed to a pretty printed version of
the methods obtained by using the Javaparser library [134].

2. The ast2vec source code embedding proposed in [126] and ex-
tensively described in Chapter 4.

Notice that this approach can be applied to any neural network, from
the most simple to more sophisticated ones. In general, differently
from the field of images, where the input of the network is exactly
the object being studied, more often than with images, models for
source code processing require a specific program representation as
input, e.g. a numerical vector representation (embedding) or a stream
of tokens, and each representation inherently preserves or empha-
sizes some program features to the detriment of others. Since in this
discussion the main focus is to propose and evaluate the approach
rather than the study of the best input representation, the two sets of
program vectors considered in the experiments have different under-
lying construction ideas: doc2vec embedding is built by applying a
classical NLP technique to the pure source code, so it is not supposed
to be particularly viable in this context, while ast2vec is developed by
considering both structural (neighborhood of nodes in the AST) and
lexical (identifiers chosen by the programmer) features, and thus it is
assumed to be particularly suitable and flexible for general program
comprehension applications.

Each autoencoder has been trained for 50 epochs using the hyper-
parameters described in the previous section; due to the input vectors
dimension, the layers in the encoder have, respectively, 300, 200 and
100 neurons, those in the decoder symmetrically have 100, 200 and
300 neurons, and the middle code layer has 30 neurons.

5.4 task-based experiments

For assessing the ability of the internal neurons in the considered net-
works to build internal representations for different program proper-
ties, each neuron has been tested when used as a classifier for distinct
binary classification problems, following the same approach of previ-
ous works [79, 114].

48 neural dynamics and concept mining

5.4.1 Problems Definition

When dealing with images and product reviews (as in the referred pa-
pers), the properties according to which to classify the input objects
can be easily defined: could be, for instance, the presence of particular
patterns (e.g. cats or faces [79]) or positive and negative review senti-
ments [114], as in classical image recognition and sentiment analysis
tasks. In the program comprehension context, however, such kind of
properties do not directly arise from the source code, or at least they
are not immediately evident for a human being reading it. Therefore,
the first step was to define different labelling policies for classification,
so to capture properties having different natures:

• the first one, designed using the Control Flow Graph (CFG) [7],
addresses the syntactical structure of a method in terms of its
structural complexity;

• the second one relies on the method’s identifiers chosen by the
programmers in order to target a task related to the functional-
ity of a method;

• the third one is related to its I/O relationship, that is the rela-
tion between the input parameters and the returned object of a
method;

• the last one is a random labelling strategy used as a baseline.

structural labelling policy The cyclomatic complexity [97] of
a program can be defined starting from its CFG G having n vertices,
e edges and p connected components as:

V(G) = e−n+ p (1)

Dealing with java methods, such metric can be easily calculated by
counting 1 point for the beginning of the method, 1 point for each
conditional construct and for each case or default block in a switch-
case statement, 1 point for each iterative structure and 1 point for
each Boolean condition. Starting from this software metric, for a given
parameter c, the problem can be defined as follows:

Problem 1 Let M be a set of Java methods, let c ∈ N, and let hc : M →
{0, 1} be a binary classification rule for the methods. We define, for each
m ∈M:

hc(m) =

0 if V(Gm) < c

1 otherwise
(2)

identifiers-based labelling policy For the definition of the
semantic labelling strategy, the underlying assumption is the same
that Allamanis et al. [6] and Alon et al. [9] made in their works,

5.4 task-based experiments 49

namely that the name a programmer gives to a method can be some-
how considered as a summary of the method’s operations, meaning
that the name of a method shall provide some semantic informa-
tion on the method itself. Starting from this premise, the semantic
labelling can be defined by considering the presence or absence of
specific patterns, from a given set T , in the method name:

Problem 2 Let M be a set of methods, let N = {labm : m ∈M} be the set
of the names of the methods in M and let T be a set of patterns. We write
r ⩽ s if r and s are strings and r is a substring of s. Let hT : M→ {0, 1} be
a binary classification rule for the methods. We define, for each m ∈M:

hT (m) =

1 if ∃t ∈ T : t ⩽ labm

0 otherwise
(3)

i/o-based labelling policy The idea beyond this kind of la-
belling is that the relation between the input and the output of a
program can suggest something about the functionality of a program.
For example, a program that takes an array of integers as input, and
that returns another array of integers, could possibly be a program
that fulfils some kind of sorting or filtering operations, while a pro-
gram that requires as input an array, no matter its type, and that
returns an object of the same type can possibly represent some kind
of search operation.

For the definition of this class of binary problems, only a subset
of all the possible I/O relations is considered, namely the presence
or the absence of an array among the input arguments and whether
the returned object is an array or a single element. For easing the
discussion, the following binary notation to describe such possible
relations is adopted:

00 : many to many

01 : many to one

10 : one to many

11 : one to one

Following this notation, this labelling strategy can be formalized as
follows:

Problem 3 Let M be a set of non-void methods, each having at least one
input argument. Let L = {00, 01, 10, 11} be the set of possible labels for each
m ∈ M. We remark that it exists a function l : M → L that assigns a label
to each method. Let P(L) be the power set of L. Let hP : M → {0, 1} be
a binary classification rule. We define, for each m ∈ M and for a given
P ∈P(L):

hP(m) =

1 if l(m) ∈ P

0 otherwise
(4)

50 neural dynamics and concept mining

random labelling policy Finally a baseline labelling strategy
is defined to assess the obtained results, by comparing them with
those obtained while solving an arbitrary task whose results should
be only noise. Simply, consider a random split of the methods is con-
sidered:

Problem 4 Let L be a randomly shuffled list of methods, and let mi ∈ L be
the method having index i. Given a threshold n ∈N and let hn : L→ {0, 1}

be a binary classification function, we define, for each mi ∈ L:

hn(mi) =

1 if i ⩽ n

0 otherwise
(5)

5.4.2 Classification

The performance of the hidden neurons has been tested in the classi-
fication of methods according to different instances of the classes of
problems described in the previous section. To this aim, all the neu-
rons in the code layer and in the two hidden layers in the decoder
have been considered, as shown in Figure 12, and their classification
accuracy have been tested by considering the activation produced
by a neuron for each method given as input. The reason why only
the decoding neurons have been tested lies in the nature of an au-
toencoder: in the encoder layers a progressive dimensionality reduc-
tion (and thus a compression of information) is performed, and this
(likely) means that in the middle code layer only relevant features are
encoded. Since in the decoder layers the dimension is symmetrically
increased for reconstructing the input, only those neurons have been
tested, since they are expected to hold more relevant features. Note
that the same approach have been proposed, with promising results,
for images [79] and for natural language [114], but it is new for source
code processing applications.

In detail, for each of the selected neurons, the possible thresholds
were 10 equally spaced values among the minimum and the maxi-
mum activation value of that neuron for methods in the training set.
For each activation threshold, the classification accuracy of the neu-
ron on a given problem instance has been computed by considering,
in a precomputed balanced sample of the test set, the activation value
of the neuron for that method and by predicting the method to be in
class 0 or in class 1 if the activation value is less or greater than the
threshold, respectively.

This process, formally described in Algorithm 1, supplies a pro-
cedure for ranking neurons according to a task: to each neuron is
assigned its highest accuracy score. Table 7 shows the accuracies ob-
tained by the best neuron for the considered problem instances, while
the complete results obtained with the classification experiments will
be discussed with further details in Section 5.6.

5.4 task-based experiments 51

Table 7: Best accuracy score for each problem instance

Class Instance doc2vec ast2vec

Random none 54% 52%

Structural c = 10 81% 84%

Semantic T = {test} 63% 71%

Semantic T = {daemon} 70% 68%

I/O {00} vs {01, 10, 11} 64% 65%

I/O {00, 10} vs {01, 11} 59% 64%

Algorithm 1 Algorithm for finding the best neuron in classifying pro-
grams on binary problems. The accuracy is computed by considering
two balanced classes, each having at least 300 examples.

1: bestAcc← 0 ▷ accuracy of the best neuron
2: for all neuron N do
3: A← activation values of N
4: T ← activation thresholds ▷ 10 evenly spaced thresholds

between 0 and maxa ∈ A

5: bestN ← 0 ▷ best accuracy for N
6: for all t ∈ T do
7: pred← empty list ▷ list of predictions
8: for all a ∈ A do
9: if a ⩽ t then

10: append 0 to pred
11: else
12: append 1 to pred
13: end if
14: end for
15: if accuracy(pred) ⩾ bestN then
16: bestN ← accuracy(pred) ▷ update best accuracy of N
17: end if
18: end for
19: if bestN ⩾ bestAcc then
20: bestAcc← bestN ▷ update best neuron
21: bestNeuron← N

22: end if
23: end for

52 neural dynamics and concept mining

5.5 neurons ranking

The previous section presented the experiments for evaluating the
ability of individual neurons in solving specific classification prob-
lems or, in other words, in recognising predetermined program prop-
erties. In the following, a scoring measure for neurons based on the
concept of entropy used in information theory is presented. Further,
the Mann-Whitney U statistical test [95] is used for comparing the
behavior of two neurons, assessing whether they share similar activa-
tion patterns and thus whether they are able to approximately detect
the same concept.

5.5.1 Entropy of Single Neurons

The method proposed for evaluating the importance of each neuron
in the network is based on the information theoretical concept of en-
tropy [131]. As it will be discussed in Section 5.6, the experiments
performed for assessing the results obtained with this scoring ap-
proach proved the effectiveness of this ranking, since it can discrim-
inate among neurons which exhibit very simple activation patterns
(i.e. active on only very few instances, therefore with low entropy),
from more elaborate ones (i.e. those having varied activation values
on many instances, corresponding to medium or high entropy).

The baseline idea behind this approach is that each neuron can be
seen as a signaling system whose symbols are its activation values.
Formally, in information theory the entropy is defined as the average
information obtained from a signaling system S which can output q
different symbols s1, . . . , sq with probability pi = P(si):

H(S) =

i⩽q∑
i=0

pi log
1

pi
(6)

Dealing with activation values, whose domain is continuous over
R+

0 , a discretization of that space has been constructed by considering
a set R = {r1, . . . , r1000} of 1000 evenly spaced intervals between 0 and
the maximum activation value reached by a neuron for the vectors
in the training set, and those intervals have been considered as the
possible symbols of the neurons’ alphabet. More precisely, for each
neuron N the activation values yielded on a random sample of 10000
vectors have been computed, allowing to determine the number of
occurrences of each symbol by counting the activation values yielded
in each interval ri. Then, the set RN ⊆ R of the occurring symbols in
the neuron N has been considered, and for each ri ∈ RN its occurring
probability pi has been derived by using a softmax function over the
set of countings. Finally, to each neuron is assigned a score defined
as the entropy computed over the set PN =

⋃
pi, where each pi is

the probability associated to the symbol ri in RN, as described by
Algorithm 2.

5.5 neurons ranking 53

Algorithm 2 Algorithm for computing the entropy of each neuron.
1: R← list of intervals
2: for all neuron N do
3: M← random sample of 10000 methods
4: V ← activations of N for each m ∈M

5: score_neuron(N,R, V)
6: end for
7:

8: procedure score_neuron(N,R, V)
9: C← empty list

10: for all r ∈ R do
11: c← number of v ∈ V such that v ∈ r

12: append c to C

13: end for
14: remove all the 0s from C

15: P ← softmax(C)
16: return −

∑
pi∈P pi logpi

17: end procedure

5.5.2 Pairwise comparison

Further considerations can be provided on how entropy distinguishes
neurons. The main insight is that it is always is possible to associate,
to each neuron, a concept by simply looking at the instances that pro-
duces the highest activation values for that neuron. In other words,
the concept corresponds to the binary classification task obtained by
fixing an activation threshold and then by predicting the instances as
satisfying that concept if the yielded activation value is higher than
the threshold. Given this premise, it is possible to define an heuristic
procedure for measuring the similarity of the concepts defined by two
neurons, by applying the Mann-Whitney U test [95] in the following
way:

1. choose two neurons Nref and Ncf , representing the neuron that
defines the concept and the neuron to compare it to, respec-
tively,

2. considering the neuron Nref , for each program instance mi ∈
M = {m1, . . . ,mn}, compute the set of activation values A =

{a1, . . . , an} and create the list L = ⟨m1, a1⟩, . . . , ⟨mn, an⟩, sorted
according to ai;

3. after splitting the sorted list L in three equally sized parts, gen-
erate the sets M0 and M1 by grouping the instances from the
first and last of those parts, respectively;

4. select two equally sized random samples of instances from M0

and M1 and compute the corresponding two sets C0 and C1 of
activation values for Ncf ;

5. perform the Mann-Whitney U test on the sets of values C0 and
C1, with alternative hypothesis that the distribution underlying

54 neural dynamics and concept mining

the first set is stochastically less than the distribution underlying
the second one.

Notice that, in the outlined procedure, the threshold is represented
by a range of values instead of a single point. The reason is to make
the definition of the binary classification problem more robust, since
the points in the middle that could likely give rise to confusion are
removed.

As it will be discussed in Section 5.6, the application of this proce-
dure to all the possible pairs of neurons allows to assess that different
entropy values correspond to different behaviours in terms of recog-
nised concepts. Further, the replicability of the concepts defined by
the neurons varies when comparing neurons belonging to different
entropy ranges.

5.6 results

This section introduces the results obtained with outlined experiments.
A first analysis concerns the performance of the neurons while solv-
ing different instances of the classification tasks described in Sec-
tion 5.4, the second part is a study of the neurons from the informa-
tion theoretic standpoint discussed in Section 5.5, while the third part
reports the comparison of pairs of neurons and shows how different
entropy intervals clearly characterize specific behaviours.

5.6.1 Classification Experiments

A summary of the results obtained in the classification experiments is
reported in Table 7. Different instances for the classification problems
described in Section 5.4 have been considered, and the classification
accuracy of each neuron has been evaluated. As can be seen in Fig-
ure 13, where the accuracy distributions for some of the considered
problem instances are reported, for each problem most of the neurons
reach an accuracy level between 0.5 and 0.55, while only few neurons
are indeed able to reach higher accuracies. This evidence is already
interesting by itself, since it means that single neurons perform dif-
ferently when tested on a given task and also that some neurons are
actually able to detect source code related properties. The accuracy
varies a lot when considering different problem and different em-
beddings, but this is probably due to the features that are naturally
seized by the vectors. Indeed, in the experiments this is confirmed
by the good results obtained for the structural task with the ast2vec
embedding (first diagram in Figure 13). Finally, the experiments on
the baseline random problem confirm the validity of the results by
showing how the performance of the neurons on a randomly defined
problem is far from being comparable to the one obtained on all the
other tasks, hence good performances are not emerging by chance.

5.6 results 55

5.6.2 Entropy-based Experiments

The original goal of entropy in information theory is to measure the
average level of information of a source, given its outcome. In this
setting, each neuron can be considered a source of symbols, when its
possible activation values are interpreted as explained in Section 5.5.

The defined entropy allows to distinguish (internal) neurons with
respect to the variety of the activation values they output for each
instance presented to the network. Eventually, each neuron’s behavior
in terms of output activation values is defined by the training process
and, when considering internal neurons, also by its connectivity to
the rest of the network.

Here the perform experiments are aimed at showing how such a
measure can be used to identify neurons that can be used to perform
some interesting classifications of input instances. Previously, inter-
esting neurons have been identified by first specifying some classifica-
tion problem, and then by measuring the performance of each neuron
on it; differently, the interest here is to specify what can characterise
interesting classifications, to look for corresponding behaviors among
the internal neurons.

In this case, the goal is to understand how the behavior of neurons
varies with different entropy values, and when operating on two dif-
ferent ways of embedding source code input instances.

To this aim, the distribution of entropy values among the neurons
of the autoencoder’s section highlighted in Figure 12 has been plot-
ted. The resulting distributions, in Figure 14, are qualitatively similar
under both doc2vec and ast2vec embeddings, with a bimodal profile
characterized by a peak of occurrences for very low values of entropy
and an area of normally distributed frequencies for higher entropy
values.

Therefore, three classes of neurons having different entropy values
can be roughly distinguished:

1. A big number of neurons (notice that the figure is in a logarith-
mic scale) having an entropy equals or very close to 0. These
neurons are of no interest in this context, since they are neurons
that (almost) never activate. They could only be used for prun-
ing the network in order to optimise the architecture, but it is
out of the focus of this work.

2. Another big class of neurons having normally distributed high
entropy values. Those neurons reach an high score since their
activation values are distributed over a wide range. In addition,
the probabilities of the occurring activation values to be in dis-
tinct intervals are relatively similar: this leads to an high score
in terms of information theory.

3. A smaller set of neurons whose values are higher than 0 but
that are out of the normal distribution of the majority of the
values. The corresponding activation values are those between

56 neural dynamics and concept mining

Figure 13: Classification accuracies reached by the neurons on different problem instances.

Figure 14: Distribution of the neurons’ entropies in the ast2vec (left) and doc2vec (right) models.

Figure 15: Activations of neurons having different entropies. In both the images, the purple line refers to a
neuron having a low entropy score H = 1.06, while the orange line represents a neuron with an high entropy
H = 5.19. The left figure is a simple plot of the sorted activation values for the two neurons, while the left figure
reports the distribution of the activation values.

5.6 results 57

the dashed bars plotted in Figure 14. Those neurons are pecu-
liar, since they produce an activation higher than 0 only for a
significant amount of vectors (i.e. > 10%), while in all the other
cases their activation is equal to 0.

For two neurons, one with low entropy and one with high entropy, we
plotted their activation values for a set of input instances in Figure 15

(left). More related to our entropy measure, we show in the same
Figure 15 (right) the distribution of symbols, defined on intervals of
activation values, for the same two neurons.

5.6.3 Pairwise Comparison Experiments

To explore what neurons are representing, the investigation has been
performed through the comparing measure introduced in Section 5.5.2.
The insight was to take two neurons, Nref and Ncf , to assign to Nref
a reference role, to compare the distribution of the activations of Ncf
with that of Nref over the same set of instances, and to discuss about
how they classify input instances. Preliminary findings show that ex-
periments with ast2vec and doc2vec produce very similar results, for
this reason all the following discussion is made by considering only
the neurons in the ast2vec autoencoder.

