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Abstract: The automated design of dispatching rules (DRs) with genetic programming (GP) has
become an important research direction in recent years. One of the most important decisions in
applying GP to generate DRs is determining the features of the scheduling problem to be used during
the evolution process. Unfortunately, there are no clear rules or guidelines for the design or selection
of such features, and often the features are simply defined without investigating their influence
on the performance of the algorithm. However, the performance of GP can depend significantly
on the features provided to it, and a poor or inadequate selection of features for a given problem
can result in the algorithm performing poorly. In this study, we examine in detail the features
that GP should use when developing DRs for unrelated machine scheduling problems. Different
types of features are investigated, and the best combination of these features is determined using
two selection methods. The obtained results show that the design and selection of appropriate
features are crucial for GP, as they improve the results by about 7% when only the simplest terminal
nodes are used without selection. In addition, the results show that it is not possible to outperform
more sophisticated manually designed DRs when only the simplest problem features are used as
terminal nodes. This shows how important it is to design appropriate composite terminal nodes to
produce high-quality DRs.

Keywords: genetic programming; feature selection; unrelated machine problem; feature selection;
scheduling

1. Introduction

The unrelated parallel machine scheduling problem is an important combinatorial
optimisation problem with frequent applications in the real world [1], such as task schedul-
ing [2], device scheduling [3], and manufacturing [4]. Since the problem is NP-hard, it
is traditionally solved using various metaheuristic optimisation methods [5,6]. However,
since real-world problems are often dynamic in nature, traditional optimisation approaches
that continuously improve potential solutions are usually not directly applicable. The
reason for this is that not all information about the problem under consideration may be
known, and in this case, it is not possible to construct a complete solution. This was the
motivation for researching alternative methods that can be used to solve dynamic problems
such as dispatching rules.

Dispatching rules (DRs) have emerged as an alternative solution method for solving
various scheduling problems, mostly dynamic problem variants [7]. They represent simple
constructive heuristics that solve the problem incrementally by making decisions about
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which job to schedule next based solely on the information currently available in the
system. Therefore, such rules can react quickly to the changing problem environment, as
they construct the solution based only on the currently available information. As new
information becomes available, they can take it into account when constructing the solution.
Although many DRs have been proposed over the years [7], they have been developed for
a limited number of problem variants and scheduling criteria. In addition, the developed
DRs perform scheduling decisions using simple heuristic strategies, which affects the
quality of the plans they produce.

To address the above problems, various methods based on evolutionary computation
and machine learning have been used over the years to automatically design new DRs
for various problems [8–10]. One of the most commonly used methods for this purpose
is genetic programming [11]. GP is an evolutionary computational method developed
to enable the generation of various mathematical expressions and even computer pro-
grammes [12]. It has been applied in many fields, where it has achieved competitive results
with humans [13], proving its effectiveness. In recent years, however, GP has established
itself as the leading hyperheuristic method [14,15], a method used to automatically develop
new heuristics.

In the context of DRs, GP is used to generate an expression, often referred to as a
priority function, that is used by the DR to rank all decisions at each decision point and
select the appropriate decision [16]. GP generates the expression based on a set of defined
problem characteristics, which it attempts to combine in a meaningful way to determine
the optimal scheduling decision at each decision point. Therefore, it is necessary to provide
GP with all the relevant information about the problem in the form of terminal nodes
representing certain features of the problem. However, an incomplete or wrong choice
of terminal nodes can result in myopic DRs that offer poor performance [17]. Regardless,
this step is often overlooked, and quite often only the most basic problem information is
used as terminal nodes without a selection of appropriate nodes. Naturally, providing
too many terminal nodes again has the drawback that the search space of the method
grows exponentially, making it more difficult to find high-quality solutions. Although
the definition and choice of appropriate terminal nodes is an important decision that
significantly affects the quality and complexity of DRs, it has not yet been investigated in
the context of the automated design of DRs for unrelated machine environments. Thus,
there is no guarantee that the terminal nodes currently applied in the literature are really
the most appropriate or whether the results could be improved by applying a different set
of terminal nodes.

The aim of this study is to perform a detailed investigation of the influence of different
problem properties on the quality of DRs automatically developed by GP for unrelated
machine scheduling problems. The motivation for this is to determine the set of the most
suitable terminal nodes, with which GP can generate DRs that perform well across a wide
range of problem instances. This is done in a sequential manner, where first, simple atomic
features are analysed, representing only the most basic information about the problem.
Then, composite features are added to the set of terminals to investigate whether by
including more sophisticated terminal nodes, either designed automatically or manually,
they can improve the performance of the generated DRs. Naturally, only providing the
terminal nodes is not enough, since a too-large terminal set can negatively affect the results
simply due to a too-large solution space that the algorithm needs to traverse. Therefore,
to select the appropriate feature set, we use the backward sequential feature selection
method, which is commonly used in the literature for this purpose, but also investigate the
ability of GP to perform feature selection by using the frequency of occurrence of nodes
in the expressions as a criterion for selecting the appropriate features. From the obtained
results, we investigate how the different node sets that were obtained influence not only
the performance and complexity of the generated DRs but also the performance of different
methods in selecting the appropriate features.

The contributions of this study can be summarised as follows:
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• Analysis of how different types of terminal nodes influence the effectiveness of GP to
generate good quality DRs and their complexity.

• Construction of new terminal nodes based on the frequency of occurrence of sub-
expressions in the generated DRs.

• Application and comparison of two feature selection methods to determine appropri-
ate terminal node sets.

The rest of this study is organised as follows. Section 2 outlines the relevant literature
on the generation of DRs with GP. The necessary background information about the
problem under consideration and the application of GP to generate DRs is given in Section 3.
The methodology used to conduct the investigation in this paper is described in Section 4.
Section 5 describes the design of the experimental study and discusses the results obtained.
A more in-depth analysis of the results obtained is presented in Section 6. Finally, Section 7
concludes this paper and provides guidance for future research.

