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Abstract

Public repositories of large-scale biological data currently contain hundreds of thousands of experiments, including
high-throughput sequencing and microarray data. The potential of using these resources to assemble data sets combining
samples previously not associated is vastly unexplored. This requires the ability to associate samples with clear annotations
and to relate experiments matched with different annotation terms. In this study, we illustrate the semantic annotation of
Gene Expression Omnibus samples metadata using concepts from biomedical ontologies, focusing on the association of thou-
sands of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) samples with a given target,
tissue and disease state. Next, we demonstrate the feasibility of quantitatively measuring the semantic similarity between
different samples, with the aim of combining experiments associated with the same or similar semantic annotations, thus
allowing the generation of large data sets without the need of additional experiments. We compared tools based on Unified
Medical Language System with tools that use topic-specific ontologies, showing that the second approach outperforms the
first both in the annotation process and in the computation of semantic similarity measures. Finally, we demonstrated the
potential of this approach by identifying semantically homogeneous groups of ChIP-seq samples targeting the Myc transcrip-
tion factor, and expanding this data set with semantically coherent epigenetic samples. The semantic information of these
data sets proved to be coherent with the ChIP-seq signal and with the current knowledge about this transcription factor.
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Introduction

High-throughput biological data sets available in large-scale pub-
lic repositories constitute a valuable resource to investigate dis-
eases and phenotypes in different organisms and biological
conditions. Public repositories such as Gene Expression Omnibus
(GEO) [1] and Array Express [2] include dozens of thousands of
samples profiling transcriptional and epigenetic patterns and the
binding of various regulatory proteins in entire genomes or a
large fraction thereof. Integrative analysis of such data could
shed light on the epigenetic and transcriptional patterns that

lead to various diseases with respect to normal or healthy condi-
tions [3].

Genes’ transcriptional activity results from the synergistic ac-
tion of multiple regulatory cues, including transcription factors
(TFs) binding and epigenetic marks. Consequently, to either study
the transcriptional patterns observed in a specific biological con-
text of interest, or to advance our understanding in the intricate
interplay between various epigenetic and regulatory marks, it is
always highly desirable to acquire multi-layered comprehensive
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data sets. Ideally, these would typically include the highest pos-
sible number of TFs binding maps and epigenetic marks in mul-
tiple tissues and disease states. Clearly, the cost of generating
such data sets is often out of reach of individual research groups,
and is something more commonly obtained through the consti-
tution of large consortia [4]. Nevertheless, given a specific mo-
lecular target of interest, such as the binding of a specific TF in a
tissue and disease state, it is often possible to find in public large-
scale databases that experiments have been already performed
for numerous regulatory factors or epigenetic marks profiled in
the same or in a sufficiently similar tissue and disease condition.
Thus, the process of expanding the initial data set with compat-
ible publicly available data has a great potential to increase the
value of the initial data.

Crucial for this expansion process are (i) the ability of as-
signing formal semantic labels to public samples (semantic an-
notation; for example, determining the targeted protein, the
investigated disease state and tissue type), and (ii) the possibil-
ity of relating different samples through these labels (semantic
similarity), to identify semantically coherent experiments that
are suitable to be associated to the initial data set. Using ontol-
ogy-based annotations is beneficial because it allows associat-
ing text to formal concepts, thus supporting interoperability,
and guarantees automatic reasoning based on the ontologies
underlying structure.

The association of samples to semantic information would
be greatly facilitated if their metadata were relying on con-
trolled vocabularies or specific biomedical ontologies [5].
Metadata of microarray experiments deposited in GEO and
ArrayExpress were among the first to benefit from the creation
of these standards [6-8]. Many ontologies, lexicons, databases
and dictionaries emerged in various domains, including the
Unified Medical Language System (UMLS) Metathesaurus [9]
and the Open Biomedical Ontologies (OBO) [10]. Despite the ef-
forts in data standardization, the heterogeneity and quality of
natural language textual annotations, especially in the field of
epigenetics and transcriptional regulation, still represents a
bottleneck in the retrieval of data, in the programmatic access
and organization of samples in semantically coherent groups.