0.0 0.5 1.0 1.5 2.0 2.5
Activation value

0

5

10

15

20

25

30

in

st
an

ce
s

Low entropy neuron compared to an high entropy one
positive
negative

0 5 10 15 20
Activation value

0

5

10

15

20

25

in

st
an

ce
s

Neurons having high entropy
positive
negative

Figure 16: Activations of two high-entropy neurons, one compared against a low-entropy neuron (left), and
one against a high-entropy neuron (right). Colors of bars correspond to the classes M0 and M1 defined by the
reference neuron Nref.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Activation value

0

20

40

60

80

100

120

140

in

st
an

ce
s

Best neuron compared to one having low entropy and low accuracy
positive
negative

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Activation value

0

5

10

15

20

25

30

in

st
an

ce
s

Best neuron compared to one having high entropy and low accuracy
positive
negative

Figure 17: For the cyclomatic complexity classification task, outcome of the comparison between the best neuron
and two neurons performing bad on the same task, one having low entropy (left), and the other having high
entropy (right).

58 neural dynamics and concept mining

As stated in Section 5.5.2, the activations of a neuron over a set
of instances define its classifying behavior, thus two neurons can be
compared in terms of how a neuron can approximate the classifica-
tion of another. For instance, looking at Figure 16 (right), we can see
how a chosen neuron Ncf activates on negative instances (set M0, bars
in red) or positive (set M1, bars in blue) with respect to the classifica-
tion yielded by Nref . In this case, it appears that it is possible to find
a threshold on activation values that is good to classify most of the
instances in the same way as the chosen Nref . Notice that, in general,
such a threshold could be found when the medians of the two distri-
butions, one from the activation values of Ncf on M0 and the other
from its activations on M1, are separated.

This fact can be assessed by operating the Mann-Whitney U test
on those pairs of distributions. Remark that the outlined results still
stay valid when considering the alternative hypothesis of having the
first distribution stochastically greater than the second one. In fact,
this would mean that instances producing a high activation level on
the first neuron tend to produce a low activation level on the second
one, and viceversa. Therefore, in this case the binary classification
produced by the first neuron could be approximated by the opposite
of the classification produced by the second one.

[0, 1) [1, 2) [2, 3) [3, 4) [4, 5) >= 5
Href

[0, 1)

[1, 2)

[2, 3)

[3, 4)

>= 4

Hc
fr

Ratio of succeded tests for neurons in different entropy intervals

Figure 18: Ratio of successful Mann-Whitney U tests while comparing neurons
belonging to different entropy ranges.

Overall, the reproducibility of the classification yielded by a neu-
ron Nref by a second neuron Ncf , has been explored on every pair of
neurons from the autoencoder section previously considered. A first
evidence is that there is a correlation between the entropies of the two
neurons compared as described above. In Figure 18 the success ratio
of the Mann-Whitney U test according to the entropy of the neurons
being compared is pictured. When both the reference and the compar-
ison neurons have high entropy, Mann-Whitney U test favours the less
hypothesis, with p < α where α = 0.01 is the considered significance
level.

For instance, Figure 16 shows the details of two comparisons, one
(left) where a neuron with low entropy is compared to a neuron with
high entropy, and another (right) where two neurons having high
entropy are compared. The bars represent the distribution of the acti-
vation values for the instances in the two classes M0 and M1 defined

5.7 final remarks 59

by Nref. Specifically, the colors of the bars are associated to the classi-
fication of instances of Nref, while their position and height represent
the activation levels produced by Ncf on the same instances. The two
distributions on which the Mann-Whitney U test is performed are
the activation values of the Ncf for instances associated to the two
sets M0 and M1, respectively. In the first plot (left) the comparison
of two neurons over which the test fails is reported, meaning that it
is not possible to distinguish among the two distributions and thus
it is probable that the two medians are not one less than the other.
This can be read as an evidence that no threshold is good enough to
separate red and blue bars, while in the other one (right) this can be
done with some approximation.

As a final check, we verified how those measures apply on neurons
which performed well in one of the specific tasks presented in Sec-
tion 5.4.1. When considering the neurons having accuracy above 0.8
on the task of estimating the cyclomatic complexity of source code,
the gathered evidence shows that:

• over the total 330 neurons, 39 under ast2vec embedding reach
such accuracy, but only 1 for doc2vec;

• the neurons that reach this high accuracy 3 all have an entropy
hicher than 3;

• the converse is not, in general, true: some of the neurons having
high entropy perform badly on the same task;

• chosen a neuron performing well on the task, its comparison
with low entropy neurons always fails (see Figure 17 left), and
the outcome of its comparison to medium or high entropy neu-
rons can be related to how good is their accuracy on the task
(see Figure 17 right).

With the proposed entropy measure and the comparison based on
Mann-Whitney U test, it is possible to first select and then group neu-
rons which could be considered to be representative of specific learnt
concepts. In general, neurons having high entropy exhibit behaviors
that appear to be the most interesting, and they can be compared,
with respect to the concepts they can recognise, to neurons toward
which the test succeeds.

5.7 final remarks

The work described in this chapter can be considered as a seminal
investigation of the dynamics that rule the internal parts of a neural
network, with the aim of extracting knowledge from there. The prob-
lem has been approached across the specific application domain of
source code analysis, where what can be considered as “interesting”
can not be defined as easily as when, for instance, recognising objects
in the natural domain of images.

The approach is twofold: while in a first part the performance of
neurons – that belong to a network that has been independently

60 neural dynamics and concept mining

trained – is measured when using them as classifiers for tasks re-
lated to properties of source code snippets, successively, in the same
network, the internal dynamics are studied according to information
theoretic and statistical measures.

5.7.1 Insights and Limitations

The investigation has been performed by using a simple autoencoder
as reference model, and its input was obtained from source code by
using two different embeddings, one that just considers the linear
sequences of words in the code (i.e. as if dealing with natural lan-
guage), and another that takes into account also the formal parsing
of the programming language. The findings tell that:

• several internal neurons perform well on tasks related to syn-
tactic properties of code, such as that of cyclomatic complexity;

• the two embeddings perform differently, when considering dif-
ferent tasks;

• all the neurons that perform well on known tasks, also reach
high entropy values;

• by choosing appropriate thresholds on activation values, neu-
rons with high entropy are able to approximate each other’s
behavior.

Despite the promising results, this work as it stands presents some
limitations. First of all the chosen neural network, namely the autoen-
coder described in Section 5.3.1, should be too simple to capture all
the source code properties needed for a deepened analysis. Moreover,
the autoencoder operates on a “transformed” version of the source
code (namely the program vectors), and thus the results obtained,
which result from the information given by the data after the em-
bedding process, are affected not only by the neural model under
analysis but also by the chosen neural embedder. For the purposes of
this work, which is focused more on the method than on the results,
these are not major issues, but they need to be taken into account in
the future research on this topic.

5.7.2 Further Directions

The most spontaneous sequel for this work consists in applying the
outlined methods to explore the behavior of internal neurons of more
sophisticated networks since, for instance, as already discussed in
Chapters 2 and 3, recent works showed how neural transformer mod-
els can be fruitfully used on source code [2, 65]. Moreover, these kind
of architectures do not need particular source code preprocessing,
and thus both the major limitations would be overcome. The intro-
duced techniques could be employed to look for neurons which per-
form well on known tasks, even if belonging to a network trained

5.7 final remarks 61

while keeping in mind other goals. Thereto, it would also be interest-
ing to reason on group of neurons instead of single ones, for instance
by analysing how they classify with respect to the richness of their
activation patterns, and to group them by similarity, as allowed by
the information theoretical measures.

Furthermore, the insight of exploiting the knowledge yielded by
the neural activations has been also leveraged in other works that
comprise this thesis, as it will be evident in the Chapters 6 and 7.
Finally, as it will be unfolded in Chapter 8, it is possible to move at
an higher abstraction level, and study how to associate human un-
derstandable concepts to the discovered internal activation patterns,
similarly to what other authors did for instance in the fields of image
understanding [71] and of chess [98]. The natural expectation is that,
the more the neural model is structured and powerful, the more such
kind of measures can prove their effectiveness in studying the inter-
nal representations and the developed knowledge of neural systems.
This is an intriguing issue that deserves further research.

6
E V O L U T I O N A RY A P P R O A C H E S F O R
A D V E R S A R I A L AT TA C K S

This chapter, that is based on the work published in [50] presents
an evolutionary approach for assessing the robustness of a system
trained in the detection of software vulnerabilities.

The method is based on the application of a Grammatical Evolution
genetic algorithm, and on the use of the output of the system being as-
sessed as the fitness function. Through this combination it is possible
to easily change the classification decision (i.e. vulnerable or not vul-
nerable) for a given instance by simply injecting evolved features that
in no wise affect the functionality of the program. Additionally, by
means of the same semantic-preserving modification technique, one
can significantly decrease the accuracy measure of the whole system
on the dataset used for the test phase.

6.1 robustness and adversarial attacks

In the literature, as already discussed in Chapter 2, there exists a
wide range of machine learning systems used for solving different
source code-related tasks. The promising results obtained with such
models suggest that ML systems (and especially neural networks)
are able to learn valuable and diverse properties related to the source
code. This chapter presents a study whose founding idea is to exploit
the knowledge learned by ML systems dealing with source code for
leading the evolution of programs that satisfy given specifications or
bear certain properties.

The carried out investigation arises from an adversarial perspective,
in which such knowledge is used to lead the generation of that could
deceive a vulnerability detection system. In general, statistical clas-
sification, namely the problem of assigning, given a set of instances
and a set of categories, an instance to the correct category, has been
widely studied in the years, especially with the diffusion of machine
learning methods since the ’80s [77].

The interest is also in the field of cybersecurity: as simple examples,
phishing and spam detectors [66] but also malware detectors [63] are
all evidences of the importance of being able to effectively distinguish
between what is safe to what it is not, and thus to classify objects
such as emails, files and programs. However, binary classifiers are
often susceptible to classification errors. While in some cases such
misclassifications only affect the accuracy measure, in some scopes
the presence of false positive or false negative is crucial; just think,
as an example, to antivirus: in this context, a false positive malware
alert it is not a big deal, while a false negative could be critical. For
this reason, evaluating the robustness of a classifier is essential. If a
classifier system is widespread, it is possible that an attacker looks for

63

64 evolutionary approaches for adversarial attacks

Figure 19: Possible attack scenario.

features of input source code that make it evade the surveillance. The
system has to be evaluated with respect to such risks. When this task
is related to image classification, where instances are vectors of val-
ues from a continuous domain (pixel colors), the approach is to check
the results of small variations of input values. The challenge is how-
ever harder when instances are source code fragments, where each
variation on their feature values is actually a variation of a syntactic
(sub)tree, which must obey the grammar of the chosen programming
language.

This study proposes an evolutionary approach for assessing the ro-
bustness of a classification system by producing program instances
that mislead a system trained in the detection of software vulnerabil-
ities. In other words, the goal is to synthesise vulnerable programs
that will be classified as safe by the system, or vice versa. A possible
application scenario is shown in Figure 19, in which many developers
make commits in a shared repository, and one of them is malicious
and wants to insert a backdoor. In an unsafe setting (left) the back-
door can be easily placed. In the setting reported in the right image,
instead, a security check is installed, and the malicious code should
be blocked. The goal of the attacker is thus to deceive the check and
pushing malicious code that is not detected. The work resulted in the
following contributions:

• A novel evolutionary approach for synthesising programs using,
as the fitness function, the output of a neuron in a neural model.

• The application of this approach in the construction, or adapta-
tion, of a dataset so that it leads to a high percentage of false
negative (or, possibly, false positive) misclassifications on a net-
work trained in the detection of software vulnerabilities.

• The use of the best individuals for characterising the syntactical
features that mainly stimulate a given neuron.

• How such characterization can be used for modifying the input
instances of a classifier in order to arbitrarily change the classi-
fication decision.

6.2 work overview 65

The source code to replicate the experiments described in this chapter
is available in a public repository1.

6.2 work overview

The founding idea of this work is to synthesise input instances which
are able to lead the network to a wrong classification decision, by
exploring the space of possible solutions by means of a GE algorithm,
using the numerical output of the model as the fitness function. This
insight allows to efficiently explore the behaviour of a classifier by
leveraging an evolutionary pressure instead of randomly sampling
the solution space, and thus to possibly discover some blind spots or
some features that can mislead the model.

The authors of [122] propose a tool for detecting software vulner-
abilities using a deep feature representation based on a lexical tok-
enization of the source code. In that work, an approach derived from
classical NLP techniques for sentiment analysis [72] is developed for
classifying programs which are potentially vulnerable to known cate-
gories of software weaknesses (CWE2). Using this model as a bench-
mark, three classes of experiments have been designed:

• The evolution of pure individuals able to maximize or minimize
the output of the network, as summarized in Figure 20. In these
experiments, the fitness function is computed as the output of
the network given the evolved individual as the input.

• The injection of evolved individuals in functions of the origi-
nal dataset, in a way that does not affect the behaviour of the
function (i.e. after the return statement, as will be explained in
Section 6.3). In this case, the fitness function is computed as
the output of the network given as input the hybrid program
consisting of the original functions modified with the injection,
as outlined in Figure 21. The aim of these experiments is to ar-
bitrarily change the classification decision for a given instance,
namely to maximise the fitness if starting from functions classi-
fied as negative and vice versa.

• The injection of evolved individuals in all the original test set,
in order to change the classification statistics of the network
(Figure 22). The goal is to assess the approach by analysing how
accuracy, precision and recall change depending on how and
which evolved individuals are used for the injection.

For ease of reference, below is reported some terminology that will
be used in the rest the paper:

individual An evolved program P. It consists of a snippet of code
that complies with the formal grammar specified in Figure 25.
Examples can be found in Figures 24 and 23.

1 https://github.com/Martisal/adversarialGE

2 https://cwe.mitre.org/

https://github.com/Martisal/adversarialGE
https://cwe.mitre.org/

66 evolutionary approaches for adversarial attacks

pure individual An evolved program P whose fitness function
F : P 7→ [0, 1] is computed as the output of a neural model given
P as input.

hybrid individual An evolved program P whose fitness function
F : P 7→ [0, 1] is computed as the output of a neural model given
as input an instance P0 from the dataset after the semantic-
preserving injection of P.

semantic-preserving injection The addition of instructions in
a program that do not alter the semantic of the program itself.
In this work, only the following transformation is considered:
given two programs P0 and P, we call the semantic-preserving
injection of P in P0 the addition of the instructions contained in
P after the return statement of P0.

positive (or negative) instance This work always refers to the
vulnerable (or safe) programs in the dataset as positive (or neg-
ative) instances. It will be clear in turn if positive (or negative)
refers to the ground truth or to the classification decision of the
model.

6.3 experiments

The experiments are organized along two directions: the use of GE to
evolve source code fragments, forcing their binary classification by a
given trained neural network, and the check of how selected evolved
individuals could be good to alter the classification of any instance
from a labeled dataset. The goal is to show how easily an attacker can
mask the vulnerabilities in any source code instance, and thus to foil
the classification by a neural network, even if treated as a black box.

This section reports the technical details of the performed investi-
gations, from the existing models and libraries used, to the design
and execution of the experiments.

6.3.1 Vulnerability Detection Model

The deep learning classifier presented in [122] has been considered
as a benchmark, since it is quite renowned in the literature, and it ex-
hibits a good performance (94% accuracy) after having replicated the
training on the dataset curated by the same research group3. It should
be finally remarked that all the experiments have been performed on
a test partition of the same dataset, which has not been used during
the training phase.

The considered neural classifier is based on a preprocessing of
source code where each instance, i.e. a C language function, is tok-
enized by a lexer, and then fed into a deep stack of feedforward lay-
ers, including a 1-dimensional convolution layer, which terminates in

3 Available at https://osf.io/d45bw/

https://osf.io/d45bw/

6.3 experiments 67

maximize
output

minimize
output

Figure 20: First class of experiments. Fitness function is the output of the network
given the pure evolved individual as input.

maximize
output

for TN

minimize
output

for TP

Figure 21: Second class of experiments. Fitness function is the output of the net-
work given an hybrid input obtained by injecting an evolved individual in a true
positive (if minimising the fitness) or a true negative (if maximising the fitness)
instance of the original dataset.

P N P N

Figure 22: Classification experiments. The original dataset (on the left) is modified
to generate a new dataset (on the right) by injecting, in all the instances, an evolved
individual.

68 evolutionary approaches for adversarial attacks

Figure 23: Example of an evolved individual, minimised fitness function.

Figure 24: Example of an evolved individual, maximised fitness function.

Figure 25: BNF C grammar used in the experiments.

6.3 experiments 69

a single output value ranging from 0 to 1. The classification of an in-
stance is positive (vulnerable) when the output value is higher than
0.5, negative otherwise. In particular, the network has been trained
on the supervised task of recognising vulnerabilities of type CWE-
120 (classic buffer overflow).

The dataset, that consists in over one million labeled C functions,
has been split in three folds, with ratio 80-10-10, used respectively for
training, validation and testing. Notice that each of these folds has
a number of instances strongly unbalanced between the two classes.
During the training, the number of instances of the two classes has
been kept in a ratio of 5 negative instances for each positive instance.

As previously mentioned, the trained model exhibits a good ac-
curacy of 94% on the test set, though among the available perfor-
mance indices the precision/recall area under curve (P/R-AUC) [36]
has been considered, since it is more suitable for dealing with unbal-
anced sets of instances. The trained network has a P/R-AUC index of
0.42 on the chosen test set.

All the experiments have been done on a Linux machine with 16GB
RAM and a Nvidia GTX 1070 GPU. The training phase took around
3 hours.

