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In this paper we tackle the problem of constructing conforming Virtual Element spaces on
polygons with curved edges. Unlike previous VEM approaches for curvilinear elements,
the present construction ensures that the local VEM spaces contain all the polynomials

of a given degree, thus providing the full satisfaction of the patch test. Moreover, unlike
standard isoparametric FEM, the present approach allows to deal with curved edges at

an intermediate scale, between the small scale (treatable by homogenization) and the
bigger one (where a finer mesh would make the curve flatter and flatter) The proposed

method is supported by theoretical analysis and numerical tests.

1. Introduction

In this paper we tackle the problem of constructing conforming Virtual Element

spaces on polygons with curved edges. Apart from the obvious convenience in treat-

ing computational domains with curved boundaries with a better accuracy, the in-

terest in using polygons with curved edges could arise in various circumstances, as

when a singularity of the solution near the boundary is expected (e.g. in Fig. 1), or

in the presence of mixtures of different materials or rough boundaries (as in Fig. 2)

when we are still far from the homogenized limit, and so on.

The treatment of curved edges with nonconforming approximations (as in non-

conforming VEMs and HHO methods, see for instance 7 or 20) is relatively easier,
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since the traces of the elements of the Virtual Element spaces do not need to be

continuous at the endpoints of edges (and in particular at the endpoints of the

curved edges). Here instead we want to stick on conforming approximations, which

(as it is well known) have several advantages in various different circumstances.

In order to simplify the exposition we will limit ourselves, here, to the case of a

single curved edge per element, but the general philosophy can be easily applied to

the case of several curved edges.

Conforming Virtual Element spaces on polygons with curved edges, given in

parametric form, have already been introduced in 18, using, on the curved edges,

functions that are polynomials in the parameter t. Such an approach has several

advantages, including the simplicity of the definition and the adaptability to more

general situations. The drawback is that the local VEM spaces do not contain all

the polynomials of a given degree, and the patch test is not in general satisfied. An

extension that guarantees the presence of rigid body motions, thus suitable for solid

mechanics problems, was developed in 5. Instead, the present approach ensures that

the local VEM spaces contain all the polynomials of a given degree, thus providing

the full satisfaction of the patch test. Moreover here the result will not depend (apart

from round-off errors) from the choice of the parametrization of the curve.

For another different approach and use of Virtual Elements with curved edges

we refer also to 19, where the authors consider a polygonal approximation Ωh (with

straight edges) of the original domain Ω (with curved edges). The discrete solution

(say, uh) is originally defined in Ωh. But then a smart correction ũh (using a suitable

approximation of high order normal derivatives of uh) is introduced, and used to

define a problem in Ω (very much in the spirit of 21, and then 22, 23).

Another approach to deal with curved edges has been proposed in 2. This last

approach is very similar to the present one (although the two have been developed

independently). The (minor!) difference between the two treatments is tricky, and

we describe it in detail later on, in Remark 3.4: we anticipate here that the approach

of 2 is somehow simpler, while ours is safer (= less exposed to the possible damages

of round-off errors).

We also point out that more traditional ways of dealing with curved edges in

Finite Elements (typically, using iso-parametric elements) are based, on the one

hand, on the property that fixed curves tend to be (locally!) straight when the dis-

cretization gets finer and finer, and, on the other hand, on the fact that when the

discontinuities of the material (or the wiggles on the boundaries) occur on a very

small scale, then one can go for the homogenized limit. Here we want to be able to

work somewhat in between: when the scale is too big to use the homogenized limit,

but too small to be made locally flat. A numerical example in this direction will be

given in the last section.

In this presentation it will be convenient to treat different types of curved edges:

curved edges internal to the computational domain (typically, to be used in the

presence of two different materials separated by a curved interface), curved edges

belonging to a part of the boundary where Dirichlet conditions are imposed, and



April 21, 2020 17:40 WSPC/INSTRUCTION FILE Curved-egdes˙BBMR

3

Fig. 1: Taking into account a re-entrant corner

Fig. 2: Other decompositions

curved edges belonging to a part of the boundary where Neumann or Robin bound-

ary conditions are imposed.

We point out that we are ready to accept that an edge which a-priori is declared

to be curved might, by chance, be actually straight (or very very near to be straight).

On the other hand, there might be parts of the boundaries that are ”known to be

straight”, and these will be treated as straight from the very beginning. Hence, to

summarize, we will assume that there are: i) edges that are declared as ”straight”

(and must be straight), and ii) edges that are declared as ”curved” (and might be

either curved or straight).

The whole treatment here has been concentrated on simple linear elliptic equa-

tions in 2 dimensions. Needless to say, there is a lot of interesting work still to be

done, in order to extend it to more complex problems, much more interesting for
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applications. This, apart from the natural need to deal with the three-dimensional

case, includes obviously all the subjects where Virtual Elements proved already

to be a viable and useful discretization method, as for instance: linear elasticity

problems, 26, 6; incompressible and nearly incompressible materials, 3, 16, 15; plate

bending and more generally fourth order problems, 25, 4 31; electromagnetic prob-

lems 10 and wave propagation, 17, 28,17, and so on. Moreover, the use of elements

with curved boundary to deal with contact problems (already treated successfully

for VEM discretizations with straight edges e.g. in 29, 30) is a surely challenging

topic full of potential troubles and appealing perspectives.

Similarly, in mesh adaptation for dealing with singularity (as in 8), the use of

curved edges could also be very attractive.

On the other hand, more theoretical aspects could also be profitably extended,

as the use of H(div) and H(curl) elements (see e.g. 11), as well as applications to

problems with variable coefficients (as e.g.in 13), or the finer aspects of interpolation

errors (see 24, 14).

Finally, the Serendipity versions (see e.g. 12) of all these Virtual Element spaces

is possibly the most natural extension of the present work.

An outline of the paper is as follows. In Section 2, after recalling some basic

notation on polynomial spaces, we will present the model problem: essentially, the

simple linear elliptic problem −div(κ∇u) = f in a domain Ω, with Dirichlet bound-

ary conditions on one part of the boundary and Robin boundary condition on the

remaining part. We will also assume, for simplicity, that the material coefficient κ

is piece-wise constant, assuming one constant value in a sub-domain Ωi ⊂⊂ Ω and

another constant value in the remaining part. This trivially extends to the case of

several sobdomains Ωi, each with a different value of the coefficient κi. In Section 3

we will introduce the Virtual Element local spaces to be used in the sub-domains of

the decomposition. In Sections 4 and 5 we will then introduce the local and global

stiffness matrices, respectively. Finally, in Section 6 we will write the discretized

problem and present the corresponding error bounds in terms of the interpolation

errors that, in turn, will be discussed in Section 7. Finally, some (academic) numer-

ical experiments will be presented in Section 8.

2. The continuous problem

2.1. Notation

Throughout the paper, if d (= dimension) is an integer ≥ 1 and k is an integer,

Pk,d will denote the space of polynomials of degree ≤ k in d dimensions. As usual,

P−1,d = {0}. In practice, we will consider here only the cases d = 1 and d = 2. We

will denote by πdk the dimension of Pk in d dimensions, so that for k ≥ 0 we have

π1
k = k + 1 and π2

k = (k + 1)(k + 2)/2. (2.1)

In most cases, when no confusion can occur, we will just use πk instead of π2
k.
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If O is a domain in Rd and k is an integer, we will donote by Pk(O) the space of

the restrictions to O of the polynomials of Pk. With an abuse of notation, we will

often use simply Pk instead of Pk(O) when no confusion is likely to occur.

For a 1-d manifold Γ we denote by |Γ| its length. For an open set ω ⊂ R2 we

denote by |ω| its area.

Moreover, we will denote by Π0,O
k the orthogonal-projection operator, in L2(O),

onto Pk(O), defined, as usual, for every v ∈ L2(O), by

Π0,O
k (v) ∈ Pk(O) and

∫
O

(v −Π0,O
k (v)) qk dO = 0 ∀qk ∈ Pk(O). (2.2)

Finally, given a function ψ ∈ L2(O) and an integer s ≥ 0, we recall that the

moments of order ≤ s of ψ on O are defined as:∫
O
ψ qs dO for qs ∈ Ps(O). (2.3)

Hence to assign the moments of ψ up to the order s on O will amount to πds
conditions. Tipically this will be used when these moments are considered as degrees

of freedom. Then, we will take in Ps a basis {qi} such that ‖qi‖L1 ' 1 for all i.

