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Abstract: Discrete global symmetries of 4d N = 2 SCFTs are studied via two operations:
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well-known 4d N = 2 SCFTs, including SU(n) SQCD with 2n flavors, theories of class S
of type A2n−1, and Argyres-Douglas theories of type (AN , AN ), as well as propose new 4d
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symmetry and the 0-form flavor symmetry. Many examples are viewed through the lens of
the Argyres-Seiberg duality and its generalization. We also examine discrete gauging of SU(2)
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action on the scalar fields parametrizing the moduli space. Upon examining the Zk invariant
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space that is expected to be captured by the ABJ(M) theory, there exist in general nilpotent
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1 Introduction

The central theme of this paper involves discrete global symmetries of superconformal field
theories (SCFTs) in three and four dimensions. The two operations that will be studied are
gauging of discrete symmetries and compactification of SCFTs on a circle with an outer-
automorphism twist. Both are classic methods that can be used to obtain new theories, some
of which are dual to each other in an intricate manner.

In gauging a discrete symmetry, the background gauge field associated with the symmetry
in question is summed over in the path integral. A notable class of 4d SCFTs that can be
obtained from discrete gauging is that with N = 3 supersymmetry [1, 2]. A large family of
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them can be obtained by gauging an appropriate discrete subgroup of the SL(2,Z) duality
group of 4d N = 4 super Yang-Mills (SYM) theories at a certain value of the coupling. This
idea can be generalized to theories with 4d N = 2 supersymmetry in many ways, see e.g. [3–
10]. Moreover, discrete gauging can also involve discrete higher-form symmetries [11, 12]. In
particular, we will investigate theories whose 1-form symmetry has a mixed ’t Hooft anomaly
with a continuous flavor symmetry and gauging thereof.

On the other hand, for a circle compactification, we may twist the theory around the
circle by introducing a holonomy for the background gauge fields associated to discrete global
symmetries of the theory, giving rise to a twisted compactified theory on a circle. Upon
shrinking the size of the circle to zero, we obtain a new theory in one dimension lower. For
example, many new 5d theories can be obtained from 6d SCFTs in this way, see e.g. [13–19].
Another prominent example is S-duality of 5d maximally SYM theories on S1, whereby the
tower of Kaluza-Klein W-bosons and the tower of instantonic monopoles are interchanged.
This maps a simply-laced gauge theory on S1 to itself and maps a non-simply-laced gauge
theory on S1 to a simply-laced gauge theory twisted by an outer-automorphism around
S1, see e.g. [20–24].

This paper contains two major parts. In the first part, we consider discrete gauging of
certain well-known 4d N = 2 SCFTs, including the SU(n) gauge theory with 2n flavors of
hypermultiplets, certain theories of class S of type A2n−1 [25, 26], and the Argyres-Douglas
theories of type (AN , AN ) [27]. Importantly, new 4d N = 2 SCFTs are proposed as a result
of this study. Various properties of the discretely gauged theories, such as their moduli
spaces, 1-form global symmetries and the mixed ’t Hooft anomalies with the 0-form flavor
symmetries, are investigated. The main tools that we exploit are wreathing [28] the 3d mirror
theories [29] of the 4d SCFTs in question, as well as their Hilbert series (see also [5, 6, 30–34]).
Roughly speaking, wreathing is a method of discretely gauging the automorphism group, or
its subgroup, of a given quiver. The Coulomb branch of the wreathed quiver can be used to
study the Higgs branch of the 4d N = 2 SCFTs at issue. We also examine how wreathing
affects the mixed ’t Hooft anomalies between the 1-form and the 0-form flavor symmetries in
a theory of class S. For the SU(2) gauge theory with 4 hypermultiplets in the fundamental
representation, we also consider the wreathing by various Z2 and Z2 × Z2 subgroups of the
permutation group S4 from the perspective of the 3d superconformal index [35–42]. With
this approach, the physical origin of the discrete groups involved in wreathing becomes clear:
they consist of a 0-form symmetry that acts on a subset of the hypermultiplets and various
charge conjugation symmetries associated with the flavor symmetries.

The second part of the paper deals with compactification of 4d SCFTs on a circle with a
twist. We consider the twisted compactification of the 4d N = 2 SU(n) gauge theory with 2n

flavors. Along the line of [43, 44], we propose the 3d mirror (also known as magnetic quiver)
containing a non-simply-lace edge associated with the 3d theory arising from the Z2 twisted
compactification. This non-simply-laced quiver can be obtained by “folding” a certain part
of the 3d mirror theory of the SU(n) gauge theory with 2n flavors. As before, the Coulomb
branch Hilbert series of such a non-simply-laced quiver can be computed using the prescription
of [45] and this should be identified with that of the Higgs branch of the compactified theory.
We study how the Higgs branch operators are projected out as a result of the Z2 twist. The
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final part of the paper revisits the twisted compactification by non-invertible symmetries
of the 4d N = 4 SYM theory with SU(N) gauge group studied in [46]. It was pointed out
that the Zk twist projects out operators in such a way that the moduli space of the resulting
3d theory is a symmetric product of a Zk orbifold of flat space. The latter leads to the
identification of the 3d theory as the ABJ(M) theory [47, 48], which indeed possesses the
aforementioned moduli space. In this work, we view the N = 4 SYM theory as an N = 2
gauge theory and focus on its Higgs branch. This is parametrized by the gauge invariant
quantities constructed from two commuting chiral fields in the adjoint representation of
SU(N). Upon considering the Zk invariant sector of the said Higgs branch chiral ring, we
find that the component of the largest dimension is always described by a symmetric product
of a Zk orbifold of flat space. However, to our surprise, there is generally a component of
the quotient ring that is parametrized by nilpotent operators, leading to the so-called radical
ideal. Since the moduli space of the ABJ(M) theory is expected to be a symmetric product of
a Zk orbifold of flat space, such radical ideals are not captured by the ABJ(M) theory. The
origin of such radical ideals and their physical relation to the twisted compactification are
not clear to us at present, and these deserve further investigations in the future.

Structure of the paper. The paper is structured as follows. The first part of the paper
consists of sections 2 to 4. In section 2, we propose new 4d N = 2 SCFTs obtained by a Z2
discrete gauging of various 4d parent theories. In sections 2.2 and 2.3, the parent theory is
SU(n) SQCD with 2n flavors, while in section 2.4, the parent theory is the class S theory of
type A1 on a Riemann surface of genus 1 and two punctures. The discrete gauging is explored
by wreathing the corresponding 3d mirror theories, as well as through the Argyres-Seiberg
duality [49] and its generalization. The computation of the Coulomb Branch Hilbert series
of the wreathed quiver is reviewed in section 2.1. In section 3, we investigate the effects
of discrete gauging on the mixed ’t Hooft anomalies between the Zn 1-form symmetry and
the 0-form flavor symmetry in the theory of class S of type A2n−1 with four twisted trivial
punctures and four untwisted minimal punctures. The method that we adopt to examine such
’t Hooft anomalies is the one discussed in [50, 51] applied to the 3d mirror theory wreathed
by various subgroups of the permutation group S4. The case of n = 1 of this class S theory
is a close cousin of SU(2) SQCD with 4 flavors, whereby if the 1-form symmetry is gauged,
the resulting theory is precisely the aforementioned SQCD. We analyze discrete gauging of
this theory, as well as the SQCD theory, by the Z2 and Z2 × Z2 subgroups of S4 from the
perspective of the 3d superconformal index in section 4. The analysis of the n = 2 case
is delegated to appendix A. The second part of the paper consists of sections 5 and 6. In
section 5, we examine the Z2 twisted compactification of 4d N = 2 SU(n) SQCD with 2n

flavors on a circle and provide a description of the magnetic quiver in terms of that with
a non-simply-laced edge. In section 6, we analyze the Zk invariant chiral ring of the Higgs
branch of the 4d N = 4 SU(N) SYM theory viewed as an N = 2 gauge theory. We point
out the presence of nilpotent operators and radical ideals in the cases of N = 3 and N = 4.
In appendix B, we consider discrete gauging of the (AN , AN ) Argyres-Douglas theories via
wreathing of the 3d mirror theories, which admit the description in terms of complete graphs.
Finally, in appendix C, we provide a detailed computation of the Hilbert series of the quotient
of flat space by complex reflection groups. This is useful for studying the moduli space of
4d N = 3 SCFTs, as well as that of the ABJ(M) theory.

– 3 –



J
H
E
P
0
5
(
2
0
2
4
)
3
0
4

2 New SCFTs from discrete gauging

In this section, we obtain new SCFTs as a result of gauging a discrete Z2 symmetry of
well-known 4d N = 2 theories, including SU(n) SQCD with 2n flavors and the A1 class
S theory associated with a genus-1 Riemann surface with two punctures. As a result of
discrete gauging of SQCD, we obtain novel N = 2 SCFTs which, to the best of our knowledge,
have never been explored before in literature. Specifically, the case of SU(3) SQCD with
6 flavors is analyzed by exploiting the Argyres-Seiberg duality [49], and a generalization
thereof is implemented in order to construct new SCFTs arising from SU(n) SQCD with
n > 3. Furthermore, the Z2 transformation of our interest is carefully analyzed in the case of
SU(2) SQCD with 4 flavors. We subsequently examine the theory of class S and the new
SCFT with so(4) global symmetry. The Higgs branch of the said theories can be studied
via wreathing of the corresponding 3d N = 4 magnetic quivers.

2.1 Review of wreathed quivers

In this section, we review the basic concepts of wreathing, which is a vital tool for studying
discrete gauging of 3d N = 4 quiver gauge theories. We refer the reader to [28] for a more
detailed discussion. Given a finite group A, the wreathing of A by a subgroup Γ of the
permutation group Sn is denoted by A ≀ Γ, or AwrΓ, and is defined by letting Γ act on
the direct product of n copies of A. For example, Zm ≀ Sn can be realized as follows: we
start from the n-fold direct product Zn

m = Zm × . . . × Zm (n times) and consider the action
f : Sn → Aut(Zn

m) such that f(σ)(x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n)), where σ ∈ Sn

and xj ∈ Zm for all j = 1, . . . , n. Note that the order of Zm ≀ Sn is mn|Sn| = mnn!.
Given a 3d N = 4 quiver gauge theory X containing a family of unitary gauge groups

G = ∏M
i=1U(ni) connected by a set of edges associated with bifundamental hypermultiplets,

the Coulomb branch Hilbert series of theory X can be written as

HS [CB of X ] (t) = 1
|W |

∑
m∈Zr

∑
γ∈W (m)

t2∆(m)

det(1− t2γ) =
∑

m∈Zr/W

t2∆(m)PG(m; t) , (2.1)

where W is the Weyl group W = ∏M
i=1 Sni , r is the total rank of the gauge groups r =∑M

i=1 ni,
and ∆(m) is the dimension of the monopole operator with magnetic flux m. In the second
equality, we provide an equivalent way of writing the formula, as discussed in [52], where

PG(m; t) = 1
|WH(m)|

∑
g∈WH(m)

1
det(1− t2g) (2.2)

is known as the dressing factor. Here, H(m) is the residual gauge symmetry (depending on
the magnetic flux m), which is a subgroup of G, and WH(m) is the associated Weyl group.
Note that (2.2) is indeed the discrete Molien formula applied to H(m).

Suppose that the quiver diagram of X has a symmetry Γ, and let us say that Γ leaves
∆(m) invariant. We can let Γ act on the gauge factors of X and the resulting quiver is
known as a wreathed quiver, which is denoted by X ≀ Γ, or XwrΓ. The action of Γ on the
Coulomb branch coordinates of X ≀ Γ was discussed in [28]. The Coulomb branch Hilbert
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series of the wreathed quiver is

HS [CB of X ≀ Γ] (t) = 1
|WΓ|

∑
n∈Zr

∑
γ∈WΓ(n)

t2∆(n)

det(1− t2γ) =
∑

n∈Zr/WΓ

t2∆(n)PG(n; t) , (2.3)

where WΓ = W ≀ Γ, i.e. the wreathing of the Weyl group W by Γ, as discussed above. We
emphasize that, although the dressing factor is given by the discrete Molien formula of
the residual gauge symmetry, the explicit forms of the dressing factors in (2.1) and (2.3)
may be different due to the different summations over m and n which may result in the
difference in H(m) and H(n).

Let us also comment on the effect of wreathing on the topological symmetry. First, we
consider the theory X . Let zi be the topological fugacity associated to the gauge group U(ni).
The Coulomb branch Hilbert series can be refined with respect to this symmetry by inserting

in the summation of (2.1) the factor ∏M
i=1 z

∑ni
j=1 m

(j)
i

i , where m = (m1,m2, . . . ,mM ) and m
(j)
i

denotes the j-th component of mi. Now, let Γ act non-trivially on a subset of gauge nodes of
X , say U(n1), . . . ,U(np). The topological symmetry U(1)p associated with such gauge groups
is broken to its U(1) diagonal subgroup, which means that we must set z1 = z2 = . . . = zp

when computing the Hilbert series. For this reason, the Coulomb branch symmetry of the
wreathed quiver X ≀ Γ is a subset of that of the original theory X .

If a 4d N = 2 SCFT T is known to have a 3d mirror theory described by X , we can study
the Higgs branch of T by examining the Coulomb branch of X . It is shown by a collection of
results in [3, 28, 30–32, 34] that the Coulomb branch of the wreathed quiver X ≀ Γ can be
identified with the Higgs branch of T discretely gauged by Γ. In this sense, the wreathed
quiver serves as a magnetic quiver of the 4d N = 2 discretely gauged SCFT in question.

2.2 New rank-2 SCFT with USp(6) × U(1) global symmetry

In this section, we discuss a new 4d N = 2 rank-2 SCFT, which we shall denote by T r=2
C3U1

,
obtained by a Z2 discrete gauging of the 4d N = 2 SU(3) gauge theory with 6 flavors. The
two Coulomb branch operators of T r=2

C3U1
have scaling dimensions 2 and 6. We will investigate

the Higgs branch of T r=2
C3U1

in two ways. The first way is by studying the Coulomb branch of
a wreathed quiver, and the second way is by exploiting the Argyres-Seiberg duality.

2.2.1 Wreathing the mirror of SU(3) SQCD with 6 flavors

Let us discuss the first approach. We start from the mirror theory of 3d N = 4 SU(3) SQCD
with 6 flavors and gauge a Z2 symmetry of the quiver in the following way:

U(3)

U(1) U(1)

U(2) U(2) U(1)U(1) / U(1) (2.4)

where the red arrows show the action on the gauge groups that are involved in the Z2 discrete
gauging. The resulting theory is the required wreathed quiver, whose Coulomb branch is
identified with the Higgs branch of T r=2

C3U1
.

– 5 –
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It should be noted that this is different from the wreathing considered in [33, section 4.2]
and in [10, section 3.3]. Here, the two U(1) nodes above the U(3) node are left untouched,
whereas in [33] they are identified in the process of discrete gauging, which corresponds to
gauging the charge conjugation symmetry of 4d N = 2 SU(3) SQCD with 6 flavors. The
gauging we are considering here is indeed slightly different, and it does not correspond to
gauging the charge conjugation symmetry. Using the Hilbert series, we will show that this
wreathed quiver possesses usp(6)⊕ u(1) global symmetry, not usp(6) as in [10, 33]. The U(1)
global symmetry in our discussion can indeed be identified with the baryonic symmetry of
the SQCD theory, and this is not projected out by discrete gauging.1

We now discuss the computation of the Coulomb branch Hilbert series. First, we recall
that the Coulomb branch Hilbert series of (2.4) without wreathing is

(1− t2)
∑

uR∈Z

∑
uL∈Z

∑
uTR

∈Z

∑
uTL

∈Z

∑
v
(1)
R ≥v

(2)
R >−∞

∑
v
(1)
L ≥v

(2)
L >−∞

∑
m(1)≥m(2)≥m(3)=0

t2∆

×
PU(2)(v

(1)
R , v

(2)
R ; t)PU(2)(v

(1)
L , v

(2)
L ; t)PU(3)(m(1), m(2), m(3); t)

(1− t2)4

× zuR
1 zuL

2 z
uTR
3 z

uTL
4 z

v
(1)
R +v

(2)
R

5 z
v
(1)
L +v

(2)
L

6 zm(1)+m(2)+m(3)

7 ,

(2.5)

where the factor (1 − t2) and the restriction m(3) = 0 appearing in the first line are there
for modding out an overall U(1), moreover

2∆ =− 2|v(1)R − v
(2)
R |+

2∑
i=1

|uR − v
(i)
R |+

2∑
i=1

3∑
j=1

|v(i)R − m(j)|+ (R ↔ L)

− 2
∑

1≤k<l≤3
|m(k) − m(l)|+

3∑
j=1

(
|uTR

− m(j)|+ |uTL
− m(j)|

)
,

(2.6)

the dressing factors appearing in the second line are

PU(2)(n1, n2; t) =

(1− t2)−2 n1 ̸= n2

(1− t2)−1(1− t4)−1 n1 = n2
,

PU(3)(n1, n2, n3; t) =


(1− t2)−3 n1 ̸= n2 ̸= n3

(1− t2)−2 (1− t4
)−1 if precisely two ni are equal

(1− t2)−1(1− t4)−1(1− t6)−1 n1 = n2 = n3

,

(2.7)

and each U(1) gauge group contributes (1− t2)−1 so that the factor (1− t2)−4 in the second
line comes from the fact that we have four U(1) gauge groups. The third line represents the
topological fugacities satisfying z1z2z3z4z

2
5z26z37 = 1. Evaluating the summations in (2.5), we

indeed obtain the Higgs branch Hilbert series of SU(3) SQCD with 6 flavors.
To compute the Coulomb branch Hilbert series of the wreathed quiver, we follow the

procedure described in [33, section 4.2]. In particular, the range of summations over the
1Since the baryonic symmetry survives the projection, the discrete gauging in question cannot be just

exchanging quarks and antiquarks, as acted by the charge conjugation symmetry.
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magnetic fluxes in the first line of (2.5) needs to be restricted, the dressing factors in the second
line of (2.5) are modified, and finally we make the identification z1 = z2 and z5 = z6. Explicitly,
the range of summations is restricted, and the dressing factors are modified as follows:

Restriction Dressing factor

uR < uL (1− t2)−2PU(2)(vR; t)PU(2)(vL; t)PU(3)(m; t)

uR = uL, v
(2)
R < v

(2)
L (1− t2)−2PU(2)(vR; t)PU(2)(vL; t)PU(3)(m; t)

uR = uL, v
(2)
R = v

(2)
L , v

(1)
R < v

(1)
L (1− t2)−2PU(2)(vR; t)PU(2)(vL; t)PU(3)(m; t)

uR = uL, v
(2)
R = v

(2)
L , v

(1)
R = v

(1)
L , v

(2)
L < v

(1)
L (1 + 3t4)(1− t2)−3(1− t4)−3PU(3)(m; t)

uR = uL, v
(2)
R = v

(2)
L , v

(1)
R = v

(1)
L , v

(2)
L = v

(1)
L (1− t2 + 2t4)(1− t2)−3(1− t4)−2(1− t8)PU(3)(m; t)

(2.8)
The dressing factors, apart from PU(3)(m; t), in the last two lines of (2.8) are computed from
the discrete Molien formula for the appropriate finite groups G as described in (2.2), namely

1
|G|

∑
g∈G

1
det(1− gt2) , (2.9)

with G = ⟨(12)(35)(46)⟩ and G = ⟨(12)(35)(46), (56)⟩ respectively.2 In this case, 1 can
be taken as a 6 × 6 identity matrix and g can be taken as 6 × 6 matrix representations
of the elements of G. For reference, we list a few terms (with all zi set to unity) for each
restriction as follows:

8t2 + 8t3 + 188t4 + 332t5 + 2532t6 + 5300t7 + 24768t8 + O(t9) ,

2t2 + 2t3 + 41t4 + 74t5 + 508t6 + 1076t7 + 4629t8 + O(t9) ,

2t2 + 2t3 + 33t4 + 58t5 + 336t6 + 684t7 + 2599t8 + O(t9) ,

4t2 + 8t3 + 49t4 + 104t5 + 405t6 + 840t7 + 2489t8 + O(t9) ,

1 + 6t2 + 8t3 + 32t4 + 48t5 + 153t6 + 248t7 + 606t8 + O(t9).

(2.10)

Summing all of these contributions, we have the unrefined Hilbert series:

HS [CB of (2.4)] (t) = 1 + 22t2 + 28t3 + 343t4 + 616t5 + 3934t6 + 8148t7 + 35091t8 +O(t9)

= PE
[
22t2 + 28t3 + 90t4 − 476t6 − 1456t7 − 2884t8 +O(t9)

]
.