While a number of large-scale projects and consortia re-
sulted in high-quality well-annotated data sets [11, 12], this
level of curation is typically lacking in individual samples, i.e.
the vast majority of the available data. Different attempts have
been made to facilitate access to resources that provide results
of experiments and the corresponding raw data based on their
associated metadata, such as EBI Linked Data (https://www.ebi.
ac.uk/rdf/), LinkedCT (http://arxiv.org/abs/0908.0567) and
Bio2RDF (http://dl.acm.org/citation.cfm?id=2878554). In particu-
lar, one of the main tools is the National Center for Biomedical
Ontology (NCBO) Bioportal, which provides the ability to browse,
search, visualize, annotate (using the NCBO annotator) and map
text with concepts from more than 300 different ontologies [13,
14]. Similarly, the tool Gemma [15] is a database and analysis
system capable of meta-analyses, such as differential gene ex-
pression or co-expression, using public gene expression data
sets annotated both automatically and manually with specific
ontologies. None of the two resources provide a comprehensive
annotation of available high-throughput data sets, as they are
limited to GEO data sets and gene expression samples,
respectively.

In this article, we start by providing a brief description of the
state-of-the art concepts and tools for recognizing and relating
ontology concepts in biomedical texts. We specifically focus on

publicly available samples for the binding of TFs and epigenetic
marks resulting from chromatin immunoprecipitation followed
by high-throughput sequencing (ChIP-seq) experiments. We il-
lustrate and we evaluate the semantic annotation of GEO ChIP-
seq samples associating them to an immunoprecipitated target,
disease and tissue information. We proceed by demonstrating
how the initial query can be expanded for the identification of
semantically coherent data sets. Finally, we exemplify these
concepts with ChIP-seq samples targeting the Myc TF, illustrat-
ing how it is possible to study the tissue-specific binding of this
TF solely based on public data, and showing how these samples
can be complemented with a set of semantically coherent epi-
genetic marks (while a TF was chosen as an example, our ap-
proach does not have to be intended to be tailored or limited to
samples targeting these regulatory proteins).

Materials and methods

Accessing public repositories metadata using SRAdb

Genome-wide maps of DNA-binding regulatory proteins and
epigenetic marks are typically obtained and released as ChIP-
seq experiments. Each ChIP-seq sample in GEO is linked to the
Sequence Read Archive (SRA), a public repository of high-
throughput sequencing (HTS) raw data and their metadata.
SRAdD [16] is an R/Bioconductor package collecting SRA meta-
data into an SQLite database and providing the user a way to
quickly query samples metadata and eventually download
the associated sequence files (in the Fastq or SRA format) for
local reads-alignment and downstream analysis in the R
environment.

Details of interest about the experiments and samples were
obtained from ‘experiment_attribute’ and ‘sample_attribute’
metadata fields. The ‘sample_attribute’ field contains data
about the considered physical sample, in form of free-text or as
a pipe-separated sentence containing SRA metadata keywords
corresponding to xml tags and the corresponding submitted
information.

GEO samples are not always linked to unique SRA ids.
Because the metadata contained in SRAdb closely match the
GEO metadata, and because SRA ids are necessary for the re-
trieval of the raw data, we decide to report the number of sam-
ples as SRA ids, rather than GEO samples (for example, the
21 037 SRA ids, corresponding to human and mouse ChIP-seq
samples, correspond to 20 913 unique GEO sample accessions).

Identification of the immunoprecipitated target

The tm R package was used to match the text to genes and his-
tone marks identifiers. The procedure first splits the sentence
in tokens, removes the stop words and punctuations and finally
creates a document-term matrix containing matched histone
modifications or official gene symbols. Finally, gene or protein
identifiers were mapped to the corresponding gene symbol
(contained in Bioconductor metadata packages for mouse and
human), and histone marks were associated to reference lists
obtained from the Histome database (following the standard
nomenclature provided in [17]).

Semantic annotation: UMLS and biomedical ontologies

In this study, we considered, and compared, two main re-
sources to perform the semantic annotation: UMLS and specific
OBO ontologies. The UMLS is an ensemble of interconnected
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controlled vocabularies in the biomedical sciences [9]. It is com-
posed of several components. Among these, the Metathesaurus
consists of different terms (concepts) from different controlled
vocabularies or ontologies, defined as sources. Each concept is
associated to a short description and can be identified by a
unique concept identifier (CUI). Metathesaurus relationships
can be divided in two main categories: relationships between
concepts belonging to the same source (intra-source relation-
ships) and relationships between concepts belonging to differ-
ent sources (inter-source relationships). UMLS editors have
manually generated the latter during the integration process of
new sources into the Metathesaurus. Most of these relation-
ships refer to synonymous concepts; others are introduced to
connect isolated concepts (with few or no relationships in their
source), thus explicitly creating a mapping between different
sources. While extremely useful for the interoperation of het-
erogeneous data, creating links between concepts from differ-
ent sources is a difficult task, and the heterogeneity of the
sources represents the major bottleneck.