Throughout the paper we will follow the common notation for scalar prod-

ucts, norms, and seminorms. In particular, (v, w)0,O (sometimes, just (v, w)0)

and ‖v‖0,O (sometimes, just ‖v‖0) will denote the L2 scalar product and norm,

|v|1,O (sometimes, just |v|1) and ‖v‖1,O (sometimes, just ‖v‖1) the H1 semi-norm

and norm.

2.2. The continuous problem

Let Ω be a bounded open subset of R2 with Lipschitz continuous boundary and

let Ωi be a subset of Ω, also with a Lipschitz continuous boundary, such that (for

simplicity) Ωi ⊂ Ω (implying in particular that ∂Ωi cannot touch ∂Ω). See Fig. 3.

Dirichlet Γ
D

Γ Robin

Γ Γ
DR

R

Ω
i

Fig. 3: A decomposition with curved edges

We will assume that the material properties in Ωi might be different from those
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in Ω \Ωi. With a suitable attention to regularity issues one could also easily treat

more general cases.

As already observed in the Introduction, we recall that both on ∂Ωi and on ∂Ω we

might have edges that are declared to be straight. In such a case it would be natural

to treat the corresponding element as a polygonal element. On the other hand, it

would be cumbersome to check, for every boundary edge, whether it is straight (or

very close to straight) or curved. Hence, we will assume that each boundary edge

belongs to one (and only one) of two distinct sets: the set of edges that we know

(from the very beginning) to be straight, and the set of edges that might be either

curved or straight or almost straight. All the edges (and the corresponding elements)

in each set will be treated in the same manner. This implies that our treatment of

curved edges should not fail if by chance the edge is straight or almost straight.

We consider the model problem
Find u ∈ H1(Ω) such that:

− div(κ∇u) = f in Ω,

u = gD on ΓD and (κ∇u) · n + ρu = gR on ΓR,

(2.4)

where

• κ assumes two constant values: κi in Ωi and κ0 in Ω \ Ωi, both > 0,

• ΓD and ΓN are open connected subsets of ∂Ω with |ΓD| > 0, ΓD∪ΓR = ∂Ω

and ΓD ∩ ΓR = ∅,
• f is given, say, in L2(Ω),

• gD is given, say, in H1(ΓD),

• gR is given, say, in L2(ΓD),

• ρ ≥ 0 is given in L∞(ΓR). Note that for ρ = 0 we are back to Neumann

boundary conditions.

It is very well known (and not difficult to see) that defining

H1
0,ΓD

:= {v ∈ H1(Ω) such that v = 0 on ΓD}, (2.5)

and

H1
gD,ΓD

:= {v ∈ H1(Ω) such that v = gD on ΓD}, (2.6)

the solution u of (2.4) coincides with the (unique) solution of the variational problem
find u ∈ H1

gD,ΓD
such that∫

Ω

κ∇u · ∇v dΩ +

∫
ΓR

ρ u v ds =

∫
Ω

f v dΩ +

∫
ΓR

gR v ds ∀v ∈ H1
0,ΓD

.
(2.7)

We also point out that, in a natural way, (2.7) also implies that the co-normal

derivative κ∇u · n is continuous across the boundary of Ωi.
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2.3. The decomposition

Let Th be a decomposition of Ω into ”polygons” P. For simplicity of exposition we

assume that each polygon P has at most one curved edge. We also assume that ∂Ωi
is all contained in the union of the ∂P (in other words: the decomposition respects

the discontinuities of κ). See Fig. 3.

In order to construct virtual element spaces suitable for the discretization of

(2.7) we observe that we should, a-priori, be prepared to distinguish among several

different types of elements in Th:

• {0} Polygons with straight edges. For them we are going to use classical

VEMs.

• {1} Elements with a curved edge shared with another element. For instance,

referring to Fig.3, the elements having a curved edge that belongs to ∂Ωi.

There are 8 of them in Fig. 4.

• {2} Elements that have a curved edge that belongs entirely to ΓD. There

are 8 of them in our Fig. 4.

• {3} Elements that have a curved edge that belongs entirely to ΓR. There

are 8 of them in our Fig. 4.

3

Dirichlet Γ
D

Γ Robin

Γ Γ
DR

R

1 1

1 1

1 1

1 1

2

2

2

2

2

2

3

3

3

3

3

3
2

23

Fig. 4: Types of elements with a curved edge

3. The local spaces

3.1. Subspaces on polygons with straight edges

We start by recalling the classical VEMs commonly used in polygonal decomposi-

tions. For a given integer k ≥ 1 we consider the trace space

Bk(∂P) := {v ∈ C0(∂P) such that v|e ∈ Pk(e) ∀ edge e ⊂ ∂P}. (3.1)

Then, for another integer k∆ with −1 ≤ k∆ ≤ k we consider the space:

Vk,k∆
(P) := {v such that v|∂P ∈ Bk(∂P), and ∆v ∈ Pk∆

(P)}. (3.2)
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The natural set of degrees of freedom for Vk,k∆(P) is given by (see e.g. 1)

• the values at each vertex of P,

• (for k ≥ 2) the values at the k− 1 Gauss-Lobatto points of each edge of P,

• (for k∆ ≥ 0) the moments of order ≤ k∆ inside P.

We point out that polygons having two or more consecutive edges that belong to

the same straight line are perfectly allowed, so that vertices and edges, here, do not

coincide with the naive idea that one might have when speaking of vertices and

edges of a polygon. See the example in Fig. 5.

RL

Fig. 5: The Left element has 5 vertices and edges; the Right element has 6 vertices

and edges.

Here, for simplicity, we will stick on the simplest case k∆ ≡ k − 2, which is the

original choice of 9. Hence, for k ≥ 1 we set

Vk(P) := Vk,k−2(P) (3.3)

and we have therefore the degrees of freedom:

- the values at each vertex of P,
- (for k ≥ 2) the values at the k − 1 Gauss-Lobatto points of each edge of P,
- (for k ≥ 2) the moments of order ≤ k − 2 inside P.

(3.4)

Remark 3.1. In previous works we used the bigger spaces (corresponding to k∆ =

k−1 or k∆ = k) as starting point for a Serendipity correction (see 12) that allowed to

end up with local VEM spaces smaller than the Vk defined in (3.3). Here however the

Serendipity procedure should be done in different ways for different types of elements

(according to our previous classification), and the presentation would become more

cumbersome.

3.2. Subspaces on elements with a curved edge not in ΓD

When dealing with elements P having a curved edge, we would like to follow the

same philosophy of the straight polygons. The main feature that we are not willing
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to give-up here is that the VEM space Vk(P) contains the polynomial space Pk(P).

As we already said twice, we are ready to accept that an edge which a-priori

could be curved (say, an edge in ∂Ωi or in ∂Ω) might, by chance, be straight.

However, in the present theoretical treatment we will assume, for simplicity, that

all the edges in ∂Ωi and in ∂Ω are declared as ”curved”, and all the other internal

edges are declared as ”straight”. We recall that, for simplicity of exposition, we also

assumed that each element has at most one curved edge.

To start with, we define therefore the space of traces on a curved edge as follows.

For a given integer k ≥ 1, on a given element P with a curved edge γ, we consider

the trace space

Bk(∂P) := {v ∈ C0(∂P) such that: v|e ∈ Pk(e)∀ straight edge e ⊂ ∂P,
and v|γ ≡ qk|γ for some qk ∈ Pk,2}. (3.5)

It is clear that:

the trace on ∂P of every polynomial of Pk,2 belongs to Bk(∂P).

Then, for every integer k ≥ 1 we can define (exactly as before)

Vk(P) := {v such that v|∂P ∈ Bk(∂P), and ∆v ∈ Pk−2(P)}. (3.6)

Here too it is easy to check that for every k ≥ 1 we have

Pk(P) ⊆ Vk(P). (3.7)

The delicate point comes from the choice of the degrees of freedom, treated in the

next subsection.

3.3. VEM spaces, degrees of freedom, and ”generators”

In Bk(∂P) it seems natural to start taking as degrees of freedom:

• The values of v at the vertices,

and for every straight edge e, and k ≥ 2:

• The values of v at the k − 1 Gauss-Lobatto points of e.