(2.11)

We can turn on zi and obtain the Higgs branch Hilbert series of T r=2
C3U1

in terms of usp(6)⊕u(1)
representations. This can be represented in terms of the highest weight generating function
(HWG) as follows:

HWG
[
HB of T r=2

C3U1

]
(µ1, µ2, µ3; t) = HWG [CB of (2.4)] (µ1, µ2, µ3; t)

= PE
[(

µ2
1 + 1

)
t2 + µ3

(
b3 + b−3

)
t3 +

(
2µ2

2 + µ2 + 1
)

t4 + (µ1µ2 + µ3)
(
b3 + b−3

)
t5

+
{

µ2
1

(
b6 + 1 + b−6

)
+ µ1µ2µ3 + µ1µ3 + µ2

2 + µ2
3

}
t6 +O(t7)

]
.

(2.12)
2Here and in the rest of the paper, we use the notation ⟨c1, c2, . . . , cℓ⟩ to denote the group generated by

the permutation cycles c1, . . . , cℓ. In this particular case, the former contains two elements, while the latter
contains eight elements.
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Upon expanding this in powers of t, the term µp1
1 µp2

2 µp3
3 gives the character of the represen-

tation [p1, p2, p3]usp(6) of usp(6).3 The Hilbert series is given by

HS
[
HB ofT r=2

C3U1

]
(z; t)=HS[CB of (2.4)] (z; t)

=PE
[(
[2,0,0]usp(6)+1

)
t2+

(
b3+b−3

)
[0,0,1]usp(6)t3+[0,2,0]usp(6)t4

−
(
[2,1,0]usp(6)+2[2,0,0]usp(6)+[1,0,1]usp(6)+[0,2,0]usp(6)+[0,0,2]usp(6)+1

)
t6+O(t7)

]
.

(2.13)

The term at order t2 confirms that the global symmetry of T r=2
C3U1

is indeed usp(6)⊕u(1). Note
that we have chosen the normalization of the u(1) fugacity b to be as that of the baryonic
symmetry of SU(3) SQCD with 6 flavors.

It is instructive to compare this to the Higgs branch of SU(3) SQCD with 6 flavors. In
terms of the usp(6) ⊕ u(1) representations, the generators of the latter are

• Mesons at order t2: [0, 1, 0]usp(6)(0) + [2, 0, 0]usp(6)(0) + [0, 0, 0]usp(6)(0).

• Baryons at order t3: [1, 0, 0]usp(6)(3) + [1, 0, 0]usp(6)(−3) + [0, 0, 1]usp(6)(3)
+[0, 0, 1]usp(6)(−3).

In particular, we highlighted in red the generators that are projected out by discrete gauging,
i.e. those that are absent in the T r=2

C3U1
theory. We emphasize that the T r=2

C3U1
theory also has

90 generators in [0, 2, 0]usp(6)(0) at order t4. These are not present in SU(3) SQCD. The
reason is that the generators in [0, 1, 0]usp(6)(0) at order t2 are not invariant under the Z2
symmetry that we gauge, and so upon gauging they combine with themselves to form gauge
invariant objects in [0, 2, 0]usp(6)(0) at order t4.

2.2.2 Exploiting the Argyres-Seiberg duality

The 4d N = 2 SU(3) gauge theory with 6 flavors can be realized using the Argyres-Seiberg
duality [49] by starting from the rank-1 Minahan-Nemeschansky E6 SCFT, coupling one
hypermultiplet in the fundamental representation of an SU(2) subgroup of E6, and then
gauging the SU(2) symmetry. This can be written schematically as

SU(3) with 6 flavors = (rank-1 E6 SCFT + [SU(2)]− [1])///SU(2). (2.14)

The Higgs branch of the E6 theory is the closure of the minimal nilpotent orbit of E6, denoted
by min E6 [53]. The fact that the flavor central charge of the E6 theory is 6 and that the
embedding index of su(2) into e6 is 1 ensures the vanishing of the beta function of the SU(2)
gauge group on the right side [49].

Theory T r=2
C3U1

can be obtained by performing a Z2 discrete gauging on the theory on the
left-hand side of (2.14). We will demonstrate that, on the right-hand side of (2.14), such
discrete gauging affects only the strong-coupled sector, namely the E6 theory, but not the
weakly coupled sector, namely the weakly gauged SU(2) symmetry and hypermultiplet. The

3Throughout this paper, we will denote the character χg
[a1,...,an] (z) of the representation [a1, . . . , an] of g

as [a1, . . . , an]g. For simplicity, we omit the explicit dependence from the fugacities z = (z1, . . . , zn) of g.
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Z2 discrete gauging of the E6 theory has been studied in [3]. The resulting theory is a rank-1
SCFT with the Coulomb branch operator of scaling dimension 6 and with the Higgs branch
isomorphic to the next-to-minimal nilpotent orbit of F4, denoted by n.minF4 (see [54], [55,
(7.7)] and [28]). For simplicity, we will refer to the latter as T r=1

n.minF4
. In fact, we propose that

T r=2
C3U1 =

(
T r=1
n.minF4

+ [SU(2)]− [1]
)

///SU(2). (2.15)

The two Coulomb branch operators of T r=2
C3U1

thus have dimensions 2 and 6. We remark
that the flavor central charge of the F4 symmetry in the T r=1

n.minF4
theory is 6, which remains

unchanged from the E6 theory upon discrete gauging [3], and that the embedding index
of su(2) in f4 is 1.4 The beta-function of the SU(2) gauge group on the right-hand side
of (2.15) is therefore zero.

A non-trivial test of the proposal (2.15) is to show that the Hilbert series of the right-
hand side is given by (2.12) and (2.13). Let us discuss this in detail. The HWG function
of n.minF4 is [56]

HWG
[
n.minF4

]
= PE

[
ν1t

2 + ν2
4 t4
]

, (2.16)

where ν1 and ν4 denote the highest weight fugacities for the adjoint and fundamental
representations of F4 respectively. Now, we decompose representations of F4 to those of
su(2) ⊕ usp(6); for example, we have the following branching rules:

ν1 → σ2 + µ3σ + µ2
1 ,

ν4 → µ1σ + µ2 ,

ν2
4 → µ2

1σ
2 + µ1µ2σ + µ3σ + µ2

2 + µ2 + 1 ,

(2.17)

where σr denotes the highest weight fugacity for the su(2) representation [r]su(2), and µ1,2,3
denote the highest weight fugacities for usp(6), as before. Explicitly, the Hilbert series of
n.minF4 can be written in terms of su(2) ⊕ usp(6) characters as

HS
[
n.minF4

]
(z, x; t) = PE

[(
[2]su(2) + [1]su(2)[0, 0, 1]usp(6) + [2, 0, 0]usp(6)

)
t2 − t4 + . . .

]
,

(2.18)

where we denote by z and x the su(2) and usp(6) fugacities respectively. The Hilbert series
of (2.15) is then given by [57, 58]

∮
|z|=1

dz

2πiz
(1− z2)

HS
[
n.minF4

]
(z, x; t) PE

[
t(z + z−1)(b3 + b−3)

]
PE [(z2 + 1 + z−2)t2] . (2.19)

Upon evaluating the integral, we obtain (2.12) and (2.13), as required.
4This can be computed as

Isu(2)↪→f4 =
6T ([1]su(2)) + 14T ([0]su(2))

T ([0, 0, 0, 1]f4 ) = 1 ,

where T (r) is the quadratic index of the representation rg of g.
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2.3 New rank-(n − 1) SCFT with USp(2n) × U(1) global symmetry

A generalization of the precedent discussion is to obtain a new rank-(n − 1) SCFT with
usp(2n) ⊕ u(1) symmetry, denoted by T r=n−1

CnU1
, by performing a Z2 discrete gauging of 4d

N = 2 SU(n) SQCD with 2n flavors. The Higgs branch of T r=n−1
CnU1

can be realized in two
ways, as before. The first way is through the Coulomb branch of the wreathed quiver

U(n)

U(1) U(1)

U(n − 1)· · ·U(2)U(1) U(n − 1) · · · U(2) U(1) / U(1)

(2.20)

The second way is by exploiting a generalization of the Argyres-Seiberg duality, namely [59]

SU(n) with 2n flavors = (R0,n SCFT + [SU(2)]− [1])///SU(2) , (2.21)

where the R0,n SCFT is a theory of class S of the An−1-type associated with a sphere with
two maximal punctures [1n] and a puncture [n − 2, 12].

The two ways discussed above can be reconciled as follows. The 3d mirror theory of the
R0,n SCFT is described by the following star-shaped quiver [60]:

U(n)

U(2)

U(1)

U(n − 1)· · ·U(2)U(1) U(n − 1) · · · U(2) U(1) / U(1)

(2.22)

The duality (2.21) can be realized in terms of the mirror theory as follows. Coupling two
flavors of hypermultiplets to the SU(2) symmetry of the R0,n theory amounts to attaching a
U(1) gauge node to node U(2) on top of U(n) in the previous diagram:

U(n)

U(2)

U(1) U(1)

U(n − 1)· · ·U(2)U(1) U(n − 1) · · · U(2) U(1) / U(1)

(2.23)

In order to reduce the number of flavors to 1, we give mass to one of the flavors of hypermul-
tiplets and integrate it out. In terms of the mirror theory, this amounts to giving an FI term
to one of the U(1) gauge nodes above the U(2) gauge node. Flowing to the IR, we obtain
the 3d mirror theory of SU(n) SQCD with 2n flavors (see [44, 61, 62]):

U(n)

U(1) U(1)

U(n − 1)· · ·U(2)U(1) U(n − 1) · · · U(2) U(1) / U(1)
(2.24)
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Now let us perform the Z2 discrete gauging on the left-hand side of (2.21). We have previously
justified, in the case of n = 3, that discrete gauging only acts on the strongly coupled sector,
namely the R0,n theory, but not on the weakly coupled sector. In terms of the mirror theory,
this amounts to applying wreathing to each pair of nodes of the same rank on the left and on
the right of U(n) in (2.22), (2.23) and (2.24). As a result, we obtain (2.20) as required.

We remark that this technique provides information about the Higgs branch of the 4d
N = 2 T r=n−1

CnU1
theory for general n. However, unlike the n = 3 case, it does not provide

us with information about the Coulomb branch for higher n. This is due to the lack of
an explicit description of the discrete gauging of the R0,n theory for n ≥ 4. We leave the
problem to determine the properties of the Coulomb branch of the T r=n−1

CnU1
theory, with

n ≥ 4, for future work.

The case of n = 2. Let us discuss the special case of n = 2, corresponding to a Z2 discrete
gauging of 4d N = 2 SU(2) SQCD with 4 flavors. In this case, it turns out that the effect of
the Z2 transformation is to flip the sign of one of the four mass parameters mi, say m4. In
this case, the discrete gauging can be described at the level of the elementary fields as follows.
Using the standard SU(n) notation, we can denote the adjoint chiral in the vector multiplet
as Φb

a, with a, b = 1, 2 color indices, and the matter chiral fields as Q̃a,i and Qa,i, with
i = 1, 2, 3, 4 a flavor index. In terms of these fields, we can write the superpotential term as

W = Q̃a,iΦb
aQb,i = εacεbdΦadQb,iQ̃

i
c ; Q̃i

a ≡ εabQ̃
b,i , (2.25)

where we exploit the fact that the fundamental representation of SU(2) is pseudoreal to raise
and lower color indices with the epsilon tensor. Notice that the field Φab is symmetric. The
Z2 transformation we are interested in can then be written e.g. as

Qi
a → Qi

a , Q̃i
a → Q̃i

a (i = 1, 2, 3); Q4
a ↔ Q̃4

a . (2.26)

The transformation (2.26) leaves the superpotential invariant and the action on gauge
invariant operators is as follows:

• The meson components Q̃a,iQj
a with i, j = 1, 2, 3 are invariant.

• The meson components Q̃a,4Qj
a with j = 1, 2, 3 map to the baryons εabQ4

aQj
b and

similarly Q̃a,iQ4
a with i = 1, 2, 3 map to the antibaryons εabQ̃

a,iQ̃b,4, while Q̃a,4Q4
a maps

to minus itself.

• The remaining baryon and antibaryon components are invariant.

Overall, out of the 28 gauge invariant operators, 7 are projected out and only 21 of them
survive after gauging. If we now trade the Q’s and Q̃’s for the multiplets qk

a (k = 1, . . . , 8)
transforming in the vector of the so(8) global symmetry:

q2i−1
a = Qi

a + Q̃i
a , q2i

a = −i(Qi
a − Q̃i

a); i = 1, . . . , 4 . (2.27)

In these variables, the superpotential can be written as

W = εabεcdΦacq
i
bq

j
dδij
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and the transformation (2.26) reads q8a → −q8a, while all other flavor components are invariant.
This is exactly the Z2 transformation discussed in [3, (4.6)], where it was noticed that
the resulting Higgs branch is isomorphic to the next-to-minimal orbit of so(7), denoted by
n.minB3. For convenience, we denote the theory we get after the discrete gauging by T r=1

n.minB3
.

In the variables qi
a, it is easy to see that the action on the mass parameters is precisely the

expected one. The superpotential mass term indeed reads
4∑

i=1
εabmiq

2i−1
a q2i

b (2.28)

and, since only q8a changes sign under the Z2 action, we find, as expected, that

m1 → m1 ; m2 → m2 ; m3 → m3 ; m4 → −m4 . (2.29)

As was discussed in detail in [63, (10.3)], the action (2.29) on the mass parameters corresponds
to interchanging the two spinor representations of so(8) while leaving the vector representation
invariant. These are the representations in which monopoles and dyons of the SQCD theory
transform, and accordingly this transformation is accompanied by the action of the T
generator of SL(2,Z) which shifts θ → θ + π, or equivalently τ → τ + 1, where τ = θ

π + 8πi
g2

is defined as in [63] (see also [64]).5 Indeed, this shift of the theta angle does not affect
the supercharges, hence supersymmetry is automatically preserved, and we do not need
to combine this with a U(1)r transformation.6 As a result, our Z2 transformation acts
trivially on the Coulomb branch and the marginal deformation is not removed from the
theory. From (2.27) and (2.29) we are therefore led to propose that upon gauging we simply
obtain the following 4d N = 2 gauge theory:7

[SO(7)]USp(2)O(1) (2.30)

Upon compactification on a circle, we therefore obtain the same theory in 3d. As claimed
in [28, section 3.7], (2.30) is actually the mirror theory of the Z2 wreathing of the affine
D4 quiver depicted in (3.5). This represents a nontrivial consistency check of our analysis.
We will analyze this wreathing in sections 3 and 4. In particular, in the latter section, we
compute the superconformal index of theory (2.30) and show that its Higgs and Coulomb
branch limits give the Hilbert series of n.minB3 and C2/D̂6, in perfect agreement with [28,
figure 9 and figure 11].

As discussed in [3], there is already a known rank-1 SCFT with Higgs branch n.minB3.
This model has a Coulomb branch operator of dimension 4 and therefore a trivial conformal
manifold. We would like to stress that this theory does not coincide with our model T r=1

n.minB3
,

5In the notation of [63, (16.35), (16.36)], this corresponds to interchanging e2 and e3, which amounts to
shifting τ → τ + 1 in [63, (16.14)]. This is indeed the action of T generator of SL(2,Z).

6Under the SL(2,Z) transformation that sends τ → aτ+b
cτ+d

, the supercharges Qi
α (with i = 1, 2 the SU(2)R

index and α = 1, 2) transform as Qi
α →

( |cτ+d|
cτ+d

)1/2
Qi

α. For the T = ( 1 1
0 1 ) and S = ( 0 −1

1 0 ) generators
of SL(2,Z), we see that T leaves the supercharges invariant, whereas S transforms the supercharges by a
non-trivial phase.

7We stress that, as pointed out in [63, (3.2) and Page 15], the Z2 symmetry discussed in (2.26) is anomalous
unless it is accompanied by the shift θ → θ + π of the theta angle.
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even though the two theories have the same Higgs branch: our theory has a nontrivial
conformal manifold and a Coulomb branch operator of dimension 2. This is in contrast
with the model discussed in [3], in which the discrete symmetry being gauged involves
the S generator of SL(2,Z). This acts non-trivially on the supercharges and to preserve
supersymmetry we need to combine the transformation with a discrete U(1)r rotation which
acts as a sign flip on the Coulomb branch operator tr Φ2. This results, as mentioned before,
in a Coulomb branch operator of dimension 4 and, furthermore, the complexified gauge
coupling is fixed at the value τ = i.8 This is, however, a different discrete symmetry with
respect to the one relevant for us.9 We are therefore led to the conclusion that T r=1

n.minB3
is

actually a new rank-1 theory with a Coulomb branch operator of dimension 2 and flavor
symmetry so(7). In the following section, we are going to use this theory as a building
block to construct a new rank-2 model.

2.4 New rank-2 SCFT with SO(4) global symmetry

Let us now present a new 4d N = 2 rank-2 SCFT with global symmetry algebra so(4), which
we will denote by T r=2

D2
. It can be obtained by a Z2 discrete gauging of the theory of class

S of type A1 associated with a genus-1 Riemann surface with two punctures. This class S
theory admits a Lagrangian description in terms of the SU(2) × SU(2) gauge group with
two bifundamental hypermultiplets (see e.g. [58, section 5.2]).

The Higgs branch of the T r=2
D2

theory can be studied by considering a Z2 wreathing of
the mirror theory of the A1 class S theory with genus 1 and two punctures, namely

U(2)U(1) U(1)

Adj

/ U(1) (2.31)

where the loop around the U(2) node denotes the adjoint hypermultiplet. The Higgs branch
Hilbert series of T r=2

D2
can be computed from the Coulomb branch Hilbert series of this

wreathed quiver as follows:

HS [CB of (2.31)] (z1, z2; t) = (1− t2)
∑
u<v

∑
m1≥m2=0

t2∆
PU(2)(m1, m2; t)

(1− t2)2 zm1+m2
1 zu+v

2

+ (1− t2)
∑
u=v

∑
m1≥m2=0

t2∆
PU(2)(m1, m2; t)
(1− t2)(1− t4) zm1+m2

1 zu+v
2 ,

(2.32)
8Note that τ = i is the fixed point of the S action τ → − 1

τ
. At this value of τ , the supercharges transform

by the phase e−iπ/4. Therefore, the discrete U(1)r rotation that compensates such an action in order to
preserve 4d N = 2 supersymmetry acts on all supercharges as eiπ/4. As a result, these transformations flip
the sign of the Coulomb branch operator tr Φ2.

9Note, however, that upon compactification on a circle, both T r=1
n.min B3

and the rank-1 theory with Higgs
branch n.min B3 discussed in [3] give rise to the same 3d N = 4 gauge theory described by the quiver (2.30).
In other words, the 3d theory that comes from compactification is “blind” to this subtle difference of the 4d
parent theories.
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with

2∆ =
2∑

i=1
|u − mi|+

2∑
i=1

|v − mi| , (2.33)

where the prefactor (1− t2) and the restriction m2 = 0 are there for modding out an overall
U(1). This also imposes the following constraint on the topological fugacities (see [65, (3.3)]):

z1z2 = 1. (2.34)

The factor 1
(1−t2)2 in the first line is the contributions of the two U(1) gauge groups, and

the factor 1
(1−t2)(1−t4) in the second line comes from applying the Molien formula (2.9) to

G = ⟨(12)⟩. Another way to realize the Coulomb branch of the wreathed quiver is to consider
the Coulomb branch of the following quiver [30–32]:

U(2) U(2)

Adj Adj

/ U(1)
(2.35)

The Coulomb branch Hilbert series is also precisely given by (2.32), since the two terms
combine into

HS [CB of (2.35)] (z1, z2; t)
= (1− t2)

∑
v≥u>−∞

∑
m1≥m2=0

t2∆PU(2)(m1, m2; t)PU(2)(v, u; t)zm1+m2
1 zu+v

2

= HS [CB of (2.31)] (z1, z2; t).

(2.36)

The Coulomb branch symmetry of this theory is very interesting and worth discussing in detail.
In the UV, the manifest Coulomb branch symmetry is U(1). However, the term at order t2 is

1 + z1z
2
2 + z1z2 + z2 + z1 +

1
z2

(2.34)= 2(z1 + 1 + z−1
1 ) , (2.37)

indicating that the symmetry gets enhanced to su(2)× su(2) ∼= so(4) in the IR. We see that
one element of the subalgebra of so(4) comes from the trace of the adjoint scalar in the vector
multiplet of one of the U(2) gauge groups, and the other comes from the monopole operator
with flux (m1, m2;u, v) = (1, 0; 0, 1). Note that the latter becomes another Cartan element
only after imposing the condition (2.34). By performing the computation in this way, we
can refine only one fugacity (not two fugacities) of so(4). Upon setting z1 = z2 = 1, the
Hilbert series can be summed into a closed form as

HS [CB of (2.31)] (t) = HS [CB of (2.35)] (t) = 1 + 3t2 + 11t4 + 10t6 + 11t8 + 3t10 + t12

(1− t2)3(1− t4)3 ,

(2.38)

whose expansion reads

HS [CB of (2.31)] (t) = HS [CB of (2.35)] (t)
= 1 + 6t2 + 29t4 + 89t6 + 236t8 + 521t10 +O(t12)

= PE
[
6t2 + 8t4 − 15t6 − 4t8 + 64t10 +O(t12)

]
.