6.3.2 Grammatical Evolution

The library used for evolving the individuals (consisting of C lan-
guage functions) with GE is PonyGE2 [49]. The grammar, which is
reported in Figure 25, has been derived from a realistic C language
grammar by reducing the set of productions mainly to: (i) declara-
tion and use of integer and char variables, (ii) use of pointers and ar-
rays, (iii) single function declarations and (iv) call of functions from
a small set of standard C functions. All the evolutionary runs have
been performed using generational replacement with elite of size 1,
tournament selection (tournament with size 3), with mutation and
one-point crossover probabilities of 0.1 and 1, respectively. Finally,
the fitness of individuals is computed by preprocessing each of them
as required by the neural classifier (i.e. by using the same tokeniz-
ing lexer built during training), and then by reading the real valued
classifying output of the network.Therefore, the fitness function that
guides the evolution of individuals is a value between 0 an 1, where
values above 0.5 meant that the individual is classified as vulnerable.
All the runs evolved for 33 generations, and individuals had a max-
imal tree depth (referring to the expansion of non-terminal symbols)
limited to 30.

It should be noted that the tokenization considered only the 10000

most frequent words from the dataset, including C identifiers, oper-
ators, keywords and punctuation. Therefore, the grammar used to
generate GE individuals (Figure 25) was designed to produce both
known (tokenized) identifiers as well as new ones, which are ignored
by the tokenizer. For instance, the non-terminal <identifier> in the
grammar includes both buf, which appears in the vocabulary of the

70 evolutionary approaches for adversarial attacks

tokenizer defined during training, and id1 which does not. This de-
sign choice is made in order to allow the GE to sample the input
space with more freedom, so that adversarial examples could go be-
yond what the training set offered as vocabulary. Each evolutionary
run was processed on the same machine used for the training phase,
and took less than 1 minute.

6.3.3 Evolutionary Runs

Given the two experimental platforms described, namely a GE sys-
tem to evolve C language functions, and a deep network trained to
recognize buffer overflow vulnerabilities, a set of experiments has
been performed to assess the weaknesses of the neural classifier.

pure individuals The first investigation was to verify how the
GE system performed when asked to define C functions classified as
vulnerable (or not vulnerable), that is to maximise the fitness function
(or to minimise, respectively), with its value defined by inferring the
output yielded by the classifier given as input an evolved individual
from the population. Even with the simplified grammar described in
the previous section, both the goals (neural output value above or
below 0.5) have been easily reached on each evolutionary run. As an
interesting finding, it can be noticed that C functions maximising the
fitness have been consistently short (less than 100 characters), while
the individuals minimising it were always much longer (see examples
in Figures 24 and 23).

The individuals produced in this first experimental part will be
referred to as pure, since they are evolved with no reference to C
functions from the dataset, and will be considered as positive when
maximising the fitness, and as negative in the opposite case.

hybrid individuals The second set of experiments has been
aimed at evolving, by GE, C source code snippets to be injected in ex-
isting instances. First, from the dataset some instances labeled as vul-
nerable and some labeled as not vulnerable have been selected. Then,
starting from a single instance taken from the dataset, GE has been
applied to evolve C snippets to be inserted in the starting instance,
whose fitness is computed by inferring the output of the model given
as input the original instance, modified with the evolved individu-
als. In other words, the fitness of an individual is measured after the
injection of that individual in the original instance (see Figure 21).
Notice that the individual was inserted in a way that the actual be-
havior of the given function is not affected: the evolved snippet is ap-
pended inside the instance right before the closing bracket, after any
return, effectively becoming dead code with no effect at compile or run
time. Other simple semantics-preserving transformations could also
be used, such as blocks controlled by a condition which will never be
true. The same has been done both for positive and for negative in-

6.3 experiments 71

Figure 26: Fitness of the evolved individuals through the generations. Plots on top refer to pure
individuals while those on bottom to hybrid individuals. Plots are built by considering the mean
of the fitness values obtained over 10 runs, with vertical bars reporting the standard deviation.
Dashed lines indicate the average fitness of the population, while continuous lines indicate the fit-
ness of the best individual. Notice that, for the minimization experiments, plots are in logarithmic
scale.

stances, and in the following such modified instances will be referred
to as hybrid individuals.

In this way, the possibility of masking a vulnerability in a function
to be classified is investigated, or conversely to force a positive classifi-
cation of a function that is actually not vulnerable. Every experiment
in this set has been successful, always finding an individual which,
when injected in a given labeled function, made that same function
be wrongly classified by the neural network. It can be observed that in
this setting, the winning individuals were more complex than those
evolved as pure. The progress towards individuals with the wanted
fitness (positive or negative) was still quite fast during each GE run,
as it can be seen in the plots in Figure 26.

6.3.4 Classification of Evolved Instances

Finally, the set of C source code fragments produced by GE, has been
used to assess the robustness of the trained neural network in rec-
ognizing vulnerabilities in known instances. The first check has been
done by injecting pure individuals in known instances, with these
obvious cautions: from the evolved functions, the body has been ex-
tracted and inserted in the instances after the return statement, to ob-
tain a function which is different, but syntactically correct and with
the same original behavior (explanation in Section 6.2).

The chosen pure individual was always generated with a target fit-
ness corresponding to a classification which was opposite to the true

72 evolutionary approaches for adversarial attacks

classification of the given instance. The results, reported in Tables 8

(row PureMaxMin) and 11c, showed that it is possible to deceive the
network with high probability, by leading it to classify the modified
instances in a way opposite to the true label. The P/R-AUC index on
the set made of injected instances indeed drops from 0.42 to 0.06, as
it can be seen by comparing it with that reported in row Original of
Table 8 and with Table 9.

Some performance difference between the evolutionary building of
pure individuals, where the fitness was evaluated just on the pure
individuals, and the classification of the test set made of transformed
instances, where each modified function was evaluated, was expected.
With the experiments conducted on hybrid individuals, however, the
performance of the neural network has been assessed on a test set
where each instance was modified with a code fragment evolved with
GE when the objective was to change the classification of a single orig-
inal given instance. Such modifications, although made by means of
individuals evolved to perform in the context of a different given
function, has been successful since the neural classifier showed a
worsened performance measured by a P/R-AUC down to 0.02, as re-
ported in Tables 8 (row HybrMaxMin) and 11d. As a further evidence
of the statistical significance of our experiments, the last column of
the table reports the p-values obtained with the Mann-Whitney U
test [95] on the different, modified, datasets compared with the orig-
inal one. In all cases, assuming a significance level α = 0.01, the null
hypothesis can be rejected, stating that the proposed evolutionary ap-
proach is always able to produce solid adversarial examples. A com-
plete overview of results can be found in Tables 8 and 10, where more
details are reported, in terms of both performance indexes and con-
fusion matrices. Confusion matrices, specifically, highlight how each
injection experiment changes the classification decision for the test
instances, towards being wrongly classified as positive or negative,
according to the goal of each specific experiment.

6.4 discussion

This final section discusses the experimental results to show how the
proposed technique is able to build an effective attack to the classifi-
cation task of a given machine learning system.

6.4.1 Threat Model

To assess the relevance of our results, we first describe the threat
model [109] (or the assessment goals) we have considered, with re-
spect to a given classifying machine learning system:

• the attacker can only act after the training phase;

• the attacker knows only a few instances from the test set;

• the attacker only knows the output of the classifier, expressed
as a probability;

6.4 discussion 73

Table 8: Statistics obtained in the classification experiments. Minimized and
Maximized rows refer to the dataset modified by injecting one of the hybrid indi-
viduals; the PureMaxMin and HybrMaxMin rows refer to the dataset modified
by injecting a random individual, pure or hybrid, inverting the ground truth; last
column reports the p-value of a Mann-Whitney U Test comparing the output for
instances in the modified dataset with that in the original one.

Dataset Accuracy P/R-AUC F1 p-value

Original 0.94 0.42 0.51 (≈ 0.29)

Minimized 0.95 0.29 0.41 ≈ 10−3

Maximized 0.17 0.06 0.08 ≈ 10−29

PureMaxMin 0.67 0.06 0.1 ≈ 10−15

HybrMaxMin 0.18 0.02 0.03 ≈ 10−26

Table 9: Confusion matrix of the classification results obtained on the original test
set, normalized over the true labels.

Truth

Pred.
Neg. Pos.

Neg. 0.95 0.05

Pos. 0.24 0.76

Table 10: Confusion matrices of the classification results obtained on the modified
test sets, normalized over the true labels.

Truth

Pred.
Neg. Pos.

Neg. 0.95 0.05

Pos. 0.24 0.76

(a) Injection with minimizing hybrid in-
dividuals

Truth

Pred.
Neg. Pos.

Neg. 0.13 0.87

Pos. 0.01 0.99

(b) Injection with maximising hybrid in-
dividuals

Truth

Pred.
Neg. Pos.

Neg. 0.68 0.32

Pos. 0.49 0.51

(c) Injection with randomly chosen pure
individuals, inverting the ground truth
(PureMaxMin row in Table 8)

Truth

Pred.
Neg. Pos.

Neg. 0.17 0.83

Pos. 0.70 0.30

(d) Injection with randomly chosen hy-
brid individuals, inverting the ground
truth (HybrMaxMin row in Table 8)

74 evolutionary approaches for adversarial attacks

• the system is a black-box: the internal structure and the param-
eters are not visible;

• the system acts as an oracle for the attacker, i.e. the attacker can
ask for the classification of chosen instances;

• the attacker has the goal to let the system accept vulnerable
code as safe;

• the attacker can alter the input without affecting its original
functionality.

With this setting, the technique allowed to successfully attack the sim-
ple chosen classifier system. Moreover, the low computational effort
required to deceive the neural network, and the flexibility of the GE
system in successfully achieve very good results in all the several
experimental configurations listed in Section 6.3.4, suggests that the
approach is promising, and that it can be applied to attack more so-
phisticated deep learning systems. The expectancy is that for more
complex systems, or even non neural classifiers, the exploration of
the input could be effective, albeit it could require different parame-
ters that control the evolutionary algorithm.

6.4.2 Neural Fitness Functions: Further Perspectives

The specific considered domain, namely that of source code classifi-
cation, does not allow to find adversarial examples by simply com-
puting a gradient descent (or ascent) considering the output of the
network as the loss function, with respect to a continuous input fea-
ture space [137]. This is the main challenge, compared to the more
common goal of attacking image recognition systems. Therefore, all
the experiments have been designed to overcome this difficulty in
exploring the discrete input space of possible source code instances.
The results show that this can be done by mean of an evolutionary
system, guided by the output of the neural network taken as a fitness
evaluator.

Notice that the main intention here lies from an adversarial per-
spective, but the exploitation of the neural output of a given learning
system to guide an evolutionary exploration of the input space can
be helpful in many domains. In general, all the knowledge learned by
a system can be used as the fitness for an evolutionary system, for in-
stance, dealing with source code, to automatically generate programs
that satisfy given properties or specifications.

Further studies on the basis of these insights are discussed in the
next chapters: by using a better suited grammar-based evolutionary
algorithm (namely DSGE, described in Chapter 3.2), the decision pro-
cess neural networks is investigated by analysing the network deci-
sion boundaries (Chapter 7) and if human concepts somehow emerge
in the internal layers (Chapter 8).

7
I N P U T S PA C E S A M P L I N G A N D D E C I S I O N
B O U N D A R I E S

This chapter, which is based on the work published in [128], presents
an evolutionary approach for probing the behaviour of a deep neural
source code classifier by generating instances that sample its input
space. First, a grammar-based genetic algorithm is applied to evolve
Python functions that minimise or maximise the probability of a func-
tion to be in a certain class. Then, such sets of evolved programs
are used as initial populations for an evolution strategy approach in
which, by following different policies, constrained small mutations to
the individuals are applied, to both explore the decision boundary
of the network and to identify the features that most contribute to a
particular prediction.

7.1 introduction

In recent years, deep neural networks (DNNs), and especially neural
classifiers have become popular and successful for applications in a
wide range of domains. Therefore, being able to understand how such
models make their predictions is of interest, especially with their in-
ternal architectures becoming complex and sophisticated.

As already discussed in Chapter 6, ample research studied how
to generate adversarial examples for networks which classify images,
that is pictures that lead them to wrong predictions. Problems arise
when acting in domains where instances need to be transformed to
numerical vectors to be used as input for neural networks: such trans-
formations are, in general, not invertible, and thus classical methods
based on gradient descent are not suitable. This is the case of source
code, which can be given as input to neural networks only after be-
ing transformed by one of many available embedding methods. In
fact, in such a case we can apply known methods for moving on the
error function only with respect to the embedding input space. That
is, we can for instance find the embedding vector of adversarial ex-
amples, but we would need to find a way to build the corresponding
adversarial source code [67].

Here, this problem by exploring how the output of the network
changes, when input source code changes. The output to be consid-
ered will not be the categorical classification, but the real valued prob-
ability that most neural models compute for each possible classifica-
tion outcome. Also, the exploration aims at finding input source code
leading to specific values of the probability, namely the maximal 1,
the minimal 0, or the 0.5 value, which in the case of binary classifica-
tion corresponds to the decision boundary of the network. The goal
is to study how the solution space can be explored for finding source
code snippets that produce the wanted probability values, and also

75

76 input space sampling and decision boundaries

to find which small perturbations quickly change the output values.
This allows to look for specific features, in the source code, which
show strong correlation to the changes in the network output, in a
way similar to what is done when studying the adversarial space for
numerical input domains.

The proposed approach relies on moving in the source code input
space by using evolutionary methods, to reach the needed network
output values. In our method, individuals are source code snippets,
fitness is the probability value produced by the neural classifier (sim-
ilarly to what has been done in Chapter 6), and the genomes are
evolved as defined by a grammar-based evolutionary algorithm. The
overall mechanism involves a first phase in which individuals are
generated to reach the desired fitness value (0, 1 or 0.5), and a sec-
ond phase where other instances are derived from the previous ones,
to investigate how – and depending on which features – the fitness
changes around the reached values.

The contribution consists in the design the outlined evolutionary
method, good to search the space of source code instances. Its effec-
tiveness is demonstrated on a state of the art neural classifier [65].
Results show that in all the considered settings we obtain source
code snippets inducing the required output from the neural network,
and also that the system easily finds sets of derived snippets, which
describe how the classification changes in a given area of the input
space.

7.2 methods

Essentially, the approach consists in taking a neural network trained
in source code classification, in using its output as the fitness evalu-
ator for an evolutionary algorithm, and in finally looking for input
programs leading it to output specific class probabilities. The idea
is similar to that described in Chapter 6, but with an inherently dif-
ferent purpose: instead of evolving features to be injected in given
program instances to produce adversarial examples able to deceive
a neural vulnerability detector, here the goal is closer to the field of
XAI, since it is to study which input features are the most important
for the network to make its predictions.

In the literature, classifiers have been developed to predict whether
input source code satisfies some given quality properties, related for
instance to good software engineering practices or to avoid security
flaws. In the outlined experiments, a well known and publicly avail-
able neural classifier is considered, which is based on the transformer
architecture and that is trained to check some properties of Python
source code snippets. Another publicly available software platform
will be adapted in order to evolve individuals defined through a for-
mal grammar in accordance to the proposed two phase process.

The behavior of the neural system will be probed by source code
snippets evolved by using a simplified grammar, but they will vary

7.3 two-stage evolutionary search 77

enough to discover which code features mostly affect the classifica-
tion results.

7.2.1 The CuBERT Source Code Classifier

The benchmark source code classifier, CuBERT [65], is basically a
BERT model [39] (the popular transformer for NLP, see Chapter 3.1),
modified to effectively deal with source code. For the proposed ex-
periments, three of the original fine-tuned classifiers proposed by the
authors have been considered, to make the results and investigation
more robust with respect to the possible bias induced by the single
accounted downstream task. In particular, all the experiments have
been replicated on three fine-tuned models1 trained on the following
binary classification tasks:

variable misuse this task is referred to the mistakes developers
could make when dealing with similar code fragments or simi-
lar variable names (e.g. when copy-paste code snippets but for-
get to properly renaming variables) [5]. In this fine-tuned model,
it consists in detecting if there is a variable misuse at any loca-
tion in the Python function given as input;

wrong binary operator this task [112] simply consists in detect-
ing weather there is a binary operator that is improperly used
in an expression occurring in the function given as input;

swapped operands a task that consists in detecting if there are
operands of non-commutative binary operators that are swapped
with respect to the correct usage intention.

The focus, in this work, is to study how different syntactical features
mostly influence the evaluation of the different models, under the hy-
pothesis that the relevance of such features is related to the problem
to solve. It should be remarked that, to this end, the main interest lies
in the numerical variation of the output instead of the prediction in
terms of classification decision. This is due to the fact that a ground
truth for the described problems is difficult to establish for programs
that do not have a predetermined functionality, and thus the focus
won’t be on the creation of adversarial examples, but only on evolv-
ing programs that lead to arbitrary predictions, no matter their correct
label.

7.3 two-stage evolutionary search

In this approach, the exploration of the CuBERT behaviour is per-
formed in two main phases: in the first one, the CuBERT solution
space is sampled by applying pure DSGE (see Chapter 3.2 for a full
working explanation) using the simplified Python grammar reported
in Figure 27 and different fitness objectives; in the second one, only

1 https://github.com/google-research/google-research/tree/master/cubert

https://github.com/google-research/google-research/tree/master/cubert

78 input space sampling and decision boundaries

Figure 27: Simplified Python grammar.

“constrained" mutations are applied to the evolved individuals, to
point out how such mutations affect the fitness.

7.3.1 DSGE and Neural Fitness Functions

In this first experimental phase, an evolutionary algorithm based on
DSGE is applied for sampling the solution space of the fine-tuned
CuBERT models described in Chapter 3.1.

Basically, in DSGE, genotypes are represented as lists of ordered
derivation steps of a given CFG: each genotype is a sequence S1, . . . , Sn,
where for each i ∈ {1, . . . , n}, Si is referred to a non-terminal symbol
of a context-free grammar G = (N, T,A, P) where N and T are the
sets of non-terminal and terminal symbols, respectively, A ∈ N is the
axiom, or the starting symbol of G, and P is the set of production
rules. Each Si is an ordered list of integers r1, . . . , rk, where k is the
number of times the i-th non-terminal is expanded, and the values
correspond to the indices (in the grammar) of the applied expansion
rules. For a complete explanation of DSGE, refer to Chapter 3.2.