On the other hand, while ontologies belonging to the OBO
foundry are also created by experts in the field and reflect
human reasoning, and while they covered a more limited set of
research fields, they have important advantages in terms of or-
thogonality, unambiguousity, scalability and topic specificity
[10]. OBO ontologies considered within this study are the
BRENDA Tissue Ontology (BTO) [18], which collects a hierarchy
of tissues, cell types and cell lines for different organisms, and
the Disease Ontology (DO) [19], which describes human diseases
and phenotypes.

Semantic annotation: associating biomedical
concepts with samples metadata using Metamap
and Conceptmapper

In this study, two different concept mapping tools were con-
sidered and compared with semantically annotate GEO meta-
data: Metamap (based on UMLS), and Conceptmapper (based on
OBO ontologies). Metamap [20] is a Natural Language Processing
(NLP) tool developed with the aim of annotating biomedical text
with UMLS Metathesaurus concepts. The large range of input,
output and processing options makes Metamap suitable for dif-
ferent types of text. It provides different output formats for
human or machine readability, the possibility to use different
UMLS subsets, the use of two data models (relaxed and strict) to
decide the type of filtering on the Metathesaurus content, a
word sense disambiguation module, the identification of neg-
ations and gaps in the text. The annotation process applied in
this study involves different steps: the syntactic parsing of the
biomedical text into noun phrases with the Specialist Lexicon;
the generation of lexical variants for each noun phrase with
spelling variants, abbreviations acronyms, CUI candidate re-
trieval and evaluation; a final mapping construction where the
best combinations of Metathesaurus (USABase 2014AA version,
containing ~3M distinct CUIs) concepts is reported. The final
mappings are a set of concept candidates that best describe the
text given as input, scored based on centrality, variation, cover-
age, cohesiveness and involvement. The output was requested
in the MetaMap Indexing format, where individual ranked con-
cepts are returned. Concepts are scored based on a ranking func-
tion that characterizes the power (aboutness) of a given concept
for a piece of text, which is the product of a frequency factor and
a relevance factor. The relevance factor takes into account the
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depth of the concept in the tree hierarchy, the word length, the
number of characters and the Metamap mapping score.

Conceptmapper [21] is a Unstructured Information
Management Architecture-based tool to annotate text with con-
cepts from a dictionary. BO and DO OBO ontologies were con-
verted into Conceptmapper dictionaries using the components
developed at Colorado Computational Pharmacology and avail-
able at http://sourceforge.net/projects/bionlp-uima/.

For both UMLS and Conceptmapper, the performance de-
pends on the different configuration parameters and on the
ontology used, and for this study we adopted settings previ-
ously identified as recommended [22]: Conceptmapper was con-
figured to retrieve the longest match of contiguous tokens
matching the text in the dictionary, using the PORTER stem-
ming algorithm and considering all synonym types; for UMLS
we used the term processing options (—z) to process each input
sentence as a single phrase to identify more complex
Metathesaurus terms, and the word sense disambiguation op-
tion (-y) to reduce as much as possible the ambiguity of
concepts.

Semantic similarity measures

The task of assembling semantically homogeneous groups of
experiments requires the definition of semantic similarity
measures [23]. Two different approaches are commonly used in
the biomedical domain: knowledge- and distributional-based
methods. Knowledge-based methods use the structure of se-
mantic networks as a knowledge source to build a graph of con-
cepts connected by concept relationships and estimate concept
similarities. These measures include the ‘path finding’, based
on the shortest path between concepts, ‘random walk’ and ‘in-
trinsic information content’ that weights semantic relation-
ships based on the specificity of the concepts in the semantic
hierarchy. Distributional-based methods associate the know-
ledge about the structure of the source with the frequency of
the concepts in a given text. The choice of the appropriate simi-
larity measure is a difficult task and depends on the number
and type of concepts that a knowledge source includes and the
relationships it contains, but also on the text in which measures
have to be computed.

In the case of GEO metadata, knowledge-based methods are
expected to perform better than distributional-based ones, as
the description of each sample is short and the frequency of
each concept in the corpus is always low. In particular, within
knowledge-based methods, those relying on ‘intrinsic informa-
tion content’ provide good performance in terms of accuracy
and are a good choice when a big corpus to compute concept
frequencies is not available [24, 25]. The specific definitions of
the knowledge-based semantic similarity metrics adopted in
this study follow here.