(2.39)

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
3
0
4

This is the unrefined Higgs branch Hilbert series of T r=2
D2

. Observe that the numerator is
palindromic and that the pole at t = 1 is of order 6, implying that the moduli space is 6
complex (or 3 quaternionic) dimensional. This is equal to the dimension of the Higgs branch
of the A1 class S theory with genus 1 and two punctures [58, section 5.2], as expected, since
discrete gauging does not affect the dimension of the Higgs branch.

Let us realize T r=2
D2

in another way. This A1 class S theory associated to a genus-1
Riemann surface with two punctures can be realized by gauging the diagonal su(2) subalgebra
of su(2)2 in the su(2)4 ⊂ so(8) flavor symmetry of SU(2) SQCD with 4 flavors,10 which is the
theory of class S of type A1 associated with a sphere with four punctures. Recall that the
Z2 discrete gauging of the latter theory gives T r=1

n.minB3
. We thus propose that

T r=2
D2 = T r=1

n.minB3
///(su(2) ⊂ so(7)). (2.40)

Note that the embedding index of su(2) ⊂ so(7) is equal to 2, which can be computed, for
example, from the branching rule

[1, 0, 0]so(7) → [0; 0; 2]su(2)3 + [1; 1; 0]su(2)3 , (2.41)

namely

Isu(2)↪→so(7) =
T ([2]su(2)) + 4T ([0]su(2))

T ([1, 0, 0]so(7))
= 2. (2.42)

Since the flavor central charge of the so(7) symmetry is 4 [3], the beta function of the su(2)
gauge algebra on the right-hand side is zero due to the cancelation between the contribution of
the vector multiplet and the embedding index times the flavor central charge [49]. From (2.40),
we also see that the scaling dimensions of the Coulomb branch operators of TD2 are therefore
2 and 2. Using the description (2.40) along with (2.30), we see that upon compactifying
T r=2

D2
on a circle to 3d, the resulting theory is

[SO(4)]USp(2)O(1)

SO(3)
(2.43)

where the SO(3) gauge symmetry corresponds to the su(2) gauge algebra that appeared
in (2.40).

Let us now discuss the Higgs branch of (2.40), which can be computed via the Higgs
branch of (2.43). The SO(3) gauge group is not fully Higgsed on the generic point of the
Higgs branch due to the fact that there is one flavor of hypermultiplet transforming under
its vector representation. As pointed out in [66, footnote 7], the Higgs branch of the theory
[USp(2)] − SO(3) is equal to the Higgs branch of the theory [USp(2)] − O(1), which is
isomorphic to C2/Z2. As a result, instead of computing the Higgs branch of (2.43), we can
compute the Higgs branch of the following auxiliary quiver:

[SO(4)]USp(2)O(1)

O(1)
(2.44)

10Throughout this paper, we will often use the shortened notation su(2)n to indicate su(2)1 ⊕ su(2)2 ⊕ . . . ⊕
su(2)n.
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From this theory, we see that the Higgs branch of T r=2
D2

is 4 + 1 + 1 − 3 = 3 quaternionic
dimensional, as expected. Let us compute the Higgs branch Hilbert series of T r=2

D2
from (2.44):

HS
[
HB of T r=2

D2

]
(y1, y2; t) =

1
4
∑

ε1=±1

∑
ε2=±1

∮
|z|=1

dz

2πiz
(1− z2)

×
PE

[(
y1 + y−1

1

) (
y2 + y−1

2

) (
z + z−1) t + ε1

(
z + z−1) t + ε2

(
z + z−1) t

]
PE [(z2 + 1 + z−2) t2] ,

(2.45)

whose expansion in powers of t yields

HS
[
HB of T r=2

D2

]
(y1, y2; t) = PE

[ (
[2; 0]su(2)2 + [0; 2]su(2)2

)
t2 +

(
[2; 2]su(2)2 − 1

)
t4

−
(
[2; 2]su(2)2 + [2; 0]su(2)2 + [0; 2]su(2)2

)
t6 +O(t8)

]
.

(2.46)

Upon setting y1 = y2 = 1, we recover (2.38), as required.

3 Discrete gauging and mixed ’t Hooft anomalies

In this section, we investigate via an example how discrete gauging affects the mixed ’t Hooft
anomaly between a 1-form and a 0-form symmetry. In particular, consider the 4d N = 2
SCFT described by the following quiver:

SU(2n)

SU(n)

SU(n) SU(n)

SU(n)

(3.1)

This theory has a U(1)4 0-form flavor symmetry and a Z[1]
n 1-form symmetry (see [67, (4.28)]).

It also admits a realization in class S of type A2n−1, with four twisted trivial punctures
[2n + 1]t and four untwisted minimal punctures [2n − 1, 1] on a sphere [68, section 5.1].
Quivers of this type have been studied in detail in [69–72]. As discussed around [72, (4.4)],
there is a one-dimensional submanifold of the conformal manifold upon which the duality
group SL(2,Z) acts, and the S generator of SL(2,Z) also acts on the global structure of the
gauge group. Therefore, upon gauging the Z[1]

n 1-form symmetry of this theory, we obtain
a non-invertible symmetry [73].

As discussed in [68, section 5.1], the aforementioned class S theory can also be constructed
as follows. First, we consider a sphere X with punctures [2n − 1, 1], [2n − 1, 1], [2n + 1]t,
[2n + 1]t and [12n]. Then, we weakly gauge two copies of X together via the [12n] punctures,
where the latter corresponds to the gauge algebra su(2n). The theory associated with each
sphere X corresponds to two copies of 4d N = 2 SU(n) SQCD with 2n flavors, whose flavor
symmetry is SU(2n)/Zn, where the center Z2n of SU(2n) is screened by the baryons in the
rank-n antisymmetric representation of SU(2n) to Zn. Gauging two copies of X via the gauge
group SU(2n) leads to the Z[1]

n 1-form symmetry, as discussed before.
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The 3d mirror theory of (3.1) is given by

USp(2n)

U(1)

U(1) U(1)

U(1)

AS′ /Z2 (3.2)

where AS′ denotes the hypermultiplet in the rank-2 antisymmetric traceless representation
of usp(2n), i.e. [0, 1, 0, . . . , 0]usp(2n). Let us explain how to construct this theory. First,
we start from the 3d mirror theory of the 4d theory associated with X. Each [2n − 1, 1]
puncture contributes T[2n−1,1](SU(2n)) : U(1) − [2n] whose flavor symmetry is su(2n); the
[12n] punctures give the tail [2n]−U(2n − 1)− . . . −U(2)−U(1) of the quiver; finally, each
[2n + 1]t puncture does not contribute to any matter field, but constrains the middle gauge
node to be usp(2n) [74]. As a result, the 3d mirror of the theory associated with X is11

USp(2n)

U(1)

U(1)

U(2n − 1) · · · U(2) U(1) /Z2 (3.3)

A non-trivial test of this result is that, if we ungauge the leftmost two U(1) gauge nodes,
we obtain the quiver depicted in [75, figure 60(d)], which is indeed the mirror theory of two
copies of the U(n) gauge theory with 2n flavors. Now, we gauge the SU(2n) group of the
diagonal subgroup SU(2n)/Zn of the Coulomb branch symmetry (SU(2n)/Zn)4 of the two
copies of (3.3). Since the end of the tail is the USp(2n) gauge group, we use the following
branching rule from su(2n) to usp(2n):

[1, 0, . . . 0, 1]su(2n) → [2, 0, . . . , 0]usp(2n) + [0, 1, 0, . . . , 0]usp(2n) , (3.4)

where the moment map in the adjoint representation [1, 0, . . . , 0, 1]su(2n) of su(2n) becomes
the moment map in the adjoint representation [2, 0, . . . , 0]usp(2n) of usp(2n) along with a
hypermultiplet AS′ in the rank-2 antisymmetric traceless representation [0, 1, 0, . . . , 0]usp(2n)

of usp(2n). We note that the mirror theory (3.2) has a Z[1]
n 1-form symmetry arising from

gauging the SU(2n) group of the Coulomb branch symmetry.
Let us now explain the notation /Z2 in (3.3). The quiver (3.3) has an overall Z2 that

acts trivially on the matter fields. This can be considered as the center of USp(2n) that is
not screened by AS′ whose action on the bifundamental fields can be absorbed by appropriate
U(1) gauge transformations. This gives rise to a Z[1]

2 1-form symmetry, which we denote by
(Z[1]

2 )C . For simplicity, we denote by /Z2 the gauging of the (Z[1]
2 )C 1-form symmetry. The

reason why the mirror theory (3.2) must involve the gauging of (Z[1]
2 )C can be understood as

follows. In the special case of n = 1, the original theory (3.1) reduces to SU(2) SQCD with 4
11It can be checked that the Higgs and Coulomb branch dimensions of this quiver agree with the Coulomb

and Higgs branch dimensions of two copies of 3d N = 4 SU(n) SQCD with 2n flavors.

– 17 –



J
H
E
P
0
5
(
2
0
2
4
)
3
0
4

flavors. This theory does not have a 1-form symmetry, and so, in the mirror theory (3.2), the
(Z[1]

2 )C 1-form symmetry must be gauged. In this case, (3.2) is equivalent to the well-known
3d mirror theory of SU(2) SQCD with 4 flavors [29], namely the affine D4 quiver

USp(2)

U(1)

U(1) U(1)

U(1)

/Z2 or U(2)

U(1)

U(1) U(1)

U(1)

/ U(1) (3.5)

In the following, we will also consider a variant of (3.2), with n = 1, where (Z[1]
2 )C is

not gauged. We put /Z2 in brackets, namely (/Z2), to denote which of the two options
we are taking into account, namely whether (Z[1]

2 )C is gauged or not. The case of n = 2
will be discussed in detail in appendix A.

3.1 Wreathing quiver (3.2) with n = 1

In this case, theory (3.1) becomes SU(2) SQCD with 4 flavors, whose 3d mirror theory is
given by (3.5). In the following, we consider also the option where (Z[1]

2 )C is not gauged, i.e.

USp(2)

U(1)

U(1) U(1)

U(1)

(3.6)

We denote explicitly by (3.6)/Z2 the option where the 1-form symmetry is gauged, i.e. (3.5).
The Coulomb branch Hilbert series of theory (3.6)/Z2 is (see also [76, section 2.6.1])

HS [CB of (3.6)/Z2] (z|ω; t)

=
1∑

ε=0
ωε

∑
u1∈Z+ ε

2

∑
u2∈Z+ ε

2

∑
u3∈Z+ ε

2

∑
u4∈Z+ ε

2

∑
m≥ ε

2

t2∆
( 4∏

i=1
zui

i

)
PUSp(2)(m; t)
(1− t2)4 ,

(3.7)

where ω (with ω2 = 1) is the fugacity for the Z[0]
2 0-form symmetry that arises from

gauging the 1-form symmetry of (3.6), z1,2,3,4 are the fugacities for the four U(1) topological
symmetries, and

2∆ =
4∑

j=1

∑
s=±1

|sm − uj | − 2|2m|. (3.8)

In the dressing factor PUSp(2)(m;t)
(1−t2)4 , the denominator is the contribution of each U(1) gauge

group and the numerator, which is the contribution of the USp(2) gauge group, is given by

PUSp(2)(m; t) =

(1− t4)−1 m = 0
(1− t2)−1 m ̸= 0

. (3.9)
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The Coulomb branch Hilbert series of theory (3.6) can then be obtained by gauging the
0-form symmetry associated with ω:

HS [CB of (3.6)] (z; t) = 1
2
∑

ω=±1
HS [CB of (3.6)/Z2] (z|ω; t). (3.10)

Let us now discuss the explicit form of the above Hilbert series. Since theory (3.6)/Z2
is a mirror theory of SU(2) SQCD with 4 flavors, the Coulomb branch Hilbert series of the
former can be expressed in terms of so(8) representations as follows [57, (3.26)]:

HS [CB of (3.6)/Z2] (z|ω; t) =
∞∑

m=0
[0, m, 0, 0]so(8)(y)t2m , (3.11)

where y = y(z, ω).12 Since only the multiples of the highest weight of the so(8) adjoint
representation appear in the Hilbert series, the flavor symmetry group is SO(8)/Z2 (see
also [65, section 4]). Upon decomposing the so(8) representations in terms of those of su(2)4,
the above Hilbert series can be rewritten as [58, (4.7)], where the fugacity ω can be inserted as
a coefficient in front of each term that contains odd highest weights of su(2). More compactly,
we rewrite this in terms of the HWG as (see [76, (2.33)])

HWG [CB of (3.6)/Z2] (m1, . . . , m4|ω; t)

=PE
[(

m2
1 + m2

2 + m2
3 + m2

4 + ω m1m2m3m4
)

t2 + (1 + ω m1m2m3m4) t4 − m2
1m

2
2m

2
3m

2
4t

8
]
,

(3.12)

where m1,2,3,4 are the fugacities for the highest weights of the representations of su(2)4.
Expanding in terms of su(2)4 fugacities, we have

HS [CB of (3.6)/Z2] (z|ω; t)

= PE


4∑

i=1

(
zi + 1 + z−1

i

)
+ ω

∑
s1,...,s4=±1

z
1
2 s1
1 z

1
2 s2
2 z

1
2 s3
3 z

1
2 s4
4

 t2

−

 ∑
1≤i<j≤4

(
zi + 1 + z−1

i

) (
zj + 1 + z−1

j

)
+ 4 + 3ω

∑
s1,...,s4=±1

z
1
2 s1
1 z

1
2 s2
2 z

1
2 s3
3 z

1
2 s4
4

 t4 + . . .

 .

(3.13)

In terms of the su(2)4 symmetry algebra, we conclude that the faithful flavor symmetry
group of (3.6)/Z2 is (see [77, (4.29)])

F(3.6)/Z2 = SU(2)1 × SU(2)2 × SU(2)3 × SU(2)4
(Z2)12 × (Z2)23 × (Z2)34

, (3.14)

12If we write the character of the vector representation of so(8) as
∑4

i=1(yi + y−1
i ) and write the character

of the fundamental of su(2)i as zi + z−1
i , then a map from so(8) fugacities to the su(2)4 × Z2 can be chosen as

y1 = ωz1z2 , y2 = ωz1z
−1
2 , y3 = z3z4 , y4 = z3z

−1
4 .

Note that we have zi = z
1
2
i in (3.13).
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where each factor (Z2)ij in the denominator acts by flipping the signs of the fugacities
z

1
2
i → −z

1
2
i and z

1
2
j → −z

1
2
j simultaneously. This action simultaneously flips the sign of the

fundamental representations of su(2)i and su(2)j , and therefore leaves the Hilbert series
and the HWG invariant.

Gauging the Z[0]
2 0-form symmetry associated with ω by summing over ω = ±1 in (3.12),

we obtain the highest weight generating function associated with (3.10) as (see [76, (2.34)])

HWG [CB of (3.6)] (m1, . . . , m4; t)

= PE
[(

m2
1 + m2

2 + m2
3 + m2

4

)
t2 +

(
1 + m2

1m
2
2m

2
3m

2
4

)
t4 + m2

1m
2
2m

2
3m

2
4t

6 − m4
1m

4
2m

4
3m

4
4t

12
]

.

(3.15)

We see that the flavor symmetry algebra of theory (3.6) is su(2)4, in contrast to that of
(3.6)/Z2 which is so(8). Since only even powers of mi appear in the HWG, the faithful
flavor symmetry group of (3.6) is actually

F(3.6) = SO(3)4 ∼=
(
F(3.6)/Z2

)
/(Z2)i , i ∈ {1, 2, 3, 4} , (3.16)

where (Z2)i denotes the Z2 action that flips sign of the fundamental representation of SU(2)i,
i.e. the center of SU(2)i. Setting z1,2,3,4 = 1, we obtain the closed form of the unrefined
Hilbert series as

HS [CB of (3.6)] (t) =
1 + 7t2 + 101t4 + 244t6 + 666t8 + 650t10 + 666t12 + 244t14 + 101t16 + 7t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(3.17)

We remark that these Hilbert series can be obtained by studying the Higgs branch
of the following theory:

[SO(4)] SU(2) [SO(4)]
(Z[0]

2 )ω (3.18)

where we start from SU(2) SQCD with 4 flavors of hypermultiplets in the fundamental
representation, split the hypermultiplets into two equal sets, and then consider the Z2 action
(associated with ω) that acts on one of these sets. The Higgs branch Hilbert series of this
theory can be obtained as follows:

HS [HB of (3.18)] (z1, . . . , z4|ω; t)

=
∮
|z|=1

dz

2πiz
(1− z2)

PE
[(

z + z−1) {ω
(
z1 + z−1

1

) (
z2 + z−1

2

)
+
(
z3 + z−1

3

) (
z4 + z−1

4

)}
t
]

PE [(z2 + 1 + z−2) t2] .

(3.19)

Indeed, we find that

HS [HB of (3.18)]
(

z
1
2
1 , . . . , z

1
2
4 |ω; t

)
= HS [CB of (3.6)/Z2] (z1, . . . , z4|ω; t) ,

1
2
∑

ω=±1
HS [HB of (3.18)]

(
z

1
2
1 , . . . , z

1
2
4 |ω; t

)
= HS [CB of (3.6)] (z1, . . . , z4; t).

(3.20)
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On the other hand, the Coulomb branch of (3.18)/(Z[0]
2 )ω is equal to the Higgs branch of (3.6).

We thus propose that (3.18) is a mirror theory of (3.6)/Z2, and (3.18)/(Z[0]
2 )ω is a mirror

theory of (3.6). We will examine theory (3.18) in detail, using the superconformal index
as the main tool, in section 4.

Comparing (3.12) and (3.15), we see that upon gauging the (Z[1]
2 )C 1-form symmetry

of theory (3.6), the su(2)i representations with odd highest weight appear, so the flavor
symmetry group can no longer be SO(3)4. This means that there is a mixed anomaly between
(Z[1]

2 )C and the flavor symmetry F(3.6), characterized by the following anomaly theory:

iπ

∫
M4

B(2) ∪ w2(F(3.6)) , (3.21)

where B(2) is the 2-form background gauge field associated with (Z[1]
2 )C and w2(F(3.6)) is

the second Stiefel-Whitney class that obstructs the lift of the F(3.6) bundle to the F(3.6)/Z2

bundle. Here, M4 is the 4d bulk whose boundary is the 3d spacetime in which the theory
in question lives.

Let us now study discrete gauging of theories (3.6) and (3.6)/Z2 by performing the Z2,
Z3 and S4 wreathing with respect to the four U(1) gauge nodes. We explicitly indicate how
the range of the summations of the gauge fluxes is restricted and how the dressing factors
in (3.7) get modified. Note that such discrete gauging of theory (3.6)/Z2 has already been
studied in [28, 55]. We will also study how the mixed anomaly (3.21) changes upon discrete
gauging. The readers can find details on wreathing by other groups, including S3 and Z4,
in appendix A, where we discuss the case of quiver (3.2) with n = 2.

Z2 wreathing. Let us perform the Z2 wreathing on the U(1) gauge nodes corresponding
to the magnetic fluxes u1 and u2. In (3.7), the gauge fluxes get restricted and the dressing
factor is modified as follows.