In the three considered fine-tuned CuBERT models, which are bi-
nary classifiers, the output is a value 0 ⩽ v ⩽ 1, and an individual
is predicted to be in the negative class if v ⩽ 0.5 and in the positive
class otherwise. Given this premise, using the CuBERT output as the
fitness, for each fine-tuned model programs are evolved with DSGE
to pursue three fitness objectives: maximization, minimization, and
minimization of |0.5− v|. The founding idea is to produce pools of in-
dividuals that the network classifies with an high confidence (namely
the program instances whose fitness is very close to 0 or to 1) or for
which the prediction is uncertain, that is the individuals whose fitness
is close to the decision boundary 0.5.

In this experimental phase the evolved programs are compliant
with the grammar listed in Figure 27. The grammar formalizes an

7.3 two-stage evolutionary search 79

extremely minimal Python function definition in which two variables
x and y are fixed parameters, the only control flow constructs are if,
if-else, and while statements, and only assignments and operations
on integers are valid instructions. Note however that the choice of a so
simplified Python grammar, which is made for readability reasons, al-
lows to effectively produce individuals yielding outputs covering all
the interval between 0 and 1, and thus it suffices for this discussion.
Finally, notice that since the interest here is to analyse the output
changes by varying syntactical elements, the evolved programs are
not supposed, in general, to be executable or meaningful.

7.3.2 Mutations and Fitness Variations

This second phase is aimed at exploring how the fitness of individu-
als changes when different mutations are applied, to identify which
features are most salient for the network to make its prediction.

In DSGE, the standard mutation operator is defined, for a position
Si = r1, . . . , rk as a random change of an integer rj into another valid
integer r∗j for that gene. In other words, a mutation is basically the se-
lection of a different expansion option for a non-terminal symbol. It
should be noted that, in general, r∗j could be referred to a production
rule that contains non-terminal symbols of the grammar. In that case,
for each non-terminal, random expansions rules are selected (and
thus added to the genome) until all the non-terminals are resolved
into terminal symbols. Given this definition, it is possible to specify
a different mutation operator in which only some positions can be al-
tered, meaning that only some non-terminals can be changed in their
expansion rules.

By means of two constrained mutation operators (whose pseudo-
code are reported in Algorithm 3), the fitness variation is explored
to determine how it is related to the non-terminals for which the
mutation is enabled, to identify which syntactical features are the
most salient for the network prediction. To this end, two families of
experiments have been performed:

1. The exploration of the neighborhood of individuals. For this
investigation, mutations are applied by following the procedure
described by Algorithm 4 and then the average fitness variation
of individuals generated by the mutations is measured;

2. following a (µ+ λ) evolution strategy approach [94] (i.e. a pop-
ulation based algorithm in which the best µ individuals of a
population are mutated λ/µ times for composing the new gen-
eration), the extent of how the different constraints affect the fit-
ness variation along a sequence of mutation steps is measured.
This procedure is formally described by Algorithm 5.

The core difference between the two experimental investigations is
that, while in the first an extensive exploration of the neighborhood
of the individuals is performed, in the second one a similar explo-
ration is conducted over many mutation steps guided by an evolu-

80 input space sampling and decision boundaries

Algorithm 3 Constrained mutation operators
1: ind← individual to mutate
2: pmut← mutation probability
3: G← list of genes g1, . . . , gn
4: ▷ each gi = v1, . . . , vm is associated to a non-terminal, occur-

ring m times in the sentential form, and each vj specifies the
grammatical rule used in each position

5:

6: ▷ The difference between the two operators is that, while in cn-
str_mutate_1 each mutable position is mutated with proba-
bility pmut, in cnstr_mutate_2 a mutation in a gene occurs
with probability pmut and in that gene only one random po-
sition is mutated

7:

8: procedure cnstr_mutate_1(ind, pmut, G)
9: for all g ∈ G do

10: V ← values in the genome for the gene g

11: for all v ∈ V do
12: if random() ⩽ pmut then
13: mutate v into another valid integer v∗

14: if rule v∗ contains non-terminals then
15: randomly expand all the non-terminals
16: end if
17: end if
18: end for
19: end for
20: return ind
21: end procedure
22:

23: procedure cnstr_mutate_2(ind, pmut, G)
24: for all g ∈ G do
25: if random() ⩽ pmut then
26: V ← values in the genome for the gene g

27: randomly choose v ∈ V

28: mutate v into another valid integer v∗

29: if rule v∗ contains non-terminals then
30: randomly expand all the non-terminals
31: end if
32: end if
33: end for
34: return ind
35: end procedure

7.4 results 81

tionary pressure and controlled by the fitness function. In the first
case, the considerations that follow from the results, which will be
fully reported and discussed in Section 7.4, are mainly quantitative:
it can simply be observed how the different constraints in the muta-
tion operator change the fitness evaluation of the mutated individuals
when compared to the fitness of the original individual. In the second
experiment, indeed, the attempt is more qualitative: starting from a
single individual, and by mutating (almost) a single token in each
step, the features that most influence the prediction of the network
can be detected, by observing how the fitness varies along many mu-
tation steps.

Algorithm 4 Neighborhood exploration
1: P ← initial population
2: G← list of indices of the mutable genes
3: n← number of neighbours
4: E← empty list ▷ list of errors
5:

6: for all p ∈ P do
7: fp ← fitness(p)
8: for i = 1, . . . , n do
9: N← empty list

10: newInd← cnstr_mutate_1(p, 0.5,G)
11: append newInd to N

12: end for
13: for all ind ∈ N do
14: find ← fitness(ind)
15: append |fi − find| to E

16: end for
17: end for
18:

19: output the mean of the values in E

7.4 results

This section we supplies the technical details of the performed investi-
gations, and discusses the obtained results. All the experiments have
been performed on a Linux machine with 16GB RAM, 4 CPUs run-
ning at 3.60GHz and a Nvidia GTX 1070 GPU, with tensorflow over
CUDA, and sge3 implementation2 of DSGE.

7.4.1 Sampling the solution space

As described in Section 7.3, in the first experimental phase DSGE
is applied for evolving Python programs using, as the fitness func-
tion, the outputs of the three CuBERT fine-tuned models described in

2 https://github.com/nunolourenco/sge3

https://github.com/nunolourenco/sge3

82 input space sampling and decision boundaries

Algorithm 5 Fitness variation over mutation steps
1: P ← p1, . . . , pλ ▷ initial population
2: G← list of mutable genes
3: µ← number of parents
4: n← number of mutation steps
5:

6: for n times do
7: sort P according to the fitness of each pi ∈ P

8: B← p1, . . . , pµ ▷ list of best µ individuals
9: P ← empty list

10: for all p ∈ B do
11: append p to P

12: for λ/µ times do
13: m← cnstr_mutate_2(p, 1

|G|
, G)

14: append m to P

15: end for
16: end for
17: end for

Section 7.2.1, namely the three binary classifiers trained in detecting
variable misuse, swapped operands and wrong binary operators.

For each of these models, three fitness objectives have been consid-
ered (i.e. minimization, maximization and minimization of the dis-
tance between 0.5 and the output) and for each of these combinations
10 DSGE runs have been performed, by using as the reference gram-
mar the one shown in Figure 27. For each run, populations of 50

individuals have been evolved for 50 generations with tournament
selection (3 individuals per tournament), keeping an elite of 10 in-
dividuals at each generation, and by letting crossover and mutation
occur with probability 0.9 and 0.1, respectively. Also, the size of indi-
viduals have been limited by imposing a maximum tree depth of 25.

The obtained results, which are fully reported in Figure 28, show
how it is always possible to pursue the fitness objective, even if us-
ing an extremely simple and minimal grammar. For each model, the
targeted fitness that seems to require more generations to be reached
is 0.5. This value is indeed the most interesting for the scope of this
work, since it represents the decision boundary, that is the classifica-
tion threshold of the network.

7.4.2 Moving across decision boundaries

This section discusses how different syntactical features affect the pre-
diction of the network. Specifically, with the two constrained muta-
tion operators detailed in Algorithm 3, and by applying them to the
individuals evolved with DSGE by following different policies, it is
possible to observe and study the fitness variations.

The first investigation, formally outlined in Algorithm 4, is aimed
at a quantitative assessment of how the different mutations affect
the predictions of the three considered CuBERT models. For each

7.4 results 83

Figure 28: Plots of the fitness obtained with DSGE for the considered models and fitness objectives. Blue
lines represent the average population fitness, purple lines the fitness of the best individual. Vertical bars
report the variance in over the different runs.

varmisuse swappedop wrongop

<varid>

<operators>

all

0.445 0.274 0.146

0.186 0.108 0.259

0.470 0.379 0.335

Average fitness variation

varmisuse swappedop wrongop

<atom>

<int>

<varid>

<operator>

<condop...>

0.273 0.173 0.052

0.148 0.032 0.084

0.352 0.225 0.085

0.214 0.125 0.062

0.223 0.020 0.202

Average fitness variation

Figure 29: Results of the mutation-based experimental phase. Average fitness variation for the three
fine-tuned models when different constraints on the mutation operator are imposed and the neighborhood
is explored with a single mutation step (left) or several steps (right).

model, the starting points are the individuals evolved in the previous
phase when pursuing the fitness objective near the decision bound-
ary, namely a set of 10 evolved individuals for which the networks
outputs a value very close to 0.5. Then, starting from each of individ-
ual, 10 neighbours are generated by applying the cnstr_mutate_1

operator, by setting the mutation probability to 0.5 and by imposing
three different constraints:

1. mutation allowed only for variable identifiers, that is the only
mutable gene is that related to the <varid> non-terminal;

2. mutation allowed only for the arithmetic operators, that is the
only mutable gene is that related to the <operator> non-terminal;

3. a less tied constraints set, in which mutation is allowed for the
genes related to <int>, <varid>, <operator> and <condoperator>

84 input space sampling and decision boundaries

def sub_xy(x, y):
 y=y+6
 while y!=y:
 x=6-5
 return 5
 while 9<=x:
 return 4-x
 while y!=y:
 while 6==7:
 return 9
 if 4>=y:
 while y>=x:
 while y==x:
 return 5+5

def sub_xy(x, y):
 y=y+6
 while y!=y:
 x=6%5
 return 5
 while 9<=x:
 return 4-x
 while y!=y:
 while 6==7:
 return 9
 if 4>=y:
 while y>=x:
 while y==x:
 return 5**5

def sub_xy(x, y):
 div_=rem_+6
 while y!=sub_:
 x=6-5
 return 5
 while 9<=sub_:
 return 4-x
 while y!=rem_:
 while 6==7:
 return 9
 if 4>=y:
 while y>=rem_:
 while y==div_:
 return 5+5

def sub_xy(x, y):
 y=mod_+6
 while y<x:
 x=6/3
 return 5
 while 9!=mult_:
 return 8**x
 while y!=sum_:
 while 0==6:
 return 9
 if 4>=y:
 while div_>=x:
 while y<x:
 return 0-7

0.6485 0.0125

0.0014

0.49

(a) Neighborhood exploration: single mutation step where several mutations are al-
lowed.

def sub_xy(x, y):
 w=2
 z=3
 x=z-y

def sub_xy(x, y):
 w=2
 z=3
 x=z-2

def sub_xy(x, y):
 w=2
 z=3
 x=z-x

def sub_xy(x, y):
 w=2
 z=3
 x=2-x

def sub_xy(x, y):
 w=2
 z=3
 x=z-w

def sub_xy(x, y):
 w=2
 z=3
 x=z+x

def sub_xy(x, y):
 w=2
 z=3
 y=z+x

0.4825

0.9803

0.0078

0.9974

0.9948

0.0042 0.0018

(b) Evolution strategy: several mutation steps with one mutation allowed for each step. Green
backgrounds highlight a “winning” path.

Figure 30: Examples for the mutation-based experimental phase. The numbers on
top of the boxes represent the fitness value.

7.4 results 85

non-terminals. These constrains are labeled as “all” in Figure 29

(left).

Notice that all these constraints imposed for the mutation operator
are related to non-terminal symbols whose expansion rules lead to
terminal symbols, meaning that each mutation do not alter the syntac-
tical structure but takes action only on the AST leaves. Then, for each
possible pair of constraints and task, the average fitness variation of
the mutated individuals has been measured, as reported in Figure 29

in the left diagram. Figure 30 shows an example of this neighborhood
exploration, along with a graphical representation of the mutation
paths studied in the experiments described in Section 7.4.3.

7.4.3 Blind Spots and Salient Features

This last set of experiments, formalized in Algorithm 5, lets the evo-
lutionary machine free to explore how to improve the fitness of in-
dividuals, by changing at most one derivation from each occurring
non-terminal. As in the experiments described in the previous sec-
tion, only a chosen subset of non-terminals were mutable. Also, such
exploration spanned a sequence of at most 5 mutation steps.

In analogy to what can be done when exploring a geometrical
space, this evolutionary search moved from a parent individual to
a new one by following a specific direction, here represented by a
mutation involving a given grammar rule. For instance, by means
of the grammar in Figure 27, the evolutionary exploration moved
from the individuals evolved in the first phase, to new individuals ob-
tained by mutating (for 5 generations) their DSGE representation in
terms of choices made when applying rules of non-terminals <atom>,
<int>, <varid>, <operator>, and <condoperator>. The details of how
such mutation operator works are given in cnstr_mutate_2 of Al-
gorithm 3. For each generation, best individuals have been selected
as described in Algorithm 5, following an evolution strategy (µ+ λ)

with λ = 12 and µ = 3. The optimization goal of this phase, starting
from individuals sited near the decision boundary, has been either
to maximise or to minimise the fitness. This turns into asking the
system to find individuals that move far from the decision boundary
and across the two sides it separates, always looking at the network’s
behavioural changes on the individuals belonging to the new genera-
tion.

Two main resulting sets of data have been examined: the fitness
values that can be reached, and the grammar rules that are more ef-
fective in varying the fitness value. These data offer a view on the
behavior of the network, for instance by telling us which syntactic el-
ements the network is more sensitive to, and when they impact more
than others on varying the fitness value, namely the probability that
the network assigns to instances for belonging to a certain class. The
results of the evolutionary exploration of the input space, around
instances classified close to the decision boundary, have been infor-

86 input space sampling and decision boundaries

mative with respect to the assessment of the tested neural network.
The evidences can be outlined as follows:

• even when the evolution applied to the starting individuals did
not modify their real class with respect to the chosen tasks, as
guaranteed by the set of changes allowed in the derivations, the
evolutionary system is always able to derive individuals with
fitness close to the desired value, 1 or 0, meaning that we can
find adversarial examples for the network;

• each task was a different challenge for the evolutionary system,
that, for instance require more steps to reach the optimal fitness
when checking for swapped operands than for variable misuse,
or that forced the evolution of longer individuals when aiming
to fitness close to 0, than for the opposite goal;

• for each of the three classification tasks, the networks showed
higher sensitiveness for specific sets of non-terminals as it can
be seen in Figure 29 (right), in details: <atom> and <varid>

for variable misuse, <atom> and <varid> for swapped operand,
with overall impact from the other non-terminals different from
what happens with variable misuse, <condoperator> for wrong
operator.

The last remarks, on which non-terminals induced the fastest varia-
tion of fitness for a single evolutionary step, deserve some consider-
ations, in relation to the understanding of the actual behavior of the
network. In the experiments, it is possible to see how the classifier
reacts to small, and specific, variations in the input it receives. This
information can be compared to what it is expected from the trained
network, with respect to the task at hand. In this setting, for instance,
we can see that even if the system were allowed to evolve individuals
by changing integer constants (being allowed to mutate the use of the
<int> non-terminal), this almost never modified the classification an
any of the three original tasks, and this seems to be correct. Also, hav-
ing the network of the variable misuse task impacted by changes re-
lated to the <varid> non-terminal is expected. On the other hand, we
discovered that the network for the wrong operator task is more sensi-
tive to changes in the choice of conditional operators, than in changes
among arithmetical operators (<condoperator> and <operator> non-
terminals). This was unexpected, and it could perhaps point to a bias
in the training process.

Finally, an interesting visualization of what the system allows to
describe, concerning how the classification of the network changes
when moving through instances in the space around the decision
boundary is shown in Figure 30b, where it is possible to follow the
progression of an individual that starts with fitness equals to 0.5 and
ends with a fitness close to 0, during the mutation steps of the second
experimental phase.

7.5 discussion 87

7.5 discussion

With the outlined grammar-based evolutionary approach, we are able
to search the input space of a neural network looking for instances
that lead to arbitrary probability predictions. Also, we can explore
their neighborhood and look for salient variations in the input-output
mapping that characterizes the classifier. The method has been tested
on a state of the art source code neural classifier, namely the CuBERT
transformer, and allowed to identify which syntactical features of the
source code mostly impact the classification. This way to probe the
behavior of a network, in wide input space areas, can be used to look
for adversarial examples, but also to derive deeper information about
the sensitiveness of the classifier with respect to features of input
instances.

To further this line of research, this approach can be applied to
check the robustness of defense proposals in the area of adversar-
ial attacks, e.g. in setting similar to that described in Chapter 6, but
from a defensive perspective. A broader application area will be that
of neural network understandability, for any neural model and also
under a black-box approach, only assuming to have access to the pre-
dicted class probabilities. Searching the input space for instances lo-
cated in key areas, with respect to the neural model decisions, could
give insight to what the classifier is actually taking as key feature of
the input, or to where it has blind spots or distorted evaluation of the
source code snippets. A similar intent drives the work described in
Chapter 8, where the same network architecture is inspected to check
which human concepts are significant to make the prediction.

8
C O N C E P T- B A S E D E X P L A I N A B I L I T Y

This chapter is aimed at investigating the decision process of neural
networks. The founding interest is similar to that described in Chap-
ter 7, but here the problem is addressed from a different perspective:
instead of looking for syntactic features that affect the predictions
of a source code classifier, here the focus is on human-defined con-
cepts. The study is spread along two experimental directions: in the
first one, we study the activations of the neurons of a transformer
trained in the detection of software vulnerabilities so as to identify if
(and, possibly, where) some human understandable concepts emerge
in the network. In the second one, we generate programs by apply-
ing a grammar-based evolutionary algorithm with a fitness function
that favours individuals which stimulate (or weaken) the activations
in neurons where given concepts majorly emerge. Finally, we study
how the output of the network varies on sets of evolved programs, to
assess how the evolutionary pressure along the direction of a concept
affects the prediction.