The Path [26] similarity measure between two concepts
(c; and c,) is defined as the inverse of the shortest path length
between them:

1
Path(cy, c2) = shortest_path(cy, c;)

Leacock and Chodorow [27] propose a similar measure
(LCH) scaling the path length by the maximum depth of the tax-
onomy d:
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log(shortest_path(cy, c2))
log(2d)

LCH(cy,c0) =1 —

Wu and Palmer [28] divide the depth of the most specific
concept subsumer (lcs) of the two given concepts by the sum of
the distances of the concepts to the subsuming concept:

depth(lcs(cq, co
WuPalmer(cy, 2) = depﬂf(cl() +(depth)()c2)

Information content-based distributional measures consider
the frequency of the occurrence of a given concept in a large
text corpus. The corpus information content of a concept is sim-
ply the inverse of the log of the concept’s frequency (which also
accounts for the frequencies of its children). The Lin [29] seman-
tic similarity measure falls within this class:

. 2 x IC(les(c1, ¢2))
Lin(er, &) = S T 1c (o)

This measure depends on the availability of a reference
corpus, which is not available for our purpose. Eventually, we
excluded the Lin similarity because in the GEO metadata the
frequency of concepts is mostly associated with the frequency
of a given type of experiments (which does not have any
specific biological meaning) rather than reflecting the con-
cepts specificity or importance. As an alternative, improving
on the Lin measure and avoiding the dependency on the
terms frequency, it is possible to use a version named
Intrinsic Lin. This is based on the Intrinsic IC [30], obtained by
replacing the IC with its intrinsic counterpart, defined as
follows:

leaves(c)

subsumersia T 1
[Cintrinsic () = —log [ Sbsumers(@) =
1ntnnsxc( ) g <maX13aueS 1

where leaves(c) is the number of leaves that are descendant of
¢, subsumers(c) is the list of ancestors of concept ¢ and maxieqyes
is the total number of leaves in the taxonomy.

Knowledge-based measures mentioned above can also be
transformed so that they leverage on Intrinsic IC, as this has
been shown to be advantageous [24]. This originates the
Intrinsic Path, LCH versions and is achieved considering the fol-
lowing semantic distance instead of the classical shortest path
distance:

dist(cq,c2) = IC(c1) + IC(c2) — 2 x IC(Ies(c1, ¢2))

Results and discussion

We focus on the metadata of publicly available ChIP-seq sam-
ples to illustrate the potential of NLP tools such as Metamap
and Conceptmapper in determining the semantic annotation
and similarities between high-throughput biological samples.
Specifically, we intended to demonstrate and evaluate the
ability of these tools in recognizing the immunoprecipitated
target, the tissue and the disease condition for ChIP-seq sam-
ples targeting TFs and epigenetic marks. Surprisingly, while
several thousands of experiments are already available for
these regulatory factors in public databases, and while studies
involving TFs and epigenetic marks would greatly benefit from
this abundant and comprehensive information, the semantic

information associated to this rich data resource is rarely
exploited.

Retrieval of ChIP-seq metadata and identification of the
immunoprecipitated target

Metadata associated to the raw data of ChIP-seq experiments
stored in SRA (and closely matching the corresponding GEO
metadata) were obtained using the SRAdb Bioconductor pack-
age, by filtering for experiments associated to the ‘ChIP-seq’ li-
brary strategy (see the Methods section for additional details).
We identified 21 037 SRA experiments for human (11 641 sam-
ples) and mouse (9396 samples).

Proper documentation of a ChIP-seq experiment implies the
definition of the immunoprecipitated molecule. As an excep-
tion, ChIP-seq control samples are commonly obtained by re-
peating the experiment without the antibody (input samples) or
using antibodies resulting in nonspecific binding (such as IgG).
ChIP-seq samples metadata often contain a field identifying the
targeted entity or the antibody used, if any. This field can be
identified by different keywords like ‘ChIP antibody’ or
‘Antibody target’. When these tags were available, the rest of
the description was not used for the identification of the immu-
noprecipitated target. Overall, we were able to identify targets
for 16 953 of 21 037 SRA ChIP-seq experiments (see the Methods
section for additional details). Of these, 2493 were control sam-
ples (input) and 360 IgG (Figure 1A).

Identification of disease and tissue terms in ChIP-seq
metadata

We configured Metamap to map sentences with CUIs in the
‘disease syndrome’ and ‘neoplastic process’ semantic classes.
We evaluated both the possibility to run Metamap on the entire
sentences describing the samples, or on parts of the sentence
associated to specific tags informative on the disease condition:
‘disease’, ‘disease state’ and ‘donor health status’. The latter op-
tion was available only for 2177 of 21 037 experiments. First,
these tags are used to identify normal (healthy) samples. A sam-
ple was considered normal if the value associated to the tag in
the attribute sentence contained one of the following: ‘normal’,
‘healthy’, ‘presumed normal’, ‘None’, ‘NA’, ‘no ad present’ (1896
experiments of 2177). Then, experiments not assigned to the
normal state were annotated using Metamap. The annotation
phase required 3h17m and returned 325 unique disease CUIs for
6248 ChIP-seq samples (Figure 1B). Metamap results were com-
pared with those obtained with an alternative tool,
Conceptmapper, using a dictionary of diseases based on the DO
[19]. With Conceptmapper we were able to match 4831 samples
to 124 unique disease ids in a few minutes (Supplementary
Figure S1A).