Restriction Dressing factor

u1 < u2 (1− t2)−4PUSp(2)(m; t)

u1 = u2 (1− t2)−3(1− t4)−1PUSp(2)(m; t)

(3.22)

We also set z1 = z2 ≡ x. Note that the nodes associated with the magnetic fluxes u3 and
u4 are left untouched. After wreathing, the Coulomb branch Hilbert series is the same as
that of the following theory:

USp(2) U(2)

U(1) U(1)

Adj (/Z2) (3.23)

where the fugacity associated to the topological symmetry of the U(2) node with an adjoint
hypermultiplet is denoted by x, and those of the two U(1) gauge nodes are denoted by z3
and z4. The notation (/Z2) denotes the options whether (Z[1]

2 )C is gauged or not.
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This quiver has an enhanced so(7) global symmetry algebra. In fact, the Coulomb
branch in question is isomorphic to the closure of the next-to-minimal orbit of B3, n.minB3,
whose HWG is given by

HWG
[
n.minB3

]
= PE

[
µ2t

2 + µ2
1t

4
]

, (3.24)

where µ1 and µ2 are the fugacities for the highest weights of the vector and adjoint repre-
sentations of so(7). We can rewrite this in terms of the highest weights of representations
of su(2)3 × Z2 as

HWG
[
CB of [(3.6)/Z2]wrZ2

]
(mx, m3, m4|ω; t) = HWG [CB of (3.23)/Z2] (mx, m3, m4|ω; t)

= PE
[(

m2
x + m2

3 + m2
4 + ωm3m4m

2
x

)
t2 +

{
ω
(
m3m4m

2
x − m3m4

)
−m2

3m
4
x − m2

4m
4
x − m2

3m
2
x − m2

3m
2
4m

2
x − m2

4m
2
x − 2m2

x − 2m2
3 − 2m2

4 − 2
}

t4 + . . .
]

,

(3.25)

where mx, m3, m4 are the fugacities of the highest weight of su(2)x⊕su(2)3⊕su(2)4. The first
su(2) factor is that associated with fugacity x and the latter two are those left untouched upon
wreathing. The closed form of the unrefined Coulomb branch Hilbert series reads [28, figure 9]

HS
[
CB of [(3.6)/Z2]wrZ2

]
(t) = HS [CB of (3.23)/Z2] (t)

= 1 + 11t2 + 30t4 + 30t6 + 11t8 + t10

(1− t)10(1 + t)10 .
(3.26)

If we sum over ω = ±1, i.e. gauging the Z[0]
2 0-form symmetry associated with ω, we arrive at

theory (3.6) wreathed by Z2, or equivalently at (3.23) (without /Z2), which has the (Z[1]
2 )C

1-form symmetry. The latter has a global symmetry SO(3)3, since only even powers of mx,
m3 and m4 appear in the HWG. In this case, the unrefined Coulomb branch Hilbert series
can be expressed in closed form as

HS
[
CB of (3.6)wrZ2

]
(t) = HS [CB of (3.23)] (t)

= 1 + 4t2 + 63t4 + 112t6 + 352t8 + 280t10 + 352t12 + 112t14 + 63t16 + 4t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(3.27)

Let us comment on the mixed anomaly. Observe that gauging the (Z[1]
2 )C 1-form symmetry

leads to the terms with odd powers in both m3 and m4 in the HWG. In terms of the symmetry
algebra su(2)3, the faithful global symmetry groups are

F[(3.6)/Z2]wr Z2
= SO(3)x × SU(2)3 × SU(2)4

(Z2)34
,

F(3.6)wr Z2
= SO(3)x × SO(3)3 × SO(3)4 ∼=

(
F[(3.6)/Z2]wr Z2

)
/(Z2)i , i ∈ {3, 4}.

(3.28)

This means that there is a mixed anomaly between (Z[1]
2 )C and the flavor symmetry F(3.6)wr Z2

,
characterized by the following anomaly theory:

iπ

∫
M4

B(2) ∪ w2(F(3.6)wr Z2
) , (3.29)
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where B(2) is the 2-form background gauge field associated with (Z[1]
2 )C and w2(F(3.6)wr Z2

)
is the second Stiefel-Whitney class that obstructs the lift of the F(3.6)wr Z2

bundle to the
F[(3.6)/Z2]wr Z2

bundle.

Z3 wreathing. In order to analyze the Coulomb branch of the Z3 wreathing of the-
ory (3.6)/Z2 from equation (3.7), the gauge fluxes get restricted and the dressing factor
is modified as follows.

Restriction Dressing factor

u1 < u2 ≥ u3 (1− t2)−4PUSp(2)(m; t)

u1 = u2 = u3 (1− t2 + t4)
(
1− t2

)−3 (1− t6
)−1

PUSp(2)(m; t)

(3.30)

We also set z1 = z2 = z3 ≡ x. Note that the dressing factor in the last line, apart from the
factor PUSp(2)(m; t), can be obtained using the discrete Molien formula (2.9), with G = ⟨(123)⟩.

As a result of wreathing, we obtain the closure of the double cover of the subregular
orbit of G2 [78] (see also [28, 55]), whose HWG is

PE[ν1t2 +
(
ν1 + ν2

2

)
t4 + 2ν3

2 t6 − ν6
2 t12] , (3.31)

where ν1 and ν2 are fugacities for the adjoint and fundamental representation of G2. The
unrefined Hilbert series is given by (see [28, figure 9])

HS
[
CB of [(3.6)/Z2]wrZ3

]
(t) = 1 + 4t2 + 23t4 + 23t6 + 4t8 + t10

(1− t)10(1 + t)10

= 1 + 14t2 + 118t4 + 693t6 + 3094t8 + . . . .

(3.32)

Such Hilbert series can be computed from the Coulomb branch Hilbert series of the non-
simply laced quiver:

U(3) ⇛ U(2)−U(1) (3.33)

where the overall U(1) can be modded out from one of the gauge nodes on the right of the
arrow, namely either the rightmost U(1) gauge node as in [55, table 6], or from the U(2)
gauge node. For the latter, we obtain

U(3) ⇛ (SU(2)/Z2)−U(1) (3.34)

where (SU(2)/Z2) means that the gauge group is taken to be U(2)/U(1) ∼= SU(2)/Z2.
The HWG (3.31) can be rewritten in terms of the highest weights of representations of
su(2)x × su(2)4 as

HWG
[
CB of [(3.6)/Z2]wrZ3

]
(mx, m4|ω; t) = HWG [CB of (3.34)] (mx, m4|ω; t)

= PE
[ (

m2
x + m2

4 + ωm4m
3
x

)
t2

+
{

ω
(
3m4m

3
x + m4mx

)
− m6

x − m2
4m

4
x − m2

x − m2
4 − 1

}
t4 + . . .

]
,

(3.35)
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where we remark that the fugacity ω can be regarded as coming from /Z2 in quiver (3.34),
and that there is no overall U(1) to be modded out in the latter.13

If we sum over ω = ±1, i.e. we gauge the Z[0]
2 0-form symmetry associated with ω, we

arrive at the theory that has a (Z[1]
2 )C 1-form symmetry. The latter has a global symmetry

SO(3)2, since only even powers of mx and m4 appear in the HWG. The Hilbert series after
gauging can also be obtained from the Coulomb branch of the following quiver:

U(3) ⇛ SU(2)−U(1) , (3.36)

where the (Z[1]
2 )C symmetry can be regarded as coming from the SU(2) gauge group in this

quiver.14 In this case, the unrefined Hilbert series is given by

HS
[
CB of (3.6)wrZ3

]
(t) = HS [CB of (3.36)] (t)

= 1 + t2 + 37t4 + 76t6 + 218t8 + 230t10 + 218t12 + 76t14 + 37t16 + t18 + t20

(1− t)10(1 + t)10(1 + t2)5

= 1 + 6t2 + 62t4 + 341t6 + 1558t8 + . . . .

(3.37)

In fact, in terms of the symmetry algebra su(2)2, the faithful global symmetry groups are

F[(3.6)/Z2]wr Z3
= SU(2)x × SU(2)4

(Z2)x4
,

F(3.6)wr Z3
= SO(3)x × SO(3)4 ∼=

(
F[(3.6)/Z2]wr Z3

)
/(Z2)4.

(3.38)

The change of the flavor symmetry groups caused by gauging (Z[1]
2 )C implies that there

is a mixed anomaly between (Z[1]
2 )C and the flavor symmetry F(3.6)wr Z3

, characterized by
the following anomaly theory:

iπ

∫
M4

B(2) ∪ w2(F(3.6)wr Z3
) , (3.39)

where B(2) is the 2-form background gauge field associated with (Z[1]
2 )C and w2(F(3.6)wr Z3

)
is the second Stiefel-Whitney class that obstructs the lift of the F(3.6)wr Z3

bundle to the
F[(3.6)/Z2]wr Z3

bundle.

13Explicitly, the Coulomb branch Hilbert series of (3.34) is given by

HS [CB of (3.34)] (zx, z4|ω; t)

=
1∑

ε=0

ωε
∑

m1≥m2≥m3
m1,2,3∈Z+ ε

2

∑
n∈Z≥0+ ε

2

∑
u∈Z+ ε

2

t2∆
PU(3)(m1, m2, m3; t)PUSp(2)(n; t)

(1 − t2) zm1+m2+m3
4 zu

x ,

with

2∆ =
3∑

i=1

(|3mi − n| + |3mi + n|) + |n − u| + | − n − u| − 2
∑

1≤j<k≤3

|mj − mk| − 2|2n|.

14Explicitly, the Coulomb branch Hilbert series of (3.36) can be obtained from the expression in footnote 13
by summing over ω = ±1 and dividing the result by 2. Equivalently, we can restrict the sums in footnote 13
to be only over integral magnetic fluxes.
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S4 wreathing. In (3.7), the gauge fluxes get restricted, and the dressing factor is modified
as follows.

Restriction Dressing factor

u1 < u2 < u3 < u4 (1− t2)−4PUSp(2)(m; t)

u1 = u2 < u3 < u4 (1− t2)−3(1− t4)−1PUSp(2)(m; t)

u1 < u2 = u3 < u4 (1− t2)−3(1− t4)−1PUSp(2)(m; t)

u1 < u2 < u3 = u4 (1− t2)−3(1− t4)−1PUSp(2)(m; t)

u1 = u2 = u3 < u4 (1− t2)−2(1− t4)−1(1− t6)−1PUSp(2)(m; t)

u1 < u2 = u3 = u4 (1− t2)−2(1− t4)−1(1− t6)−1PUSp(2)(m; t)

u1 = u2 < u3 = u4 (1− t2)−2(1− t4)−2PUSp(2)(m; t)

u1 = u2 = u3 = u4 (1− t2)−1(1− t4)−1(1− t6)−1(1− t8)−1PUSp(2)(m; t)

(3.40)

We also set z1 = z2 = z3 = z4 = x. Note that the dressing factor in the last line, apart
from the factor PUSp(2)(m; t), can be obtained using the discrete Molien formula (2.9), with
G = ⟨(12), (23), (34)⟩, which amounts to setting u1 = u2, u2 = u3 and u3 = u4. The
Hilbert series computed by wreathing is equal to the Coulomb branch Hilbert series of
the following theory:

USp(2) U(4) Adj (/Z2) (3.41)

Upon gauging the (Z[1]
2 )C 1-form symmetry, the theory (3.41)/Z2 has an enhanced global

symmetry su(3), and the HWG of the Coulomb branch Hilbert series can be written as

HWG [CB of (3.41)/Z2] (m1, m2; t)

= PE
[
m1m2t

2 +
(
m2

1 + m1m2 + m2
2 + 1

)
t4 +

(
2m1m

2
2 + 2m2

1m2 + 3
)

t6

+
(
m4

1 + m4
2 + 2m2

1m
2
2 + m1 + m2

)
t8 + . . .

]
,

(3.42)

where mp
1m

q
2 denotes the fugacity for the highest weight of the representation [p, q]su(3) of su(3).

It can also be rewritten in terms of the highest weights of the representation of su(2)x ×Z2 as

HWG
[
CB of [(3.6)/Z2]wr S4

]
(mx|ω; t) = HWG [CB of (3.41)/Z2] (mx|ω; t)

= PE
[(

m2 + m4ω
)

t2 +
{
2m4 + 3 + ω

(
2m4 + m2 + 1

)}
t4

+
{

m6 + 3m4 + 2m2 + 1 + ω
(
2m6 + 2m4 + 2m2 + 3

)}
t6 + . . .

]
,

(3.43)

where m is the fugacity for the highest weight of the fundamental representation of su(2)x.
If we sum over ω = ±1, we arrive at the theory (3.41) without /Z2. Since only even

powers of m appear in the resulting HWG, the theory has an SO(3)x global symmetry.
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In terms of the symmetry algebra su(2)x, the faithful global symmetry of both (3.41)/Z2
and (3.41) is SO(3)x. Since this is unchanged upon gauging (Z[1]

2 )C , we conclude that there
is no mixed anomaly between (Z[1]

2 )C and SO(3)x.

4 Discrete gauging of SU(2) with 4 flavors via superconformal index

In this section, we consider SU(2) SQCD with 4 flavors and discrete gauging thereof from the
perspective of the superconformal index. We will see that the index naturally allows us to
consider discrete gauging by all Z2 and Z2 × Z2 subgroups of the permutation group S4 of
four objects. Interestingly, the Coulomb and Higgs branch limits of the index reproduce the
Hilbert series that come from the corresponding wreathing studied in [28, figure 9 and figure
11]. A benefit of the index is that it provides a clear physical origin of each discrete symmetry
involved in the gauging. In particular, we will see that these discrete symmetries involve the
Z2 symmetry that acts on a subset of the hypermultiplets and various charge conjugation
symmetries associated with the flavor symmetries. To compare the result with the wreathing
of (3.5), we will treat the SQCD theory in question as a 3d N = 4 gauge theory.

Let us start from SU(2) SQCD with 4 flavors, which we will represent as

USp(2) [SO(8)χ] (4.1)

where the subscript χ denotes the Z[0]
2 0-form charge conjugation symmetry associated with the

so(8) flavor symmetry. Its index can be derived as in [41, 42, 50, 79]. For χ = 1, it is given by

I(4.1)(y, m|a, na|χ = 1;x) = 1
2
∑
l∈Z

∮
dz

2πiz
ZUSp(2)

vec (z; l;x)
∏

s=0,±1
Z1

χ

(
z2sa−2; 2sl − 2na;x

)

×
4∏

i=1

∏
s1,s2=±1

Z1/2
χ (zs1ys2

i a; s1l + s2mi + na;x) ,

(4.2)

where the USp(2) vector multiplet contribution is

ZUSp(2)
vec (z; l;x) = x−|2l| ∏

s=±1

(
1− (−1)2slz2sx2|sl|

)
(4.3)

and the contribution of the chiral multiplet of R-charge R is

ZR
χ (z; l;x) =

(
x1−Rz−1

)|l|/2 ∞∏
j=0

1− (−1)lz−1x|l|+2−R+2j

1− (−1)lz x|l|+R+2j
, (4.4)

where the subscript χ here stands for “chiral” and should not be confused with the fugacity
χ above. Moreover, we denote by (y, m) the (fugacities, background magnetic fluxes) for
the so(8) flavor symmetry algebra and by (a, na) those for the axial symmetry. The index
for χ = −1 can be derived from (4.2) by setting y4 = 1, y−1

4 = −1 and m4 = 0. From now
on, we will set mi = na = 0 and drop their dependence from the index.
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The mirror theory of SU(2) SQCD with 4 flavors is given by the affine D4 quiver (3.5).
If we denote by z1,2,3,4 the topological fugacities associated with (3.5), mirror symmetry
implies the following equality between indices:

I(4.1)(y1, y2, y3, y4|a|χ = 1;x) = I(3.5)(z1, z2, z3, z4|a−1|ω = 1;x) , (4.5)

where y1,2,3,4 and z1,2,3,4 are related according to the fugacity map reported in footnote 12,
with ω = 1.

For reference, we provide the expansion of the index up to order x2, which can be
expressed in terms of the characters of representations of so(8) as

I(4.1)(y|a|χ = 1;x) = 1 + a2[0, 1, 0, 0]so(8)x

+
{

a4[0, 2, 0, 0]so(8) + 2a−4 −
(
[0, 1, 0, 0]so(8) + 1

)}
x2 + . . . .

(4.6)

We can take the Higgs and Coulomb branch limits of the index (4.2) in order to study the
Higgs and Coulomb branches of (4.1). We define [80]

h = x1/2a , c = x1/2a−1 ,

or equivalently x = hc , a = (h/c)1/2 ,
(4.7)

and substitute them in the index (4.2). In the Higgs branch limit we send c → 0 and keep h

fixed, whereas in the Coulomb branch limit we send h → 0 and keep c fixed. In agreement
with mirror symmetry, for χ = 1 these reproduce

HB of (4.1) = CB of (3.5) = minD4 ,

CB of (4.1) = HB of (3.5) = C2/D̂4 ,
(4.8)

where the Hilbert series of C2/D̂4 is given by

HS
[
C2/D̂4

]
(t) = PE

[
2t4 + t6 − t12

]
. (4.9)

Rewriting (4.1) in two ways. For our purposes, we rewrite (4.1) in two ways. In the first
way, we split the so(8) flavor symmetry of theory (4.1) into so(7) and so(1) as

[SO(1)χ1 ] USp(2) [SO(7)χ2 ] (4.10)

where the advantage of such description is that it possesses two different charge conjuga-
tion symmetries (Z[0]

2 )χ1 and (Z[0]
2 )χ2 , instead of a single one. The fugacities χ1 and χ2

corresponding to these two appear in a manifest way in the index of theory, which reads

I(4.10)(y|a|χ1, χ2;x) =
1
2
∑
l∈Z

∮
dz

2πiz
ZUSp(2)

vec (z; l;x)
∏

s=0,±1
Z1

χ

(
z2sa−2; 2sl;x

)
×
∏

s=±1
Z1/2

χ (zsχ1a; sl;x)Z1/2
χ (zsχ2a; sl;x)

×
3∏

i=1

∏
s1,s2=±1

Z1/2
χ (zs1ys2

i a; s1l;x) .

(4.11)
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For reference, we report the index (4.11) with yi = 1 as follows:

I(4.10)(a|χ1, χ2;x) = 1 + a2 (15 + 6χ1 + 6χ2 + χ1χ2)x

+
[
a4 (125 + 70χ1 + 70χ2 + 35χ1χ2) + a−4 (1 + χ1χ2)

− (16 + 6χ1 + 6χ2 + χ1χ2)
]
x2 + . . . .

(4.12)

Let us comment on the Coulomb branch of theory (4.1). As discussed in (4.8), this is
isomorphic to C2/D̂4. The two generators that contribute to the order t4 of (4.9) come
from the coefficient of a−4 at order x2 in the index. One is the Casimir operator of the
USp(2) gauge group, denoted by tr(φ2), with φ the scalar in the vector multiplet. The other
is the monopole operator, denoted by M. From the coefficients of a−4x2 in (4.12), we see
that M carries the fugacity χ1χ2, i.e. it is charged under the combination of the charge
conjugation symmetries associated with SO(1) and SO(7), whereas tr(φ2) is neutral under
these symmetries. The generator corresponding to the term at order t6 in (4.9) is G6 ≡ Mφ.
These generators satisfy the relation at order t12, namely

G2
6 +M2 tr(φ2) = [tr(φ2)]3 , (4.13)

which is the defining equation of C2/D̂4.
The second way is to rewrite SU(2) SQCD with 4 flavors as follows:

[SO(4)χL ] USp(2) [SO(4)χR ]
(Z[0]

2 )ω (4.14)

which can be obtained from (4.1) by splitting the so(8) flavor symmetry into two equal sets
and then acting with a discrete (Z[0]

2 )ω 0-form symmetry, whose fugacity is denoted by ω,
only on one of these sets. We will denote by y1,2 the so(4) fugacities of the flavor node on
the right, namely the one which is acted by (Z[0]

2 )ω, and by y3,4 the so(4) fugacities of the
flavor node on the left. For χL = χR = 1, the index reads

I(4.14)(y1, y2, y3, y4|a|χR = 1, χL = 1|ω;x)

= 1
2
∑
l∈Z

∮
dz

2πiz
ZUSp(2)

vec (z; l;x)
∏

s=0,±1
Z1

χ

(
z2sa−2; 2sl;x

)

×
2∏

i=1

∏
s1,s2=±1

Z1/2
χ (ωzs1ys2

i a; s1l;x)×
4∏

i=3

∏
s1,s2=±1

Z1/2
χ (zs1ys2

i a; s1l;x) ,

(4.15)

and the index for χR = −1 (resp. χL = −1) can be derived from (4.15) by setting y2 = 1,
y−1
2 = −1 (resp. y4 = 1, y−1

4 = −1). The advantage of considering theory (4.14) is that it can
be refined with three fugacities associated to discrete 0-form symmetries. In particular, the
extra fugacity ω associated to the (Z[0]

2 )ω 0-form symmetry can be gauged in order to obtain
a theory with a dual 1-form symmetry (Z[1]

2 )C corresponding to the center of the USp(2)
gauge group in the left quiver depicted in (4.17). Indeed, the equality

I(4.14)(y1, y2, y3, y4|a|χR = 1, χL = 1|ω;x) = I(3.5)(z1, z2, z3, z4|a−1|ω;x) (4.16)
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implies the following mirror duality:

USp(2)

(3.6)

U(1)

U(1) U(1)

U(1)

[SO(4)+] USp(2) [SO(4)+]

(4.14)χR=χL=1/(Z[0]
2 )ω

(Z[0]
2 )ω

/(Z[0]
2 )ω

(4.17)

where we use the notation SO(n)± to specify that the fugacity associated to the Z2 charge
conjugation symmetry of the theory is equal to ±1 respectively.