2. Literature Review

The automated generation of DRs has its roots in the pioneering studies of Miyashita [18]
and Dimopoulos and Zalzala [19]. These studies showed that GP can be efficiently used to
design new DRs for various scheduling problems. Since then, GP has been applied in nu-
merous studies to generate DRs for various problems, such as the parallel machine schedul-
ing problem [20], flexible job shop problem [21], resource-constrained project scheduling
problem [22], and one-machine variable capacity problem [23].

Over the years, many research directions have been explored in the context of the
automated design of DRs. One line of research has focused on investigating different
representations for DRs. In [24], the authors compared three DR representations: one that
generates an expression that selects an existing DR based on system properties to make the
scheduling decision, one that generates a new DR from basic system information, and one
that combines the previous two approaches. The results showed that the first approach
was inferior to the other two approaches. In [25], the potential of GP to generate DRs was
compared with that of artificial neural networks. The results showed that both methods
performed similarly, but GP developed interpretable and more user-friendly DRs. In [26],
the authors investigated several evolutionary algorithms for developing DRs and found
that their performance was similar in most cases, although some resulted in simpler DRs.
Another line of research focused on the generation of DRs for multi-objective scheduling
problems, which were considered in [27–29] for the job shop problem and [30] for the
unrelated machine scheduling problem.

Ensemble learning is one of the most widely considered topics related to DR cre-
ation, as it has the potential to significantly improve the performance of individual DRs.
This topic has been studied from many aspects, including methods used to construct
ensembles [31–33], methods used to aggregate the decisions of individual DRs in the en-
semble [34,35], and the application of ensemble learning for multi-objective problems [36].
Another way to improve the performance of automatically generated DRs is the application
of surrogate models [37,38] and local search [39], both of which have been shown to im-
prove the performance of GP. Another recent research trend is the application of multitask
learning in GP, which enables knowledge transfer between individuals to solve different
types of problems [40].

Only limited attention has been given to the issues of feature selection and construction
in the context of automatic generation of DRs, and this has focused mainly on the job
shop scheduling problem. In [41], the authors proposed a feature selection algorithm
that is embedded in GP and based on niching. This feature selection method takes into
account both the fitness of the individuals in which the features occur and the frequency of
occurrence of these features. The experimental results showed that the proposed approach
can select features that lead to better results compared to using the entire feature set. In [42],
the authors considered feature selection in the context of developing DRs for the flexible
job shop problem. In this approach, two terminal sets are used and, therefore, features
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need to be selected for each of them simultaneously. A GP approach with adaptive search
based on the frequency of features was proposed in [43] and was shown to perform better
compared to standard GP in some scenarios. Another feature selection approach was
proposed in [44], which led to simpler DRs that achieved comparable performance to
those developed without feature selection. Finally, in [45], the authors considered feature
construction in addition to feature selection, but no follow-ups or extensions to this original
research were conducted. Overviews of the literature on the remaining studies dealing
with the automated design of DRs for various scheduling problems can be found in [8–10].

The importance of selecting suitable problem features when using GP to create DRs
was discussed in [17]. However, studies in this field rarely explore the definition of the
features used in solving a particular problem. On the contrary, a particular set of features
is usually defined based on previous user experiences, without further investigation into
whether this terminal set is really the most appropriate. As can be seen from the previous
literature review, although several studies deal with feature selection, they focus on the
algorithmic aspect rather than on which features should be used or how they should be de-
signed. Therefore, this study provides a deeper investigation into the definition and selection
of features in the automated development of DRs for unrelated machine environments.

3. Background

As mentioned previously, the unrelated machine environment appears in many real-
world scenarios, such as the manufacturing of pipes, manufacturing cells, distributing jobs
in heterogeneous systems, and scheduling in the textile industry, among others [6]. Many of
those problems are dynamic in nature, meaning that certain aspects of the problem are not
known at the beginning of the system’s execution. In such cases, DRs represent the method
of choice for solving such problems [7]. However, the performance of existing DRs is quite
limited, and they are usually designed for very specific problem variants, thus limiting
their performance and generalisation ability. This means that it is required to design DRs
for all the different problem variants that are considered. Since it is difficult to manually
design DRs for all the available problem variants, the concept of the automated design of
DRs has garnered significant attention. One of the most prominent and commonly used
approaches for this purpose is GP, which has been successfully used to generate new DRs
for various problems.

3.1. Unrelated Parallel Machine Scheduling Problem

In the unrelated machine scheduling problem, a set of jobs must be scheduled and
executed on a scarce set of machines [46]. Each job contains certain properties that are taken
into account in scheduling decisions, such as:

• pij—the processing time of job j on machine i.
• rj—the release time of job j, which specifies the earliest time at which the job can be

considered for scheduling.
• dj—the due date of job j, which specifies the time by which the job should finish with

its execution.
• wj—the weight of job j, which indicates the importance of the job.

Each machine can only process one job at a time. As soon as a machine starts executing
a job, it must complete it before it can start executing another job.

Many criteria can be considered and optimised for this problem. In this study, we
focus on minimising the total weighted tardiness criterion (Twt), defined as Twt = ∑j wjTj,
which is one of the most frequently optimised criteria in the literature, especially when
considering dynamic environments [6]. Tj represents the tardiness of job j and is defined
as Tj = max(Cj − dj, 0), where Cj indicates the time at which job j was completed. The
tardiness, therefore, represents the time the job has been completed after its due date,
whereas the total weighted tardiness is simply the combination of all tardiness values
multiplied by the corresponding weights. By minimising Twt, we effectively minimise the
times jobs are completed after their due date.
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Using the standard notation α|β|γ for scheduling problems [47], the problem consid-
ered in this study can be specified as R | rj | ∑j wjTj. In this notation, α represents the
machine environment, which in this case, is the unrelated machine environment (denoted
by R); β represents the additional constraints, which in this case, include the release times
of the jobs (denoted by rj); and γ represents the optimised criterion, which in this case, is
the total weighted tardiness (denoted by ∑j wjTj). Moreover, the problem is considered
under dynamic conditions, which means that not all information about the problem is
available during the execution of the system. More precisely, no information about the jobs,
including their arrival time, is known before they are released into the system. However,
once they are released into the system, all their properties are known precisely, and the jobs
can then be taken into account for scheduling.