Similarly to what we did for the diseases, we repeated the
annotation process for the identification of tissues and cell
lines using both tools. To this purpose, we used the same
Metamap options described above, selecting the ‘bpoc’, ‘tisu’
and ‘cell’ semantic types. The annotation of tissues with
Metamap allowed us to match 14 328 of 21 037 samples to 580
different tissues and cell lines CUIs (Figure 1C). Results ob-
tained by running Conceptmapper on the same set of sen-
tences allowed us to associate 19 152 of 21 037 samples to 613
different concepts defined in the BTO (Supplementary Figure
S1B).
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Figure 1. Word cloud with the most frequent targets, tissue and disease terms. (A) The 50 most frequent targets for the considered ChIP-seq experiments excluding
the control samples; target size and color shade are proportional to the number samples. (B) As in (A) for the 50 most frequent disease terms identified from Metamap.

(C) As in (B) for the tissue terms.

For both diseases and tissues, the top-ranking terms identi-
fied by Metamap and Conceptmapper qualitatively show a good
agreement.

Evaluating the quality of semantic annotations

To evaluate the quality of the annotations, we randomly ex-
tracted 200 GEO samples from the set of 21 037 ChIP-seq

experiments. For each sample, we manually compared the re-
sult obtained from the automatic annotators (Metamap or
Conceptmapper) with the expected one, resulting from manual
curation. We would like to stress that the aim of the manual
curation is to evaluate the amount and quality of information
that we could extract from the GEO metadata, without consider-
ing any additional information that could be, for example,
retrieved from the corresponding scientific article. We adopted
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Table 1. Evaluation of Metamap (MM) and Conceptmapper (CM) semantic annotations for tissue and disease terms

Annotations TP FP TN FN Sensitivity Specificity Precision Negative predictive value F1
MM full tissues 267 257 2 82 0.76 0.01 0.67 0.05 0.61
MM keyw tissues 118 57 6 107 0.52 0.65 0.67 0.05 0.59
MM full diseases 106 112 113 1 0.99 0.5 0.49 0.99 0.65
MM keyword diseases 62 36 73 63 0.5 0.67 0.63 0.54 0.56
CM tissues 312 33 15 34 0.9 0.31 0.9 0.31 0.9
CM diseases 73 19 141 17 0.81 0.88 0.79 0.89 0.8

Note. For Metamap, the evaluation was done both providing as input the entire sentences (MM full) or only the part of it matching keywords specific for the topic of

interest (MM keyw).

the following rules for a given annotation of a given sample: (i) a
true-positive (TP) value was assigned if the concept corres-
ponded to the manually curated annotation; (ii) a false-positive
(FP) value was assigned to concepts not matching the manual
annotations of samples (including concepts that were too gen-
eric, such as ‘cell line’ or ‘disease’, or poorly specific given a
more specific concept available in the hierarchy); (iii) a true-
negative (TN) value was given to those samples for which it was
not possible to determine the annotation both manually and
automatically (the concept is not contained in the metadata
and is not available in the Metathesaurus, for UMLS, or ontol-
ogy, for Conceptmapper); a false-negative (FN) value was as-
signed to manually recognized concepts that were missed by
the automatic annotators. The performance of the annotation
process is summarized in Table 1, which reports the values of
sensitivity, specificity, precision, negative predictive value and
F1 measure. The F1 score is the harmonic mean of precision
and recall and can be used to summarize the accuracy of the an-
notation procedure.

In general, Conceptmapper clearly outperformed Metamap.
Noteworthy, Metamap performance was higher when consider-
ing the entire sentences, for both tissue and disease terms. This
indicated that, whenever specific keywords were available, the
quality of the contained information did not meet the expected
quality and did not justify discarding the full sentence. The
lower performance of Metamap is mainly owing to a higher
number of CUIs incorrectly assigned to a sample compared with
Conceptmapper. This is often attributable to poorly informative
CUIs, and ambiguous or conflicting CUIs associated to the same
sample. These issues have lower effect on Conceptmapper an-
notations because OBO ontologies are less complex and better
organized.