Discrete gauging. In the rest of this section, starting from theories (4.10) and (4.14)/(Z[0]
2 )ω,

we will show that, upon gauging different combinations of the Z[0]
2 0-form symmetries of the

aforementioned theories, we are able to obtain the mirror duals of (3.5) and (3.6) wreathed
by all Z2 and Z2 × Z2 subgroups of S4, namely

• Z2 = ⟨(12)⟩,

• double transposition = ⟨(12)(34)⟩, which is also isomorphic to Z2,

• non-normal Klein = ⟨(12), (34)⟩, which is isomorphic to Z2 × Z2, and

• normal Klein = ⟨(12)(34), (13)(24)⟩, which is also isomorphic to Z2 × Z2.

We will discuss the computation of the indices in the following, where for and only for the
double transposition and normal Klein subgroups, it is necessary to treat

η ≡ χ1χ2 , ξ ≡ χRχL (4.18)

as independent fugacities from χ1,2 and χR,L in (4.10) and (4.14)/(Z[0]
2 )ω, respectively. Note

that η and ξ are not introduced as independent fugacities for the cases of Z2 and the
non-normal Klein subgroups. Let us summarize the important results in table (4.19):

Wreathing Mirror description Global Mirror description Global CB
by Γ of (3.5)wrΓ symmetry of (3.6)wrΓ symmetry C2/Ω

Trivial (4.1)χ=1 ≡ (4.10)χ1=χ2=1 so(8) (4.14)χR=χL=1/(Z
[0]
2 )ω su(2)4 D̂4

Z2 (4.10)χ2=1/(Z
[0]
2 )χ1 so(7) (4.14)χL=1/(Z

[0]
2 )ω,χR su(2)3 D̂6

Double transp. (4.10)η=1/(Z[0]
2 )χ1,χ2 su(4)⊕ u(1) (4.14)ξ=1/(Z[0]

2 )ω,χR,χL su(2)2 D̂4

Non-normal Klein (4.10)/(Z[0]
2 )χ1,χ2 su(4) (4.14)/(Z[0]

2 )ω,χR,χL su(2)2 D̂6

Normal Klein (4.10)η=1,χ2=−1/(Z[0]
2 )χ1 usp(4) (4.14)ξ=1,χL=−1/(Z[0]

2 )ω,χR su(2) D̂4

(4.19)

where the notation /(Z[0]
2 )a,b,c means that we gauge the 0-form symmetries associated with

the fugacities a, b and c. In the last column, we list the Kleinian singularities, which are
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isomorphic to the Coulomb branch of the mirror theories of (3.5) and (3.6) wreathed by Γ;
they are the same for both theories. We also remark that, by global symmetry, we mean
the one associated with the 3d N = 4 flavor current multiplet which can be read off from
the order x of the index.15

Interestingly, there is a hierarchy in the global symmetries: reading the table from bottom
to top, the symmetry gets larger at each step. On the other hand, reading the table from
left to right (i.e. moving from theory (4.10) to (4.14)/(Z[0]

2 )ω and related wreathings), the
symmetry is decomposed into a number of su(2) factors.

4.1 Mirrors of the affine D4 quiver (3.5) wreathed by Γ

Let us start deriving the results anticipated in table (4.19) by focusing on theory (4.10),
which allows us to reproduce the mirror description arising from wreathing the affine D4
quiver (3.5) by a subgroup Γ of S4, where Γ can be taken to be one of the Z2 or Z2 × Z2
subgroups of S4 as mentioned above.

The case Γ = Z2. As claimed in [28], the mirror dual of the Z2 = ⟨(12)⟩ wreathing of
the affine D4 quiver, namely (3.5)wrZ2 , is described by

O(1) USp(2) [SO(7)+] (4.20)

We now consider this wreathing from the perspective of discrete gauging of (4.10).
Indeed, as pointed out in [81, section 3.2], this corresponds to gauging O(1) inside so(8) in
theory (4.1). This can be realized starting from the theory (4.10) by gauging the (Z[0]

2 )χ1

symmetry and setting χ2 = 1. The index of theory (4.20) can be obtained as

I(4.20)(y|a;x) =
1
2
∑

χ1=±1
I(4.10)(y|a|χ1, χ2 = 1;x). (4.21)

In agreement with mirror symmetry, the flavor symmetry algebra of (4.20) is so(7), as
manifest from the expansion of the index

I(4.20)(y|a;x) = 1 + a2[0, 1, 0]so(7)x

+
{

a4
(
[2, 0, 0]so(7) + [0, 2, 0]so(7)

)
+ a−4 −

(
[0, 1, 0]so(7) + 1

)}
x2 + . . . ,

(4.22)

and, taking the Higgs and Coulomb branch limits of the index as in (4.7), we find

HB of (4.20) = CB of (3.5)wrZ2
= n.minB3 ,

CB of (4.20) = HB of (3.5)wrZ2
= C2/D̂6 ,

(4.23)

where the Hilbert series of the latter is

HS
[
C2/D̂6

]
(t) = PE

[
t4 + t8 + t10 − t20

]
. (4.24)

15However, in the 3d N = 2 language, one has to include also the U(1) axial symmetry associated with the
fugacity a.
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Let us compare the Coulomb branches of (3.5) and (3.5)wrZ2 by contrasting this result
with that discussed below (4.12). Since the charge conjugation symmetry associated with χ1
is gauged, we see that M and Mφ are no longer gauge invariant, but M2 and M2φ are. In
summary, the generators associated with the order t4, t8 and t10 of (4.24) are respectively
tr(φ2), M2 and G10 ≡ M2φ. They satisfy the relation at order t20, namely

G2
10 +M4 tr(φ2) = [tr(φ2)]5 , (4.25)

which is indeed the defining relation of C2/D̂6.

The case Γ = double transposition. We can proceed by studying the mirror description
of wreathing (3.5) by the double transposition subgroup, corresponding to Γ = ⟨(12)(34)⟩.
In terms of theory (4.10), this can be interpreted as defining a new independent fugacity
η ≡ χ1χ2 before gauging (Z[0]

2 )χ1 and (Z[0]
2 )χ2 . We remark that, when (Z[0]

2 )χ1 and (Z[0]
2 )χ2

are gauged, η remains untouched. The index of the theory is defined as

I(4.10)η/(Z[0]
2 )χ1,χ2

(y|a;x) = 1
4

∑
χ1,χ2=±1

I(4.10)(y|a|χ1, χ2;x)|η≡χ1χ2 . (4.26)

Up to order x2, for η = 1, it reads

I(4.10)η=1/(Z[0]
2 )χ1,χ2

(u|a;x) = 1 + a2
(
[1, 0, 1]su(4) + 1

)
x

+
{

a4
(
[2, 0, 2]su(4) + 3[0, 2, 0]su(4) + [1, 0, 1]su(4) + 1

)
+2a−4 −

(
[1, 0, 1]su(4) + 2

)}
x2 + . . . ,

(4.27)

with u = u(y).16 As can be seen from the coefficient of x, the global symmetry is su(4)⊕u(1).
Note that even though the rank of the global symmetry is 4, the description that we use
allows us to see only three Cartan elements whose fugacities are denoted by u1,2,3.

Alternatively, the index (4.27) can also be obtained from (4.6) by exploiting the following
branching rules from so(8) to su(4) ⊕ u(1):

[0, 1, 0, 0]so(8) → [0, 0, 0]su(4)(0) + [0, 1, 0]su(4)(2) + [0, 1, 0]su(4)(−2) + [1, 0, 1]su(4)(0) ,

[0, 2, 0, 0]so(8) → [0, 0, 0]su(4)(0) + [0, 1, 0]su(4)(2) + [0, 1, 0]su(4)(−2) + [1, 0, 1]su(4)(0)
+ [0, 2, 0]su(4)(4) + [0, 2, 0]su(4)(0) + [0, 2, 0]su(4)(−4) + [1, 1, 1]su(4)(2)
+ [1, 1, 1]su(4)(−2) + [2, 0, 2]su(4)(0) ,

(4.28)

where the terms in red contain odd highest weights of su(4) and are thus projected out
by gauging (Z[0]

2 )χ1,χ2 . With this approach, we can refine the index with respect to the
16If we set the u(1) fugacity to unity and we write the character of the fundamental representation of su(4)

as u1 + u2u−1
1 + u3u−1

2 + u−1
3 , then we can choose the following fugacity map from so(8) to su(4) ⊕ u(1):

y1 = u2 , y2 = u1u−1
3 , y3 = u2u−1

1 u−1
3 , y4 = 1.
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fugacity of u(1) in su(4) ⊕ u(1). For example, if we denote this fugacity by b, the term
3[0, 2, 0]su(4) in (4.27) can be refined as

(b4 + 1 + b−4)[0, 2, 0]su(4). (4.29)

Taking the Higgs and Coulomb branch limits as described in (4.7), we obtain the Higgs
branch Hilbert series

HS
[
HB of (4.10)η=1/(Z[0]

2 )χ1,χ2

]
(u; t) = HS

[
CB of (3.5)wr ⟨(12)(34)⟩

]
(u; t)

= PE
[(
[1, 0, 1]su(4) + 1

)
t2 +

{
2[0, 2, 0]su(4) −

(
[1, 0, 1]su(4) − 1

)}
t4 + . . .

] (4.30)

and the Coulomb branch Hilbert series

HS
[
CB of (4.10)η=1/(Z[0]

2 )χ1,χ2

]
(t) = HS

[
HB of (3.5)wr ⟨(12)(34)⟩

]
(t)

= HS
[
C2/D̂4

]
(t) = PE

[
2t4 + t6 − t12

]
.

(4.31)

The former can be expressed in closed form, upon setting ui = 1, as

HS
[
HB of (4.10)η=1/(Z[0]

2 )χ1,χ2

]
(t) = HS

[
CB of (3.5)wr ⟨(12)(34)⟩

]
(t)

= 1 + 11t2 + 85t4 + 280t6 + 602t8 + 730t10 + 602t12 + 280t14 + 85t16 + 11t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(4.32)

Both the Higgs and the Coulomb branch Hilbert series agree with the results reported in [28,
figure 9 and figure 11].

The case Γ = non-normal Klein. The non-normal Klein four-subgroup of S4 is generated
by ⟨(12), (34)⟩, which, in the field theoretic language we have developed, can be translated
into gauging both (Z[0]

2 )χ1 and (Z[0]
2 )χ2 independently in (4.10). This is reflected in the

fact that we do not introduce the variable η in this case, which means that the index of
the theory is given by

I(4.10)/(Z[0]
2 )χ1,χ2

(y|a;x) = 1
4

∑
χ1,χ2=±1

I(4.10)(y|a|χ1, χ2;x). (4.33)

Up to order x2, it reads

I(4.10)/(Z[0]
2 )χ1,χ2

(u|a;x) = 1 + a2[1, 0, 1]su(4)x

+
{

a4
(
[2, 0, 2]su(4) + 2[0, 2, 0]su(4) + 1

)
+a−4 −

(
[1, 0, 1]su(4) + 1

)}
x2 + . . . ,

(4.34)

with u = u(y), as explained in footnote 16. The coefficient of order x confirms that the
flavor symmetry algebra is indeed su(4).

This index can also be obtained from (4.22) by using the following branching rule from
so(7) to su(4) and projecting out all of the terms which are killed by gauging (Z[0]

2 )χ2 :

[0, 1, 0]so(7) → [0, 1, 0]su(4) + [1, 0, 1]su(4) ,

[2, 0, 0]so(7) → [0, 0, 0]su(4) + [0, 1, 0]su(4) + [0, 2, 0]su(4) ,

[0, 2, 0]so(7) → [0, 2, 0]su(4) + [1, 1, 1]su(4) + [2, 0, 2]su(4) ,

(4.35)
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where we highlighted in red the representations of su(4) which are projected out after gauging
(Z[0]

2 )χ2 , specifically those containing odd highest weights of su(4).
Using (4.7), the Higgs and Coulomb branch limits reproduce the Higgs branch Hilbert

series

HS
[
HB of (4.10)/(Z[0]

2 )χ1,χ2

]
(u; t) = HS

[
CB of (3.5)wr ⟨(12), (34)⟩

]
(u; t)

= PE
[
[1, 0, 1]su(4)t2 +

(
[0, 2, 0]su(4) − [1, 0, 1]su(4)

)
t4 + . . .

] (4.36)

and the Coulomb branch Hilbert series

HS
[
CB of (4.10)/(Z[0]

2 )χ1,χ2

]
(t) = HS

[
HB of (3.5)wr ⟨(12), (34)⟩

]
(t)

= HS
[
C2/D̂6

]
(t) = PE

[
t4 + t8 + t10 − t20

]
.

(4.37)

The Coulomb branch is in agreement with [28, figure 9 and figure 11], as well as the unrefined
Higgs branch Hilbert series, which admits the following closed formula:

HS
[
HB of (4.10)/(Z[0]

2 )χ1,χ2

]
(t) = HS

[
CB of (3.5)wr ⟨(12), (34)⟩

]
(t)

= 1 + 10t2 + 55t4 + 150t6 + 288t8 + 336t10 + 288t12 + 150t14 + 55t16 + 10t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(4.38)

The case Γ = normal Klein. Finally, let us turn our attention to Γ = ⟨(12)(34), (13)(24)⟩.
In terms of theory (4.10), this corresponds to the situation in which we first define η ≡ χ1χ2
as an independent fugacity and then set χ2 = −1 and gauge (Z[0]

2 )χ1 . Again, we remark that
η is not affected by the process of gauging (Z[0]

2 )χ1 .
The index of the theory reads

I(4.10)η, χ2=−1/(Z[0]
2 )χ1

(y|a;x) = 1
2
∑

χ1=±1
I(4.10)(y|a|χ1, χ2;x)|η≡χ1χ2, χ2=−1 , (4.39)

which, for η = 1, can be expanded in terms of the characters of representations of usp(4) as

I(4.10)η=1,χ2=−1/(Z[0]
2 )χ1

(v|a;x) = 1 + a2[2, 0]usp(4)x

+
{

a4
(
[4, 0]usp(4) + [2, 1]usp(4) + [0, 2]usp(4) + [0, 1]usp(4) + 1

)
+2a−4 −

(
[2, 0]usp(4) + 1

)}
x2 + . . . ,

(4.40)

with v = v(y).17 The coefficient of x indicates that the flavor symmetry algebra is indeed
usp(4). Upon using (4.7), we find that the Higgs branch limit of (4.39) is given by

HS
[
HB of (4.10)η=1,χ2=−1/(Z[0]

2 )χ1

]
(v; t) = HS

[
CB of (3.5)wr ⟨(12)(34), (13)(24)⟩

]
(v; t)

= PE
[
[2, 0]usp(4)t

2 +
(
2[0, 2]usp(4) + [0, 1]usp(4) + 2

)
t4 + . . .

]
,

(4.41)
17If we write the character of the fundamental representation of usp(4) as

∑2
i=1(vi + v−1

i ), then, in order to
express (4.39) in the form (4.40), we can choose the following fugacity map:

y1 = v1v2 , y2 = v1v−1
2 , y3 = 1.
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whereas the Coulomb branch limit yields

HS
[
CB of (4.10)η=1,χ2=−1/(Z[0]

2 )χ1

]
(t) = HS

[
HB of (3.5)wr ⟨(12)(34), (13)(24)⟩

]
(t)

= HS
[
C2/D̂4

]
(t) = PE

[
2t4 + t6 − t12

]
.

(4.42)

Moreover, the unrefined Higgs branch Hilbert series can be expressed in closed form as

HS[HB of (4.10)η=1,χ2=−1/(Z[0]
2 )χ1 ](t) = HS[CB of (3.5)wr ⟨(12)(34), (13)(24)⟩](t)

= 1 + 5t2 + 45t4 + 130t6 + 314t8 + 354t10 + 314t12 + 130t14 + 45t16 + 5t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(4.43)

Once again, these results are in agreement with [28, figure 9 and figure 11].

4.2 Mirrors of quiver (3.6) wreathed by Γ

Let us now analyze theory (4.14)/(Z[0]
2 )ω, which allows us to reproduce the details reported

in table (4.19) and, therefore, obtain new information about the mirror description (3.6) and
its wreathing by a subgroup Γ of S4. As before, Γ is taken to be one among the Z2, double
transposition, normal Klein and non-normal Klein subgroups.

In the case where Γ is trivial, we have already pointed out that the mirror dual of (3.6) is
theory (4.14)/(Z[0]

2 )ω with χR = χL = 1, see (4.17). The index can be computed as described
in (4.15) with ω being summed over ±1. The result up to order x2 is given by

I(4.14)/(Z[0]
2 )ω

(z|a|χR = 1, χL = 1;x)

= 1 + a2
(
[2; 0; 0; 0]su(2)4 + [0; 2; 0; 0]su(2)4 + [0; 0; 2; 0]su(2)4 + [0; 0; 0; 2]su(2)4

)
x

+
{

a4
(
[4; 0; 0; 0]su(2)4 + [0; 4; 0; 0]su(2)4 + [0; 0; 4; 0]su(2)4 + [0; 0; 0; 4]su(2)4

+ [2; 2; 2; 2]su(2)4 + [2; 2; 0; 0]su(2)4 + [0; 0; 2; 2]su(2)4 + [2; 0; 2; 0]su(2)4

+ [2; 0; 0; 2]su(2)4 + [0; 2; 2; 0]su(2)4 + [0; 2; 0; 2]su(2)4 + 1
)
+ 2a−4

−
(
[2; 0; 0; 0]su(2)4 + [0; 2; 0; 0]su(2)4 + [0; 0; 2; 0]su(2)4 + [0; 0; 0; 2]su(2)4 + 1

)}
x2 + . . . ,

(4.44)

where z = z(y), see (4.16). Note that the coefficient of x indicates that the flavor symmetry
is su(2)4. This index can also be obtained from (4.6) by exploiting the branching rule
from so(8) to su(2)4:

[0, 1, 0, 0]so(8) → [2; 0; 0; 0]su(2)4 + [0; 2; 0; 0]su(2)4 + [0; 0; 2; 0]su(2)4 + [0; 0; 0; 2]su(2)4 + [1; 1; 1; 1]su(2)4 ,

[0, 2, 0, 0]so(8) → [0; 0; 0; 0]su(2)4 + [1; 1; 1; 1]su(2)4 + [2; 2; 0; 0]su(2)4 + [2; 0; 2; 0]su(2)4 + [2; 0; 0; 2]su(2)4
+ [0; 2; 2; 0]su(2)4 + [0; 2; 0; 2]su(2)4 + [0; 0; 2; 2]su(2)4 + [4; 0; 0; 0]su(2)4 + [0; 4; 0; 0]su(2)4
+ [0; 0; 4; 0]su(2)4 + [0; 0; 0; 4]su(2)4 + [3; 1; 1; 1]su(2)4 + [1; 3; 1; 1]su(2)4 + [1; 1; 3; 1]su(2)4
+ [1; 1; 1; 3]su(2)4 + [2; 2; 2; 2]su(2)4 ,

(4.45)

where the terms in blue contain odd highest weights of su(2)1,2 and they are projected
out upon gauging (Z[0]

2 )ω. Using (4.7), we obtain the Higgs and Coulomb branch limits
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for χR = χL = 1 as follows:

HB of (4.14)/(Z[0]
2 )ω = CB of (3.6) ,

CB of (4.14)/(Z[0]
2 )ω = HB of (3.6) = C2/D̂4.

(4.46)

Now, let us proceed by considering Γ non-trivial. To systematically derive all the
wreathings we are interested in, it is useful to consider the expansion of the index of
theory (4.14)/(Z[0]

2 )ω for generic χR and χL by pointing out the explicit dependence on the
two charge conjugation fugacities. For instance, the coefficient at order x reads

a2
{(1 + χR)

2
[(

y21 + 1 + y−2
1

)
+ (y1 ↔ y2)

]
+ (1 + χL)

2
[(

y23 + 1 + y−2
3

)
+ (y3 ↔ y4)

]}
.