With that, we took care of the straight edges and of the values at the endpoints

of the curved edge. But already for k = 1 we need some additional information on

the edge γ declared as curved. Indeed, once we know the values of a polynomial in

Pk at two distinct points, we still need πk − 2 degrees of freedom to determine it

uniquely. This will be done by considering the values at πk−2 fictitious points, that

we call trace generator points (or, simply, tg points, or even tgp) located as in Fig. 6

(essentially: the points that would normally be used to place the degrees of freedom

for Pk on an ideal triangle having ”the segment joining the endpoints of the curved

edge” as base).
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k=3

Trace generator

k=1 k=2

Normal dof

Fig. 6: Normal degrees of freedom and trace generators for k = 1, 2, 3

We consider therefore the set of values:
• the values at each vertex of P,

for every straight edge e, and k ≥ 2

• the values at the k − 1 Gauss-Lobatto points of e,

• the values at the πk − 2 trace generator points of the curved edge.

(3.8)

We point out that the values indicated in (3.8) can identify uniquely an element

of Bk(∂P) but cannot be taken as degrees of freedom in the classical sense. Indeed,

it is very easy to see that on the curved edge γ:

• for every k ≥ 1, for every set of πk values (at the trace generators plus

the two endpoints), there exists, on γ, a unique function which is “the

restriction to γ of a polynomial qk in Pk which assumes the given πk values

at the πk points”.

• However, depending on the shape of γ, there might be several different qk’s

that have the same restriction to γ (see the example here below).

Indeed, already for k = 1, if γ is a straight segment (a case that we do not want to

forbid!) the restriction of a polynomial of degree ≤ 1 to γ will depend only on the

values of the polynomial at the endpoints (= vertices of P) and not on its value at

the trace generator. So we will have one tgp plus two endpoints, but the dimension

of the space of their restrictions to γ will be only 2.

Summarizing: an element v ∈ Vk(P) could be identified by

- the values at each vertex of P,
for every straight edge e, and k ≥ 2

- the values at the k − 1 Gauss-Lobatto points of e,

- the values at the trace generator points of the curved edge γ,

- (for k ≥ 2) the moments of order ≤ k − 2 inside P.

(3.9)

However, such an identification will not be injective, as different sets of the above

parameters (3.9) might generate the same element of Vk(P). Hence it is a natural
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choice not to call them degrees of freedom, and for the quantities (3.9) we are going

to stick instead to the name generator values, or simply generators.

All this might induce a certain amount of confusion: not really in the proofs (as

we shall see), and even less in the code (once you know what has to be done). But

the description of the method might easily become confused. Indeed, our trial and

test variables will have two faces. We must consider

• The set of generators (3.9): this is inevitably the only thing that will be

seen in the code. We will indicate them (both locally and globally) with

small capital letters: u, v, w, etc.

• To each set of generators we attach a function that leaves in one of our VEM

spaces. These functions will be indicated by û, v̂, ŵ, etc. (or, sometimes,

even by u, v, or w), respectively.

Occasionally it will also be convenient to introduce

G{Vk(P)} := the set of generators of Vk(P) (3.10)

that obviously coincides with RNP
k , where NPk is the dimension of the space of

generators of Vk(P).

Remark 3.2. It has to be pointed out that for each set of generators (say, v)

we have a unique associated function v̂, but the converse is not true, as we have

seen. Indeed, there might be sets of generators v 6= 0 whose associated function

v̂ is identically zero. In such a case the space of generators G{Vk(P)} would have

a dimension bigger than that of the functional space Vk(P). The unknown solu-

tion of the discretized problem, in the computer code, will be a set of generators

uh ∈ G{Vk(P)}. This uh will identify uniquely an element ûh of our VEM space,

corresponding to what, in almost all papers on numerical methods for PDE’s, would

be denoted by uh.

Remark 3.3. We observe that, whenever a function v ∈ Vk(P) is a polynomial, it

is always possible to associate with it a set of generators v ∈ G{Vk(P)}, defined

through (3.9). We denote this by

v = Gv v ∈ Pk(P). (3.11)

We underline the fact that the operator G is not defined on the whole space Vk(P),

but only on Pk(P) ⊆ Vk(P). In particular, having a generic function v ∈ Vk(P), in

order to reconstruct a set of generators v such that v̂ ≡ v we must prescribe the

values of v at the trace generator points (obviously, among those that generate the

right value of v on γ).

Remark 3.4. At this point we are able to detail in a more precise way the difference

between the present approach and that in 2. Indeed, here (as we have seen) we are

going to keep the idle generators together with the ”working ones”, while in 2

the idle generators (identified, roughly speaking, as the ones whose trace on the
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curved edge is too small) are just eliminated from the set of unknowns. Clearly

this is done after a suitable change of basis has been performed in the space of

trace generators. We acknowledge the fact that this makes the whole presentation,

and partly the code as well, much simpler than our approach. On the other hand

we think that the decision on ”how lazy a trace generator has to be, in order to

justify its elimination” could become delicate, and potentially giving rise to some

instabilities in the borderline cases. All considered we believe that having both

possibilities at hand could be good for the scientific community.

3.4. Elements with one edge in ΓD

When P is an element with one curved edge γ in ΓD we proceed in a different way.

For every function ψ ∈ H1(γ) (including the cases ψ = 0, and ψ = gD) we define

Vk,ψ(P) as follows.

Vk,ψ(P) := {v ∈ C0(P) such that v|γ =ψ, v|e∈Pk(e) on edges e 6=γ,

and ∆v ∈ Pk−2(P)}.
(3.12)

Clearly, once ψ has been given, in order to identify an element of Vk,ψ(P) we must

prescribe, in addition to the knowledge of ψ,

- the values at each vertex of P not on γ,

for every straight edge e, and k ≥ 2

- the values at the k − 1 Gauss-Lobatto points of e,

- (for k ≥ 2) the moments of order ≤ k − 2 inside P.

(3.13)

Note that, in this case, we could actually use the term degrees of freedom. Indeed,

once ψ has been fixed, the mapping from the above quantities to the elements of

Vk,ψ(P) is injective. Note also that for a general ψ the affine manifold Vk,ψ(P) will

fail to contain all polynomials of Pk, but whenever ψ is the trace of a polynomial

pk ∈ Pk then such a pk will belong to Vk,ψ(P) (so that the patch-test will not be

jeopardized).

For homogeneity of notation, here too we will consider the set of generators

G{Vk,ψ(P)} as in (3.10), although this, obviously, for ψ 6≡ 0 will not be a linear

space, but only an affine manifold.

4. The local VEM stiffness matrices

We define for u and v in H1(Ω)

aP(u, v) :=

∫
P
κ∇u · ∇v dΩ ∀P ∈ Th and a(u, v) :=

∑
P
aP(u, v), (4.1)

and observe that, obviously, for all u and v in H1(Ω), setting κ∗ = max{κi, κ0},
and κ∗ = min{κi, κ0} we have

aP(u, v) ≤ κ|P‖u‖1,P ‖v‖1,P , and a(u, v) ≤ κ∗‖u‖1,Ω ‖v‖1,Ω, (4.2)
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as well as (using Poincaré’s inequality)

a(v, v) ≥ C∗κ∗‖v‖21,Ω ∀v ∈ H1
0,ΓD

. (4.3)

In this section we will construct for each element P a bilinear form aPh (u,v), de-

fined on generators of VEM spaces, to be used to approximate the continuous

bilinear form aP . Then, as done for Finite Elements, we will define the global virtual

element spaces, the global bilinear forms, and the global right-hand sides summing

the contributions of the single elements.

4.1. The Π∇
k projection operator

Our first, fundamental, item will be (as common for Virtual Elements) the con-

struction of the Π∇k projection operator. Given an element P and a function v in

H1(P), we construct a polynomial Π∇k v in Pk(P) defined by


∫
P
∇Π∇k v · ∇qk dP =

∫
P
∇v · ∇qk dP ∀qk ∈ Pk,∫

∂P
Π∇k v ds =

∫
∂P

v ds.

(4.4)

We point out that for a v ∈ Vk(P) (or in Vk,g(P) for some g ∈ H1(ΓD)) all the

terms appearing in (4.4) are actually computable (for all types of elements (3.3),

(3.6), and (3.12)) from the knowledge of the degrees of freedom (or of the generators)

(3.4), or (3.9), or (3.13), respectively. Indeed, we first note that both left-hand sides

of (4.4) are integrals of polynomials over P or ∂P, respectively . The right-hand

side of the second equation in (4.4) is also computable, since v is known on ∂P
(being either a polynomial, or the trace of a polynomial, or equal to g). Finally, the

right-hand side of the first equation is∫
P
∇v · ∇qkdP = −

∫
P
v∆qkdP +

∫
∂P

v (∇qk · n)ds; (4.5)

the first term in the right-hand side of (4.5) is made of moments of v of order k− 2

on P (and hence computable from the ”degrees of freedom” of v), and the second

term is also computable since v is either a polynomial, or a trace of a polynomial,

or equal to g on ∂P.