The most suitable method for solving such dynamic problems is DRs [7]. DRs consist
of two parts: a schedule generation scheme (SGS) and a priority function (PF) [48]. The SGS
represents the algorithmic framework of the DR, which determines when and under what
conditions it performs scheduling decisions. It also ensures that it only creates feasible
schedules, for example, by checking that no machine executes two jobs at the same time.
Algorithm 1 provides the definition of the SGS that is used by the automatically designed
DRs. This SGS performs a scheduling decision every time at least one machine is available
and there are unscheduled jobs in the system. It also ensures that no job is scheduled on a
machine on which a job is already in progress.

Algorithm 1 SGS used by generated DRs

1: while true do
2: Wait until at least one job and one machine are available
3: for all available jobs j and each machine i in m do
4: Calculate the priority πij of scheduling j on machine i
5: end for
6: for all available jobs do
7: Determine the machine with the best πij value
8: end for
9: while jobs whose best available machine exists do

10: Determine the best priority of all such jobs
11: Schedule the job with the best priority
12: end while
13: end while

One of the most important parts of the SGS is determining which scheduling decision
to make at each decision time, i.e., which job should be scheduled on which machine.
The SGS uses a PF to evaluate all available decisions. The best decision, determined by
the lowest or highest rank, is then selected and executed. Over the years, PFs of varying
complexity have been proposed in the literature [7]. For example, the earliest due date
(EDD) rule uses a PF defined as π = dj, which means that jobs are executed in order
according to their due dates. The EDD selects the jobs with the earliest due dates first,
where jobs that need to be completed as quickly as possible take priority. The PF can, of
course, be much more complex than that defined by the EDD. In fact, the PF is the most
important part of any DR, and, therefore, great care needs to be taken when developing
new and efficient PFs. However, manually designing meaningful PFs has proven to be
quite a difficult and tedious task, which is why only a limited number of existing PFs are
available [7,8].

3.2. Genetic Programming and Generating DRs

GP is a metaheuristic method based on the concept of natural evolution [12]. It starts
with a set, called the population, of randomly generated solutions, usually referred to as
individuals. These individuals are evaluated using the fitness function, which calculates
the fitness of each individual, i.e., a numerical measure of how well the individual solves a
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particular problem by optimising a certain criterion. GP then iteratively applies a series of
genetic operators to these individuals in search of better solutions until a certain termination
criterion is met. The operators that GP applies are selection, crossover, and mutation. With
the selection operator, GP selects better individuals for the crossover operator and worse
individuals to be eliminated from the population. The selected individuals are then used by
the crossover operator, which combines their properties and creates a new individual that
is potentially better than the individuals from which it was created. In addition, the newly
created individual can be mutated with a certain probability to introduce random changes.
The purpose of the mutation operator is to help the algorithm bypass local optima and
restore lost genetic material in the population. This newly created individual then replaces
one of the underperforming individuals in the population. With such a strategy, GP
iteratively attempts to obtain better solutions through crossover and mutation and place
them into the population, eliminating poor-quality individuals. The variant of the selection
algorithm used in this study is described in Algorithm 2 [48], and the flow diagram of the
algorithm is shown in Figure 1.

Algorithm 2 The GP algorithm

1: Randomly create the population P and evaluate all individuals in it
2: while termination criterion is not met do
3: Randomly select 3 individuals from the population that form a tournament
4: Select the two better individuals
5: Crossover the selected individuals and create a new individual
6: Mutate the newly created individual with a certain probability
7: Evaluate the newly created individual
8: Replace the worst individual from the tournament with the newly created individual
9: end while

Initialise starting population

Perform 3-tournament selection

Crossover two better individuals

Mutate the child individuals

Evaluate child individual

Replace worst from tournament

Termination
criterion
satisfied

Best evolved priority function

Yes

No

Figure 1. Flowchart of the GP algorithm.
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As already mentioned, solutions in GP are coded as expression trees consisting of
function and terminal nodes. The function nodes are the inner nodes in the tree and
represent various mathematical, logical, or other types of operations. The terminal nodes,
on the other hand, appear as leaf nodes in the tree and represent different features of the
problem. Therefore, the definition of terminal nodes is one of the most important decisions
that must be made when applying GP to any problem. Through the evolutionary process,
GP searches for the most appropriate expression to solve a given problem.

GP has been successfully used as a hyperheuristic method [14,49] to automatically
generate heuristics for various types of combinatorial optimisation problems, such as
scheduling problems [50,51], the travelling salesman problem [52,53], vehicle and arc
routing problems [54–56], the container relocation problem [57], and the cutting stock
problem [15,58]. When used to generate DRs for scheduling problems, GP has the task
of finding a suitable PF that can be used by the DR to evaluate scheduling decisions.
Each individual represents a potential PF, which is then used by the SGS, as defined in
Algorithm 1, to evaluate its effectiveness for a given set of problem instances. To be able
to meaningfully rank the various decisions in the scheduling problem, e.g., which job to
schedule next, GP must have access to all relevant features of the problem via its terminal
nodes. Therefore, the set of terminal nodes must contain relevant problem characteristics,
such as the processing times of jobs, their due dates, weights, and so on.