(4.47)

Note that, if we gauge the symmetry associated with χR (resp. χL) by summing the fugacity
over ±1, this leads to the coefficient 1

2 in front of the characters in (4.47). This means that,
in such a case, the symmetry is broken to the diagonal subalgebra of su(2)1 ⊕ su(2)2 (resp.
su(2)3 ⊕ su(2)4). In the index, this amounts to setting z1 = z2 ≡ f1 (resp. z3 = z4 ≡ f2).
After doing so, the index becomes well-defined again. Explicitly, if we set z1 = z2 ≡ f1 and
z3 = z4 ≡ f2, the index for generic χL and χR can be written as18

I(4.14)/(Z[0]
2 )ω

(f |a|χR, χL;x) = 1 + a2
{
(1 + χR) [2; 0]su(2)2 + (1 + χL) [0; 2]su(2)2

}
x

+
{

a4
[
[4; 4]su(2)2 + χR [2; 4]su(2)2 + χL [4; 2]su(2)2 + (3 + χR) [4; 0]su(2)2

+ (3 + χL) [0; 4]su(2)2 + (1 + χR + χL + 2χRχL) [2; 2]su(2)2

+ 2χR [2; 0]su(2)2 + 2χL [0; 2]su(2)2 + 4
]
+ (1 + χRχL) a−4

−
[
(1 + χR) [2; 0]su(2)2 + (1 + χL) [0; 2]su(2)2 + 1

]}
x2 + . . . .

(4.48)

This will be useful for obtaining the indices for the theories listed in (4.19).

The case Γ = Z2. Analogously to what we did when dealing with theory (4.10), to imple-
ment wreathing by Γ = Z2 = ⟨(12)⟩, we gauge the (Z[0]

2 )χR symmetry of theory (4.14)/(Z[0]
2 )ω.

At the level of the index, once we set χL = 1, this amounts to19

I(4.14)χL=1/(Z[0]
2 )ω,χR

(y|a;x) = 1
2
∑

χR=±1
I(4.14)/(Z[0]

2 )ω
(y|a|χR, χL = 1;x). (4.49)

In order to compute (4.49), it is necessary to take the diagonal combination of su(2)1⊕ su(2)2
since the latter is broken into the diagonal subalgebra. As discussed above, the corresponding
fugacity is denoted by f1. However, su(2)3 and su(2)4 remain unbroken, and the corresponding

18If we denote the diagonal combination of su(2)i and su(2)j as su(2)ij , then [a; b]su(2)2 stands for the
character of the representation of su(2)12 ⊕ su(2)34, with highest weights a and b under su(2)12 and su(2)34
respectively.

19Given that theory (4.14)/(Z[0]
2 )ω is symmetric under swapping (χR; y1, y2) ↔ (χL; y3, y4), the mirror

description corresponding to the Z2 wreathing of theory (3.6) can be realized equivalently by gauging (Z[0]
2 )χL

and setting χR = 1.
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fugacities are z3,4. Using (4.15) and the discussion below, we obtain the following index,
which can be written in terms of the characters of representations of su(2)3 as follows:20

I(4.14)χL=1/(Z[0]
2 )ω,χR

(f1, z3, z4|a;x) = 1 + a2
(
[2; 0; 0]su(2)3 + [0; 2; 0]su(2)3 + [0; 0; 2]su(2)3

)
x

+
{

a4
(
[4; 2; 2]su(2)3 + 2 [4; 0; 0]su(2)3 + [0; 4; 0]su(2)3 + [0; 0; 4]su(2)3

+ [2; 2; 0]su(2)3 + [2; 0; 2]su(2)3 + 2 [0; 2; 2]su(2)3 + 2
)
+ a−4

−
(
[2; 0; 0]su(2)3 + [0; 2; 0]su(2)3 + [0; 0; 2]su(2)3 + 1

)}
x2 + . . . ,

(4.50)

where one can check that, after gauging χR and setting χL = 1, (4.50) is equivalent to (4.48)
upon taking the diagonal combination of su(2)3 and su(2)4 and taking tensor products
of su(2)34:

[4; 2; 2]su(2)3 → [4; 4]su(2)2 + [4; 2]su(2)2 + [4; 0]su(2)2 ,

[0; 2; 2]su(2)3 → [0; 4]su(2)2 + [0; 2]su(2)2 + [0; 0]su(2)2 .
(4.51)

Now, we can take the Higgs and Coulomb branch limits of the index as described in (4.7):
the Higgs branch Hilbert series reads

HS
[
HB of (4.14)χL=1/(Z

[0]
2 )ω,χR

]
(f1, z3, z4; t) = HS

[
CB of (3.6)wrZ2

]
(f1, z3, z4; t)

= PE
[(
[2; 0; 0]su(2)3 + [0; 2; 0]su(2)3 + [0; 0; 2]su(2)3

)
t2

+
(
[4; 2; 2]su(2)3 + [4; 0; 0]su(2)3 + [0; 2; 2]su(2)3 − 1

)
t4 + . . .

]
,

(4.52)

whereas the Coulomb branch Hilbert series is given by

HS
[
CB of (4.14)χL=1/(Z

[0]
2 )ω,χR

]
(t) = HS

[
HB of (3.6)wrZ2

]
(t)

= HS
[
C2/D̂6

]
(t) = PE

[
t4 + t8 + t10 − t20

]
.

(4.53)

Moreover, once unrefined, the Higgs branch Hilbert series can be expressed in closed form as

HS
[
HB of (4.14)χL=1/(Z

[0]
2 )ω,χR

]
(t) = HS[CB of (3.6)wrZ2

](t) = (3.27). (4.54)

The case Γ = double transposition. The mirror description of wreathing (3.6) by the
double transposition subgroup of S4, namely Γ = ⟨(12)(34)⟩, can be derived by defining a
new independent fugacity ξ ≡ χRχL before gauging (Z[0]

2 )χR and (Z[0]
2 )χL . In this theory,

the fugacity ξ plays the same role as η in theory (4.10).
The index, which is given by

I(4.14)ξ/(Z[0]
2 )ω,χR,χL

(y|a;x) = 1
4

∑
χR,χL=±1

I(4.14)/(Z[0]
2 )ω

(y|a|χR, χL;x)|ξ≡χRχL
, (4.55)

20We denote by [a; b; c] the character of the representation of su(2)12 ⊕ su(2)3 ⊕ su(2)4 with highest weights
a, b and c under su(2)12, su(2)3 and su(2)4 respectively.
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can be expanded in powers of x using (4.48) with χRχL ≡ ξ. Up to order x2, for ξ = 1, it reads

I(4.14)ξ=1/(Z[0]
2 )ω,χR,χL

(f |a;x) = 1 + a2
(
[2; 0]su(2)2 + [0; 2]su(2)2

)
x

+
{

a4
(
[4; 4]su(2)2 + 3 [4; 0]su(2)2 + 3 [0; 4]su(2)2 + 3 [2; 2]su(2)2 + 4

)
+ 2a−4 −

(
[2; 0]su(2)2 + [0; 2]su(2)2 + 1

)}
x2 + . . . ,

(4.56)

from which, using (4.7), we recover the Higgs branch Hilbert series

HS
[
HB of (4.14)ξ=1/(Z

[0]
2 )ω,χR,χL

]
(f ; t) = HS

[
CB of (3.6)wr ⟨(12)(34)⟩

]
(f ; t)

= PE
[(
[2; 0]su(2)2 + [0; 2]su(2)2

)
t2

+
(
[4; 4]su(2)2 + 2[4; 0]su(2)2 + 2[0; 4]su(2)2 + 2[2; 2]su(2)2 + 2

)
t4 + . . .

] (4.57)

and the Coulomb branch Hilbert series

HS
[
CB of (4.14)ξ=1/(Z

[0]
2 )ω,χR,χL

]
(t) = HS

[
HB of (3.6)wr ⟨(12)(34)⟩

]
(t)

= HS
[
C2/D̂4

]
(t) = PE

[
2t4 + t6 − t12

]
.

(4.58)

Furthermore, the unrefined Higgs branch Hilbert series admits the following closed expression:

HS[HB of (4.14)ξ=1/(Z
[0]
2 )ω,χR,χL ](t) = HS[CB of (3.6)wr ⟨(12)(34)⟩](t)

= 1 + t2 + 61t4 + 94t6 + 378t8 + 274t10 + 378t12 + 94t14 + 61t16 + t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(4.59)

The case Γ = non-normal Klein. Wreathing quiver (3.6) by Γ = ⟨(12), (34)⟩ is equivalent
to gauging both (Z[0]

2 )χR and (Z[0]
2 )χL independently, without introducing the fugacity ξ, in

theory (4.14)/(Z[0]
2 )ω. This situation can be analyzed using the index

I(4.14)/(Z[0]
2 )ω,χR,χL

(y|a;x) = 1
4

∑
χR,χL=±1

I(4.14)/(Z[0]
2 )ω

(y|a|χR, χL;x) , (4.60)

whose expansion, from (4.48), reads

I(4.14)/(Z[0]
2 )ω,χR,χL

(f |a;x) = 1 + a2
{
[2; 0]su(2)2 + [0; 2]su(2)2

}
x

+
{

a4
(
[4; 4]su(2)2 + 3 [4; 0]su(2)2 + 3 [0; 4]su(2)2 + [2; 2]su(2)2 + 4

)
+ a−4 −

(
[2; 0]su(2)2 + [0; 2]su(2)2 + 1

)}
x2 + . . . .

(4.61)

Using (4.7), we obtain the Higgs branch limit of (4.60) as

HS
[
HB of (4.14)/(Z[0]

2 )ω,χR,χL

]
(f ; t) = HS

[
CB of (3.6)wr ⟨(12),(34)⟩

]
(f ; t)

= PE
[(
[2; 0]su(2)2 + [0; 2]su(2)2

)
t2 +

(
[4; 4]su(2)2 + 2[4; 0]su(2)2 + 2[0; 4]su(2)2 + 2

)
t4 + . . .

]
,

(4.62)
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whereas the Coulomb branch limit of (4.60) is given by

HS
[
CB of (4.14)/(Z[0]

2 )ω,χR,χL

]
(t) = HS

[
HB of (3.6)wr ⟨(12),(34)⟩

]
(t)

= HS
[
C2/D̂6

]
(t) = PE

[
t4 + t8 + t10 − t20

]
.

(4.63)

The unrefinement of the former can be written in closed form as

HS
[
HB of (4.14)/(Z[0]

2 )ω,χR,χL

]
(t) = HS

[
CB of (3.6)wr ⟨(12),(34)⟩

]
(t)

= 1 + t2 + 43t4 + 37t6 + 208t8 + 92t10 + 208t12 + 37t14 + 43t16 + t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(4.64)

The case Γ = normal Klein. Finally, we can gain new insights into the
Γ = ⟨(12)(34), (13)(24)⟩ wreathing of quiver (3.6) by exploiting the mirror description
(4.14)/(Z[0]

2 )ω with the independent fugacity ξ defined as before, χL = −1 and (Z[0]
2 )χR

gauged. In such a case, the index is given by

I(4.14)ξ, χL=−1/(Z[0]
2 )ω,χR

(y|a;x) = 1
2
∑

χR=±1
I(4.14)/(Z[0]

2 )ω
(y|a|χR, χL;x)|ξ≡χLχR, χL=−1 (4.65)

and its expansion for ξ = 1 can be evaluated thanks to (4.48):

I(4.14)ξ=1,χL=−1/(Z[0]
2 )ω,χR

(f |a;x)

= 1 + a2 [2]su(2) x +
{

a4
(
[8]su(2) + 7 [4]su(2) + 7

)
+ 2a−4 −

(
[2]su(2) + 1

)}
x2 + . . . ,

(4.66)

where we observe that the flavor symmetry is just su(2), with su(2)12 ⊕ su(2)34 broken to the
diagonal combination, with f1 = f2 ≡ f . Using (4.7), we find that the Higgs and Coulomb
branch limits of (4.65) reproduce the Higgs branch Hilbert series, which is given by

HS
[
HB of (4.14)ξ=1,χL=−1/(Z

[0]
2 )ω,χR

]
(f ; t) = HS

[
CB of (3.6)wr ⟨(12)(34),(13)(24)⟩

]
(f ; t)

= PE
[
[2]su(2)t

2 +
(
[8]su(2) + 6[4]su(2) + 6

)
t4 + . . .

]
,

(4.67)

and the following Coulomb branch Hilbert series:

HS
[
CB of (4.14)ξ=1,χL=−1/(Z

[0]
2 )ω,χR

]
(t) = HS

[
HB of (3.6)wr ⟨(12)(34),(13)(24)⟩

]
(t)

= HS
[
C2/D̂4

]
(t) = PE

[
2t4 + t6 − t12

]
.

(4.68)

We also provide a closed formula for the unrefined Higgs branch Hilbert series, which reads

HS[HB of (4.14)ξ=1,χL=−1/(Z
[0]
2 )ω,χR ](t) = HS[CB of (3.6)wr ⟨(12)(34),(13)(24)⟩](t)

= 1− 2t2 + 41t4 + 19t6 + 234t8 + 86t10 + 234t12 + 19t14 + 41t16 − 2t18 + t20

(1− t)10(1 + t)10(1 + t2)5 .
(4.69)
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5 Twisted compactification of SU(n) SQCD with 2n Flavors

In this section, we consider the compactification on a circle with a Z2 outer-automorphism
twist of 4d N = 2 SU(n) SQCD with 2n flavors of hypermultiplets in the fundamental
representation. The method we adopt is very similar to that discussed in [43, (3.1)] and [44],
where 4d N = 2 SCFTs arising from 5d N = 1 SCFTs compactified with a Zk twist were
studied. In which case, it was pointed out that if one starts with the magnetic quiver Q′ of
the 5d theory containing k identical simply-laced legs, then the magnetic quiver Q of the 4d
N = 2 theory is obtained by folding the k legs of Q′. The quiver Q contains a non-simply
laced edge with multiplicity k. The Higgs branch of the parent theory can be computed from
the Coulomb branch of Q using the prescription given in [45].

Our main proposal is that the Coulomb branch of the following non-simply-laced quiver
describes the Higgs branch of the 3d theory arising from the Z2 twisted compactification
of 4d N = 2 SU(n) SQCD with 2n flavors:

U(n)

[(U(1))]

U(1)

U(n − 1)· · ·U(2)U(1) (5.1)

where an overall U(1) should be modded out from one of the U(1) gauge nodes on the right
of ⇐, denoted by [(U(1))]. This quiver can be obtained by taking the 3d mirror theory of
SU(n) SQCD with 2n flavors depicted in (2.24) and folding it with respect to the vertical
axis of symmetry. The latter introduces the non-simply laced edge. The direction of the
arrow can be fixed by considering the special case of n = 2 as follows. The Higgs branch
of the 4d theory, namely SU(2) SQCD with 4 flavors, is isomorphic to the closure of the
minimal nilpotent orbit of so(8), i.e. minD4. As discussed in [82] and [28, section 4 and
figure 19], this is folded to the closure of the minimal nilpotent orbit of so(7), i.e. minB3.
In fact, the latter is described by the Coulomb branch of (5.1) with n = 2, which is indeed
the affine Dynkin diagram of so(7) [45].

We can also obtain the quiver (5.1) in the case of n = 3 by exploiting the Argyres-Seiberg
duality (2.14), with the assumption that the Z2 twist acts only on the strongly-coupled sector.
Recall that the Higgs branch of the rank-1 E6 theory is isomorphic to minE6. As discussed
in [28] and [43, (3.3)], the Z2 folding of the latter leads to minF4, which is described by the
Coulomb branch of the affine Dynkin diagram of F4 [45]:

U(3) U(2) [(U(1))]U(2)U(1) (5.2)

Let us now proceed further in a similar way as discussed around (2.23). In particular, the
first step is to couple two flavors of hypermultiplets to su(2) ⊂ f4 in minF4 and gauge this
su(2) symmetry algebra. In the second step, we then give a mass to one of such flavors.
Thus, it is expected that the Z2 twisted compactification of SU(3) SQCD with 6 flavors is
obtained after integrating out the massive hypermultiplet. In terms of the magnetic quiver,
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the first step corresponds to considering the following theory:

U(3) U(2) [(U(1))]U(2)U(1)

U(1)
(5.3)

The second step corresponds to turning on the FI parameter to one of the U(1) gauge
nodes on the right. Flowing to the IR, we then obtain the quiver (5.1) with n = 3, as
required (see [44, 61, 62]).

The above argument can be generalized to higher n via (2.21) in a straightforward fashion.
We propose that the magnetic quiver for the Z2 twisted compactification of the R0,n theory is

U(n) U(2) [(U(1))]U(n − 1)· · ·U(2)U(1) (5.4)

The rest of the procedure then follows as for the case of n = 3.
The Coulomb branch symmetry of theory (5.1) is so(7) for n = 2 and usp(2n)⊕ u(1)b

for n ≥ 3. The HWG of the Coulomb branch Hilbert series is given by

HWG [CB of (5.1)] = PE
[
t2 +

(
bnνn + b−nνn

)
tn +

n−1∑
k=1

ν2
kt2k

]
, (5.5)

where νp
k denotes the highest weight fugacity of the representation [0k−1, p, 0n−k]usp(2n) of

usp(2n), and b is the fugacity for the u(1)b symmetry. Here, we normalize the charge under
u(1)b in such a way that the operators that come from the baryons in 4d SU(n) SQCD have
charge n, i.e. equal to that of the baryonic charge. It is instructive to compare this HWG to
that of the Higgs branch of SU(n) SQCD with 2n flavors [83, (5.52)]:

PE
[
t2 +

(
bnµn + b−nµn

)
tn +

n−1∑
k=1

µkµ2n−kt2k

]
, (5.6)

where b is the fugacity for the baryonic symmetry and µp1
k1

µp2
k2

denotes the highest weight
fugacity of the representation [0k1−1, p1, 0k2−k1−1, p2, 02n−k2−1]su(2n) of su(2n). In the follow-
ing, we write down explicitly the representations under which generators and relations of
the Higgs branch transform for the cases of n = 2 and n = 3. We see that, for general
n, the Higgs branch generators of SU(n) SQCD that are not projected out by the twisted
compactification transform in the following representations of usp(2n) ⊕ u(1)b.

• Mesons at order t2: [2, 0, . . . , 0]usp(2n)(0) + [0, 0, . . . , 0]usp(2n)(0).

• Baryons at order tn: [0, . . . , 0, 1]usp(2n)(±n), where (±n) are the baryonic u(1)b charges.

The case of n = 2. Let us expand the HWG (5.6) in power series in t and decompose the
su(2n) representations into those of usp(2n). Taking the plethystic logarithm, we can extract
the information of the generators and the relations of the moduli space. We can perform a
similar computation starting from (5.5) and compare the two results.

The generators of the Higgs branch of SU(2) SQCD with 4 flavors correspond to the
coefficient at order t2 and transform in the following representations of usp(4)⊕ u(1)b:

[0, 1]usp(4)(±2) + [0, 1]usp(4)(0) + [2, 0]usp(4)(0) + [0, 0]usp(4)(±2) + [0, 0]usp(4)(0) , (5.7)
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whereas the relations (at order t4) transform under the following representations:

[0, 0]usp(4)(±2, 0) + 2× [0, 0]usp(4)(0) + [0, 0]usp(4)(±4) + [2, 0]usp(4)(±2, 0)
+ [2, 0]usp(4)(±2, 0) + 2× [0, 1]usp(4)(0) + [0, 1]usp(4)(±2, 0) + [0, 2]usp(4)(0) ,

(5.8)

where we denoted in red the representations that are projected out by the twist, i.e. they are
absent in theory (5.1). Note that r(±q, 0) is the shorthand notation for r(q) + r(−q) + r(0).

The case of n = 3. The Higgs branch generators of SU(3) with 6 flavors transform in
the following representations of usp(6) ⊕ u(1)b.

• Mesons at order t2: [0, 1, 0]usp(6)(0) + [2, 0, 0]usp(6)(0) + [0, 0, 0]usp(6)(0) .

• Baryons at order t3: [1, 0, 0]usp(6)(±3) + [0, 0, 1]usp(6)(±3) .

Again, we denoted in red the representations that are removed by the twisted compactification.
The relations that are satisfied by the generators transform in the following representations.

• At order t4, the relation is [2, 0, 0]usp(6)(0) + [0, 1, 0]usp(6)(0) + [0, 0, 0]usp(6)(0).

• At order t5, the relation is

3× [1, 0, 0]usp(6)(±3) + [0, 0, 1]usp(6)(±3) + [1, 1, 0]usp(6)(±3) + [1, 1, 0]usp(6)(±3).

• At order t6, the relation is

[0, 1, 0]usp(6)(±6) + 2× [0, 1, 0]usp(6)(0) + 2× [1, 0, 1]usp(6)(0) + [0, 0, 0]usp(6)(0)
+ [2, 0, 0]usp(6)(±6, 0) + [0, 0, 2]usp(6)(0) + [0, 2, 0]usp(6)(0) + [0, 0, 0]usp(6)(0).

We remark that, in addition to the aforementioned relations, there is an extra term contributing
+[0, 1, 0]usp(6)(0) at order t6 to the plethystic logarithm of the Coulomb branch Hilbert series
of theory (5.1) for n = 3.