Once we defined the projection Π∇k , and checked that it is computable, in prac-

tice, for every v ∈ Vk(P), we can extend it, in the obvious way, to an element v in

G{Vk(P)} by setting

Π∇k v := Π∇k v̂. (4.6)

Then we can follow the usual track of Virtual Elements, setting, for u and v in

G{Vk(P)}:

aPh (u,v) :=

∫
P
κ∇Π∇k u · ∇Π∇k v dP + SP((I− GΠ∇k )u, (I− GΠ∇k )v) (4.7)
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where I is the identity operator, G has been defined in (3.11), and, as usual in VEM

formulations, SP is a symmetric positive semi-definite bilinear form such that there

exists a positive constant α∗, independent of h, with

α∗a
P(v̂, v̂) ≤ aPh (v,v) ∀v ∈ G{Vk(P)}. (4.8)

We immediately point out that, independently of the choice of SP , we will always

have the consistency property

aPh (Gpk,v) = aP(pk,Π
∇
k v̂) ≡ aP(pk, v̂) ∀pk ∈ Pk, ∀v ∈ G{Vk(P)}. (4.9)

Coming now to the choice of SP , we note that there are many guidelines available

in the VEM literature in order to construct a stabilizing bilinear form SP . Here,

however, we must distinguish between bilinear forms that one could apply to generic

elements v of the VEM space Vk(P), and bilinear forms that can also be applied to

the generators v ∈ G{Vk(P)}. An example of the first case is the rather common

SP(u, v) := h−1
P κ|P

∫
∂P

u vd` (4.10)

where hP is, say, the diameter of P. An example of the second is the (equally classic)

SP(u,v) := κ|P
∑
i

δi(u)δi(v), (4.11)

where

• each δi(v) is the i-th term of the generator v,

• the sum is extended to all of them.

However, a choice like (4.10) cannot be used here: indeed, with this choice a v

having v̂ ≡ 0 would not be stabilized, and (4.8) would not hold. Hence, we will

assume here that the stabilizing term SP(u,v) has exactly the form (4.11). In this

case, under suitable assumptions on the mesh, that will be discussed in Sect. 7,

(4.8) will always hold. At the same time, we also have, with the notation (2.2),

aPh (v,v) + ‖Π0,P
0 v̂‖20,P ≥ σ1

∑
i

(δi(v))2 (4.12)

for some constant σ1 > 0 independent of h.

Remark 4.1. We note that (4.8) does not need to hold separately in each element.

We just need that the sum (over all the elements P in Th) satisfies the analogue

of (4.8). Actually, it is clear that by applying the stabilization in each element the

degrees of freedom common to two or more elements would be ”stabilized more

than once”. This, in general, does not affect the quality of the results, and coding is

easier. However, as we shall see in more detail in Sec. 7.1, in some cases (typically

when a curved edge separates two elements where κ assumes very different values)

stabilizing only once is the right choice in order to preserve accuracy.
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Remark 4.2. We recall that the classical stability condition for VEM stiffness

matrices would be: there exist two positive constants α∗ and α∗ such that

α∗a
P(v, v) ≤ aPh (v, v) ≤ α∗aP(v, v) ∀ v ∈ Vk(P). (4.13)

With the present notation this would be

α∗a
P(v̂, v̂) ≤ aPh (v,v) ≤ α∗aP(v̂, v̂) ∀v ∈ G{Vk(P)}. (4.14)

However, there are cases where the second inequality in (4.14) would be very dif-

ficult, if not definitely impossible, to obtain. This could happen in the presence of

idle generators. For instance, when γ is straight there will be generators v (cor-

responding to trace generator points ”attached to γ but not belonging to γ”) such

that v̂ is identically zero on γ (and then in the whole P), producing in (4.14) a

left-hand side and a right-hand side both equal to zero. If these dof’s were not sta-

bilized, the final stiffness matrix would end up being singular, but stabilizing them

(for example as in (4.11)) would make the right inequality in (4.14) impossible.

5. The global spaces and the global ah

5.1. Approximations of H1
0,ΓD

and H1
gD,ΓD

We shall first design the global space and the global affine manifold to be used as

approximations of H1
0,ΓD

and H1
gD,ΓD

(respectively) in order to discretize (2.7).

For this, we define first, for every function ψ ∈ H1(ΓD):

Vk,ψ(Ω) := {v ∈ C0(Ω) such that v|P ∈ Vk(P) ∀P ∈ Th without edges in ΓD

and v|P ∈ Vk,ψ(P) ∀P ∈ Th with an edge in ΓD}, (5.1)

(where Vk,ψ(P) has been defined in (3.12)) and we observe that, for ψ = 0, Vk,0(Ω)

is a linear space. The generators for Vk,ψ(Ω) will be:

• The values at the vertices in Ω ∪ ΓR. One unknown per each such vertex.

Remember that ΓR is an open subset of ∂Ω, so that the points belonging

to the closure of ΓD are excluded.

• (for k ≥ 2) The values at the k − 1 Gauss-Lobatto points of each straight

edge internal to Ω or in ΓR. Hence k − 1 additional unknowns for each

such edge.

• The values at the trace generator points of each curved edge, on ∂Ωi and

on ΓR. These are πk − 2 for each such edge.

• (for k ≥ 2) The moments of order ≤ k − 2 internal to each element (πk−2

unknowns per each element).

Here too we have that a generator v, together with a function ψ in H1(ΓD), will

identify uniquely an element in Vk,ψ(P), but the converse will not be true.

As common in the Finite Element codes, the affine manifold Vk,gD could be

constructed as

Vk,gD (Ω) := gD + Vk,0(Ω) (5.2)
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where gD is a fixed element of Vk,gD suitably constructed. Typically, gD is the

element in Vk,gD that in each P has all the degrees of freedom (3.13) equal to zero.

Here, for simplicity, we will treat every edge e in ΓD as if it was a curved edge.

Indeed, as we already pointed out several times, we want our approach to accept

straight boundary edges as particular cases of the curved ones, in particular since

we do not want to enter the details of edges that are only slightly curved. Needless

to say, if a whole part of ΓD (or even the whole ΓD) is known to be straight, then

the corresponding elements will be treated as normal polygons.

5.2. Approximation of bilinear forms and right-hand sides

We are now ready to write the global quantities. For any function ψ ∈ H1(ΓD), and

for every u and v in G{Vk,ψ(Ω)}, we set

ah(u,v) =
∑
P∈Th

aPh (u,v) (5.3)

where aPh has been defined in (4.7). The boundary integrals∫
ΓR

ρ û v̂d`, and

∫
ΓR

gRv̂d` (5.4)

are not a difficulty for û and v̂ in Vk,ψ(Ω). Clearly from (4.8) we immediately have

α∗a(v̂, v̂) ≤ ah(v,v) ∀v ∈ G{Vk,0(Ω)}. (5.5)

In order to have some upper bound (similar to that in (4.14)) to be used to prove

error estimates, we define a new norm

‖v‖1,S := (ah(v,v))1/2. (5.6)

This allows us to re-write the stability (5.5) as

α∗a(v̂, v̂) ≤ ah(v,v) ≡ ‖v‖21,S ∀v ∈ G{Vk,0(Ω)}. (5.7)

We also note that, naturally,

ah(u,v) ≤ ‖u‖1,S ‖v‖1,S ∀u,v ∈ G{Vk,0(Ω)}. (5.8)

Summing (4.12) over the elements, we have

ah(v,v) +
∑
P∈Th

‖Π0,P
0 v̂‖20,P ≥ σ1

∑
i

(δi(v))2 ∀v ∈ G{Vk,0(Ω)} (5.9)

where now the sum is extended to all indices i in G{Vk,0(Ω)}. In turn, using the

properties of projection operators and Poincaré inequality one has∑
P∈Th

‖Π0,P
0 v̂‖20,P ≤ ‖v̂‖20,Ω ≤ C a(v̂, v̂) ∀v ∈ G{Vk,0(Ω)} (5.10)

for some constant C independent of h. Combining (5.9), (5.10), and (5.7) gives then

ah(v,v) ≥ σ2

∑
i

(δi(v))2 ∀v ∈ G{Vk,0(Ω)} (5.11)
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for some constant σ2 independent of h.