The entire methodology for the automatic creation of DRs is shown in Figure 2.
The figure shows that GP is used to generate PFs embedded in an SGS, as outlined in
Algorithm 1. This combination represents a DR, which is then used to generate a schedule
based on the characteristics of the scheduling problem (job processing times, due dates, etc.).
The meaning of the symbols is outlined in Tables 1 and 2. The schedule simply determines
which job is assigned to which machine and the order in which they are executed on these
machines. Finally, the quality of the created schedule can be evaluated using different
performance criteria.

Figure 2. Outline of the procedure for the automated generation of DRs.
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Table 1. The set of basic terminal nodes.

Name Description

dd The due date of a job j
frma The number of available machines
ma The time when machine i becomes available
nmach The number of machines in the scheduling environment
nrel The number of currently released but not scheduled jobs
pt The processing time of job j on machine i
rel The release time of job j
clk The current time of the system
w The weight of job j

Table 2. The set of extended terminal nodes.

Name Description

age The time that job j spent in the system after being released
mr The amount of time remaining until machine i becomes available

pat The amount of time until the machine on which job j would be completed the soonest
becomes available

pavg The average execution time of job j across all machines
pmin The minimum execution time of job j across all machines

sl The slack of job j, which is defined as the remaining amount of time until it
becomes tardy

4. Methodology

As described in the previous section, the definition and selection of suitable terminal
nodes is an important step in applying GP to develop new DRs. This is probably also the
most difficult step, as it requires a certain amount of expert knowledge about the problem
in order to define these terminal nodes in a meaningful way. However, even with good
expert knowledge, there is no guarantee that the defined nodes will enable GP to obtain
good priority functions. Therefore, the aim of this study is to investigate the process of
designing the terminal set in more detail and determine how the inclusion and construction
of different features and nodes affect the performance of GP.

This investigation is divided into three phases, each focusing on the influence of the
following factors: (1) atomic terminal nodes, (2) composite terminal nodes constructed
based on the frequency of occurrence in the previous phase, and (3) composite terminal
nodes designed manually. In the following, we describe each phase in detail.

4.1. Atomic Terminal Nodes

In the first phase, only atomic terminal nodes, labelled in Table 1, are used. These nodes
are called atomic because they represent the most basic information about the problem
at hand, such as the processing times of jobs, their due dates, weights, and so on. They
cannot, therefore, be broken down into sub-expressions of simpler nodes or coded in any
other way. GP can combine these nodes into more complex expressions that are interpreted
as PFs to determine which scheduling decision should be selected at each decision point.

Even if the previously defined set of terminal nodes is sufficient to construct any
complex expression, this might prove quite difficult for GP, since it is very likely that such
expressions are easily perturbed by genetic operators. Therefore, it makes sense to define
composite terminal nodes, i.e., nodes that are represented as a kind of expression computed
from multiple atomic nodes. However, there are several ways to define compound terminal
nodes, and these are analysed in the second and third phases of the study.

4.2. Frequency-Based Composite Terminal Nodes

In the second phase, we analyse whether it is possible to automatically construct new
terminal nodes by using the frequency of occurrence of sub-expressions from previously
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developed PFs that work well. This phase is, therefore, based on the results of the first
phase to determine which sub-expressions occur most frequently but only in the PFs with
the best performance. From the best PFs, we calculate the frequency of occurrence of all
sub-expressions and select the most frequent ones. We also define new terminal nodes that
encode these sub-expressions and add them to the terminal set.

4.3. Manually Designed Composite Terminal Nodes

In the third phase, we investigate the influence of composite, manually designed
terminal nodes that combine different basic information from Table 1 in different ways. The
motivation for introducing these terminals arises from several existing manually designed
DRs that use similar information to that presented in Table 2. For example, these nodes
represent information such as the slack of the job, a feature often used in manually designed
DRs developed to optimise the Twt criterion, or the time until a particular machine is
available. Since such information has proven valuable in various manually created DRs,
there is reason to believe that it could also be useful in the context of automatically created
DRs. Therefore, we have investigated their influence on the performance of GP.

4.4. Feature Selection Methods

Although we have defined various terminal nodes, not all of them are equally useful
for GP in designing new DRs. The problem with including unnecessary terminal nodes
is that the solution space in which GP searches for a suitable PF increases exponentially.
Therefore, it becomes increasingly difficult for GP to converge to good solutions. Therefore,
it is not sufficient to define only a set of terminal nodes that represent all features of the
problem; it is also crucial to determine whether these features are relevant for GP.

Although various algorithms and methods for feature selection have been defined
in the literature [59–61], we use two simple methods: backward sequential feature selec-
tion (BSFS) and frequency-based selection (FBS). Although simple, the BSFS method is
commonly used in the machine learning community to select appropriate features. The
reason we select only the above-mentioned methods is that our goal is to determine the
best feature set for the problem under consideration rather than compare different feature
selection methods.

BSFS starts with the complete feature set and removes one feature from the feature set
in each iteration. GP is then executed with this reduced feature set, and the developed PFs
are evaluated. The reduced set that results in the best performance for the generated DRs is
selected, and the procedure is repeated until all features are removed. So, in each iteration,
this method tests the effect of removing each feature on the results and removes the feature
that has the least negative effect. This process requires a quadratic number of experiments
to determine the appropriate terminal set.

The FBS method also starts with the complete feature set to generate a certain number
of DRs. Based on the best DRs, the frequency of occurrence of each terminal node is deter-
mined. The node that occurs the least frequently is removed, and the process is repeated
until all terminal nodes are removed from the terminal set. This method, therefore, removes
the node that occurs least frequently in the generated PFs in each iteration. Compared to
the BSFS method, this method only requires a linear number of experiments in relation to
the terminal nodes. This is because only one experiment is performed in each iteration,
on the basis of which the frequency of occurrence of terminal nodes can be determined to
decide which node should be removed next.

5. Experimental Study

In this section, we present the experimental study. First, we describe the outline of the
performed experiments, and then, we outline the obtained results.