With the aim of improving Metamap annotations, we tried
different solutions: (i) filtering the annotations removing those
having mapping scores under a threshold; (ii) removing generic
annotations based on the hierarchical structure of UMLS
Metathesaurus; (iii) reducing the number of the assigned CUIs
to a given sample based on their mapping score. Neither one of
these filters nor their combination was able to significantly im-
prove the performance in terms of the measured quality metrics
(data not shown).

Semantic similarity

The availability of samples semantic annotations allows an ef-
fortless identification of samples matching a particular disease
(or tissue). Importantly, it also allows identifying samples asso-
ciated to semantically close conditions. This could be useful to
(i) overcome the lack of samples matching a condition, relying
on samples matching a similar tissue or disease state; (ii) quan-
tify the semantic relatedness of samples associated to different

[

0  cophenetic correlation 1
LCH 0.78 0.58 0.47 0.27 0.23
Path 0.51 0.5 0.43 0.4

Wu
Palmer 0.61 0.39 0.29

Intrinsic
. . . Lin 0.78 0.63

Intrinsic
Intrinsic
Path

Figure 2. Matrix of pair-wise cophenetic correlations between the CUIs tissue
dendrograms obtained with the indicated semantic similarity measures. The
two groups of semantic similarity metrics discussed in the main text are
highlighted.

biological conditions; (iii) identify (or stratify) samples associ-
ated to terms being children of a common parent-term (more
generic). Importantly, the degree of similarity can be quantita-
tively determined.

We used YTEX [31] to compute the pairwise semantic simi-
larities between UMLS CUIs annotating the test samples. The
clustering of tissue CUIs using different similarity metrics is
exemplified in Supplementary Figure S2 using the Intrinsic Lin
metric. On one hand we could not compare the results obtained
with the different measures to any gold standard. On the other
hand, we reasoned that semantic similarity measures are more
robust if there is agreement between the groups created by each
of them. To this end, we computed the correlation between the
resulting semantic similarity dendrograms (Figure 2) based on
the cophenetic correlation (the correlation between two cophe-
netic distance matrices, obtained considering the height at
which two close components are combined into a single clus-
ter). We could identify two groups, the first referring to the in-
trinsic information content measures (intrinsic Lin, LCH and
Path) showing the highest pairwise correlation (average 0.76
cophenetic correlation), and the second pointing to the LCH,
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Path and WuPalmer measures (average 0.62 cophenetic
correlation).

The correlation of dendrograms obtained using Slib [32]
based on BTO and Conceptmapper shows higher coherence
among the measures (average 0.86 cophenetic correlation,
Supplementary Figure S3). Eventually, we decided to adopt
Intrinsic Lin for the rest of the study, as this is the measure that
best correlates with the other five measures both for Metamap
and Conceptmapper.

Noteworthy, the analyses presented so far relate tissue (or
disease) terms to each other directly. As ultimately one would
like to determine the semantic similarity between samples,
based on their metadata annotation, and as a sample can be
assigned to multiple annotation terms, we decided to
adopt the best match average criteria [33], which averages the
similarity of the best matching concepts in two different
samples.

UMLS-specific issues and possible solutions

In the case of tissue UMLS-based semantic similarities, con-
cepts belonging to the same semantic type are often closer to
each other compared with the expected similar concepts be-
longing to other types. For example, the concept ‘MCF7-cells’
(human breast cancer cell line) always appears closer to the
concept ‘K-562’ (myelogenous leukemia cell), than to the con-
cept ‘Breast cancer cell’. Indeed, both ‘MCF7-cells’ and ‘K-562’
map to the ‘cell’ semantic type, while ‘Breast cancer cell’ be-
longs to the ‘Dpoc’ semantic type. This would be problematic in
a query for samples matching a disease like breast cancer, in
which one would expect samples associated to both the terms
‘Breast cancer cell’ and ‘MCF7-cells’, with the exclusion of sam-
ples matching to ‘K-562’ cells. To overcome this issue, we con-
sidered the definitions of terms belonging to the ‘cell’ semantic
type, taken from the corresponding Metathesaurus or, in its ab-
sence, using the short UMLS definition provided for each term.
We used Metamap to associate these definitions to ‘bpoc’ CUIs,
trying to enforce a link between the ‘cell’ and the ‘Dpoc’ seman-
tic types. This only partially resolved this issue, as we were not
able to match the majority of ‘cell’ concepts to any ‘bpoc’
concept.