Next, on every element P, let v̂ be the unique function associated with the set

of generators v. We define

TP v̂ :=

Π∇1 v̂ for k = 1

Π0,P
k−2v̂ for k ≥ 2

(5.12)

and

Tv ≡ T v̂ := {TP v̂ in every P ∈ Th}. (5.13)

Then we set

< fh,v >:=

∫
Ω

f T v̂ dΩ ≡ (f, T v̂)0, (5.14)

and finally,

< gR,v >:=

∫
ΓR

gR v̂ d`. (5.15)

6. The discretized problem

We can now write the discretized version of problem (2.7):


find uh ∈ G{Vk,gD} such that

ah(uh,v) +

∫
ΓR

ρ ûh v̂ ds =< fh,v > + < gR,v > ∀v ∈ G{Vk,0}.
(6.1)

We point out that whenever the exact solution u is in Pk(Ω), the solution uh of

(6.1) will satisfy ûh ≡ u, so that the patch-test of order k will hold true.

6.1. Error estimates

We have the following error estimates.

Theorem 6.1. In the above assumptions, problem (6.1) has a unique solution uh.

Moreover, there exists a constant C, depending only on the value of α∗ in (5.7) and

on the data ρ, κ0 and κi, such that: if u is the solution of (2.7), then for every uI
in G{Vk,gD} and for every uπ elementwise in Pk(P) we have

‖u− ûh‖1 ≤ C
(
‖uπ − uI‖1,S + ‖u− uπ‖1,h + ‖u− ûI‖1 + E1(f)

)
(6.2)

where uπ = Guπ (see (3.11)), ‖ · ‖1,h is the H1-broken norm, and E1(f) is given by

E1(f) := sup
v∈G{Vk,0}

(f, v̂)− < fh,v >

‖v̂‖1
≡ sup

v̂∈Vk,0

(f, v̂− T v̂)0

‖v̂‖1
. (6.3)
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Proof. Uniqueness is an immediate consequence of (5.11). Let then uh be the

solution of (6.1) and let uI be an element of G{Vk,gD (Ω)}. We set

Θ := uh − uI , (6.4)

and we recall that

Θ ∈ G{Vk,0} while Θ̂ ∈ H1
0,ΓD

, (6.5)

implying in particular, from (4.3) and (5.7),

‖Θ̂‖21 ≤ C a(Θ̂, Θ̂) ≤ C‖Θ‖21,S . (6.6)

To simplify the notation (and make it similar to more classical ones) we also set

uh := ûh, uI := ûI , θ := Θ̂ and [v, w]ΓR
:=

∫
ΓR

ρ v w ds. (6.7)

We point out in advance that, since uπ is piecewise in Pk, from (4.9) we have

ah(uπ,Θ) =
∑
P
aP(uπ, θ). (6.8)

Moreover, using classical trace theorems and then (6.6), there exists a constant C,

independent of h, such that for all v ∈ G{Vk,0}

‖v̂‖0,ΓR
≤ C‖v̂‖1 ≤ C‖v‖1,S . (6.9)

Then we proceed using (successively): (5.6),(6.4); rearranging terms; (6.1) and ±uπ;

(6.8); (5.14), ±u (twice) and (4.1); rearranging; (2.7); (6.3), (5.8), (4.2); finally (6.6)

and (6.9). We get:

‖Θ‖21,S = ah(Θ,Θ) ≤ ah(Θ,Θ)+ [θ, θ]ΓR
=ah(uh,Θ)− ah(uI ,Θ) + [uh, θ]ΓR

− [uI , θ]ΓR

=ah(uh,Θ) + [uh, θ]ΓR
− ah(uI ,Θ)− [uI , θ]ΓR

= < fh,Θ >+< gR, θ >−ah(uI − uπ,Θ)− ah(uπ,Θ)− [uI , θ]ΓR

=< fh,Θ > +< gR, θ >−ah(uI − uπ,Θ)−
∑
P
aP(uπ, θ)− [uI , θ]ΓR

= (f, Tθ)0+< gR, θ >−ah(uI − uπ,Θ)−
∑
P
aP(uπ − u, θ)

− a(u, θ)− [uI − u, θ]ΓR
− [u, θ]ΓR

= (f, Tθ)0+< gR, θ >−a(u, θ)− [u, θ]ΓR
−ah(uI − uπ,Θ)−

∑
P
aP(uπ − u, θ)

− [uI − u, θ]ΓR

= (f, Tθ − θ)0− ah(uI − uπ,Θ)−
∑
P
aP(uπ − u, θ)− [uI − u, θ]ΓR

≤ C
(
E1(f)‖θ‖1 + ‖uI − uπ‖1,S‖Θ‖1,S + ‖u− uπ‖1,h‖θ‖1 + ‖uI − u‖0,ΓR

‖θ‖0,ΓR

)
≤ C

(
E1(f) + ‖uI − uπ‖1,S + ‖u− uπ‖1,h + ‖uI − u‖1

)
‖Θ‖1,S .
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Thus,

‖uh − uI‖1,S ≤ C
(
E1(f) + ‖uI − uπ‖1,S + ‖u− uπ‖1,h + ‖uI − u‖1

)
.

The result follows by the triangle inequality.

6.2. Comments on the implementation

In Sect. 8 we will present various numerical results showing robustness of the present

approach. Here we will just give some information on a possible way of treating non-

homogeneous Dirichlet boundary conditions. From (5.2) we see that the solution of

(6.1) splits as

uh = u0
h + gD,

with u0
h ∈ G{Vk,0}. Consequently, the bilinear form ah splits into

ah(u0
h,v) + ah(gD,v), v ∈ G{Vk,0}.

The second term is zero on all the elements except on elements P having an edge

on ΓD. On one such an element we have from definition (4.7)

aPh (gD,v) =:=

∫
P
κ∇Π∇k gD · ∇Π∇k v dP + SP((I− GΠ∇k )gD, (I− GΠ∇k )v).

The first term is easily computed, using definition (4.4), that gives∫
P
∇Π∇k gD · ∇qk dP = −

∫
P
gD∆qk dP +

∫
∂P

gD(∇qk · n)ds = 0 +

∫
γ

g(∇qk · n)ds.

Once the polynomial Π∇k gD as been computed, the second term is trivial. With this

approach, the discrete problem can be rewritten as
find u0

h ∈ G{Vk,0} such that

ah(u0
h,v) +

∫
ΓR

ρ û
0
h v̂ ds =< fh,v > + < gR,v > −ah(gD,v) ∀v ∈ G{Vk,0}.

7. Interpolation estimates

Looking at Theorem 6.1 we see that in order to get the final error estimate in the

usual terms of powers of h and regularity of the solution we need to choose uI and

uπ and then estimate (for them) the quantities

‖u− uπ‖1,h, ‖u− uI‖1 ‖uπ − uI‖1,S , and E1(f). (7.1)

As we shall see, the first two terms and the last one in (7.1) could be treated in

a reasonably standard way. The third, however, poses some problems, as the norm

‖ · ‖1,S takes into account the choice of the stabilization, and, as we shall see, care

has to be taken in order to choose a uI and a uπ that make the third term small

without affecting the accuracy of the other two.

We make the following mesh assumptions.
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A) The boundary of each element P is piecewise C1. Moreover, we assume the

existence of a positive constant χ such that all elements P of the mesh are

star-shaped with respect to a ball BP of radius ξ.P ≥ χhP (where, as usual,

hP is the diameter of P).

B) There exists a positive constant χ1 such that the length of each edge of P
is ≥ χ1hP .

7.1. More details on the stabilization

Before going to the study of the interpolation errors we must spend some more

attention to the choice of the stabilization term (that enters in the definition of the

‖ · ‖1,S norm). For simplicity we will only deal with elements with a curved edge,

since the case of polygonal elements has already been treated in 14, 24.

Moreover, always for simplicity, we fix our attention on the dofi-dofi stabilization

(4.11). Under our assumptions on the mesh the validity of (4.8), that is, estimates

from below, can be easily proved with the techniques used in 14, 24. Therefore we

only have to deal with estimates from above.

We already pointed out in Remark 4.1 that the degrees of freedom shared by

two (or more) elements do not need to be stabilized in each element, but only once

(in either one of the elements).