Algorithms 2024, 17, 67 10 of 21

5.1. Setup

To conduct the experimental study, we used the dataset proposed in [16], which
consists of 180 problem instances of varying sizes and complexities. The instances involve
between 3 and 10 machines and between 12 and 100 jobs. Moreover, the dataset contains
instances of different difficulty levels considering the Twt criterion, which means that some
instances are easy to solve while others are more complex. The dataset is divided into three
subsets: a training set, a validation set, and a test set. Each set contains 60 instances with
similar characteristics. The training dataset was used by GP to generate new DRs. After
the DRs were generated, the validation set was used by the feature selection procedures
to determine the best feature sets. Finally, the test dataset was used to evaluate the DRs
obtained for the best feature sets, assessing their generalisation performance on unseen
problems. All the results presented below were obtained with the problem instances from
the test dataset. Finally, we compared the results of the automatically generated DRs with
three DRs proposed in the literature [7].

The parameters used to run GP are listed in Table 3. These parameters were optimised
in a previous study [16]. For each experiment, GP was run 30 times to perform a statistical
analysis of the results. Due to the large number of results, only the median values from
these 30 executions are presented in the tables because the Shapiro–Wilk test for normality
showed that not all results followed a normal distribution. To test the statistical difference
between pairs of methods, we used the Mann–Whitney test. On the other hand, to test
for a statistical difference between a group of methods, we used the Kruskal–Wallis test
with Dunn’s post hoc test and the Bonferroni correction method. All statistical tests
were conducted with a significance level of 0.05. All methods were coded in the C++
programming language using the ECF framework (http://ecf.zemris.fer.hr/, accessed on
1 May 2023). The experiments were conducted on a Windows 10 PC with an AMD Ryzen
Threadripper 3990X 64-core processor and 128 GB of RAM.

Table 3. GP parameters.

Parameter Value

Population size 1000
Mutation probability 0.3
Tournament size 3
Crossover operators subtree, uniform, context preserving, size fair, one point
Mutation operators subtree, hoist, node complement, node replacement, permutation, shrink
Function set addition, subtraction, multiplication, protected division (returns 1 if division

by 0 is encountered), POS(x) = max(x, 0)
Termination criterion 80,000 fitness evaluations

5.2. Results

The results in this section are presented in three phases, corresponding to the research
phases described in the methodology section. In the first phase, the set of terminal nodes
consists only of the atomic features of the problem. In the second phase, this terminal set is
extended with composite terminal nodes consisting of the most frequent sub-expressions
of the PFs developed in the first phase. Finally, in the last phase, the basic terminal set is
extended with manually designed composite nodes.

5.2.1. Simple Terminal Set

In the first phase, the terminal set shown in Table 1 was used as the starting set for the
construction of DRs. To determine which features were most important in this set, the BSFS
and FBS methods were used to determine the optimised set of terminal nodes.

The results obtained using BSFS in this phase are shown in Table 4. The columns
in the table denote the results where the corresponding feature was removed from the
feature set, whereas the rows denote the steps of the algorithm. The first row indicates the
results obtained when all features were used. In each subsequent row, the best result is

http://ecf.zemris.fer.hr/
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indicated in bold, which also indicates which feature was removed from the feature set in
the next iteration. In addition, each cell contains the results of the statistical test comparing
the result presented in this cell with the result obtained with the entire terminal set. The
symbol + means that significantly better results were achieved with the reduced set, −
means that significantly worse results were achieved with the reduced set, and ≈ means
that there was no significant difference between the results. We can see from the table that
removing certain nodes almost always led to a significant deterioration in the results. The
nodes where this happened were dd, ma, pt, and w. From this, we can conclude that these
nodes represent the minimum set of features that the GP needs to construct meaningful
PFs. By using only these four terminal nodes, GP achieved a value of 13.88, which was
lower but not statistically better than the value obtained when using all terminal nodes.
Removing all other nodes from the terminal set did not have a significant impact on the
results, or in some cases, even led to a significant improvement. The best overall result
was obtained for the node set that included the clk and nrel nodes in addition to the four
previously mentioned terminals. The clk nodes, in particular, seem to be important, as
they provide information about the current time in the system, which can then be used in
combination with other terminal nodes to determine when a job will become late and thus
prioritise it.

Table 4. Results obtained by BSFS for the feature set outlined in Table 1.

Iteration
Terminals

clk dd f rma ma nmach nrel pt rel w

All nodes 14.08

1 14.09 (≈) 16.36 (−) 13.89 (≈) 18.78 (−) 14.01 (≈) 14.12 (≈) 177.16 (−) 13.88 (≈) 14.49 (−)
2 14.17 (≈) 16.52 (−) - 18.81 (−) 13.89 (≈) 14.10 (≈) 178.45 (−) 13.88 (+) 14.49 (−)
3 13.88 (≈) 17.53 (−) - 18.83 (−) 13.69 (+) 13.71 (+) 176.04 (−) - 14.38 (−)
4 13.81 (+) 17.56 (−) - 19.31 (−) - 13.82 (+) 176.21 (−) - 14.22 (≈)
5 - 17.16 (−) - 18.69 (−) - 13.88 (≈) 174.68 (−) - 14.66 (−)
6 - 17.49 (−) - 18.59 (−) - - 173.21 (−) - 14.57 (−)
7 - 25.82 (−) - 20.86 (−) - - 283.27 (−) - -
8 - 44.62 (−) - - - - 7755 (−) - -

Table 5 shows the results GP achieved when the terminal nodes were removed based
on the frequency of their occurrence in the generated PFs. The first row lists the removed
terminal nodes, whereas the second row shows the corresponding fitness values. Again,
each cell contains the result of the statistical test comparing the results of the entire set with
the reduced sets. We can see that the best overall result was obtained with two terminal
sets: a smaller one with the nodes pt, ma, dd, and w, and a larger one with the nodes nmach
and clk in addition to these nodes. In both cases, the results are significantly better than
the results obtained with the entire terminal set. This shows that it is possible to make a
meaningful selection of features depending on the frequency of the terminal nodes in the
obtained expressions, especially since the four most important terminal nodes consistently
have the highest frequency.