Difference between discrete gauging and twisted compactification. Let us comment
on the difference between discrete gauging discussed in the preceding sections and twisted
compactification discussed in this section. In the latter, we start from a 4d SCFT and end
up with a 3d theory; for example, 4d N = 2 SU(2) SQCD with 4 flavors becomes a 3d
N = 4 theory whose Coulomb branch is isomorphic to minB3. On the contrary, the discrete
gauging of a 4d SCFT gives rise to another 4d SCFT, which of course can be dimesionally
reduced on a circle to obtain a 3d N = 4 theory, which may differ from the aforementioned
one. For example, as discussed around (2.30), a Z2 discrete gauging of 4d N = 2 SU(2)
SQCD with 4 flavors leads to a rank-1 4d N = 2 theory whose Higgs branch is isomorphic
to n.minB3, previously denoted by T r=1

n.minB3
. Upon reduction on a circle, this leads to a

3d N = 4 theory whose Higgs branch is still isomorphic to n.minB3 and Coulomb branch
is isomorphic to C2/D̂6.
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6 Comments on twisted compactifications of N = 4 SYM theories

Let us consider the 4d N = 4 super Yang-Mills (SYM) theory with gauge group U(N) or
SU(N). In the following, we view the SYM theory as a 4d N = 2 gauge theory, where the
N = 4 vector multiplet decomposes into one N = 2 hypermultiplet and an N = 2 vector
multiplet. Let us denote by Φ1 and Φ2 the chiral multiplets that reside in the hypermultiplet.
The vacuum equation implies that Φ1 and Φ2 commute with each other. The Higgs branch
of the theory with the U(N) gauge group is therefore isomorphic to the N -fold symmetric
product of C2, SymN (C2). For the SU(N) gauge group, the free hypermultiplet that arises
from the traces of Φ1 and Φ2 is absent.

The Zk twisted compactification of SU(N) SYM by a non-invertible defect was studied
in [46, section 6]. In particular, the authors of that reference studied the Zk action which
arises from an appropriate combination of the R-symmetry action ρ and the Zk ⊂ SL(2,Z)
transformation σ in such a way that the combined action of (ρ, σ) preserves N = 6 super-
symmetry in the 3d theory. Explicitly, if we denote the four complex chiral supercharges by
Qi

α with i = 1, . . . , 4 the index of the fundamental representation of the SU(4) R-symmetry
and α = 1, 2, then σ acts on Qi

α as

σ : Qi
α → e−iπ/kQi

α = ω
−1/2
k Qi

α , (6.1)

with ωk ≡ e2πi/k. On the other hand, up to a conjugation, ρ can be chosen to be in the
maximal torus of Spin(6) ∼= SU(4) R-symmetry and can be represented by

ρ = (ωr1
k , ωr2

k , ωr3
k ) , ωk ≡ e2πi/k , r1,2,3 ∈ Z , (6.2)

which can be considered as a simultaneous rotation in the three orthogonal planes in C3 ∼= R6;
see [3, (3.9)]. In this presentation, the action of ρ on the four chiral supercharges is(

ω
(r1+r2+r3)/2
k , ω

(r1−r2−r3)/2
k , ω

(−r1+r2−r3)/2
k , ω

(−r1−r2+r3)/2
k

)
. (6.3)

The choice of [46, section 6] corresponds to (r1, r2, r3) = (−1,−1,−1) and so (6.3) becomes
(ω−3/2

k , ω
1/2
k , ω

1/2
k , ω

1/2
k ); upon combining it with the action of σ stated above, this indeed

preserves three complex supercharges, as required.
At the level of the moduli space, it was pointed out that Zk acts on the collection of three

complex scalar fields ϕj (with j = 1, . . . , N) in the vector multiplet of 4d N = 4 SYM as

ϕj → ωkϕj . (6.4)

This can be appropriately combined with the Weyl group action of SU(N) and it gives rise
to a certain complex reflection group (see appendix C for more details). By examining the
group action on the moduli space, such an N = 6 theory is identified with the ABJ(M)
theory [47, 48] U(N + x)k × U(N)−k such that21

N = nk + x, with x < k. (6.5)
21Strictly speaking, for the non-invertible defects, k is restricted to be 3, 4 or 6. However, in the following,

we consider general values of k.
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The total moduli space of this theory is C4n/G(k, 1, n), where G(k, 1, n) is the complex
reflection group in question. If we view this theory as a 3d N = 4 theory, then the Higgs
and Coulomb branches are both isomorphic to

Symn(C2/Zk) ∼= C2n/G(k, 1, n). (6.6)

This can be checked using the Higgs and Coulomb branch limits [80] of the index (see the
discussion around (4.7)) of the corresponding ABJ(M) theory (see e.g. [50, 79, 84]).

In the following, we instead consider the choice (r1, r2, r3) = (1, 1,−1) in (6.2), in which
case (6.3) becomes (ω1/2

k , ω
1/2
k , ω

1/2
k , ω

−3/2
k ); upon combining it with the action of σ stated

above, this still preserves three complex supercharges, as it should be. This choice, on the
other hand, is more convenient for the study of the Higgs branch of the 4d N = 4 SYM
theory. In particular, the scalar component of the two chiral multiplets Φ1 and Φ2 in the
hypermultiplet parametrizes a complex plane C2 in the orthogonal space C3 ∼= R6. The
Zk action on Φ1,2 can be chosen as

Φ1 → ωkΦ1 , Φ2 → ω−1
k Φ2. (6.7)

The main point of this section is that, if we consider the action (6.7) on the commuting
adjoint chiral fields Φ1 and Φ2 in the hypermultiplet of 4d N = 4 SYM and examine the
chiral ring that is invariant under this Zk action, the resulting Higgs branch moduli space
may contain not only Symn(C2/Zk) as discussed in (6.6), but also a radical ideal22 due to the
presence of nilpotent operators. Note that, even though Symn(C2/Zk) is still a component
with the largest dimension of the Higgs branch, the radical should not be neglected. The
significance of the latter in supersymmetric gauge theories is discussed, for example, in [83, 86].
Subsequently, we give explicit examples of such radical ideals for N = 3 and N = 4.23

In the following discussion, we will use extensively the Hilbert series of Symn(C2/Zk),
which can be computed using the method given in appendix C, or simply using the following
plethystic exponential [87, 88]:

PE
[

1− t2k

(1− tkzk)(1− t2)(1− tkz−k)ν

]
. (6.8)

Upon performing the series expansion in ν, the coefficient of νn gives the Hilbert series
of Symn(C2/Zk), as required.

6.1 SU(3) SYM

Let us consider the U(3) SYM theory. The Higgs branch moduli space is generated by
three sets of generators:

Pa = tr(Φa), Qab = tr(Φ̃aΦ̃b), Sabc = tr(Φ̃aΦ̃bΦ̃c), a, b, c = 1, 2 , (6.9)

with

Φ̃a = Φa − 1
3 tr(Φa)13×3. (6.10)

22See e.g. [85] and [83, appendix C].
23For the case of N = 2, the radical ideal is not present, and so we omit the discussion of this case.
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They satisfy the following set of relations:24

R(1)
a := εi1j1εi2j2Qi1i2Sj1j2a = 0 ,

R
(2)
ab := εi1j1εi2j2 (Qi1i2Qj1aQj2b + 3Si1i2aSj1j2b) = 0 ,

(6.11)

where the indices i’s and j’s run from 1 to 2.25 Note that P1 and P2 drop out of the relations
R(1) = 0 and R(2) = 0. Indeed, for the SU(3) SYM theory, we can simply set P1 = P2 = 0
in the above discussion.

Let R be the polynomial ring in the variables (6.9), and I be the ideal that contains
the relations (6.11). We can compute the Hilbert series of the quotient ring R/I using
Macaulay2 [95], and the result is

HS(z; t) =
1 + t2 +

(
z + 1

z

)
t3 + t4 + t6

(1− t3z3) (1− t2z2) (1− tz)
(
1− t

z

) (
1− t2

z2

) (
1− t3

z3

)
= PE

[
[1]su(2)t + [2]su(2)t2 + [3]su(2)t4 − [1]su(2)t5 − [2]su(2)t6 + . . .

]
.

(6.12)

The first three positive terms in the PE correspond to the generators P , Q and S, while
the last two negative terms in the PE correspond to the relations R(1) = 0 and R(2) = 0.
This is indeed the Hilbert series of Sym3(C2), which can be obtained from the ν3 coefficient
of (6.8) with k = 1, as expected.

Let us now study the Higgs branch of the 3d theory that arises from the Zk twisted
compactification of the 4d N = 4 SU(3) SYM theory. For N = 3 and k > 1, (6.5) admits
two solutions, namely (k, n, x) = {(3, 1, 0), (2, 1, 1)}.

6.1.1 Z3 twisted compactification

Let us first consider a Z3 twisted compactification, corresponding to (k, n, x) = (3, 1, 0).
From (6.6), the expected Higgs branch moduli space is C2/Z3.

We consider the action (6.7) and set to zero all the generators that are not invariant
under a Z3 transformation, namely P1, P2, Q11, Q22, S112, S221, while leave the other generators
untouched. Computationally, we take R to be the ring of polynomials in the variables (6.9),
as before, but with the new ideal I to be as follows

I =
(
P1, P2, Q11, Q22, S112, S221, Q3

12 − 3S111S222
)

, (6.13)

where R(1) = 0 is just a trivial identity and the last equation in I comes from R(2) = 0.
Upon computing the Hilbert series of R/I, the result is

HS(z; t) = 1 + t2 + t4

(1− t3z3)
(
1− t3

z3

) = 1− t6

(1− t3z3) (1− t2)
(
1− t3

z3

) , (6.14)

which is the moduli space of C2/Z3, as expected. In this case, we do not have any radical ideal.
24These generators and relations have, in fact, been worked out by mathematicians in [89, 90], where, in

their notation, Φ1 = X, Φ2 = Y , Φ̃1 = A, Φ̃2 = B. Note that the problem of identifying the generators
of SymN (C2) and computing the explicit relations among them is closely related to the study of the N -th
Calogero-Moser space [91, 92]. For example, the case of N = 2 was studied in [93, 94].

25These relations can be checked easily by using the fact that Φ1 and Φ2 commute, and hence they are
simultaneously diagonalizable.
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6.1.2 Z2 twisted compactification

Another possible twist is a Z2 twist, corresponding to (k, n, x) = (2, 1, 1) From (6.6), the
expected Higgs branch moduli space is C2/Z2.

One could proceed as before, i.e. by setting to zero the generators that are not in-
variant under the Z2 action (6.7). These are precisely the elements of the set Z =
{P1, P2, S111, S112, S221, S222}. Let R be the polynomial ring in variables (6.9), as before,
and let the ideal I be as follows: I = Z ∪ {R(1)|Z=0} ∪ {R(2)|Z=0}, where R(i)|Z=0 means
that we set all the elements in Z to zero in R(i). Computing the Hilbert series of R/I
using Macaulay2, we obtain

HS(z; t) =
1 + t2 + t4 −

(
z2 + 1

z2

)
t6 + t8

(1− t2z2)
(
1− t2

z2

) =
1−

(
z2 + 1

z2 + 1
)

t6 +
(
z2 + 1

z2 + 1
)

t8 − t10

(1− t2z2) (1− t2)
(
1− t2

z2

) ,

(6.15)

which is clearly not the Hilbert series of C2/Z2, and its numerator is not even palindromic.
This suggests that the quotient ring in question is not irreducible (see e.g. [96]). Indeed,
performing the primary decomposition (e.g. using the command primaryDecomposition in
Macaulay2), we see that there are two irreducible components.

• The first is
I1 =

(
P1, P2, S111, S112, S221, S222, Q2

12 − Q11Q22
)

, (6.16)

with Hilbert series:

HS1(z; t) =
1 + t2

(1− t2z2)
(
1− t2

z2

) = 1− t4

(1− t2z2) (1− t2)
(
1− t2

z2

) , (6.17)

corresponding to the C2/Z2 moduli space generated by Q12, Q11 and Q22. This branch
is as expected from (6.6).

• The second one is

I2 =
(
P1, P2, Q11, Q22, S111, S112, S221, S222, Q3

12

)
, (6.18)

with Hilbert series
HS2(t) = 1 + t2 + t4, (6.19)

corresponding to the identity operator, Q12 and Q2
12. This is a radical ideal and Q12 is

the nilpotent operator satisfying Q3
12 = 0.

The two irreducible components intersect at the origin, which is a fat point:

HS(z; t) = HS1(z; t) + HS2(t)− (1 + t2). (6.20)

The presence of the t2 in the last term signals that the intersection is not only at the identity,
but also at order 2.
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6.2 SU(4) SYM

Let us now consider U(4) SYM, whose Higgs branch is Sym4(C2). The coordinate ring is
discussed in [90, Theorem 4.1]. There are 14 generators that can be written in an su(2)
covariant way as

Pa = tr(Φa), Qab = tr(Φ̃aΦ̃b), Sabc = tr(Φ̃aΦ̃bΦ̃c), Tabcd = tr(Φ̃aΦ̃bΦ̃cΦ̃d) ,

(6.21)
with a, b, c, d = 1, 2, and

Φ̃a = Φa − 1
4 tr(Φa)14×4. (6.22)

They are subject to the 15 relations listed in [90, appendix A.3].26 Let R be the polynomial
ring in the variables (6.21), and I be the ideal that contains the aforementioned relations.
We can compute the Hilbert series of the quotient ring R/I using Macaulay2. The result is

HS(z; t) = 1
(1− t4z4) (1− t3z3) (1− t2z2) (1− tz)

(
1− t

z

) (
1− t2

z2

) (
1− t3

z3

) (
1− t4

z4

)
×
[
1 + t2 +

(
z + 1

z

)
t3 +

(
z2 + 1

z2
+ 2

)
t4 +

(
z + 1

z

)
t5 +

(
z2 + 1

z2
+ 2

)
t6

+
(

z + 1
z

)
t7 +

(
z2 + 1

z2
+ 2

)
t8 +

(
z + 1

z

)
t9 + t10 + t12

]
= PE

[ 4∑
s=1

[s]su(2)ts − [2]su(2)t6 −
(
[3]su(2) + [1]su(2)

)
t7 −

(
[4]su(2) + 1

)
t8 + . . .

]
.

(6.23)

The positive terms correspond to the generators (6.21), and the negative terms tell us how
the relations transform under su(2). This Hilbert series is that of Sym4(C2), which can be
obtained from the ν4 coefficient of (6.8) with k = 1 as expected. For the SU(4) SYM theory,
we simply set P1 and P2 to zero in the above discussion.

Let us now study the Higgs branch of the 3d theory that arises from the Zk twisted
compactification of the 4d N = 4 SU(4) SYM theory. For N = 4 and k > 1, (6.5) admits
three solutions, namely (k, n, x) = {(4, 1, 0), (3, 1, 1), (2, 2, 0)}.

6.2.1 Z4 twisted compactification

Let us first consider a Z4 twisted compactification, corresponding to (k, n, x) = (4, 1, 0).
From (6.6), the expected Higgs branch moduli space is C2/Z4.

We consider the action (6.7) with k = 4 and set all generators that are not invariant under
such a transformation, namely those in the set Z = {P1, P2, Q11, Q22, S111, S112, S221, S222,

T1112, T1222}, to zero while we leave the other generators untouched. Adding the elements
in Z to the ideal I containing the 15 relations in [90, appendix A.3], we obtain a new ideal

26The notation is as described in footnote 24.
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I ′ = Z ∪ I. Computing the Hilbert series of R/I ′, we obtain

HS(z; t) =
1 + t2 + 2t4 + t6 −

(
z4 + 1

z4

)
t8 + t12

(1− t4z4)
(
1− t4

z4

)
=

1 + t4 − t6 −
(
z4 + 1

z4 + 1
)

t8 +
(
z4 + 1

z4

)
t10 + t12 − t14

(1− t4z4) (1− t2)
(
1− t4

z4

) ,

(6.24)

which is not the Hilbert series of C2/Z4. The numerator is also not palindromic. Indeed, upon
performing the primary decompositions, we see that there are two irreducible components.

• The first is
I1 = (P1, P2, Q11, Q22, S111, S112, S221, S222, T1112, T1222,

Q2
12 − 4T1212, T 2

1212 − T1111T2222
)

,
(6.25)

with Hilbert series:

HS1(z; t) =
1 + t2 + t4 + t6

(1− t4z4)
(
1− t4

z4

) = 1− t8

(1− t4z4) (1− t2)
(
1− t4

z4

) , (6.26)

corresponding to C2/Z4 generated by Q12, T1111 and T2222.

• The second is

I2 =
(
P1, P2, Q11, Q22, S111, S112, S221, S222, T1111, T1112, T2221, T2222,

Q3
12 − 4Q12T1212, T 2

1212, Q2
12T1212

)
,

(6.27)

with Hilbert series:
HS2(t) = 1 + t2 + 2t4 + t6, (6.28)

corresponding to a radical ideal of order 6.

The two irreducible components intersect at the origin, which is a fat point of order t6:

HS(z; t) = HS1(z; t) + HS2(t)− (1 + t2 + t4 + t6). (6.29)

6.2.2 Z3 twisted compactification

We now consider a Z3 twisted compactification, which corresponds to (k, n, x) = (3, 1, 1).
From (6.6), the expected Higgs branch moduli space is C2/Z3. We set to zero the generators
that are not invariant under the Z3 action (6.7), that is, P1, P2, Q11, Q22, S112, S221, T1111, T2222,

T1112, T2221. Adding these to the original ideal I containing the 15 relations in [90, appendix
A.3] and recomputing the quotient ring, we obtain

HS(z; t) =
1 + t2 + 2t4 + t6 −

(
z3 + 1

z3

)
t7 −

(
z3 + 1

z3

)
t9 + t10 + t12

(1− t3z3)
(
1− t3

z3

) , (6.30)

which is not the Hilbert series of C2/Z3. In this case, the primary decomposition is even
more interesting, because the fat point is also charged under the su(2) symmetry. We obtain
two decompositions as follows.
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• The first is

I1 =
(
P1, P2, Q11, Q22, S112, S221, T1111, T1112, T2221, T2222,

Q2
12 − 3T1212, S111S222 − Q12T1212

)
,

(6.31)

with Hilbert series:

HS1(z; t) =
1 + t2 + t4

(1− t3z3)
(
1− t3

z3

) = 1− t6

(1− t3z3) (1− t2)
(
1− t3

z3

) , (6.32)

corresponding to the C2/Z3 generated by Q12, S111 and S222.

• The second is

I2 =
(
P1, P2, Q11, Q22, S112, S221, T1111, T1112, T1212, T2221, T2222,

S2
111, S2

222, Q3
12 + S111S222, Q2

12S222, Q2
12S111, Q12S111S222

)
,

(6.33)

with Hilbert series:

HS2(z; t) = 1 + t2 +
(

z3 + 1
z3

)
t3 + t4 +

(
z3 + 1

z3

)
t5 + t6, (6.34)

corresponding to a radical ideal of order 6. For example, the terms at order t3 are the
contributions of the nilpotent operators S111 and S222.

The two irreducible components intersect at the origin, which is a fat point of order t5:

HS(z; t) = HS1(z; t) + HS2(z; t)−
[
1 + t2 +

(
z3 + 1

z3

)
t3 +

(
z3 + 1

z3

)
t5
]

. (6.35)

6.2.3 Z2 twisted compactification

Finally, we can consider a Z2 twisted compactification, corresponding to (k, n, x) = (2, 2, 0).
From (6.6), the expected Higgs branch is Sym2(C2/Z2). In this case, the generators that
are not invariant under (6.7) are P1, P2, S111, S112, S221, S222. As before, we set them to zero
by adding them to the original ideal I that contains the 15 relations in [90, appendix A.3].
The resulting Hilbert series of the new quotient ring is

HS(z; t) =
1 + t2 +

(
z2 + 1

z2 + 2
)

t4 + t6 + t8

(1− t4z4) (1− t2z2)
(
1− t2

z2

) (
1− t4

z4

) . (6.36)

This is precisely the Hilbert series of Sym2(C2/Z2) as expected. There is no radical ideal
in this case.