We also pointed out, in Remark 4.2, that troubles may arise only when con-

sidering the tgp associated with curved edges that separate two elements having

a (quite) different material coefficient κ. Indeed, as we shall see in a little while,

when a curved edge separates two elements (say, P and P ′) such that the exact

solution u is globally regular on P ∪ P ′ the estimate can be performed following

classical arguments. However, in the presence of a jump in the coefficient κ, the

exact solution will have a jump in the normal derivative at the interface, so that its

global regularity on P ∪ γ ∪ P ′ cannot be better than H3/2−ε with ε > 0. Indeed,

as the tgp attached to the curved interface γ, seen from P and from P ′, are the

same, then the value of uI (to be chosen) in a tgp cannot be close, at the same

time, to the value of u in one element and to a smooth extension of the values that

u assumes in the other element, and this is the reason why we must stabilize the

tgp of the interface γ only once.

Hence, for every curved edge γ that separates two elements P and P ′ having a

different value of κ we choose, once and for all, one of the two elements (say, P) and

we consider the values of the tgp, in the dofi-dofi stabilization, only when dealing

with the element P. In the description below, we will assume, to simplify the exposi-

tion, that the element P chosen for the stabilization is the one that contains ”more

tg points”, and that when considering the values of u at tg points not belonging to

P we will actually consider a smooth extension of u|P . Note that this extension is

done just when proving estimates, and (obviously) not in the code.
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7.2. Construction of uI and uπ - Standard case

For the sake of clarity, we will first discuss the simpler case where either

• the curved edge γ belongs to ∂Ω

or

• γ is internal to Ω but the material coefficient κ varies smoothly from one

element to the other.

As we have said already, in such cases we don’t have to worry about the effects

of the stabilizing terms, and we might assume that (for simplicity) the stabilization

is done, independently, in each of the two elements. In this case (that we denoted

as Standard Case) we proceed as follows. We set:

P̃ := P ∪ γ ∪ P ′

when the curved edge γ is shared by two elements, and

P̃ := P

otherwise. We note that, always in the standard case, the exact solution u will be

smooth in P̃. Then we take a polynomial qk living on P̃ such that qk(ν) = u(ν) at

the two endpoint of γ and

‖u− qk‖r,P̃ ≤ Ch
t−r
P̃
|u|t,P for all real numbers 0 ≤ r ≤ t ≤ k + 1 and t > 1. (7.2)

Due to assumption A it can be checked that such polynomial exists. Then we take,

in both elements P and P ′

uπ ≡ qk, (7.3)

and this, using (3.11), defines uπ as Guπ.

The local interpolant uI , defined through its generators uI , will be constructed

separately in P and P ′. We will describe its construction in P, and estimate u−uI
in P. The construction and the estimate in P ′ are done exactly in the same way.

We take uI(ν) = u(ν) for all points ν that correspond to a vertex of P or to a

Gauss-Lobatto node of a straight edge of P, and

uI |γ = qk|γ . (7.4)

Inside P we require ∆uI = Π0
k−2(∆u). This defines a uI as an element of Vk(P).

In view of Remark 3.3, in order to define uI we only need to prescribe its values at

the tgp:

uI(ν) = qk(ν) at all the tgp of the curved edge γ. (7.5)

Now we have to prove the interpolation estimate. In the following C will denote

as usual a generic constant, uniform in the mesh size and shape, that can possibly

change at each occurrence. In what follows all the Sobolev norms on ∂P are, as

usual, defined with respect to the arclength parametrization.
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Before delving into the interpolation proofs, we need to introduce some definition

and two simple technical lemmas. Let the scaled norms (for all 0 ≤ ε < 1/2)

|||v|||1/2+ε,∂P = h
−1/2−ε
P ‖v‖0,∂P + |v|1/2+ε,∂P

|||v|||1+ε,P = h−1−ε
P ‖v‖0,P + |v|1+ε,P .

(7.6)

Under the hypothesis A, following Lemma 3.3 in 18, for every element P one can

build a W 1,∞ mapping FP from BP into P, with inverse F−1
P also in W 1,∞, in such

a way that the W 1,∞ norm of FP and F−1
P are uniformly bounded independently

of P.

Lemma 7.1. Let assumption A hold. Then there exists a uniform constant C such

that (for all elements P)

|v|1,P ≤ C|v|1/2,∂P ∀v ∈ H1(P) with ∆v = 0 ,

|||v|||1,P ≤ C|||v|||1/2,∂P ∀v ∈ H1(P) with ∆v = 0 .
(7.7)

Proof. Given any v ∈ H1(P) with ∆v = 0, we denote by ṽ the only function in

H1(BP) with ∆ṽ = 0 and such that ṽ = v ◦FP on ∂BP . We recall that the map FP
and its inverse are uniformly in W 1,∞. First using that v is harmonic in P (and thus

minimizes the H1 semi-norm among all H1 functions with same boundary values),

then recalling that ṽ is harmonic in BP , the first bound in (7.7) follows:

|v|1,P ≤ |ṽ ◦ F−1
P |1,P ≤ C|ṽ|1,BP ≤ C|ṽ|1/2,∂BP

= C|v ◦ FP |1/2,∂BP ≤ C|v|1/2,∂P .
(7.8)

It is well known, see for instance 27, that for all Lipschitz domains ω (and thus in

particular for any ball) there exists a constant C such that ‖w‖0,ω ≤ C(|w|1,ω +

‖w‖0,∂ω) for all w in H1(ω). By a standard scaling argument with the unitary ball,

the previous result immediately yields (for any element P)

ξ−1
.P ‖w‖0,BP ≤ C(|w|1,BP + ξ−1/2

.P ‖w‖0,∂BP ) ∀w ∈ H1(BP) (7.9)

with C independent of P. By mapping to the ball, applying result (7.9) and mapping

back to P (we also recall that ξ.P ∼ hP) we obtain

h−1
P ‖v‖0,P ≤ ξ

−1
.P ‖v ◦ F−1

P ‖0,BP ≤ C(|v ◦ F−1
P |1,BP + ξ−1/2

.P ‖v ◦ F−1
P ‖0,∂BP )

≤ C(|v|1,P + h
−1/2
P ‖v‖0,∂P).

(7.10)

The second bound in (7.7) follows from (7.6), (7.10) and (7.8).

Lemma 7.2. Let assumption A hold. Then there exists a uniform constant C such

that (for all elements P)

‖v‖0,P ≤ C
(
hP |v|1,P +

∣∣∣ ∫
∂P

v
∣∣∣) ∀v ∈ H1(P). (7.11)
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Proof. We observe first that under our mesh assumptions it holds

‖ϕ‖0,P ≤ C
∣∣∣ ∫
∂P

ϕ
∣∣∣ ∀ϕ constant. (7.12)

Indeed:

‖ϕ‖20,P = |P|ϕ2 =
|P |
|∂P|2

(∫
∂P

ϕ
)2

≤ C
(∫

∂P
ϕ
)2

,

with C independent of hP . For v ∈ H1(P), let v be its average on P. By standard

approximation properties and (7.12) we have

‖v‖0,P ≤ ‖v − v‖0,P + ‖v ‖0,P ≤ C
(
hP |v|1,P +

∣∣∣ ∫
∂P

v
∣∣∣). (7.13)

Next, by adding and subtracting v and the usual argument mapping “to and from”

the ball BP combined with a scaled trace inequality on the ball, we can easily derive∣∣∣ ∫
∂P

v
∣∣∣ ≤ ∣∣∣ ∫

∂P
(v − v)

∣∣∣+
∣∣∣ ∫
∂P

v
∣∣∣ ≤ Ch1/2

P ‖v − v‖0,∂P +
∣∣∣ ∫
∂P

v
∣∣∣

≤ Ch1/2
P

(
h
−1/2
P ‖v − v‖0,P + h

1/2
P |v|1,P

)
+
∣∣∣ ∫
∂P

v
∣∣∣

≤ ChP |v|1,P +
∣∣∣ ∫
∂P

v
∣∣∣.

(7.14)

Inserting (7.14) in (7.13) gives the result.

Corollary 7.3. An obvious consequence of (7.11) is the Poincaré-type inequality

‖v‖0,P ≤ ChP |v|1,P ∀v ∈ H1(P) with

∫
∂P

v = 0. (7.15)

Proposition 7.4. Let assumption A hold. Then there exists a positive constant C

such that for all P ∈ Th and any function u ∈ Hs(P), s ≥ 2, it holds

|u− uI |1,P ≤ Chs−1
P |u|s,P . (7.16)

Proof. In the following we assume that s is integer, as the general bound can then

be immediately obtained by using classical results of space interpolation theory. As a

consequence of the properties of the map FP , by mapping to BP , applying standard

estimates and finally mapping back, one can easily obtain (for all 0 ≤ ε < 1/2)

|||v|||1/2+ε,∂P ≤ C|||v|||1+ε,P ∀v ∈ H1+ε(P) . (7.17)

Let now n denote the outward unit normal to P and let γ be the curved edge of P.