Table 5. Results obtained by GP when selecting atomic features based on their frequency in the PFs.

all nrel f rma rel clk nmach pt ma

14.08 14.13 (≈) 13.88 (≈) 13.84 (+) 13.87 (+) 13.84 (+) 172.92 (−) 4942.88 (−)

5.2.2. Extended Terminal Set with Composite Features Determined by Frequency
of Occurrence

Based on the best individuals from the first phase of the experiments, we calculated
the frequency of sub-expressions. The sub-expressions with more than 30 occurrences
are listed in Table 6. It is interesting to note that only sub-expressions of size 3 occurred,
whereas larger sub-expressions were rare in several trees. This shows that there did not
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seem to be a larger, well-functioning sub-expression that could be reused; rather, the rules
consisted of small, frequently repeated sub-expressions. The reason for this could be that
either such a sub-expression did not exist or that GP had difficulty obtaining it with the
given settings. If we examine which sub-expressions occurred most frequently, we can
see that GP created certain sub-expressions that occurred frequently in manually created
DRs. For example, the expression ma + pt was often used to determine how quickly the
job would be completed on each machine, using information about when the machine was
available and how long the job would take on the machine. Sub-expressions such as dd

w and
pt
w were also common, as the purpose was to schedule jobs with a lower processing time or
due date adjusted for the weight of the job. Based on this frequency of occurrence, seven
new terminal nodes were designed and included in the previously optimised terminal set.

Table 6. Frequency of occurrence of most commonly appearing sub-expressions from Phase 1.

Expression Occurrence Frequency

dd ∗ dd 212
ma + pt 127
ma ∗ w 110

dd
w 99
pt
w 48
pt
ma 40

dd − pt 36

Table 7 provides an overview of the results obtained through the additional use of
the seven features described in Table 6. In this section, the results obtained are statistically
compared with the optimised terminal set from Phase 1, the results of which are also
included in the first row of the table. The results show that the inclusion of these composite
features in the terminal set did not have a positive influence on the results compared to
the optimised terminal set from Phase 1. In most cases, the results either remained the
same or even deteriorated, which was confirmed by the statistical tests performed. The
only node that seemed to have some effect on this terminal set was dd ∗ dd, which occurred
most frequently in the PFs from Phase 1. On the other hand, nodes such as dd

w , ma ∗ w were
the first to be removed, suggesting that they were the least informative.

Table 7. Results obtained by BSFS for the extended terminal set with features created based on their
frequency of occurrence.

Iteration
Terminals

dd ∗ dd dd − pt dd
w ma + pt pt

ma
pt
w ma ∗ w

Phase 1 optimised 13.69

All terminals 13.86 (≈)

1 13.84 (≈) 13.86 (≈) 13.83 (≈) 14.09 (−) 13.92 (−) 13.95 (−) 13.94 (−)
2 14.07 (−) 13.85 (≈) - 13.83 (≈) 14.11 (−) 13.96 (−) 13.82 (≈)
3 14.00 (−) 13.67 (≈) - 13.93 (−) 13.81 (≈) 14.01 (−) -
4 14.01 (−) - - 13.80 (≈) 13.95 (−) 13.79 (≈) -
5 13.86 (≈) - - 13.73 (≈) 13.66 (≈) - -
6 13.83 (≈) - - 13.65 (≈) - - -

Table 8 shows the selection process carried out by FBS. We can see that in this case,
the order in which features were removed from the terminal set differed from that of BSFS.
The results in this case showed no improvement over the terminal obtained at the end of
Phase 1. Since neither method achieved a positive result, we can conclude that creating
new composite features based on their frequency of occurrence in well-functioning rules
does not generally lead to better results. These nodes, therefore, offer no advantages over
the original set of atomic features identified in Phase 1.
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Table 8. Results obtained by GP when selecting automatically designed composite features based on
their frequency in the PFs.

ph1 all pt
ma

pt
w ma ∗ w dd − pt dd

w ma1 + pt

13.69 13.85 (≈) 14.05 (−) 13.90 (≈) 13.84 (≈) 13.89 (≈) 13.79 (≈) 13.91 (≈)

5.2.3. Extended Terminal Set with Manually Designed Composite Features

Table 9 shows the results obtained with the BSFS method when using manually
designed composite terminal nodes. Again, the statistical tests were calculated using the
optimised terminal set from Phase 1. The results show that no single combination of
terminal nodes was able to achieve significantly better results compared to the terminal set
obtained after Phase 1. With the set from Phase 1 extended with the nodes mr, pat, pavg,
pmin, and sl, the median value of the results achieved was improved to 13.47. In all other
cases, however, it was not possible to achieve a significant improvement. The results are
either equally good or even significantly worse than those achieved with the terminal set
obtained in Phase 1.

Table 9. Results obtained using BSFS for the extended terminal set with features created based on
their frequency of occurrence.

Iteration
Terminals

age mr pat pavg pmin sl

Phase 1 optimised 13.69

All terminals 13.93 (≈)

1 13.47 (≈) 13.88 (≈) 13.96 (≈) 13.87 (≈) 14.16 (−) 14.15 (−)
2 - 13.77 (≈) 14.11 (−) 13.95 (−) 13.90 (−) 14.30 (−)
3 - - 14.01 (−) 13.80 (≈) 13.95 (−) 13.79 (≈)
4 - - 13.84 (≈) 13.66 (≈) 14.32 (−) -
5 - - 13.72 (≈) - 13.80 (≈) -

The results when using FBS are shown in Table 10. This table shows that in all cases,
the results were as good as with the basic terminal set obtained after Phase 1. Again, we
can see that the order in which the terminals were removed from the set is similar to that
of BSFS.