The reported work has been previously published in [129] in a pre-
liminary version, and then extended in [51].

8.1 motivations and work overview

Explaining how machine learning models, and specifically deep neu-
ral models make their predictions is an intriguing and valuable re-
search issue, especially in recent years, with deep models becoming
popular in many areas, and with their architectures becoming increas-
ingly complex.

This work plays in this direction, aiming to find within the inter-
nal layers of a deep neural transformer trained in the detection of
software vulnerabilities the emergence of human understandable con-
cepts, such as the lack of checks on user input or the use of unsafe
functions. The goal is to both explore if what is relevant for the net-
work to take a decision in a given context (e.g. that of cybersecurity)
is somehow comparable with what is important for a human being
in the same context, and to identify possible blind spots or miscon-
ceptions in what the network has learned. In this field, evolutionary
techniques seem to be be very promising (see e.g. Chapter 6 and 7),
since they allow to generate possible inputs for a network under an
evolutionary pressure. The chosen fitness function drives the produc-
tion of individuals maximising (or minimising) the neural outputs,
namely the activations yielded in a given internal region of the net-
work. More in details, the contributions are the following:

• the adjustment of an earlier approach [71], in terms of applica-
bility to the transformer architecture and with a different choice

89

90 concept-based explainability

for linear separator on the activations space, for identifying if
some human comprehensible concepts emerge in the internal
layers of a deep neural network;

• the validation of the approach on a CuBERT transformer model
(described in Chapter 3.1) trained in the detection of software
vulnerabilities;

• a grammar-based evolutionary algorithm designed for evolv-
ing programs that mostly stimulate the regions in the network
where arbitrary concepts majorly emerge, by means of a fitness
function defined as the distance from an hyperplane that, ac-
cording to the presence of a given concept, separates input in-
stances when seen as points in a space defined over the neural
activations;

• a study of the classification performance of the model on the
evolved programs, to show how some concepts are relevant for
the network, i.e. how the presence, in the input, of given con-
cepts affects the output.

8.2 approach description

The proposed approach is devised at studying the decision process of
a neural classifier. The experimental workflow, which is outlined in
Figure 31, basically consists in treating the input instances of a neu-
ral network as points of the geometric space defined in the internal
layers of the network, as it will be detailed in Section 8.2.2. Together,
within the input dataset, samples of instances that represent a given
concept are selected. In general, whatever is expressible in natural lan-
guage can be considered as a concept. Here, in the specific domain of
source code processing, and being the considered dataset composed
by Java methods, both lexical concepts (e.g. the presence of targeted
patterns or constructs), and syntactical ones, such as the complexity
or the relation between the types of the arguments and the returned
objects will be considered. Thus, it is possible to find an hyperplane
in the activations space that separates (with some approximation) the
points that represent a concept from those that do not represent it.
With this equipment one can finally consider the perpendicular direc-
tion with respect to the hyperplane as the direction representing the
concept, and eventually use the signed distance from the hyperplane
as a fitness function for an evolutionary algorithm to evolve programs
representing a given concept.

8.2.1 Input instances and sub-concepts

One of the crucial problems in explaining the decisions of machine
learning models, is that they usually operate on input features (e.g.
matrices of pixels or sequences of textual tokens) that are difficult
to be interpreted when examined by a human being. To this end, in
this work, instead of operating directly on features [45], the focus is

8.2 approach description 91

Figure 31: Detection of concepts and evolutionary input space exploration guided
by the emerging concepts.

moved at an higher level and reason on concepts that are meaningful
for humans.

The deep neural model considered in this work, namely the Cu-
BERT transformer [65], that has been previously described in Chap-
ter 3.1, is internally composed by 24 encoding blocks, each having a
final feedforward layer. Thus, for each l = 1, . . . , 24, the output of the
feedforward layer l can be expressed as a function fl : Rn → Rn×m,
where n is the dimension of the input sequences accepted by the
model, and m is the number of neurons in the layer. Notice that, as
specified in this notation, each neuron has a vectorial output (rather
than a scalar one) with n dimensions, that is the same dimensionality
of the input vector. In this work, feedforward layers with m = 1024

neurons, and input dimension n = 512 will be always considered.
In this work, the main goal is to study which human comprehensi-

ble sub-concepts (with respect to the original task the model is trained
on) are relevant for the decision process of the network, and to inves-
tigate if such emerging sub-concepts are similar to those considered
by a human being when addressing the same task. For instance, if the
main task is the detection of zebras in images, a possible sub-concept
can be the presence of stripes in the image being tested. Similarly, in
the source code analysis domain, a sub-concept related to the detec-
tion of a vulnerability like the classic buffer overflow [108] could be
the presence of calls to unsafe library functions such as strcpy().

8.2.2 Activations space, linear SVCs and concept-based neural fitness func-
tion

More precisely, given a sub-concept c, and a set S of possible input
instances, we can express c by partitioning S into two subsets Pc and
Nc containing, respectively, the positive and negative instances with
respect to the concept c. In [71], concept activation vectors (CAVs)
were used to explore the ability of layers of the network when em-
ployed to separate input instances belonging to Pc or to Nc. Here a
similar approach is devised: the vector space obtained by concatenat-
ing the activations of all the neurons of a layer is considered, and a
linear support vector classifier (SVC) [19] is trained to correctly rec-

92 concept-based explainability

ognize the activations yielded by the instances belonging to Pc from
those belonging to Nc.

The rationality in chosing SVCs and linear kernels as simple con-
cept classifiers, working on the layer activations generated from spe-
cific classes of input instances, is inspired by that found on a previous
work [130], which compares activations of deep neural networks to
signals from the brain, when stimulated with some sensorial input.
Formally, given a feedforward layer l, for each s ∈ S, we compute
fl(s) ∈ Rn×m, and we flatten its rows by applying a transformation
f∗l : Rn×m → Rt, where t = nm and fl(s)x,y = f∗l (s)nx+y−1, for all
x ∈ {1, . . . , n} and y ∈ {1, . . . ,m}. Then, we define the binary ground
truth for the concept c by means of the two sets S1 = {f∗l (s) : s ∈ Pc}

and S0 = {f∗l (s) : s ∈ Nc}; finally, a linear SVC can be trained on
those activations vectors. This binary classifier Vc,l, corresponding
to a separating hyperplane for the activations space of layer l, can
then be used to determine the direction of the concept c. By defi-
nition, a linear SVC Vc,l separates the instances with respect to the
sub-concept c, by means of a decision function dc,l : Rt → R that
represents the signed distance between the hyperplane Vc,l and the
point determined by the activations yielded by the instances in the
layer l. Specifically, since here only binary classification problems are
considered, the SVC predicts an instance s to be in class 0 or in class
1 depending on whether dc,l(f

∗
l (s)) assumes a negative or a positive

value. In this way, an instance s is predicted to represent or not to
represent a sub-concept c according to where, in the space, the acti-
vations generated in layer l are placed with respect of the separating
hyperplane Vc,l.

Given this premise, the fitness function for an evolutionary algo-
rithm can be defined as the signed distance dc,l(s) computed by
feeding the network with the individual s and by considering the
SVC Vc,l and the corresponding point in the activations space of the
feedforward layer l. Since high-level programming languages usu-
ally build source code programs under the control of a context-free
grammar, in the scope of this chapter the idea is to apply a grammar-
based genetic algorithm, in order to evolve programs according to
a fitness function that represents the direction of a concept. To this
end, DSGE [91] is the easy choice, since it allows to efficiently evolve
individuals that comply with a given formal grammar. As shown in
Figure 3 on page 21, which reports an example of the decoding pro-
cess of genotype into a phenotype on the basis of a simple BNF gram-
mar, in DSGE the genotypes are represented by sequences G1, . . . , Gn,
each listing derivation steps of a grammar. At each position k, Gk is
referred to a non-terminal symbol of the given context-free grammar,
and it is made of a list of integers whose length represents the num-
ber of times the k-th non-terminal is expanded, while the values rep-
resent, for each expansion, the index in the grammar of the applied
rule for that non-terminal. It should be remarked that in DSGE the
evolution operates on genotypes; in all the proposed experiments, at
each generation, the genotypes are decoded into the corresponding
phenotypes, and the fitness is computed on them.

8.3 experiments 93

8.2.3 Sensitivity to sub-concepts

With the outlined setting, it is now possible to measure how much
the presence (or the absence) of a concept affects the decision of the
network on the task it is trained on. To this end, two approaches have
been addressed:

1. The first is similar to the original TCAV [71], which uses di-
rectional derivatives to compute the conceptual sensitivity on
entire classes of inputs;

2. The second is based on the evolutionary synthesis of classes
of inputs and on a subsequent test of the classification perfor-
mance on these evolved sets.

While the first point is basically used here as a benchmark, the second
is expected to be more expressive and capable to widely explore the
input space and to look for possible blind spots or misconceptions.
For each concept c, the fitness function for DSGE is computed by
considering the layer l for which the support vector Vc,l obtains the
highest accuracy. Two directions are devised:

• By using a simplified Java grammar (Figure 32) sets of individu-
als that maximise the fitness are generated, and on these sets the
number of instances that are classified as vulnerable is counted.

• By using a grammar that forces the presence of the vulnerability
the model is trained on, sets of individuals that minimise the
fitness are generated, and on these sets the number of instances
that are classified as vulnerable is counted.

Although the two points are similar in their design, they are con-
ceived to address different issues. The maximization experiments are
intended to find out the concepts that positively affect the classifica-
tion. Here, the ground truth of all the evolved programs is assumed
to be negative, since the grammar used always produces programs
that are syntactically correct but semantically meaningless, and fur-
thermore not necessarily compilable or executable. In the minimiza-
tion experiments, instead, the ground truth is assumed to be positive
since, even though the grammar suffers from the same problems, it
introduces lines of code that represent the vulnerability. These exper-
iments are intended to detect which concepts lead to a misclassifica-
tion when they are counteracted.

8.3 experiments

The performed experiments essentially consist in in the investigation
of possible sub-concepts that emerge in the internal layers of a deep
neural network trained in the classification of Java source code, and
then in the application of an evolutionary algorithm able to evolve
Java programs using a fitness function derived from these concepts,

94 concept-based explainability

Figure 32: Simplified Java grammar that allows the emergence of the considered
possible sub-concepts.

with the twofold objective of studying which elements mostly influ-
ence the decision of the network, and how such elements can be even-
tually used to deceive its prediction.

8.3.1 Data Preparation and Fine-tuning

The model chosen for the experiments, as in the work described in
Chapter 7 is the CuBERT [65] transformer, whose architecture has
been already described in Chapter 3.1. In this work, to appoint the
cybersecurity domain, a CuBERT model pre-trained on a Java cor-
pus1 has been fine-tuned in the detection of software vulnerabilities.
To this end, the Juliet Test Suite v1.3 for Java [17, 18] has been used.
For each CWE, the dataset consists of a set of Java files defining both
flawed methods and, correspondingly, a number of non-flawed con-
structs. To build the training sets, the files labelled as CWE-369 and
CWE-789 – representing the “divide by zero” and “memory alloca-
tion with excessive size value” vulnerabilities, respectively – have
been preprocessed. The set of positive instances was populated with
the methods that self-contain the flaw, in fact all the methods that
to exhibit the vulnerability need to call other methods or to use sup-
port classes have been removed.Moreover, the set excluded all the
methods whose tokenization yields vectors having more than 512 di-
mensions, the maximum input dimension for the CuBERT model, so
as to avoid truncation of the input instances. Finally, for the set of
potential positive instances all the non-flawed methods labelled with

1 Available: https://github.com/google-research/google-research/tree/master/

cubert, version of July 11, 2021

https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research/google-research/tree/master/cubert

8.3 experiments 95

any CWE except CWE-369 and CWE-789, from the Juliet dataset, have
been considered.

8.3.2 Sub-concepts formulation

For the experiments, both sub-concepts that are expected to be rele-
vant for the detection of the considered vulnerabilities (e.g. the pres-
ence of a cast to integer), and generic sub-concepts that can be identi-
fied in the source code, but that are supposed not to be related to the
vulnerabilities (e.g. the cyclomatic complexity) have been taken into
account. In details, the following sub-concepts have been tested:

cast to integer The presence (or absence) of a cast to integer op-
eration. This sub-concept can be significant when dealing with
both the divide by zero and uncontrolled memory allocation
vulnerabilities;

square brackets The presence of an high number (i.e. >= 12) of
square brackets. This concept can be relevant in general, since it
is strictly related to the presence of an high number of accesses
to array elements;

cyclomatic complexity This sub-concept [97] addresses the struc-
tural complexity of a program, and it is a classical software en-
gineering metric (see Section 5.4.1 for a brief description). Here,
having cyclomatic complexity higher than 10 has been consid-
ered as a concept;

i/o relationship This sub-concept considers the semantic of a method
in terms of the relation between what is passed as argument (i.e.
the input) and the returned object (i.e. the output). Only a sub-
set of all the possible I/O relations has been considered, namely
the presence or the absence of an array among the input argu-
ments and whether the returned object is an array or a single
element. In particular, the treated sub-concept was the many-
to-many relation, namely the methods that contain (at least) an
array among their arguments, and that return an array.

random This concept is defined by simply assigning random la-
bels to the methods in the dataset. The obtained partition is ob-
viously meaningless, and the experiments on this concept are
used as a baseline to assess the validity of the other results.

Excluding the baseline random concept, the first two sub-concepts
resemble some traits that a human expert takes into account when
attempting to identify the presence of vulnerabilities, while the others
represent elements that are relevant and recognisable, but that are not
directly related to the vulnerabilities in account. As an analogy in the
image processing domain, for a model trained in recognising zebras
we can think of concepts like the presence of stripes or having four
paws as sub-concepts related to the task, and prevalence of a given
color as unrelated concept.

96 concept-based explainability

Figure 33: An encoder block of the CuBERT transformer. The activations spaces
are defined on the highlighted feedforward layers.

8.3.3 SVCs and activations spaces

As outlined in Figure 33, the feedforward layers of the encoder blocks
have been accounted, namely the dense layers that feed the succeed-
ing encoder block. In the CuBERT transformer there are 24 encoding
blocks, each one composed by 1024 neurons with a 512-dimensional
output. For each considered sub-concept, first the activations obtained
by flattening the output of the feedforward layers (see Section 8.2.2)
for a balanced random sample have been collected, where 100 pro-
gram instances were associated to the concept, and 100 did not repre-
sent it. Then, for both the fine-tuned models (i.e. the binary classifiers
trained in the detection of the divide by zero and uncontrolled mem-
ory allocation vulnerabilities, respectively), and for each concept, the
activations of the flattened layers have been gathered as points of a
512 ∗ 1024-dimensional vector space, and for each of the 24 layers a
linear support vector classifier (SVC) has been trained to correctly
separate the points representing programs related to the chosen con-
cept, from the points representing programs with no presence of the
same concept.

Ad the end of this procedure, besides the average accuracies ob-
tained by the SVC over 10 runs, which are reported in Figures 35

and 36, for each concept the “best” layer (i.e. the layer that can most
fruitfully used to distinguish programs that hold the concept from
programs that do not, by considering its activations values) had been

8.3 experiments 97

identified and the corresponding best SVC. The latter will be chosen
as fitness evaluator for an evolutionary algorithm, as detailed in the
upcoming Section 8.3.4.

8.3.4 Evolutionary search along sub-concepts directions

Given the two transformers, fine-tuned respectively to recognise CWE-
369 and CWE-789, it is possible to analyse how their accuracy is in-
fluenced when instances have a strong or weak presence of a given
concept, to discover possible biases or misconceptions in in what the
networks have learned. The method is based on building source code
instances with DSGE by means of a Java grammar (Figure 32), which
is simplified but flexible enough to produce the syntactical elements
required by both the specific concepts and the specific classification
tasks. Moreover, during the evolutionary search one can also force
the grammar to always generate individuals which contain vulnera-
bilities for a given CWE. This is obtained by modifying the grammar
with the addition of production rules expanding into vulnerable con-
structs which the DSGE cannot rule out.

Here, the DSGE fitness function is exactly the decision function of
a chosen SVC, namely the SVC that best separates the instances with
respect to a given concept, as detailed in Section 8.2.2. The decision
function takes as input the activations vector of the layer, which is
generated by feeding the network with the source code of an evolved
individual. Given that the chosen SVC is the one that reaches the
highest accuracy for the concept under investigation, among the ones
that are built for all the feedforward layers in the network, the fitness
values will be higher when the presence of the concept is stronger in
the input source code, and lower when such presence is weaker.

The DSGE evolutionary process can thus be defined through the
following settings:

• the concept, among the five described in Section 8.3.2;

• the considered CWE, between CWE-369 “divide by zero” and
CWE-789 “memory allocation with excessive size value”;

• the ground truth of the individuals to evolve, namely whether
the grammar forces the presence of a vulnerability or not;

• the objective of the evolution, that is to maximise or to min-
imise the fitness.

For a set of combinations of these choices, DSGE is run for 12 genera-
tions, with a population of 200 individuals and elitism of 4 individu-
als, with crossover and mutation occurring with probability equal to
0.9 and 0.1, respectively.

In this way, Java methods which maximise or minimise the pres-
ence of a concept in terms of signal inside the network can be found,
and the evolved instances do not belong to the dataset used during
the training phase. This is significant, since it enables the analysis of
how the network classifies instances when the presence of a concept

98 concept-based explainability

−1

0

1

fit
ne

ss
maximization, cast maximization, brackets maximization, cyclomatic maximization, many-to-many

0.0 2.5 5.0 7.5 10.0 12.5
generations

−1

0

1

fit
ne

ss

minimization, cast

0.0 2.5 5.0 7.5 10.0 12.5
generations

minimization, brackets

0.0 2.5 5.0 7.5 10.0 12.5
generations

minimization, cyclomatic

0.0 2.5 5.0 7.5 10.0 12.5
generations

minimization, many-to-many
best fitness
mean fitness
CWE 369
CWE 789

Figure 34: Fitness obtained when generating input instances with DSGE, maximising or minimising the
considered concepts. Notice that, in the minimization experiments, the grammar is modified in order to include
a vulnerability, while the ground truth of the individual evolved when maximising the fitness is assumed to be
negative.

is enhanced or faded, and how such classification changes when the
ground truth is imposed to be positive or negative.