For any ϕ ∈ H(div;P) we easily have, also using the second bound in (7.7), and an

integration by parts

|||ϕ · n|||−1/2,∂P := sup
w∈H1/2(∂P)

< ϕ · n, w >

|||w|||1/2,∂P
= sup
v∈H1(P),∆v=0

< ϕ · n, v|∂P >
|||v|∂P |||1/2,∂P

≤ C sup
v∈H1(P),∆v=0

< ϕ · n, v|∂P >
|||v|||1,P

= C sup
v∈H1(P),∆v=0

∫
P ϕ · ∇v +

∫
P v(divϕ)

|||v|||1,P
,
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where (here and in the sequel) the brackets denote a duality on the boundary of

P. Therefore, Cauchy-Schwarz inequality and (7.6) (h−1
P ‖v‖0,P ≤ |||v|||1,P) yield the

uniform bound

|||ϕ · n|||−1/2,∂P ≤ C
(
‖ϕ‖0,P + hP‖divϕ‖0,P

)
. (7.18)

We can now estimate the interpolation error. Let the constant c be equal to the

average of u− uI on ∂P. First by integrating by parts, then recalling the definition

of uI , we obtain

|u− uI |21,P =

∫
P
∇(u− uI) · ∇(u− uI − c)

= −
∫
P

(u− uI − c)∆(u− uI)+ < ∇(u− uI) · n, u− uI − c >

≤ C‖u− uI − c‖0,P‖∆u−Π0
k−2(∆u)‖0,P

+ |||∇(u− uI) · n|||−1/2,∂P |||u− uI − c|||1/2,∂P =: I + II.

Standard approximation estimates on star-shaped domains give

I ≤ Chs−1
P |u− uI |1,P |∆u|s−2,P ≤ Chs−1

P |u− uI |1,P |u|s,P , (7.19)

while bound (7.18), and using again the definition of uI , yields

II ≤ C
(
|u− uI |1,P + hP‖∆(u− uI)‖0,P

)
|||u− uI − c|||1/2,∂P

≤ C
(
|u− uI |1,P + hs−1

P |u|s,P
)
|||u− uI − c|||1/2,∂P .

(7.20)

It is now easy to check by some simple algebra that the proof is concluded provided

we can show the boundary approximation estimate

|||u− uI − c|||1/2,∂P ≤ Chs−1
P |u|s,P . (7.21)

First by definition, then by a one dimensional Poincaré inequality (from L2 into

H1/2, recalling that c is the average of u− uI on ∂P) we get

|||u− uI − c|||1/2,∂P = h
−1/2
P ‖u− uI − c‖0,∂P + |u− uI |1/2,∂P ≤ C|u− uI |1/2,∂P .

Since u− uI vanishes at all vertices of P, a direct argument easily yields

‖u− uI‖0,∂P ≤ ChP |u− uI |1,∂P

and thus, by space interpolation theory,

|u− uI |1/2,∂P ≤ ChεP |u− uI |1/2+ε,∂P ≤ C
∑
e∈∂P

hεP |u− uI |1/2+ε,e (7.22)

with 0 < ε ≤ 1/2, and e ∈ ∂P denoting all the edges (curved and straight) of P.

Whenever e in (7.22) is a straight edge, we apply standard interpolation results in

one dimension and a trace inequality (for instance from e into the triangle connecting

the endpoints of e with the center of the ball BP). We obtain

hεP |u− uI |1/2+ε,e ≤ hs−1
P C|u|s−1/2,e ≤ Chs−1

P C|u|s,P . (7.23)
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Whenever e = γ in (7.22) is a curved edge, we first recall the definition of uI on

γ and apply the trace inequality in (7.17), then make use of standard polynomial

approximation estimates on star-shaped domains

hεP |u− uI |1/2+ε,γ ≤ hεP |||u− uI |||1/2+ε,∂P

≤ h−1
P ‖u− qk‖0,P + hεP |u− qk|1+ε,P ≤ hs−1

P |u|s,P .
(7.24)

By inserting (7.23)-(7.24) into (7.22) we obtain (7.21), so that (7.19)-(7.20) give

|u− uI |21,P ≤ Chs−1
P |u− uI |1,P |u|s,P , (7.25)

and the proof is concluded.

Corollary 7.5. Under the same notation and assumptions of Proposition 7.4 and

its proof, by choosing uπ = qk, for all elements P it holds

‖uI − uπ‖21,S(P) := aPh (uI − uπ,uI − uπ) ≤ Ch2(s−1)
P |u|2s,P , (7.26)

and thus

‖uI − uπ‖1,S ≤ Chs−1|u|s,Ω.

Proof. We only show the sketch of the proof. We start by noting that (7.16)

combined with a scaled Poincaré-type inequality easily yields

‖u− uI‖0,P ≤ ChsP |u|s,P . (7.27)

By definition, the norm ‖ · ‖1,S is split into a consistency term and a stabilization

term

‖uI − uπ‖21,S(P) =

∫
P
κ∇Π∇k (uI − uπ) · ∇Π∇k (uI − uπ) dP

+ SP((I− GΠ∇k )(uI − uπ), (I− GΠ∇k )(uI − uπ)).

The estimate for the first term follows easily from (7.2), (7.16) and the continuity

of the Π∇k operator in the H1 seminorm (that holds, by definition of Π∇k , with

unitary constant). Adopting definition (4.11), the second term can be split into a

part that involves the volume moments and a part that involves a sum of pointwise

evaluations, including the tgp. Since the novelty here is in the second part (the first

one is standard, as for straight polygons) we focus only on the latter term. Let N
denote the set of the boundary nodes of P plus the tgp nodes. Recalling that uI
and uπ attain the same values on the tgp, we thus need to estimate (also using

uI(ν) = u(ν) for all nodes ν ∈ N , ν /∈ tgp)∑
ν∈N

((I− GΠ∇k )(uI − uπ)(ν))2 =
∑
ν∈N

((uI − uπ)(ν)− (Π∇k uI − uπ)(ν))2

≤ 2
( ∑
ν∈N

((uI − uπ)(ν))2 +
∑
ν∈N

(Π∇k uI − uπ)(ν))2
)

= 2
∑

ν∈N ,ν /∈tgp

((u− uπ)(ν))2 + 2
∑
ν∈N

((Π∇k uI − uπ)(ν))2.
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The first term above is bounded by standard polynomial approximation estimates

in L∞. In order to deal with the second term, let B̃ be the smallest ball that

contains P and all the tgp; note that by definition of the tgp the radius of such ball

is uniformly comparable to that of BP , see assumption A. As a consequence, from

known properties of polynomial functions and an inverse estimate,∑
ν∈N

((Π∇k uI − uπ)(ν))2 ≤ ‖Π∇k uI − uπ‖2L∞(B̃)

≤ C‖Π∇k uI − uπ‖2L∞(P) ≤ Ch
−2
P ‖Π

∇
k uI − uπ‖20,P .

Now the result follows by adding and subtracting u and Π∇k u, using the triangle

inequality, bound (7.27), stability properties of Π∇k and standard polynomial ap-

proximation estimates.

7.3. Construction of uI for discontinuous κn · ∇u

In the case where u is continuous but not C1 across γ (that is, when κ has two

different values across γ), then we have to stabilize aPh in only one of the two

elements P and P ′. Let’s say that we stabilize in P. Then the qk will be chosen

using only the values of u in P and the estimate (7.2) will be required only in P.

In P ′ we will choose uπ as the L2(P ′)-projection of u onto Pk. In turn, uI will still

be equal to qk on γ (it must be continuous) and will be defined, on the other edges

different from γ, using the values of u itself (and, inside, using ∆uI = Π0,P′

k−2(∆u).

Since the estimate (7.2) still holds on γ, we can deal with the estimate of u−uI
proceeding as before. This will provide, intercalating u, an estimate on

‖uI − uπ‖1,P′ .

Next, since we do not stabilize the tgp degrees of freedom on P ′, this will also

provide a bound for

‖uI − uπ‖1,S ,

proceeding, for the other degrees of freedom, as for the usual VEMs and we are

done.