We concluded that both the quality of annotations and the
robustness of semantic similarity metrics are higher when
using individual ontologies (as in the case of BTO, or DO, using
Conceptmapper) rather than UMLS annotations.

A case study: the Myc TF

As a case study to illustrate the application of semantic annota-
tions and similarities, we retrieved 77 ChIP-seq samples target-
ing the Myc TF in human, and their associated metadata.
ConceptMapper was used for the semantic annotation of tissue
and disease terms, based on the BTO and DO, respectively.
Resulting annotations were clustered based on the Intrinsic Lin
semantic similarity (Supplementary Figure S4).

It could be expected that the semantic similarity between
the samples reflects the similarity in the ChIP-seq signal, i.e.
the Myc binding sites on the genome. To verify this, we selected
within the Myc data set a subset of 22 samples from eight stud-
ies, representing nine distinct tissues and five disease states.
The Intrinsic Lin semantic similarity was computed for each
pair of samples, and the corresponding hierarchical clustering
revealed five main groups (Figure 3A). For the same samples, we
aligned the corresponding HTS reads on the human genome

Ontology-based annotations and semantic relations | 7

and we identified the Myc enriched regions (peaks). Figure 3B
reports the proportion of shared peaks between pairs of sam-
ples. Samples are ordered based on the association to the same
or similar tissue (tissue class; based on the clustering in
Figure 3A).

The average peaks overlap for samples within the same tis-
sue class is generally higher compared with samples belonging
to different tissues and diseases. In the case of Hela cells for ex-
ample, three samples from two independent studies show an
average 56% of overlap (Figure 3A and B). As further example,
six samples from three different studies in ‘mammary gland’
and ‘breast cancer cell’ tissues have 42% overlap. In the latter
example, the samples could also be stratified, looking at the
peaks overlap only, in two main groups that nicely correspond
to the disease state (‘adenocarcinoma’ and ‘breast adenocarcin-
oma’) versus unknown (on closer inspection this could be classi-
fied as healthy samples). When the inter-tissue overlap is high,
it often matches a high semantic similarity between the tissues.
Compare, for example, the 45% overlap between ‘K-562 cells’
and ‘B-lymphoma’/‘B-lymphocyte’ in Figure 3B, with the high
similarity between these tissue terms in Figure 3A. These ex-
amples illustrate how, based on the semantic closeness of tis-
sue terms, we could combine samples from different
laboratories and independent studies, obtaining additional and
coherent information without the need of new experiments.

Myc peaks typically are associated with epigenetic marks
and regulatory factors characterizing open chromatin and tran-
scriptionally active regions, such as H3K4me3, H3K27ac and
Pol2 [34]. Starting from a collection of samples for Myc in a
‘B-lymphoma’ cell line (as tissue) and ‘B-cell lymphoma’ (as dis-
ease) from a specific study (GSE30726), we illustrate the concept
of semantic expansion: ChIP-seq samples are collected targeting
Myc and additional factors and marks associated to similar tis-
sues and disease states.

First, all the ChIP-seq samples directed to Myc, H3K4me3,
H3K27ac and Pol2 having the same tissue and disease condition
of GSE30726 were identified: the block in the upper-left side of
the heatmap in Figure 3C collects all these ‘seed’ samples asso-
ciated to the ‘B-lymphoma’ tissue and ‘B-cell lymphoma’ dis-
ease state. Relaxing the tissue semantic similarity to
values >0.9 we could expand this initial data set with additional
experiments targeting Myc, H3K4me3, H3K27ac or Pol2, which
were annotated with the ‘B-lymphocyte’, ‘BCB-L1 cell’ and
‘Lymphoma cell’ tissue terms. The heatmap in Figure 3C illus-
trates that most of the additional Myc peaks co-occur with Pol2,
H3K4me3 and H3K27ac peaks (54%, 57% and 52%, respectively),
pointing to active promoter or enhancer regions. As expected,
Pol2 positive regions are in turn often associated with H3K4me3
and H3K27ac peaks (64% and 63%, respectively). As it has been
described [34], while Myc often binds in presence of Pol2 (52% of
Myc peaks are Pol2 positive) the opposite does not necessarily
hold: not all the Pol2 positive regions are Myc bound (only 16%
of them are Myc positive). Similarly, also for H3K4me3 and
H3K27ac the fraction of peaks that are Myc positive (9% and 7%,
respectively) and that are associated Pol2 (34% and 28%, respect-
ively) is particularly reduced. These are expected to be mostly
promoters of low-expressed genes or active enhancers that are
not Myc bound. Noteworthy, within the Pol2 ChIP-seq samples,
there are four samples annotated as ‘B-lymphocytes’ with
‘Unknown’ disease, whose overlap with the other Pol2 samples
is markedly reduced. These samples were manually verified to
refer to healthy samples, while they could not be identified as
healthy by the annotator. This highlights the importance of
considering both the tissue and disease state when collecting
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Figure 3. Agreement between semantic similarity and ChIP-seq signal. (A) Hierarchical clustering of tissue annotations for selected ChIP-seq samples targeting the Myc
TF, based on the Intrinsic Lin semantic similarity. (B) Heatmap showing the percentage of peaks shared by the samples on the rows with the samples on each column.
The colorbars on the left of the heatmap denote samples having identical GEO Series id (GSE), tissue or Disease id, according to the legend. (C) Percentage of overlap of
peaks of ChIP-seq samples targeting Myc, H3K4me3, H3K27ac and Pol2. A first set of samples (upper left block) was identified for these marks in B-lymphoma cell line
(tissue) and B-cell lymphoma (disease). Additional samples from different studies were added by relaxing the semantic similarity threshold to include samples for the
same marks that are associated to similar tissues and diseases. For each block, the average overlap is reported, excluding same-to-same overlaps, and values in bold