Table 10. Results obtained by GP when selecting manually designed composite features based on
their frequency in the PFs.

ph1 all pavg age mr pat pmin

13.69 13.93 (≈) 13.90 (≈) 13.87 (≈) 13.71 (≈) 13.93 (≈) (≈)

Unfortunately, the results obtained when manually defined composite nodes were
included are inconclusive. In most cases, there was no significant difference between
the sets containing these features and the set obtained after Phase 1. However, some
improvement in the results was observed for one feature set. This could indicate that the
additional features were beneficial for GP and allowed it to generate better PFs, but at the
same time, their inclusion also increased the search space, making it more difficult for GP
to converge.

6. Analysis
6.1. Comparison of Results from Each Phase

Table 11 gives an overview of the best results obtained with the validation set for each
terminal set, as well as the best manually developed DRs, namely EDD, COVERT, and
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ATC. The initial feature set from Table 1 is labelled as Phase 0, whereas Phase 2 + 3 refers
to the combination of the best feature sets from Phase 2 and Phase 3, which was used to
investigate whether the combination of these two feature sets led to an improvement in
the results. In addition, the table shows the average rule size obtained when using each
terminal set, which represents the average number of nodes in the expressions generated
by GP. Compared to the manually generated DRs, we can see that GP achieved better
DRs with the best terminal set obtained after each phase compared to the three manually
generated ones. Only in the cases where no optimisation was performed, or when Phases 2
and 3 were combined, did GP fail to outperform the ATC rule. This shows that even for a
terminal set with atomic terminal nodes, GP can reasonably combine them to outperform
the existing rules. However, for more complex terminal nodes, GP can even increase the
gap between manually and automatically created DRs.

Figure 3 depicts the results from Table 11 as a box plot. The figure shows that the
terminal node sets from Phase 1 and Phase 2 lead to the least scattered solutions. This
is favourable, as it means that GP is more likely to produce a result close to the median.
Therefore, the method is more reliable when it comes to generating solutions of expected
quality. On the other hand, the solutions obtained when using the terminal node set
obtained in Phase 3 are quite scattered. The results also show that GP is more likely to
obtain better results with this terminal node set than with any other terminal node set.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 2+3
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Figure 3. Box plot of the best results obtained by each terminal set on the validation set.

Table 11. Comparison of results from all phases on the validation set.

Median Rule Size

EDD 14.53 1
COVERT 14.20 19
ATC 13.73 16

Phase 0 14.08 43.2
Phase 1 13.69 42.7
Phase 2 13.65 43.4
Phase 3 13.47 43.7
Phase 2 + 3 14.22 43.8

To determine whether there was a significant difference between the results, the sta-
tistical tests described above were used, and a p-value close to 0 was determined. This
shows that there was a significant difference between the results obtained. To determine
which of the results were significantly different, the post hoc test was used, the results of
which are shown in Table 12. The table shows that the results in the row are inferior to
those in the column when indicated by “<”, superior when indicated by “>”, or equivalent
when indicated by “≈”. We can see that the results obtained using only the atomic nodes,
without optimising the terminal set, usually led to the worst results. In contrast, there was
no significant difference between the results from Phases 1, 2, and 3.
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Table 12. Results of the statistical tests on the validation set.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 2 + 3

Phase 0 - < < < ≈
Phase 1 > - ≈ ≈ ≈
Phase 2 > ≈ - ≈ ≈
Phase 3 > ≈ ≈ - >
Phase 2 + 3 ≈ ≈ ≈ < -

The above results summarise the validation set. In order to more objectively evaluate
the performance of GP with the different terminal sets, the rules obtained were evaluated
using the test set. These results are listed in Table 13. It can be seen from the table that
the performance of the rules obtained is now quite different from before. In this case,
the results before feature selection only outperformed the simplest DR but not the two
more complicated ones, namely COVERT and ATC. Even after Phases 1 and 2, GP could
only find rules that performed similarly well to the manually designed rules. Only when
the manually designed terminal nodes were finally introduced did GP generate rules that
clearly outperformed the manually designed rules. The results are also shown as a box
plot in Figure 4 to better illustrate the differences between the results. The figure illustrates
that the introduction of manually designed composite terminal nodes led to the greatest
increase in performance.

Table 13. Comparison of results from all phases on the test set.

Median Rule Size

EDD 17.31 1
COVERT 16.86 19
ATC 16.63 16

Phase 0 17.11 43.2
Phase 1 16.93 42.7
Phase 2 16.71 43.4
Phase 3 15.89 43.7
Phase 2 + 3 16.45 43.8
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Figure 4. Box plot of the best results obtained by each terminal set on the test set.

To confirm that the addition of manually designed composite nodes led to a significant
improvement in the results, the Kruskal–Wallis test was used, and a p-value of 0 was
obtained, meaning that there was a significant difference. The results of the post hoc tests
performed are shown in Table 14. The table shows that although in most cases there was no
significant difference between the terminal sets, the use of manually designed composite
terminal nodes significantly improved the results compared to those obtained in Phases 0,
1, and 2.
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Table 14. Results of the statistical tests on the test set.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 2 + 3

Phase 0 - ≈ ≈ < <
Phase 1 ≈ - ≈ < <
Phase 2 ≈ ≈ - < ≈
Phase 3 > > > - ≈
Phase 2 + 3 > > ≈ ≈ -

Based on the previous results, we can see that the manually designed terminal nodes
actually provided the most valuable information about the problem, allowing the rules to
generalise well to unseen problem instances. Presumably, all methods performed similarly
on the validation set, as the best terminal sets were selected for them. However, it appears
that this may have led to a slight overfitting to the validation set. Based on the previous
observations, it is, therefore, safe to conclude that a mixture of simple and manually
designed composite terminal nodes is required to create the best DRs.