7.4. Estimate of E1(f)

For k = 1, using the definition (5.12) and noting that for any elements P and all

v ∈ H1(P) it holds
∫
∂P(v −Π∇1 v) = 0 by definition, using bound (7.15) we derive

(f, v − Tv)0 =
∑
P

(f, v −Π∇1 v)0,P ≤ C
∑
P
‖f‖0,P hP |v −Π∇1 v|1,P ≤ Ch‖f‖0|v|1,

giving

E1(f) ≤ C h‖f‖0 for k = 1. (7.28)
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For k ≥ 2, from the properties of the L2-orthogonal projection and standard inter-

polation estimates we have

(f, v − Tv)0 =
∑
P

(f, v −Π0,P
k−2v)0,P =

∑
P

(f −Π0,P
k−2f, v −Π0,P

k−2v)0,P

≤ C
∑
P
hk−1
P ‖f‖k−1,P hP |v|1,P ≤ Chk(

∑
P
‖f‖2k−1,P)1/2‖v‖1,

implying

E1(f) ≤ C hk(
∑
P
‖f‖2k−1,P)1/2 for k ≥ 2. (7.29)

8. Some numerical experiments

In this section we present some numerical experiments in order to highlight the

features of the proposed method. We will show the relative errors in H1 and L2.

Since the VEM solution uh is not known inside the polygons we will compute the

errors between the exact solution u and both Π∇k uh and Π0
kuh.

8.1. Problem with discontinuous diffusion

We begin by dealing with a problem with radial symmetry and discontinuous dif-

fusion. Let Ω be the unit disc, split into the smaller disc Ω1 of radius 1/2 and the

outer anulus Ω2 (see Fig. 7), and let κ and f be piecewise constant in Ω:

κ|Ω1
= κ1, κ|Ω2

= κ2, f|Ω1
= f1, f|Ω2

= f2. (8.1)

Consider the following problem:{
−div (κ∇u) = f in Ω

u = 0 on ∂Ω.
(8.2)

It can be easily shown that the exact solution of problem (8.2) is

u1(x, y) = − f1

4κ1
r2 +

[
1

16

(
f1

κ1
+

3f2

κ2

)
− log(2)

8κ2
(f2 − f1)

]
in Ω1

u2(x, y) = − f2

4κ2
r2 +

[
1

8κ2
(f2 − f1)

]
log(r) +

[
f2

4κ2

]
in Ω2

where r =
√
x2 + y2. The solution is always a paraboloid in the inner circle Ω1 while

in the outer anulus Ω2 it is a paraboloid plus a logarithmic term that is present only

if f1 6= f2. If k1 6= k2, the solution always has a discontinuous gradient along the

circle of radius 1/2 (see Figures 8 and 10). In order to satisfy the patch test (in the

case f1 = f2) and to have the optimal rate of convergence (in the general case), the

method must treat appropriately the curved boundary and the curved interface.
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Ω2

Ω1

Fig. 7: Computational domain Fig. 8: Exact solution with κ1 = 1, κ2 =

10, f1 = 1, f2 = 2
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1

Fig. 9: Mesh Fig. 10: Exact solution with κ1 = 1, κ2 =

10, f1 = 1, f2 = 1

8.1.1. Case κ1 = 1, κ1 = 10, f1 = f2 = 1: patch test

We first deal with the case where the solution in each subregion is a polynomial of

degree 2 and κ is discontinous. We check that in this case the VEM solution satisfies

the patch test, i.e., we recover the exact solution.

The mesh used is represented in Fig. 9 while in Fig. 10 we report the exact

solution. Curved egdes are depicted in red. We point out that in this case the

diffusion is discontinuous across the curved edges so that, according to Remark

4.1, we need to stabilize the tgp only once. We present in Fig. 11 the VEM solution
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obtained in this way for k = 2, and in Fig. 12 the (wrong) result obtained stabilizing

in the “classical” way (i.e., twice), again for k = 2.

Fig. 11: One-side stabilization Fig. 12: Two-side stabilization

8.1.2. Case κ1 = 1, κ1 = 10, f1 = 1, f2 = 2: convergence

As stated above, in this case the exact solution (see Fig. 8) is no more a quadratic

polynomial in the external anulus Ω2. We take a sequence of meshes obtained by

subdividing recursively the mesh depicted in Fig. 9 and we represent the convergence

curves for k = 3 in H1 (Fig. 13) and in L2 (Fig. 14). The slopes are as expected.
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Fig. 13: H1 error
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Fig. 14: L2 error

8.2. Puzzle mesh

For this numerical test and for all the subsequent ones we consider the problem

−∆u = f in Ω =]0, 1[×]0, 1[, u = g on ∂Ω,
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with the data f and g chosen case by case. We take a family of meshes whose

elements are general polygons with edges given by a parametric cubic curve. The

curve has the same shape for all edges, and shrinks uniformly with the edge length.

In this case, the method described in 18 would not work. Two typical meshes, with

25 and 100 polygons, are shown in Figures 15 and 16, respectively.

Fig. 15: Mesh with 25 polygons Fig. 16: Mesh with 100 polygons

8.2.1. Patch test

We first check that our method passes the patch test. We take as exact solution the

third-degree polynomial

p3(x, y) = −9x3 +
27

4
x2y + 9x2 +

81

4
xy2 − 81

4
xy + x− 207

8
y3 +

171

8
y2 − 5

4
y − 1.

The data f and g are chosen accordingly. We compute the VEM solution for k = 3

on the two meshes given in Figures 15 and 16. The results are shown in Figures 17

and 18 respectively.

8.2.2. Convergence

Now we consider the problem whose exact solution is smooth and is given by

uex(x, y) = y− x+ log(y3 + x+ 1)− xy− xy2 + x2y+ x2 + x3 + sin(5x) sin(7y)− 1.

We consider the Virtual Element of degree k = 4 and a sequence of meshes with

increasing number of polygons, starting from the meshes of Figures 15 and 16. In

Figures 19 and 20 we report the approximation error in H1 and L2 respectively.
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Fig. 17: Mesh with 25 polygons, patch-

test of order 3
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Fig. 18: Mesh with 100 polygons, patch-

test of order 3
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Fig. 19: H1 error
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Fig. 20: L2 error

8.3. “Sail” mesh

In this experiment we subdivide the unit square into small squares of side h and in

turn we divide each small square into two “triangles” with a curved edge as shown

in Fig. 21. The curved edge is a parabola with respect to the diagonal of the small

square and the distance of the vertex from the diagonal itself is proportional to hα,

with α = 1 or α = 2. The two cases are very different:

• Case α = 1: in this case all elements are homothetically equivalent, compare

Fig. 21 with Fig. 23 where the element has been shrinked by a factor of 10;

• Case α = 2: in this case when h gets smaller the elements get flatter,

compare Fig. 21 with Fig. 24 where the element has been shrinked by a

factor of 10.

We point out that starting from k = 3, the space of polynomials of degree less than

or equal to k in two variables restricted to the curved edge degenerates, so that the

tgp are no more degrees of freedom.
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h = `

∼ hα

Fig. 21: “Sail” element Fig. 22: “Sail” mesh

h = `/10

∼ h

Fig. 23: Case α = 1

h = `/10

∼ h2

Fig. 24: Case α = 2

8.3.1. Patch test

We check the patch test in the case k = 3 on the mesh obtained dividing the unit

square into 10×10 small squares. The exact solution is the same of subsection 8.2.1.

We show both the results for α = 1 and α = 2 in Figures 25 and 26 respectively.

8.3.2. Convergence

We take as exact solution the function uex defined in Subsection 8.2.2 and we

consider the sequence of meshes described above obtained by subdividing the unit

square into 5 × 5, 10 × 10, 20 × 20 and 40 × 40 small squares. In Figures 27 and

28 we show the convergence curves for α = 1 in the H1 norm and the L2 norm
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Fig. 25: Case α = 1, patch test
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Fig. 26: Case α = 2, patch test

respectively, while in Figures 29 and 30 we repeat the same experiments for the

meshes with α = 2.
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Fig. 27: H1 error, α = 1
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Fig. 28: L2 error, α = 1
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Fig. 29: H1 error, α = 2
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Fig. 30: L2 error, α = 2
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8.3.3. Comparison with the isoparametric Finite Elements

For this last case we can make a comparison with the isoparametric cubic finite

elements for triangles. As expected, Finite Elements lose the optimal order of con-

vergence for α = 1 (Figures 31 and 32) while for α = 2 they recover convergence

with the right rates (Figures 33 and 34). Of course, in this case the patch-test fails.
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Fig. 31: Isoparametric FEM, H1 error,

α = 1
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Fig. 32: Isoparametric FEM, L2 error,

α = 1
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Fig. 33: Isoparametric FEM, H1 error,

α = 2
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Fig. 34: Isoparametric FEM, L2 error,

α = 2
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