are discussed in the text.

samples from GEO. Eventually, this analysis illustrates how we
were able to recapitulate the expected biology in the interplay
between Myc, Pol2 and epigenetic marks [34], by using onto-
logical reasoning to integrate previously unrelated ChIP-seq
samples matching various targets and associated to similar tis-
sue and disease conditions.

Conclusions

In this work, we have explored the efficacy of available text-
mining tools to allow users to retrieve and relate samples of
interest from public repositories of HTS data such as GEO.
Specifically, we intended to test the feasibility of identifying
ChIP-seq samples directed to a given target and associated to
specific diseases and tissues. We adopted two popular concept-
mapping tools, Metamap and Conceptmapper, to annotate GEO
samples metadata using particular categories of UMLS concepts
or ontology terms. We also explored the possibility of relating
concepts to each other, as this would allow to group collected
samples in semantically homogeneous clusters or to expand
user queries to retrieve samples with the desired level of se-
mantic similarity.

The large amount of UMLS relationships and concepts
makes UMLS both a rich source of information and an ex-
tremely complex resource in terms of usability and accessibility.
Many sources of error and ambiguity are introduced during the

integration of new sources (ontologies and vocabularies).
Consequently, determining the path from a given concept to an-
other is affected by issues such as hierarchical cycles [35-37], re-
dundant relationships, conflicting relationships, multiple
mutual exclusive relationships between two concepts or or-
phaned components [38]. In addition, different semantic types
are often not adequately interconnected: in our case, we could
not associate cell lines to the tissues they refer to. Ultimately,
we showed that tools as Conceptmapper, which can be used
with topic-specific OBO ontologies, outperformed Metamap
both in the annotation process and in the computation of se-
mantic similarity measures.

To demonstrate the usefulness of these resources and tools
in a practical application, we considered ChIP-seq samples tar-
geting the Myc TF. We showed how it is possible to retrieve
samples with precise tissue and disease annotations, and how
one could complement the available data with additional sam-
ples having a controlled degree of semantic similarity. In con-
clusion, we demonstrated how it is possible to leverage on
ontological reasoning for assembling large data sets including
samples previously not associated. This illustrates the potential
of public repositories (including, while not limited to GEO) in
allowing scientists both to confirm their findings and to assem-
ble larger data sets possibly leading to new or refined discov-
eries. Future work might be dedicated to the development of
user-friendly software applying these concepts, with emphasis
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on the field of epigenetics and transcriptional regulation, and
possibly incorporating a database of semantically annotated
GEO metadata.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.

Key Points

* The potential of using public repositories for assembling
data sets including high-throughput biological data pre-
viously not associated is remarkably unexplored.

* Semantic annotation of the metadata of public data
sets with concepts from biomedical ontologies stand-
ardizes their representation and is instrumental for the
retrieval of samples for a given condition of interest.

* The semantic similarity between different samples
can be quantitatively determined leading to possibly
large groups of semantically coherent samples.

* Comparison of tools based on UMLS with tools that
use topic-specific OBO ontologies showed that the lat-
ter outperforms the former both in the annotation
process and in the computation of semantic similarity
measures.

¢ The potential of this approach was illustrated select-
ing semantically homogeneous groups of ChIP-seq
samples targeting the Myc TF and expanding the data
set with semantically similar epigenetic samples; im-
portantly, the semantic information proved to be co-
herent with the ChIP-seq signal and the current
knowledge about this TF.
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