8.3.5 Measuring sensitivity to sub-concepts

Finally, two analysis have been performed to study how much the
prediction of the model is influenced by the concepts. The first one,
which is derived from the TCAV approach [71], basically measures
the percentage of instances that represent a concept, among a set of
programs that are positive with respect to a classification task. For-
mally, for each concept c, a sample Xv of 100 methods from the
dataset is considered, in which the instances are both labelled and
predicted to be vulnerable by the model. Notice that only the vulner-
able class has been investigated, but the same considerations can be
done on the other class of safe programs. Then, the sensitivity Sc,v
has been measured by computing, ∀x ∈ Xv, the distance dc,l(f

∗
l (x)),

where l is the layer referred to the best support vector Vc,l trained
on the concept c, and by computing the ratio between the number
of times dc,l(f

∗
l (x)) has a positive value, and the cardinality of the

sample Xv:

Sc,v =
|{x ∈ Xv : dc,l(f

∗
l (x)) > 0}|

|Xv|
(7)

A second analysis is done on the instances generated via evolution-
ary search by measuring how accurately the network classifies the
instances where one of the 4 concepts and the CWE are fixed. Two
configurations have been tested:

• instances that are not vulnerable, and whose fitness value is
maximised (the presence of the chosen concept is strong),

• instances that are vulnerable, and whose fitness value is min-
imised (the presence of the chosen concept is weak).

8.4 results 99

0.850

0.875

0.900

0.925

0.950
av
g.
 S
VC

 a
cc
ur
ac
y

cast to integer square brackets

0 5 10 15 20 25
layer

0.850

0.875

0.900

0.925

0.950

av
g.
 S
VC

 a
cc
ur
ac
y

I/O relationship

0 5 10 15 20 25
layer

cyclomatic complexity

CWE 369
CWE 789

Figure 35: Average accuracies obtained over 10 runs by the linear SVCs trained on different concepts.

These configuration choices aim at checking the impact of a strong
concept when the network should classify the instance as safe, and
conversely in the case of instances known to be vulnerable. It is im-
portant to remind that among the four treated concepts, two are com-
monly considered relevant when manually looking for the examined
CWE-369 or CWE-789 vulnerabilities; while two are higher level con-
cepts, that can appear in the source code, but that are not directly
related with the classification task.

This leads to 16 different experiments, and from each a pool of
source code methods is eventually obtained, that is evolved accord-
ing to the chosen combination of CWE, concept, and ground truth.
For each experiment the network is asked to classify all the individ-
uals generated during the 12 generations of the run, taken without
repetitions (in the probable chance of duplicated individuals). Such
classification is performed on two subsets of the total population of
an experiment: the half population with the individuals of highest
fitness values, and the half with the lowest fitness values. Finally,
the relevance of a sub-concept is measured by looking at the abso-
lute accuracy of the classification on each of the two subsets, and by
analysing the relative accuracy between them. This allows to study
how a concept impacts on classification, both on safe and on vulnera-
ble source code.

8.4 results

The results of the first experimental phase, in which the emergence
of the concepts is investigated, are reported in Figures 35 and 36.
For each concept and for 10 runs, a linear SVC has been trained in
separating the activations yielded by all the 24 layers on balanced
samples of 2000 functions, where 1000 represent the concept and the
other 1000 do not represent it. It can be observed that the two models

100 concept-based explainability

0 5 10 15 20 25
layer

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

 S
VC

 a
cc

ur
ac

y

random concept CWE 369
CWE 789

Figure 36: Average accuracies obtained over 10 runs by the linear SVCs trained
on random concepts.

Table 11: Sensitivity of the models to different concepts.

Concept CWE-789 CWE-369

Cast to integer 1.0 0.95

Square brackets 0.74 0.84

Cyclomatic complexity 0.58 0.82

Many-to-many 0.26 0.15

Random 0.49 0.51

exhibit a similar pattern for all the considered concepts, but that dif-
ferent concepts define problems of different difficulties: for instance,
the average accuracy for the cyclomatic complexity concept is around
91% in all the layers, while for the cast to integer we move from 80%
to 90%. Also, some sub-concepts (i.e. cyclomatic complexity) have a
constant average accuracy along the layers, while others (e.g. cast to
integer) present some increasing or decreasing trends. Note also that,
as expected, the accuracy of the SVCs trained on random concepts
(Figure 36) is always around 50%, thus confirming the validity of the
results obtained on the well-defined concepts.

After having observed the absolute emergence of the concepts, their
impact is also measured with respect to the original task. Two analy-
sis have been performed: one is made by considering only vulnerable
instances, and it is directly derived from the original TCAV [71], while
the other is based on the classification of instances that are generated
by the DSGE evolutionary algorithm.

The results of the first one are reported in Table 11, and they give in-
teresting insights on how different concepts have a different influence
on the decision. For instance, it is clear that the presence of a cast to in-
teger has a much stronger positive effect than the many-to-many I/O
relationship. Also notice that the influence of the randomly-defined
concept is irrelevant, since for both the models is about 50%.

For the second sensitivity measure, 16 experiments have been per-
formed, each corresponding to a combination of choices for concept,
CWE, and maximisation or minimization of fitness, respectively on
safe and on vulnerable code. As a result, each experiment gener-

8.5 discussion and final remarks 101

ated an overall pool of around 2200 unique individuals, whose fit-
ness ranges were polarized towards positive or negative values by
the chosen optimization. Nonetheless, apart from experiments aim-
ing at minimising for CWE-789 the presence of “cast” elements in the
input, where no individual with negative fitness value was generated,
in every experimental configuration, positive (when maximising) and
negative (when minimising) fitness values have been easily reached
after few generations (Figure 34). Recall that having fitness values
spanning both positive and negative values means that each experi-
ment generated both individuals with strong presence of a concept
together with individuals with little presence of the same concept.

The accuracy of the fine-tuned transformers on each pool of in-
dividuals is presented in Table 12. Each cell corresponds to a given
choice for concept, CWE, and ground truth of individuals (maximis-
ing the concept for safe instances, i.e. with ground truth equals to 0,
and minimising it for vulnerable ones, i.e. with ground truth equals
to 1). In each cell, the upper part reports the classifier accuracy on in-
stances with strong presence of the concept, and conversely the lower
part shows the accuracy on those with low concept signal. The num-
bers show quantitatively how input with more, or less, signal for a
concept (i.e. the value of the decision function of the corresponding
SVC, on activations induced by the instance) affects the accuracy of
the classification, for safe and for vulnerable inputs. As it can be seen,
the two networks have a different behavior on the evolved instances,
and also with respect to different concepts.

For instance, the classifier for CWE-789, always has a very high
accuracy, and it seems less impacted by the presence or the absence
of the concepts. On the other hand, the transformer for CWE-369

has in general a worse accuracy. It is although interesting to analyse
its accuracy values, such as they suggest different behaviours of the
network when it deals with different concepts and with instances
belonging to different pools. Such insights, along with the overall
results are discussed in the next section.

8.5 discussion and final remarks

The previous sections introduced the goals, the approach, and the raw
outcomes of the experiments, whose quantitative results allow the
behavior of the neural classifiers to be analysed. We can discuss the
outcomes of evolutionary exploration of classifiers’ behavior, whose
outcomes are presented in Table 12. The experiments first required
a manual identification of understandable concepts that could affect
the classification, and then those concepts allowed to train and select
a corresponding SVC on a whole neural layer. Finally, the best SVC
provided a fitness function to control the evolutionary search of input
instances, either strongly or weakly related to the concept.

Overall, each row in the Table 12 gives information about the per-
formance of a classifier on the positive and negative generated sets.
In our case, the classifier trained for CWE-789 performed much better

102 concept-based explainability

Table 12: Sensitivity of the models to different strength of concepts. Each cell cor-
responds to an experimental configuration, and shows the classification accuracy on
instances with strong presence of the concept (top triangle) or little presence of it
(bottom triangle).

Cast Brackets Compl. I/O

CWE-789

vuln.
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

safe
1.0

0.8

0.9

0.8

0.9

0.8

0.5

0.7

CWE-369

vuln.
0.2

∼0

0.2

∼0

0.3

0.3

0.3

0.1

safe
0.3

0.6

0.4

0.6

0.7

0.7

0.2

0.5

than the one for CWE-369. Moreover, the latter shows better perfor-
mance on safe instances with little presence of the sub-concepts (bot-
tom half-cells of the bottom row in the table). These numbers also are
evidence that obtained ample sets of adversarial instances have been
obtained, and suggest which human expressible features in source
code are more effective in deceiving the classifiers.

From data in the table, we can also move to finer observations.
For instance, the CWE-369 classifier’s accuracy seems immune to ef-
fects from the presence of high cyclomatic complexity in the input
instances. Instead, for all the other concepts it appears that their pres-
ence increases the probability for the classifier to consider instances
as vulnerable, since for instances known to be vulnerable the accuracy
increases with more signal, and conversely it decreases for safe input
instances, with wider or smaller variations for different concepts. The
only observed anomaly for the performance of the CWE-789 classifier
can be extrapolated from the worst accuracy in the second row of the
table. It appears that when input methods have an array among their
arguments and return an array, i.e. the “I/O” concept is strong, accu-
racy drops to 0.5, and this would deserve further investigation.

Finally, it is important to remark that the relevance of the results is
strongly dependant on the choice of human concepts. Such a choice
has to be made manually and with a good knowledge of the appli-
cation domain, security of source code in this case. But sometimes,
given the complex statistical basis behind the internal reasoning of
neural networks, even probing them with instances associated to con-
cepts which seemingly are unrelated to the domain could uncover un-
expected mistakes in their classifying behavior. This work therefore
deserves to be extended by considering different source code analysis
tasks and, correspondingly, different concepts.

Part III

C L O S I N G R E M A R K S

9
C O N C L U S I O N S

This is the closing chapter of the thesis. Here we first resume the
carried out work, and the outcomes that derived from it. Then, the
final section presents some ongoing work, and discusses possible di-
rections to further extend the evolved research lines.

9.1 outcomes summary

This thesis presented an ensemble of researches whose common un-
derlying thread was to extract knowledge from the source code with
the aid of artificial intelligence techniques, both by directly operating
on it, and even by analysing some of the internal dynamics that occur
in the deep layers of artificial neural networks. The conducted studies,
produced the following outcomes:

• a source code embedding (i.e. a vector representation) based on
the abstract syntax tree (AST) able to capture both syntactical
and semantic features;

• an information theoretical analysis of the behavior of internal
neurons in an artificial neural system, for ranking the neurons
according to their ability in solving different tasks;

• an evolutionary technique based on grammatical evolution (GE)
for automatically generating “adversarial” input instances able
to deceive a network trained in the detection of software vulner-
abilities;

• the study, by means of dynamic structured grammatical evolu-
tion (DSGE), of the concepts that emerge in the internal layers of
the CuBERT transformer and of the features that mostly affect
its classification decision.

The following paragraphs discusses more in detail the outlined re-
sults.

9.1.1 AST-based source code embedding

The proposed source code embedding takes its inspiration from the
word2vec model for natural language processing, in which the word
vectors are built by means of a neural network trained in the recon-
struction of the context (i.e. the neighborhood) of a word in a sentence.
Due to the formal structure of programming languages, that leads to
dependencies among parts of a program that can be very far from one
another, in this approach words are derived from the AST nodes, and
the neighborhood of a word is defined by considering paths on the

105

106 conclusions

AST. Thereby, the resulting code vectors comprise both semantic (the
identifiers in the AST leaves) and syntactical (the internal nodes of
the AST) information. This source code embedding has been tested
as input for standard classifiers trained in the classification of soft-
ware vulnerabilities, achieving insightful results.

9.1.2 Analysis of single internal neurons

The aim was to study the ability of a deep neural network in building
internal representations for specific structures or features. Simple au-
toencoders have been trained in the reconstruction of different kind
of code vectors, and then we tested the ability of each internal neu-
ron in classifying programs according to different binary problems
(e.g. the functionality or some structural property), showing that dif-
ferent neurons are actually able to recognize properties that have not
been specifically seen during the training phase. Furthermore, the
importance of single neurons in the network has been tested from an
information theoretic standpoint, showing that the defined entropy-
based scoring measure is able to discriminate between important and
unnecessary neurons, and even that programs that mostly stimulate a
given neuron can be characterized, making this approach particularly
suitable for many applications and further research.

9.1.3 Evolving adversarial input instances

Here, the goal was to use an evolutionary approach for synthesizing
programs using, as the fitness function, the activation value of a neu-
ron in a neural network for source code processing. A GE algorithm
(i.e. a genetic algorithm able to evolve programs satisfying a given
formal grammar) has been applied. The effectiveness of this approach
has been assessed by showing a possible application consisting in the
production of adversarial examples able to deceive a network trained
in the detection of software vulnerabilities.

9.1.4 Evolving along concept directions

This work is developed along two experimental phases: the first one
studies the activations of the neurons of a transformer trained in the
detection of software vulnerabilities so as to identify if some human
understandable concepts emerge in the network, while in the second
one, program instances are generated by applying a DSGE algorithm
with a fitness function that favours individuals which stimulate (or
weaken) the activations in neurons where given concepts majorly
emerge. Finally, the work is closed with a study on how the evolution-
ary pressure along the direction of a concept affects the prediction.

9.2 further research directions 107

9.1.5 Salient features

This work proposes an evolutionary approach for probing the be-
haviour of a deep neural source code classifier by generating instances
that sample its input space. By means of customized DSGE muta-
tion operators, and by following different policies, input instances
are evolved, so as to identify the features that most contribute to
a particular prediction. The results showed that this approach can
be effectively used for several tasks in the scope of the interpretable
machine learning, such as for producing adversarial examples or for
identifying blind spots or misconceptions, or in general the syntacti-
cal features that mostly affect the prediction on the original task.

9.2 further research directions

Possible direct extensions of the studies that comprise this thesis have
been already presented and discusses in the corresponding chap-
ters. This last section discusses some of the insights emerged dur-
ing the work conducted during the PhD and that can suggest pos-
sible broader research directions. In particular a new way to inte-
grate AI knowledge in software development systems is discussed
in Section 9.2.1, while an ongoing work on source code summariza-
tion, along with some ideas to improve the research in that context,
is presented in Section 9.2.2.

9.2.1 “Augmented” programming

The work taken in this thesis confirmed that neural models, despite
some limitations and points in which they need to be improved, are
becoming effective in solving multiple tasks in the source code pro-
cessing domain. On the other hand, the well known pair program-
ming practice [145] has the key beneficial possibility of discussing
with a partner (by means of alternate telling and listening quick
rounds) about what is being written, since this helps the cognitive
effort of writing neat and comprehensible code.

On these premise, a practical application of the research described
in this thesis should be to explore the possibility of designing a re-
vised version of the pair-programming with humans and AIs work-
ing together, by embedding in the programming platform the output
of a neural network, fed with the code currently typed in by the de-
veloper. This is motivated by the fact that AI systems can output rec-
ommendations or other probable hypothesis regarding code which
can be helpful to alleviate the cognitive effort needed in the devel-
opment process. This idea of using AI to support humans, instead of
replacing them has been already discussed in the past. For instance, in
the field of chess [37, 68], teams composed by average human play-
ers and state-of-the-art chess engines (e.g. Stockfish1) can win against

1 https://stockfishchess.org/

https://stockfishchess.org/

108 conclusions

both teams composed by only human experts (i.e. Grand Masters)
and by an AI playing alone.

9.2.2 Source code summarization

Research in source code summarization, that is the description of the
functionality of a program with short sentences expressed in natural
language, is a topic of great interest in the software engineering com-
munity, since it can help in automatically generating software doc-
umentation, and in general can ease the effort of the developers in
understanding the code they are working on. In particular, research
in this direction gained popularity together with (and, probably, due
to) the success that neural transformers are having in the NLP do-
main. In this setting, we are currently undertaking a work to point
out the high sensitivity that transformers for source code have to
the natural elements present in the source code (i.e. comments and
identifiers) and the related drop in performance when such elements
are ablated or masked. To this end, we developed a novel source code
summarization approach based on the aid of an intermediate pseudo-
language, through which it is possible to fine-tune on a source code
task a state of the art summarizer for natural language (namely the
BRIO model [90]), through which preliminary experiments achieved
results comparable to that obtained by the state-of-the-art source code
competitors (e.g. PLBART [2] and CodeBERT [48]).

The main purpose was to investigate the extent of how such nat-
uralness affects the quality of the summaries, and the results con-
firmed the high sensitivity to them. This suggests many points for
developing future research directions. Primarily, a general change in
the approach is presumably needed: models that derive from the NLP
domain seem to be effective, but the high scores that they achieve re-
quire an underlying quality of the comments and the choice of mean-
ingful identifiers. For this reason, a re-design of these state-of-the-art
approaches deserves to be explored, in order to make them less de-
pendant from natural elements. Also, the metrics used to evaluate
the quality of the summaries (e.g. BLEU [110] and ROUGE [85]) suffer
from limitations, since they basically measure the overlapping among
terms or n-grams, giving to each term the same importance and with-
out considering synonyms. For this reason also a reassessments of the
existing methods in lights of new metrics based on semantic similar-
ity [144] that has been recently proposed needs to be investigated.

Finally, wondering what kind of summary should actually help
a programmer or whoever has to deal with source code could be
an intriguing research topic. Generally source code summarization
models operate at the level of functions, that is, the resulting sum-
mary provides a description in natural language of the functionality
of the function itself. Possible works in this direction should be to
investigate if this kind of outcome is really supportive for program-
mers, and to eventually design other summarization paradigms. For
instance, the common practice of program slicing [143], that allows to

9.2 further research directions 109

isolate the program statements that may affect the values of a given
set of variables at some point of interest, can be combined with sum-
marization approaches to produce high level descriptions of slices of
programs that are referred only to the variables of interest.