6.2. DR Complexity Analysis

One could assume that a potential advantage of introducing composite features into
the terminal set could be the generation of smaller expressions. To analyse this, Figure 5
presents a scatter plot in which the fitness of the DR (x-axis) is plotted against its size
(y-axis) for each terminal set used. The figure illustrates that the solutions are very widely
scattered and only a very small number of rules below size 30 were obtained. Furthermore,
the smaller rules usually did not perform well, often reaching a Twt value of over 16. It
seems that the generated DRs started to perform well at around size 35. However, the best
overall rule had a size of more than 50, and some other well-performing rules also had
sizes of more than 50 nodes. To determine whether there was a correlation between the rule
size and its performance, Spearman’s rho test was used. Since values between −0.15 and
0.1 were obtained for the results of all phases, we can conclude that there was no obvious
correlation between these two measures. Although it may seem counterintuitive as to why
smaller expressions were not obtained for composite terminal nodes, as more complex
expressions should be represented by a smaller number of nodes, this was most likely due
to the bloating of GP, and could be mitigated by using different mechanisms to control the
bloating [62,63].

6.3. Convergence Analysis

Another interesting aspect to investigate is the rate of convergence of GP when using
different terminal node sets. For this purpose, the best individual was saved after every
10,000 evaluations and later evaluated on the validation set. This was done for all 30 execu-
tions, and the median values were calculated and then used to plot Figure 6. The figure
illustrates that the terminal set significantly influenced the quality of the initial solution.
The worst solution quality was obtained either with the initial terminal set (Phase 0) or the
one obtained from Phase 2 + 3. The reason for this could be that these terminal node sets
were larger and, therefore, it was more difficult for GP to generate a good initial solution.
Interestingly, the terminal set from Phase 2 achieved the best initial solution, indicating that
the dd ∗ dd node used contributed to the development of good solutions. Moreover, this
terminal led to the fastest convergence of the algorithm in the first half of the evolutionary
process, although the algorithm started to stagnate after a certain time. When using the
terminal set obtained in Phase 3, GP started with quite poor solutions; however, in the
end, it reached the best overall solutions. This suggests that this terminal set might have
been the most meaningful, and GP was thus able to produce high-quality DRs. However, it
also seemed to be much more difficult for GP to obtain these solutions, thus requiring a
longer evolution process, as it can be seen that the quality of the solutions themselves had
improved by the end of the assigned number of scores. Therefore, there is a possibility that
with more time, GP could achieve even better solutions with this terminal set.
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Figure 5. Scatter plot of DR fitness values plotted against the size of the DRs.
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Figure 6. Algorithm convergence on the validation set.

6.4. Removal-Sequence Similarity

To analyse how similar the order in which the terminal nodes were removed from the
terminal set was, the Levenshtein distance measure was used to determine the similarity of
the two removal sequences. For this purpose, the removal sequences of BSFS and FBS were
determined, and the Levenshtein distance for these two sequences was calculated for each
phase. The Levenshtein distance values obtained, scaled between 0 and 1, were 0.666, 0.571,
and 0.666 for the removal sequences obtained in Phases 1, 2, and 3, respectively. The values
obtained show that there were indeed large differences between the removal sequences of
the two selection methods. Thus, even if FBS could determine the nodes to be removed, it
still deviated significantly from the sequence obtained by a more thorough search for the
optimal feature set.

6.5. Run-Time Analysis

In this section, we briefly analyse the running times of the two feature selection algo-
rithms. The complexity of FBS is linear with the number of features, i.e., to determine the
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best set of terminals, N − 1 experiments must be performed, where N denotes the number
of features. The −1 appears because it is not necessary to perform the last experiment with
only a single feature. On the other hand, BSFS has a quadratic complexity and requires
about N(N−1)

2 − 1 experiments. This obviously represents a significant difference in execu-
tion time, as the execution time of GP for the 80,000 fitness evaluations was about 1 h. Thus,
in the case where nine terminal nodes were included in the set, FBS required 8 experiments,
whereas BSFS required 44. Since each experiment was executed 30 times, and each execu-
tion took 1 h, FBS was executed for a total of 240 h, whereas BFSF was executed for 1320 h.
It is assumed that all experiments are run in series. However, in many cases they can be run
in parallel, reducing the total execution time. Although a smaller number of evaluations
could be used, this would likely lead to a degradation in performance, as previous studies
have shown that GP performs best for the given number of feature evaluations [16].

7. Conclusions and Future Work

The aim of this study was to investigate the impact of different types of terminal
nodes on the performance of GP in developing DRs for unrelated machine scheduling
problems. The experimental results show that when GP is equipped with only atomic
features to generate DRs, it can outperform simple DRs but has difficulty in evolving
rules better than complex manually designed DRs. Therefore, two methods were used
to construct composite terminal nodes and improve the performance of GP. In the first
method, new terminals were constructed based on sub-expressions most commonly found
in DRs developed with atomic terminals. Although with these terminals, GP matched the
performance of manually constructed DRs, it still rarely outperformed them. However,
the second approach, where composite terminal nodes were designed manually, proved to
be more efficient and allowed GP to generate DRs that significantly outperformed manually
designed DRs. Therefore, a certain level of expertise is required when designing terminal
nodes, as it is necessary to define terminal nodes that provide more complex information
about the scheduling problem. In addition to defining new terminals, it is also imperative
to apply a feature selection method to determine the appropriate set of terminal nodes
to prevent the search space from growing exponentially. The experiments showed that
selecting terminal nodes based on their frequency of occurrence can help in selecting
meaningful terminal nodes. However, this approach is not as robust as standard feature
selection methods, such as backward sequential feature selection.

The results obtained in this study open up several avenues for future research. One
possible research direction, which was only briefly explored, would be to introduce feature
construction methods into the GP algorithm so that it can automatically design new features.
In addition, better measures for identifying relevant features and sub-expressions are
needed, aside from frequency of occurrence. Finally, another option would be to manually
construct additional terminal nodes, as such nodes usually lead to better results compared
to those constructed based on the frequency of occurrence.
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