B I B L I O G R A P H Y

[1] Amina Adadi and Mohammed Berrada. «Peeking Inside the
Black-Box: A Survey on Explainable Artificial Intelligence (XAI)».
In: IEEE Access 6 (2018), pp. 52138–52160.

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei
Chang. «Unified Pre-training for Program Understanding and
Generation». In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Online: Association for Compu-
tational Linguistics, June 2021, pp. 2655–2668.

[3] Miltiadis Allamanis. «The adverse effects of code duplication
in machine learning models of code». In: Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. ACM,
2019, pp. 143–153.

[4] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and
Charles Sutton. «A Survey of Machine Learning for Big Code
and Naturalness». In: ACM Comput. Surv. 51.4 (2018), 81:1–
81:37.

[5] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
«Learning to Represent Programs with Graphs». In: Proceed-
ings of 6th International Conference on Learning Representations,
ICLR. 2018.

[6] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. «A
Convolutional Attention Network for Extreme Summarization
of Source Code». In: Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML. 2016, pp. 2091–2100.

[7] Frances E. Allen. «Control Flow Analysis». In: SIGPLAN Not.
5.7 (1970), pp. 1–19.

[8] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. «code2seq:
Generating Sequences from Structured Representations of Code».
In: 7th International Conference on Learning Representations, ICLR.
OpenReview.net, 2019.

[9] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. «A
general path-based representation for predicting program prop-
erties». In: Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI. 2018,
pp. 404–419.

[10] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. «code2vec:
learning distributed representations of code». In: Proceedings of
the ACM on Programming Languages 3.POPL (2019), 40:1–40:29.

111

112 bibliography

[11] João Antunes, Nuno Ferreira Neves, and Paulo Jorge Verís-
simo. «Detection and Prediction of Resource-Exhaustion Vul-
nerabilities». In: 19th International Symposium on Software Relia-
bility Engineering (ISSRE). 2008, pp. 87–96.

[12] Shushan Arakelyan, Christophe Hauser, Erik Kline, and Aram
Galstyan. Towards Learning Representations of Binary Executable
Files for Security Tasks. arXiv. 2020. eprint: 2002.03388 (cs.CR).
url: https://arxiv.org/abs/2002.03388.

[13] Thomas Bäck and Hans-Paul Schwefel. «An Overview of Evo-
lutionary Algorithms for Parameter Optimization». In: Evolu-
tionary Computation 1.1 (1993), pp. 1–23.

[14] John W. Backus et al. «Revised report on the algorithmic lan-
guage ALGOL 60». In: Comput. J. 5.4 (1963), pp. 349–367.

[15] Francesco Barchi, Emanuele Parisi, Gianvito Urgese, Elisa Fi-
carra, and Andrea Acquaviva. «Exploration of convolutional
neural network models for source code classification». In: Engi-
neering Applications of Artificial Intelligence 97 (2021), p. 104075.

[16] Anthony Bau et al. «Identifying and Controlling Important
Neurons in Neural Machine Translation». In: 7th International
Conference on Learning Representations, ICLR. OpenReview.net,
2019.

[17] Paul E. Black. Juliet 1.3 Test Suite: Changes From 1.2. Technical
Note. NIST National Institute for Standard and Technology,
2018.

[18] Tim Boland and Paul E. Black. «The Juliet C/C++ and Java
Test Suite». In: Computer (IEEE Computer) 45 (2012).

[19] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. «A
Training Algorithm for Optimal Margin Classifiers». In: 5th
Annual ACM Conference on Computational Learning Theory, COLT.
ACM, 1992, pp. 144–152.

[20] Leo Breiman. «Random Forests». In: Mach. Learn. 45.1 (2001),
pp. 5–32.

[21] Ruven E. Brooks. «Towards a Theory of the Comprehension
of Computer Programs». In: Int. J. Man Mach. Stud. 18.6 (1983),
pp. 543–554.

[22] Marcel Bruch, Martin Monperrus, and Mira Mezini. «Learning
from examples to improve code completion systems». In: Pro-
ceedings of the 7th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Ed. by Hans van Vliet
and Valérie Issarny. ACM, 2009, pp. 213–222.

[23] David Brumley, Dawn Xiaodong Song, Tzi-cker Chiueh, Rob
Johnson, and Huijia Lin. «RICH: Automatically Protecting Against
Integer-Based Vulnerabilities». In: Proceedings of the Network
and Distributed System Security Symposium, NDSS. The Internet
Society, 2007.

2002.03388
https://arxiv.org/abs/2002.03388

bibliography 113

[24] S. N. Cant, D. Ross Jeffery, and Brian Henderson-Sellers. «A
conceptual model of cognitive complexity of elements of the
programming process». In: Inf. Softw. Technol. 37.7 (1995), pp. 351–
362.

[25] Tom Castle and Colin G. Johnson. «Positional Effect of Crossover
and Mutation in Grammatical Evolution». In: Proceedings of
13th European Conference Genetic Programming EuroGP. Vol. 6021.
Lecture Notes in Computer Science. Springer, 2010, pp. 26–37.

[26] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi
Ray. «Deep Learning Based Vulnerability Detection: Are We
There Yet?» In: IEEE Trans. Software Eng. 48.9 (2022), pp. 3280–
3296.

[27] Dhivya Chandrasekaran and Vijay Mago. «Evolution of Se-
mantic Similarity - A Survey». In: ACM Comput. Surv. 54.2
(2022), 41:1–41:37.

[28] Mark Chen et al. Evaluating Large Language Models Trained on
Code. arXiv. 2021. eprint: 2107.03374 (cs.LG). url: https://
arxiv.org/abs/2107.03374.

[29] François Chollet et al. Keras. https://keras.io. 2015.

[30] Noam Chomsky. «Three models for the description of lan-
guage». In: IRE Transactions on information theory 2.3 (1956),
pp. 113–124.

[31] Crispin Cowan et al. «FormatGuard: Automatic Protection From
printf Format String Vulnerabilities». In: USENIX Security Sym-
posium. Vol. 91. Washington, DC. 2001.

[32] Matej Crepinsek, Shih-Hsi Liu, and Marjan Mernik. «Explo-
ration and exploitation in evolutionary algorithms: A survey».
In: ACM Comput. Surv. 45.3 (2013), 35:1–35:33.

[33] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László
Vidács. «Utilizing source code embeddings to identify correct
patches». In: 2020 IEEE 2nd International Workshop on Intelligent
Bug Fixing (IBF). IEEE. 2020, pp. 18–25.

[34] Fahim Dalvi et al. «What Is One Grain of Sand in the Desert?
Analyzing Individual Neurons in Deep NLP Models». In: Pro-
ceedings of the 33rd AAAI Conference on Artificial Intelligence. AAAI
Press, 2019, pp. 6309–6317.

[35] Cristina David and Daniel Kroening. «Program synthesis: chal-
lenges and opportunities». In: Philosophical Transactions of The
Royal Society A Mathematical Physical and Engineering Sciences
375 (Oct. 2017).

[36] Jesse Davis and Mark Goadrich. «The relationship between
Precision-Recall and ROC curves». In: Machine Learning, Pro-
ceedings of the 23rd International Conference (ICML). Vol. 148.
ACM International Conference Proceeding Series. ACM, 2006,
pp. 233–240.

2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://keras.io

114 bibliography

[37] David De Cremer and Garry Kasparov. «AI should augment
human intelligence, not replace it». In: Harvard Business Review
18 (2021).

[38] Alvaro Fernández Del Carpio and Leonardo Bermón Angarita.
«Trends in Software Engineering Processes using Deep Learn-
ing: A Systematic Literature Review». In: 46th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA).
2020, pp. 445–454.

[39] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
«BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding». In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT. Associ-
ation for Computational Linguistics, 2019, pp. 4171–4186.

[40] Will Dietz, Peng Li, John Regehr, and Vikram Adve. «Under-
standing integer overflow in C/C++». In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 25.1 (2015),
pp. 1–29.

[41] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys
Poshyvanyk. «Feature location in source code: a taxonomy
and survey». In: Journal of software: Evolution and Process 25.1
(2013), pp. 53–95.

[42] Yinpeng Dong, Fan Bao, Hang Su, and Jun Zhu. Towards In-
terpretable Deep Neural Networks by Leveraging Adversarial Ex-
amples. arXiv. 2019. eprint: 1901 . 09035 (cs.LG). url: http :

//arxiv.org/abs/1901.09035.

[43] Finale Doshi-Velez and Been Kim. A Roadmap for a Rigorous Sci-
ence of Interpretability. arXiv. 2017. eprint: 1702.08608 (stat.ML).
url: http://arxiv.org/abs/1702.08608.

[44] Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni
Vigna. «Fear the ear: discovering and mitigating execution af-
ter redirect vulnerabilities». In: Proceedings of the 18th ACM con-
ference on Computer and communications security. 2011, pp. 251–
262.

[45] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal
Vincent. «Visualizing higher-layer features of a deep network».
In: University of Montreal 1341.3 (2009), p. 1.

[46] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pas-
cal Vincent. «Why does unsupervised pre-training help deep
learning?» In: Proceedings of the 13th international conference on
artificial intelligence and statistics. JMLR Workshop and Confer-
ence Proceedings. 2010, pp. 201–208.

[47] Y. Fang, S. Han, C. Huang, and R. Wu. «TAP: A static anal-
ysis model for PHP vulnerabilities based on token and deep
learning technology». In: PLoS ONE 14(11) (2019).

1901.09035
http://arxiv.org/abs/1901.09035
http://arxiv.org/abs/1901.09035
1702.08608
http://arxiv.org/abs/1702.08608

bibliography 115

[48] Zhangyin Feng et al. «CodeBERT: A Pre-Trained Model for
Programming and Natural Languages». In: Findings of the Asso-
ciation for Computational Linguistics: EMNLP. Vol. EMNLP 2020.
Findings of ACL. Association for Computational Linguistics,
2020, pp. 1536–1547.

[49] Michael Fenton et al. «PonyGE2: grammatical evolution in
Python». In: Companion Material Proceedings of Genetic and Evo-
lutionary Computation Conference. ACM, 2017, pp. 1194–1201.

[50] Claudio Ferretti and Martina Saletta. «Deceiving neural source
code classifiers: finding adversarial examples with grammati-
cal evolution». In: GECCO ’21: Genetic and Evolutionary Com-
putation Conference, Companion Volume. ACM, 2021, pp. 1889–
1897.

[51] Claudio Ferretti and Martina Saletta. «Do Neural Transform-
ers Learn Human-Defined Concepts? An Extensive Study in
Source Code Processing Domain». In: Algorithms 15.12 (2022).

[52] Shlok Gilda. «Source code classification using Neural Networks».
In: 2017 14th international joint conference on computer science and
software engineering (JCSSE). IEEE. 2017, pp. 1–6.

[53] Leilani H Gilpin et al. «Explaining explanations: An overview
of interpretability of machine learning». In: IEEE 5th Interna-
tional Conference on data science and advanced analytics (DSAA).
IEEE. 2018, pp. 80–89.

[54] Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, and Rus-
lan Salakhutdinov. «Neighbourhood Components Analysis».
In: Advances in Neural Information Processing Systems 17 [Neural
Information Processing Systems, NIPS. 2004, pp. 513–520.

[55] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville.
Deep Learning. Adaptive computation and machine learning.
MIT Press, 2016.

[56] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
«Explaining and Harnessing Adversarial Examples». In: 3rd
International Conference on Learning Representations, ICLR. 2015.

[57] Jeremiah Grossman, Seth Fogie, Robert Hansen, Anton Rager,
and Petko D. Petkov. XSS attacks: cross site scripting exploits and
defense. Syngress, 2007.

[58] David Gunning et al. «XAI—Explainable artificial intelligence».
In: Science robotics 4.37 (2019).

[59] William G. Halfond, Jeremy Viegas, and Alessandro Orso. «A
classification of SQL-injection attacks and countermeasures».
In: Proceedings of the IEEE international symposium on secure soft-
ware engineering. Vol. 1. IEEE. 2006, pp. 13–15.

[60] Warren He, Bo Li, and Dawn Song. «Decision Boundary Anal-
ysis of Adversarial Examples». In: 6th International Conference
on Learning Representations, ICLR. OpenReview.net, 2018.

116 bibliography

[61] Erik Hemberg, Jonathan Kelly, and Una-May O’Reilly. «On
domain knowledge and novelty to improve program synthe-
sis performance with grammatical evolution». In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO.
Ed. by Anne Auger and Thomas Stützle. ACM, 2019, pp. 1039–
1046.

[62] John H. Holland. Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. MIT Press, 1992.

[63] Nwokedi Idika and Aditya P. Mathur. «A survey of malware
detection techniques». In: Purdue University 48 (2007), pp. 2007–
2.

[64] Licheng Jiao and Jin Zhao. «A Survey on the New Genera-
tion of Deep Learning in Image Processing». In: IEEE Access 7

(2019), pp. 172231–172263.

[65] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen
Shi. «Learning and evaluating contextual embedding of source
code». In: Proceedings of the 37th International Conference on Ma-
chine Learning, ICML. Proceedings of Machine Learning Re-
search. PMLR, 2020.

[66] Asif Karim, Sami Azam, Bharanidharan Shanmugam, Krish-
nan Kannoorpatti, and Mamoun Alazab. «A Comprehensive
Survey for Intelligent Spam Email Detection». In: IEEE Access
7 (2019), pp. 168261–168295.

[67] Hamid Karimi, Tyler Derr, and Jiliang Tang. Characterizing the
Decision Boundary of Deep Neural Networks. arXiv. 2019. eprint:
1912.11460 (cs.LG). url: http://arxiv.org/abs/1912.11460.

[68] Garry Kasparov. «The chess master and the computer». In: The
New York Review of Books 57.2 (2010), pp. 16–19.

[69] Krishna M. Kavi, Bill P. Buckles, and U. Narayan Bhat. «A
formal definition of data flow graph models». In: IEEE Trans-
actions on computers 35.11 (1986), pp. 940–948.

[70] Salman Khan et al. «Transformers in Vision: A Survey». In:
ACM Comput. Surv. 54.10s (2022).

[71] Been Kim et al. «Interpretability Beyond Feature Attribution:
Quantitative Testing with Concept Activation Vectors (TCAV)».
In: 35th International Conference on Machine Learning, ICML. Vol. 80.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 2673–
2682.

[72] Yoon Kim. «Convolutional Neural Networks for Sentence Clas-
sification». In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP. ACL, 2014,
pp. 1746–1751.

[73] Donald E. Knuth. «Semantics of Context-Free Languages». In:
Math. Syst. Theory 2.2 (1968), pp. 127–145.

1912.11460
http://arxiv.org/abs/1912.11460

bibliography 117

[74] Xianglong Kong, Supeng Kong, Ming Yu, and Chengjie Du.
«Joint Embedding of Semantic and Statistical Features for Ef-
fective Code Search». In: Applied Sciences 12.19 (2022), p. 10002.

[75] Sotiris B. Kotsiantis. «Supervised Machine Learning: A Review
of Classification Techniques». In: Emerging Artificial Intelligence
Applications in Computer Engineering - Real Word AI Systems with
Applications in eHealth, HCI, Information Retrieval and Pervasive
Technologies. Vol. 160. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2007, pp. 3–24.

[76] John R. Koza. Genetic programming: on the programming of com-
puters by means of natural selection. Vol. 1. MIT press, 1992.

[77] Pat Langley. «The changing science of machine learning». In:
Mach. Learn. 82.3 (2011), pp. 275–279.

[78] Quoc V. Le and Tomás Mikolov. «Distributed Representations
of Sentences and Documents». In: Proceedings of the 31th Inter-
national Conference on Machine Learning, ICML. 2014, pp. 1188–
1196.

[79] Quoc V. Le et al. «Building high-level features using large scale
unsupervised learning». In: Proceedings of the 29th International
Conference on Machine Learning, ICML. PMLR, 2012, pp. 507–
514.

[80] Triet Huynh Minh Le, Hao Chen, and Muhammad Ali Babar.
«Deep Learning for Source Code Modeling and Generation:
Models, Applications, and Challenges». In: ACM Comput. Surv.
53.3 (2021), 62:1–62:38.

[81] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. «Code
Completion with Neural Attention and Pointer Networks». In:
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI. Ed. by Jérôme Lang. ijcai.org,
2018, pp. 4159–4165.

[82] Zhen Li et al. «VulDeePecker: A Deep Learning-Based System
for Vulnerability Detection». In: 25th Annual Network and Dis-
tributed System Security Symposium, NDSS. The Internet Society,
2018.

[83] Zhen Li et al. «A Comparative Study of Deep Learning-Based
Vulnerability Detection System». In: IEEE Access 7 (2019), pp. 103184–
103197.

[84] Zhen Li et al. «SySeVR: A Framework for Using Deep Learn-
ing to Detect Software Vulnerabilities». In: IEEE Trans. Depend-
able Secur. Comput. 19.4 (2022), pp. 2244–2258.

[85] Chin-Yew Lin. «ROUGE: A Package for Automatic Evaluation
of Summaries». In: Text Summarization Branches Out. Associa-
tion for Computational Linguistics, 2004, pp. 74–81.

[86] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and
Yang Xiang. «Software Vulnerability Detection Using Deep Neu-
ral Networks: A Survey». In: Proc. IEEE 108.10 (2020), pp. 1825–
1848.

118 bibliography

[87] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu.
«A survey of transformers». In: AI Open (2022).

[88] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. «Software
vulnerability discovery techniques: A survey». In: 2012 fourth
international conference on multimedia information networking and
security. IEEE. 2012, pp. 152–156.

[89] Fang Liu et al. «A Self-Attentional Neural Architecture for
Code Completion with Multi-Task Learning». In: Proceedings
of the 28th International Conference on Program Comprehension,
ICPC. ACM, 2020, pp. 37–47.

[90] Yixin Liu, Pengfei Liu, Dragomir R. Radev, and Graham Neu-
big. «BRIO: Bringing Order to Abstractive Summarization». In:
Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL. Association
for Computational Linguistics, 2022, pp. 2890–2903.

[91] Nuno Lourenço, Filipe Assunção, Francisco B Pereira, Ernesto
Costa, and Penousal Machado. «Structured grammatical evo-
lution: a dynamic approach». In: Handbook of Grammatical Evo-
lution. Springer, 2018, pp. 137–161.

[92] Nuno Lourenço, Francisco B Pereira, and Ernesto Costa. «Un-
veiling the properties of structured grammatical evolution». In:
Genetic Programming and Evolvable Machines 17.3 (2016), pp. 251–
289.

[93] Nuno Lourenço, Francisco B. Pereira, and Ernesto Costa. «SGE:
A Structured Representation for Grammatical Evolution». In:
12th International Conference of Artificial Evolution - Evolution
Artificielle, EA. Vol. 9554. Lecture Notes in Computer Science.
Springer, 2015, pp. 136–148.

[94] Sean Luke. Essentials of Metaheuristics. second. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/. Lulu,
2013.

[95] Henry B. Mann and Donald R. Whitney. «On a test of whether
one of two random variables is stochastically larger than the
other». In: The annals of mathematical statistics (1947), pp. 50–60.

[96] Anneliese von Mayrhauser and A. Marie Vans. «Program Com-
prehension During Software Maintenance and Evolution». In:
Computer 28.8 (1995), pp. 44–55.

[97] Thomas J. McCabe. «A Complexity Measure». In: IEEE Trans.
Softw. Eng. 2.4 (1976), pp. 308–320.

[98] Thomas McGrath et al. «Acquisition of chess knowledge in
alphazero». In: Proceedings of the National Academy of Sciences
119.47 (2022), e2206625119.

[99] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. «Senti-
ment analysis algorithms and applications: A survey». In: Ain
Shams engineering journal 5.4 (2014), pp. 1093–1113.

bibliography 119

[100] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Cor-
rado, and Jeffrey Dean. «Distributed Representations of Words
and Phrases and their Compositionality». In: Advances in Neu-
ral Information Processing Systems 26, Proceedings of NIPS. 2013,
pp. 3111–3119.

[101] Christoph Molnar. Interpretable Machine Learning. A Guide for
Making Black Box Models Explainable. 2nd ed. 2022. url: https:
//christophm.github.io/interpretable-ml-book.

[102] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. «Convolu-
tional Neural Networks over Tree Structures for Programming
Language Processing». In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence. 2016, pp. 1287–1293.

[103] Anh Nguyen, Jason Yosinski, and Jeff Clune. «Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images». In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 427–436.

[104] Anh Mai Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas
Brox, and Jeff Clune. «Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks». In:
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems. 2016, pp. 3387–
3395.

[105] Michael O’Neill, Miguel Nicolau, and Alexandros Agapitos.
«Experiments in program synthesis with grammatical evolu-
tion: A focus on Integer Sorting». In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC. IEEE, 2014, pp. 1504–
1511.

[106] Michael O’Neill and Conor Ryan. «Grammatical evolution».
In: IEEE Trans. Evol. Comput. 5.4 (2001), pp. 349–358.

[107] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
«Feature visualization». In: Distill 2.11 (2017), e7.

[108] Aleph One. «Smashing the stack for fun and profit». In: Phrack
magazine 7.49 (1996), pp. 14–16.

[109] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael
P. Wellman. «SoK: Security and Privacy in Machine Learning».
In: IEEE European Symposium on Security and Privacy (EuroS&P).
2018, pp. 399–414.

[110] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. «Bleu: a Method for Automatic Evaluation of Machine
Translation». In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics. ACL, 2002, pp. 311–
318.

[111] Erik Pitzer and Michael Affenzeller. «A Comprehensive Sur-
vey on Fitness Landscape Analysis». In: Recent Advances in
Intelligent Engineering Systems. Vol. 378. Studies in Computa-
tional Intelligence. Springer, 2012, pp. 161–191.

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

120 bibliography

[112] Michael Pradel and Koushik Sen. «DeepBugs: a learning ap-
proach to name-based bug detection». In: Proc. ACM Program.
Lang. 2.OOPSLA (2018), 147:1–147:25.

[113] Erwin Quiring, Alwin Maier, and Konrad Rieck. «Mislead-
ing Authorship Attribution of Source Code using Adversarial
Learning». In: 28th USENIX Security Symposium. USENIX As-
sociation, 2019, pp. 479–496.

[114] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to
Generate Reviews and Discovering Sentiment. arXiv. 2017. eprint:
1704 . 01444 (cs.LG). url: https : / / arxiv . org / pdf / 1704 .

01444.pdf.

[115] Gabrielle Ras, Ning Xie, Marcel van Gerven, and Derek Do-
ran. «Explainable Deep Learning: A Field Guide for the Unini-
tiated». In: J. Artif. Intell. Res. 73 (2022), pp. 329–396.

[116] Veselin Raychev, Pavol Bielik, and Martin T. Vechev. «Prob-
abilistic model for code with decision trees». In: Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA. Ed. by Eelco Visser and Yannis Smaragdakis. ACM, 2016,
pp. 731–747.

[117] Radim Řehůřek and Petr Sojka. «Software Framework for Topic
Modelling with Large Corpora». In: Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks. Valletta,
Malta: ELRA, May 2010, pp. 45–50.

[118] Frank Rosenblatt. «The Perceptron: A Probabilistic Model for
Information Storage and Organization in The Brain». In: Psy-
chological Review (1958), pp. 65–386.

[119] Franz Rothlauf and Marie Oetzel. «On the Locality of Gram-
matical Evolution». In: Proceedings of 9th European Conference
on Genetic Programming EuroGP. Vol. 3905. Lecture Notes in
Computer Science. Springer, 2006, pp. 320–330.

[120] Peter J. Rousseeuw. «Silhouettes: A graphical aid to the in-
terpretation and validation of cluster analysis». In: Journal of
Computational and Applied Mathematics 20 (1987), pp. 53–65.

[121] Herbert Rubenstein and John B. Goodenough. «Contextual
correlates of synonymy». In: Commun. ACM 8.10 (1965), pp. 627–
633.

[122] Rebecca L. Russell et al. «Automated Vulnerability Detection
in Source Code Using Deep Representation Learning». In: Pro-
ceedings of 17th IEEE International Conference on Machine Learn-
ing and Applications, ICMLA. IEEE, 2018, pp. 757–762.

[123] Conor Ryan, J. J. Collins, and Michael O’Neill. «Grammatical
Evolution: Evolving Programs for an Arbitrary Language». In:
Proceedings of the First European Workshop on Genetic Program-
ming. Vol. 1391. LNCS. Springer-Verlag, 1998, pp. 83–96.

1704.01444
https://arxiv.org/pdf/1704.01444.pdf
https://arxiv.org/pdf/1704.01444.pdf

bibliography 121

[124] Barbara G. Ryder. «Constructing the call graph of a program».
In: IEEE Transactions on Software Engineering 3 (1979), pp. 216–
226.

[125] Ruslan Salakhutdinov and Geoffrey E. Hinton. «Semantic hash-
ing». In: International Journal of Approximate Reasoning 50.7 (2009),
pp. 969–978.

[126] Martina Saletta and Claudio Ferretti. «A Neural Embedding
for Source Code: Security Analysis and CWE Lists». In: IEEE
Intl. Conf. on Dependable, Autonomic and Secure Computing, DASC/Pi-
Com/CBDCom/CyberSciTech. IEEE, 2020, pp. 523–530.

[127] Martina Saletta and Claudio Ferretti. Mining Program Properties
From Neural Networks Trained on Source Code Embeddings. arXiv.
2021. eprint: 2103.05442 (cs.SE). url: https://arxiv.org/
abs/2103.05442.

[128] Martina Saletta and Claudio Ferretti. «A Grammar-based Evo-
lutionary Approach for Assessing Deep Neural Source Code
Classifiers». In: IEEE Congress on Evolutionary Computation, CEC.
IEEE, 2022, pp. 1–8.

[129] Martina Saletta and Claudio Ferretti. «Towards the evolution-
ary assessment of neural transformers trained on source code».
In: GECCO ’22: Genetic and Evolutionary Computation Conference,
Companion Volume. ACM, 2022, pp. 1770–1778.

[130] Martin Schrimpf et al. «Brain-score: Which artificial neural
network for object recognition is most brain-like?» In: BioRxiv
(2020), p. 407007.

[131] Claude E. Shannon. «A mathematical theory of communica-
tion». In: Bell Syst. Tech. J. 27.4 (1948), pp. 623–656.

[132] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. «Learn-
ing Important Features Through Propagating Activation Dif-
ferences». In: 34th International Conference on Machine Learn-
ing, ICML. Vol. 70. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 3145–3153.

[133] Janet Siegmund et al. «Understanding understanding source
code with functional magnetic resonance imaging». In: 36th In-
ternational Conference on Software Engineering, ICSE. ACM, 2014,
pp. 378–389.

[134] Nicholas Smith, Danny van Bruggen, and Federico Tomassetti.
JavaParser: Visited. Version dated 17 May 2019. url: https://
leanpub.com/javaparservisited.

[135] Dominik Sobania and Franz Rothlauf. «Challenges of Program
Synthesis with Grammatical Evolution». In: Proceedings of Ge-
netic Programming - 23rd European Conference (EuroGP), held as
Part of EvoStar. Vol. 12101. Lecture Notes in Computer Science.
Springer, 2020, pp. 211–227.

2103.05442
https://arxiv.org/abs/2103.05442
https://arxiv.org/abs/2103.05442
https://leanpub.com/javaparservisited
https://leanpub.com/javaparservisited

122 bibliography

[136] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel
Sundaresan. «IntelliCode compose: code generation using trans-
former». In: ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering. ACM, 2020, pp. 1433–1443.

[137] Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh,
and Patrick D. McDaniel. The Space of Transferable Adversarial
Examples. arXiv. 2017. eprint: 2103.05442 (stat.ML). url: http:
//arxiv.org/abs/1704.03453.

[138] Laurens Van der Maaten and Geoffrey Hinton. «Visualizing
data using t-SNE». In: Journal of machine learning research 9.11

(2008).

[139] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber,
and Rishabh Singh. «Neural Program Repair by Jointly Learn-
ing to Localize and Repair». In: 7th International Conference on
Learning Representations, ICLR. OpenReview.net, 2019.

[140] Ashish Vaswani et al. «Attention is All you Need». In: Ad-
vances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems. 2017, pp. 5998–
6008.

[141] Yao Wan et al. «Improving automatic source code summariza-
tion via deep reinforcement learning». In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE. ACM, 2018, pp. 397–407.

[142] Yu Wang, Yu Dong, Xuesong Lu, and Aoying Zhou. «GypSum:
learning hybrid representations for code summarization». In:
Proceedings of the 30th IEEE/ACM International Conference on Pro-
gram Comprehension, ICPC. ACM, 2022, pp. 12–23.

[143] Mark Weiser. «Program Slicing». In: IEEE Transactions on Soft-
ware Engineering SE-10.4 (1984), pp. 352–357.

[144] John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel, and Gra-
ham Neubig. «Beyond BLEU: Training Neural Machine Trans-
lation with Semantic Similarity». In: Proceedings of the 57th Con-
ference of the Association for Computational Linguistics, ACL. As-
sociation for Computational Linguistics, 2019, pp. 4344–4355.

[145] Laurie Williams, Robert R Kessler, Ward Cunningham, and
Ron Jeffries. «Strengthening the case for pair programming».
In: IEEE software 17.4 (2000), pp. 19–25.

[146] Fabian Yamaguchi, Felix “FX” Lindner, and Konrad Rieck. «Vul-
nerability Extrapolation: Assisted Discovery of Vulnerabilities
Using Machine Learning». In: Proceedings of 5th USENIX Work-
shop on Offensive Technologies, WOOT’11. USENIX Association,
2011, pp. 118–127.

[147] Noam Yefet, Uri Alon, and Eran Yahav. «Adversarial examples
for models of code». In: Proc. ACM Program. Lang. 4.OOPSLA
(2020), 162:1–162:30.

2103.05442
http://arxiv.org/abs/1704.03453
http://arxiv.org/abs/1704.03453

bibliography 123

[148] Suan Hsi Yong and Susan Horwitz. «Protecting C programs
from attacks via invalid pointer dereferences». In: Proceedings
of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering 2003 held jointly with 9th European Software Engineer-
ing Conference, ESEC/FSE. ACM, 2003, pp. 307–316.

[149] Shujian Yu and José C. Príncipe. «Understanding autoencoders
with information theoretic concepts». In: Neural Networks 117

(2019), pp. 104–123.

[150] Xinjie Yu and Mitsuo Gen. Introduction to evolutionary algorithms.
Springer Science & Business Media, 2010.

[151] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method.
arXiv. 2012. eprint: 1212.5701 (cs.LG). url: https://arxiv.
org/pdf/1212.5701.pdf.

[152] Matthew D. Zeiler and Rob Fergus. «Visualizing and Under-
standing Convolutional Networks». In: 13th European Confer-
ence of Computer Vision ECCV. Vol. 8689. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 818–833.

[153] Chunyan Zhang et al. «A Survey of Automatic Source Code
Summarization». In: Symmetry 14.3 (2022), p. 471.

[154] Huangzhao Zhang et al. «Generating Adversarial Examples
for Holding Robustness of Source Code Processing Models».
In: The 34th AAAI Conference on Artificial Intelligence, AAAI, The
32nd Innovative Applications of Artificial Intelligence Conference,
IAAI, The 10th AAAI Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI. AAAI Press, 2020, pp. 1169–1176.

[155] Jian Zhang et al. «A Novel Neural Source Code Representation
Based on Abstract Syntax Tree». In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). 2019, pp. 783–
794.

[156] Fuzhen Zhuang et al. «A comprehensive survey on transfer
learning». In: Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[157] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann.
«Adversarial Attacks on Neural Networks for Graph Data». In:
24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining. Association for Computing Machinery,
2018, pp. 2847–2856.

1212.5701
https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1212.5701.pdf

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”.

	Abstract
	Riassunto
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	Preliminaries
	1 Introduction
	1.1 Thesis Outline

	2 Literature Overview
	2.1 Machine Learning for Source Code Analysis
	2.1.1 Source Code Embedding
	2.1.2 Vulnerability Detection

	2.2 Formal Grammars and Evolutionary Algorithms
	2.2.1 Evolutionary Program Synthesis

	2.3 Explaining Machine Learning Models
	2.3.1 Classification Errors
	2.3.2 Analysis of Single Neurons
	2.3.3 Saliency, Features and Concepts
	2.3.4 Adversarial Approaches

	3 Background Notions
	3.1 Transformers for Source Code Processing
	3.2 Grammar-based Evolutionary Algorithms
	3.2.1 Grammatical Evolution
	3.2.2 Dynamic Structured Grammatical Evolution

	Research
	4 A Neural Source Code Embedding
	4.1 Introduction and Motivations
	4.2 Embedding Design
	4.3 Experimental Settings
	4.3.1 Preprocessing
	4.3.2 Training
	4.3.3 Inference

	4.4 Embedding evaluation
	4.4.1 Cluster Analysis
	4.4.2 Qualitative Assessment
	4.4.3 Supervised Classification

	4.5 Discussion
	4.5.1 CWE Views
	4.5.2 Significance and Limitations
	4.5.3 Further Directions

	5 Neural Dynamics and Concept Mining
	5.1 Introduction
	5.2 Approach Overview
	5.3 Experimental Settings
	5.3.1 Network Architecture
	5.3.2 Dataset and Training

	5.4 Task-based Experiments
	5.4.1 Problems Definition
	5.4.2 Classification

	5.5 Neurons Ranking
	5.5.1 Entropy of Single Neurons
	5.5.2 Pairwise comparison

	5.6 Results
	5.6.1 Classification Experiments
	5.6.2 Entropy-based Experiments
	5.6.3 Pairwise Comparison Experiments

	5.7 Final Remarks
	5.7.1 Insights and Limitations
	5.7.2 Further Directions

	6 Evolutionary Approaches for Adversarial Attacks
	6.1 Robustness and Adversarial Attacks
	6.2 Work Overview
	6.3 Experiments
	6.3.1 Vulnerability Detection Model
	6.3.2 Grammatical Evolution
	6.3.3 Evolutionary Runs
	6.3.4 Classification of Evolved Instances

	6.4 Discussion
	6.4.1 Threat Model
	6.4.2 Neural Fitness Functions: Further Perspectives

	7 Input Space Sampling and Decision Boundaries
	7.1 Introduction
	7.2 Methods
	7.2.1 The CuBERT Source Code Classifier

	7.3 Two-stage Evolutionary Search
	7.3.1 DSGE and Neural Fitness Functions
	7.3.2 Mutations and Fitness Variations

	7.4 Results
	7.4.1 Sampling the solution space
	7.4.2 Moving across decision boundaries
	7.4.3 Blind Spots and Salient Features

	7.5 Discussion

	8 Concept-based Explainability
	8.1 Motivations and Work Overview
	8.2 Approach Description
	8.2.1 Input instances and sub-concepts
	8.2.2 Activations space, linear SVCs and concept-based neural fitness function
	8.2.3 Sensitivity to sub-concepts

	8.3 Experiments
	8.3.1 Data Preparation and Fine-tuning
	8.3.2 Sub-concepts formulation
	8.3.3 SVCs and activations spaces
	8.3.4 Evolutionary search along sub-concepts directions
	8.3.5 Measuring sensitivity to sub-concepts

	8.4 Results
	8.5 Discussion and Final Remarks

	Closing Remarks
	9 Conclusions
	9.1 Outcomes Summary
	9.1.1 AST-based source code embedding
	9.1.2 Analysis of single internal neurons
	9.1.3 Evolving adversarial input instances
	9.1.4 Evolving along concept directions
	9.1.5 Salient features

	9.2 Further Research Directions
	9.2.1 ``Augmented'' programming
	9.2.2 Source code summarization

	Bibliography
	Colophon