6.3 Open questions

As we have seen from the above discussions, the presence of nilpotent operators and radical
ideals is generic when we consider the quotient rings that are invariant under the Zk

action (6.7). Note also that the Hilbert series of the radical ideals are not visible upon
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computing the Coulomb and Higgs branch limits of the index of the corresponding ABJ(M)
theory. There are a couple of possibilities that are worth studying in the future. The first
one is that the moduli space of the twisted compactification of 4d N = 4 SYM is precisely
captured by the ABJ(M) theory and nothing else, and that the moduli space of the ABJ(M)
theory in question contains the radical ideal, but this is “blind” to the limit of the index. The
second possibility, which we consider to be more likely, is that the ABJ(M) theory captures
only the component of the moduli space with the largest dimensions, namely Symn(C2/Zk),
but there is also the radical ideal, which is not captured by the moduli space of such a theory.
If the second possibility is true, it would be nice to find a physical interpretation of the radical
ideal, e.g. in terms of motions of branes in the string theoretic configuration.
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A Wreathing quiver (3.2) with n = 2

In this appendix, we consider quiver (3.2) with n = 2, in which case it becomes

USp(4)

U(1)

U(1) U(1)

U(1)

AS′ /Z2 (A.1)

where, as in section 3.1, the notation /Z2 means that the (Z[1]
2 )C 1-form symmetry is gauged.

In the following, we also consider the case in which (Z[1]
2 )C is not gauged, namely

USp(4)

U(1)

U(1) U(1)

U(1)

AS′ (A.2)

To be explicit, we denote by (A.2)/Z2 the option in which (Z[1]
2 )C is gauged.
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The Coulomb branch Hilbert series of theory (A.2)/Z2 is

HS [CB of (A.2)/Z2] (z|ω; t)

=
1∑

ε=0
ωε

∑
u1∈Z+ ε

2

∑
u2∈Z+ ε

2

∑
u3∈Z+ ε

2

∑
u4∈Z+ ε

2

∑
m1≥m2≥ ε

2

t2∆
( 4∏

i=1
zui

i

)
PUSp(4)(m1, m2; t)

(1− t2)4 ,
(A.3)

where ω (with ω2 = 1) is the fugacity for the Z[0]
2 0-form symmetry that arises from gauging the

1-form symmetry of (A.2), z1,2,3,4 are the fugacities for the four U(1) topological symmetries,
which we shall denote by U(1)T

i , and

2∆ =
2∑

i=1

4∑
j=1

∑
s=±1

|smi − uj |+
∑

s1,s2=±1
|s1m1 + s2m2|

− 2|m1 − m2| − 2|m1 + m2| − 4|m1| − 4|m2|.

(A.4)

In the dressing factor PUSp(4)(m1,m2;t)
(1−t2)4 , the denominator is the contribution of each U(1) gauge

group, and the numerator, which is the contribution of the USp(4) gauge group, is given by

PUSp(4)(m1, m2; t) =


(1− t2)−2 m1 > m2 > 0
(1− t2)−1(1− t4)−1 m1 > m2 = 0 or m1 = m2 > 0
(1− t4)−1(1− t8)−1 m1 = m2 = 0

. (A.5)

The Coulomb branch Hilbert series of theory (A.2) can then be obtained by gauging the
0-form symmetry associated with ω:

HS[CB of (A.2)](z; t) = 1
2
∑

ω=±1
HS[CB of (A.2)/Z2](z|ω; t). (A.6)

Let us present the result explicitly:

HS[CB of (A.2)](z; t)

= PE

4t2 +
{ 4∑

i=1

(
zi + z−1

i

)
+ 2

}
t4 +

{ 4∑
i=1

(
zi + z−1

i

)
+ 1

}
t6

+


4∑

i=1
zi + 2

∑
1≤i<j≤4

zizj + 2
∑

1≤i<j≤4

zi

zj
+

∑
1≤i<j≤4
k ̸=i, j

zizj

zk
+ z1z2

z3z4
+ z1z3

z2z4
+ z1z4

z2z3

+
∑

1≤i<j<k≤4
zizjzk +

∑
1≤i<j<k≤4

l ̸=i, j, k

zizjzk

zl
+ z1z2z3z4 +

(
zi ↔ z−1

i

)
− 1

 t8 +O
(
t10
) .

(A.7)

Setting zi = 1, we obtain the unrefined Hilbert series:

HS [CB of (A.2)] (t) = PE
[
4t2 + 10t4 + 9t6 + 103t8 + 82t10 − 484t12 +O(t14)

]
. (A.8)
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On the other hand, the Coulomb branch Hilbert series of (A.2)/Z2 can be written as

HS[CB of (A.2)/Z2] (z|ω; t)

=PE

4t2+


4∑

i=1

(
zi+z−1

i

)
+2+ω

∑
s1,...,s4=±1

z
1
2 s1
1 z

1
2 s2
2 z

1
2 s3
3 z

1
2 s4
4

 t4+
{ 4∑

i=1

(
zi+z−1

i

)
+1
}

t6

−

3 4∑
i=1

(zi+z−1
i )+9+5ω

∑
s1,...,s4=±1

z
1
2 s1
1 z

1
2 s2
2 z

1
2 s3
3 z

1
2 s4
4

 t8+O
(
t10
) ,

(A.9)

whose unrefinement, with zi = 1 and ω = 1, reads

HS[CB of (A.2)/Z2](t) = PE
[
4t2 + 26t4 + 9t6 − 113t8 +O(t10)

]
. (A.10)

Note that the terms at order t8 in (A.7) receive a cancellation from the terms with ω2 = 1
and become those shown in (A.9).

We see that gauging the (Z[1]
2 )C symmetry of theory (A.2) leads to half-odd-integer

powers of the fugacities zi of the topological symmetries U(1)T
i . We remark that these

half-odd-integer powers are not present in (A.7). In other words, upon gauging (Z[1]
2 )C , the

quantization of the U(1)T
i charges changes from integers to half-odd-integers. This implies

that there is a mixed anomaly between the U(1)T
i topological symmetries and the (Z[1]

2 )C

1-form symmetry [50, 51, 58, 97], where the anomaly theory is given by

iπ

∫
M4

B(2) ∪
[
c1(U(1)T

i ) mod 2
]

, with i = 1, 2, 3, 4 , (A.11)

where B(2) is the 2-form background gauge field associated with (Z[1]
2 )C and c1(U(1)T

i ) is the
first Chern class of the bundle associated with the U(1)T

i topological symmetry.
We can confirm the 1-form symmetry of theory (3.1) at the level of the BPS quiver. For

definiteness, we focus on the case n = 2, although the argument can be easily generalized.
For the model at hand, the BPS quiver can be derived exploiting the methods developed
in [98–100]:27

(A.12)

27In particular, this quiver can be obtained by superimposing four copies of the quiver depicted in [99,
(B.2)]; see also [99, section 3.3] and [98, section 4.9] for further discussions.
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As explained in [101], the 1-form symmetry of the theory is encoded in the adjacency matrix
of the quiver Bij , defined as

Bij = number of arrows from node i to node j ,

where i and j label the nodes of the quiver and we put a minus sign if the arrows point
from j to i. For the quiver (A.12) the adjacency matrix is 18 × 18 and its Smith normal
form turns out to be

diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0) . (A.13)

From (A.13), we see that the rank of the global symmetry of the theory (which is the dimension
of the kernel of Bij) is 4 as expected, and the fact that we have two eigenvalues equal to 2,
while the others are equal to 1, tells us that the defect group of the theory is Z2 × Z2 [101].

Let us now study discrete gauging of theory (3.1) with n = 2 by performing the Z2,
Z3, S3, Z4 and S4 wreathing of (A.2) with respect to the four U(1) gauge nodes. We
explicitly indicate how the range of the summations of the gauge fluxes is restricted and
how the dressing factors in (A.3) get modified. Importantly, we will study how the mixed
anomaly (A.11) changes upon discrete gauging.

Z2 wreathing. Let us perform the Z2 wreathing on the U(1) gauge nodes corresponding
to the magnetic fluxes u1 and u2. The gauge fluxes get restricted, and the dressing factor
is modified as follows.

Restriction Dressing factor

u1 < u2 (1− t2)−4PUSp(4)(m1, m2; t)

u1 = u2 (1− t2)−3(1− t4)−1PUSp(4)(m1, m2; t)

(A.14)

We also set z1 = z2 ≡ x. The topological symmetry U(1)T
1 ×U(1)T

2 of the original quiver (A.2)
is broken into a diagonal subgroup U(1)T

(12), while U(1)T
3 and U(1)T

4 are left untouched. After
wreathing, the Coulomb branch Hilbert series is the same as that of the following theory:

USp(4) U(2)

U(1)

U(1)

AdjAS′ (/Z2) (A.15)

where (/Z2) denotes the option whether the (Z[1]
2 )C 1-form symmetry is gauged or not.

Explicitly, if we denote the topological fugacity of the U(2) gauge node of (A.15) by x,
and those of the two U(1) gauge nodes by z3 and z4, the Coulomb branch Hilbert series
without gauging (Z[1]

2 )C is

HS
[
CB of (A.2)wrZ2

]
(x, z3, z4; t) = HS [CB of (A.15)] (x, z3, z4; t)

= PE
[
3t2 +

(
x + 1

x
+ z3 +

1
z3

+ z4 +
1
z4

+ 3
)

t4

+
(
2x + 2

x
+ z3 +

1
z3

+ z4 +
1
z4

+ 1
)

t6 +O(t8)
]

.

(A.16)
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Setting x = z3 = z4 = 1, we have

HS
[
CB of (A.2)wrZ2

]
(t) = HS [CB of (A.15)] (t)

= PE
[
3t2 + 9t4 + 9t6 + 73t8 + 95t10 − 175t12 +O(t14)

]
.

(A.17)

Gauging the (Z[1]
2 )C 1-form symmetry, we obtain

HS [CB of [(A.2)/Z2]wrZ2 ] (x, z3, z4|ω; t) = HS [CB of (A.15)/Z2] (x, z3, z4|ω; t)

= HS
[
CB of (A.2)wrZ2

]
(x, z3, z4; t)× PE

ω
∑

s1,s2=±1
z

1
2 s1
3 z

1
2 s2
4

(
x + 1 + x−1

)
t4

+ω
∑

s1,s2=±1
z

1
2 s1
3 z

1
2 s2
4

(
x + 2 + x−1

)
t6 +O(t8)

 .

(A.18)

Observe that the quantization of the charges of the U(1)T
(12) topological symmetry associated

with the fugacity x does not change upon gauging (Z[1]
2 )C , whereas that of the U(1)T

3,4
symmetries associated with the fugacities z3,4 gets modified. We conclude that, in the
discretely gauged theory, there is no mixed anomaly between (Z[1]

2 )C and U(1)T
(12). However,

there is one involving (Z[1]
2 )C and U(1)T

3,4, described by the following anomaly theory:

iπ

∫
M4

B(2) ∪
[
c1(U(1)T

i ) mod 2
]

, with i = 3, 4. (A.19)

This also follows from the fact that the anomaly theory (A.11) implies that there is no mixed
anomaly between (Z[1]

2 )C and any diagonal subgroup of U(1)T
i × U(1)T

j for i ̸= j.

Z3 wreathing. Let us now perform the Z3 wreathing on the U(1) gauge nodes corresponding
to the magnetic fluxes u1,2,3. The gauge fluxes get restricted, and the dressing factor is
modified as follows.

Restriction Dressing factor

u1 < u2 ≥ u3 (1− t2)−4PUSp(4)(m1, m2; t)

u1 = u2 = u3 (1− t2 + t4)
(
1− t2

)−3 (1− t6
)−1

PUSp(4)(m1, m2; t)

(A.20)

We also set z1 = z2 = z3 ≡ x. The topological symmetry ∏3
i=1U(1)T

i of the original
quiver (A.2) is thus broken to its diagonal subgroup U(1)T

(123), and U(1)T
4 is left untouched.

Explicitly, the Coulomb branch Hilbert series is

HS
[
CB of (A.2)wrZ3

]
(x, z4; t)

= PE
[
2t2 +

(
x + 1

x
+ z4 +

1
z4

+ 3
)

t4 +
(
3x + 3

x
+ z4 +

1
z4

+ 3
)

t6 +O(t8)
] (A.21)

and, setting z1 = z4 = 1, we obtain the unrefined Hilbert series

HS
[
CB of (A.2)wrZ3

]
(t) = PE

[
2t2 + 7t4 + 11t6 + 53t8 + 114t10 + 83t12 − 300t14 +O(t16)

]
.

(A.22)
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Gauging the (Z[1]
2 )C 1-form symmetry, the Coulomb branch Hilbert series gets modified

as follows:

HS
[
CB of [(A.2)/Z2]wrZ3

]
(x,z4|ω; t)

=HS
[
CB of (A.2)wrZ3

]
(x,z4; t)×PE

[
ω

(
z

1
2
4 +z

− 1
2

4

)(
x

3
2 +x

1
2 +x− 1

2 +x− 3
2
)

t4

+ω

(
z

1
2
4 +z

− 1
2

4

)(
x

3
2 +3x

1
2 +3x− 1

2 +x− 3
2
)

t6+O(t8)
]

.

(A.23)

Since the charge quantization of U(1)T
(123) and U(1)T

4 changes upon gauging (Z[1]
2 )C , we

conclude that the mixed anomalies between each of them and (Z[1]
2 )C are given by

iπ

∫
M4

B(2) ∪
[
c1(U(1)T

i ) mod 2
]

, with i = (123), 4. (A.24)

S3 wreathing. In the case of an S3 wreathing, we modify the Coulomb branch formula (A.3)
as follows:

Restriction Dressing factor

u1 < u2 < u3 (1− t2)−4PUSp(4)(m1, m2; t)

u1 = u2 < u3 (1− t2)−3(1− t4)−1PUSp(4)(m1, m2; t)

u1 < u2 = u3 (1− t2)−3(1− t4)−1PUSp(4)(m1, m2; t)

u1 = u2 = u3 (1− t2)−2(1− t4)−1(1− t6)−1PUSp(4)(m1, m2; t)

(A.25)

Also in this case, we set z1 = z2 = z3 = x. As before, the symmetry ∏3
i=1 U(1)T

i is broken to
its diagonal subgroup U(1)T

(123) and only U(1)T
4 is left untouched. In this case, the Coulomb

branch Hilbert series of the wreathed quiver is equal to that of the following quiver:

USp(4) U(3)

U(1)

AdjAS′ (/Z2) (A.26)

Explicitly, it reads

HS
[
CB of (A.2)wr S3

]
(x, z4; t) = HS [CB of (A.26)] (x, z4; t)

= PE
[
2t2 +

(
x + 1

x
+ z4 +

1
z4

+ 3
)

t4 +
(
2x + 2

x
+ z4 +

1
z4

+ 2
)

t6 +O(t8)
]

,
(A.27)

with the unrefinement

HS
[
CB of (A.2)wr S3

]
(t) = HS [CB of (A.26)] (t)

= PE
[
2t2 + 7t4 + 8t6 + 44t8 + 72t10 + 18t12 − 203t14 +O(t16)

]
.

(A.28)
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Gauging the (Z[1]
2 )C 1-form symmetry, we obtain

HS[CB of [(A.2)/Z2]wrS3 ] (x,z4|ω; t)=HS[CB of (A.26)/Z2] (x,z4|ω; t)

=HS
[
CB of (A.2)wrS3

]
(x,z4; t)×PE

[
ω

(
z

1
2
4 +z

− 1
2

4

)(
x

3
2 +x

1
2 +x− 1

2 +x− 3
2
)

t4

+ω

(
z

1
2
4 +z

− 1
2

4

)(
x

3
2 +2x

1
2 +2x− 1

2 +x− 3
2
)

t6+O(t8)
]

.

(A.29)

By the same reasoning as in the case of the Z3 wreathing, the mixed anomalies between
(Z[1]

2 )C and U(1)T
(123) and U(1)T

4 are given by (A.24).

Z4 wreathing. For the Z4 wreathing on the U(1) gauge nodes of quiver (A.2), we modify
the gauge fluxes and dressing factor in the Coulomb branch formula (A.3) as follows:

Restriction Dressing factor

u1 < u2 ∧ u3 ≥ u4 (1− t2)−4PUSp(4)(m1, m2; t)

u1 = u2 < u3 = u4 (1 + t4)
(
1− t2

)−2 (1− t4
)−2

PUSp(4)(m1, m2; t)

u1 = u2 = u3 = u4 (1− t2 + t4 + t6)
(
1− t2

)−2 (1− t4
)−1 (1− t8

)−1
PUSp(4)(m1, m2; t)

(A.30)
This time, we take z1 = z2 = z3 = z4 ≡ x, and the whole topological symmetry ∏4

i=1U(1)T
i

is broken to the diagonal subgroup U(1)T
(1234). The Coulomb branch Hilbert series is

HS
[
CB of (A.2)wrZ4

]
(x; t)

= PE
[
t2 +

(
x + 4 + 1

x

)
t4 +

(
4x + 3 + 4

x

)
t6

+
(

x4 + x3 + 7x2 + 11x + 15 + 11
x

+ 7
x2 + 1

x3 + 1
x4

)
t8 +O(t10)

]
,

(A.31)

from which, setting x = 1, we obtain the unrefined Hilbert series as

HS
[
CB of (A.2)wrZ4

]
(t)

= PE
[
t2 + 6t4 + 11t6 + 55t8 + 135t10 + 214t12 + 11t14 − 1626t16 +O(t18)

]
.

(A.32)

Gauging the (Z[1]
2 )C 1-form symmetry, the Coulomb branch Hilbert series reads

HS
[
CB of [(A.2)/Z2]wrZ4

]
(x|ω; t)

= HS
[
CB of (A.2)wrZ4

]
(x; t)× PE

[
ω

(
x2 + x + 2 + 1

x
+ 1

x2

)
t4

+ω

(
x2 + 4x + 6 + 4

x
+ 1

x2

)
t6 +

{
ω

(
3x2 + 8x + 12 + 8

x
+ 3

x2

)
−
(

x4 + x3 + 3x2 + 3x + 5 + 3
x
+ 3

x2 + 1
x3 + 1

x4

)}
t8 +O(t10)

]
.

(A.33)

Setting x = 1 and ω = 1, we obtain the unrefined Hilbert series as

HS
[
CB of [(A.2)/Z2]wrZ4

]
(t)

= PE
[
t2 + 12t4 + 27t6 + 68t8 + 75t10 − 236t12 − 1489t14 − 4054t16 +O(t18)

]
.

(A.34)
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Observe that the quantization of the charges of the U(1)T
(1234) symmetry does not change

upon gauging the (Z[1]
2 )C 1-form symmetry. Therefore, we conclude that there is no mixed

anomaly between (Z[1]
2 )C and U(1)T

(1234).

S4 wreathing. Finally, in the case of the S4 wreathing, we modify the Coulomb branch
formula (A.3) as follows:

Restriction Dressing factor

u1 < u2 < u3 < u4 (1− t2)−4PUSp(4)(m1, m2; t)

u1 = u2 < u3 < u4 (1− t2)−3(1− t4)−1PUSp(4)(m1, m2; t)

u1 < u2 = u3 < u4 (1− t2)−3(1− t4)−1PUSp(4)(m1, m2; t)

u1 < u2 < u3 = u4 (1− t2)−3(1− t4)−1PUSp(4)(m1, m2; t)

u1 = u2 = u3 < u4 (1− t2)−2(1− t4)−1(1− t6)−1PUSp(4)(m1, m2; t)

u1 < u2 = u3 = u4 (1− t2)−2(1− t4)−1(1− t6)−1PUSp(4)(m1, m2; t)

u1 = u2 < u3 = u4 (1− t2)−2(1− t4)−2PUSp(4)(m1, m2; t)

u1 = u2 = u3 = u4 (1− t2)−1(1− t4)−1(1− t6)−1(1− t8)−1PUSp(4)(m1, m2; t)

(A.35)

As in the case of the Z4 wreathing, we also set z1 = z2 = z3 = z4 ≡ x, and the whole topological
symmetry ∏4

i=1U(1)T
i is broken to the diagonal subgroup U(1)T

(1234). The resulting Coulomb
branch Hilbert series is equal to the one of the following quiver:

USp(4) U(4) AdjAS′ (/Z2) (A.36)

Explicitly, the Coulomb branch Hilbert series reads

HS
[
CB of (A.2)wr S4

]
(x; t) = HS [CB of (A.36)] (x; t)

= PE
[
t2 +

(
x + 3 + 1

x

)
t4 +

(
2x + 2 + 2

x

)
t6

+
(

x4 + x3 + 4x2 + 4x + 7 + 4
x
+ 4

x2 + 1
x3 + 1

x4

)
t8 +O(t10)

]
,

(A.37)

with the unrefinement

HS
[
CB of (A.2)wr S4

]
(t) = HS [CB of (A.36)] (t)

= PE
[
t2 + 5t4 + 6t6 + 27t8 + 46t10 + 61t12 + 26t14 − 223t16 +O(t18)

]
.

(A.38)
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Let us also gauge the (Z[1]
2 )C 1-form symmetry. In which case, the Coulomb branch Hilbert

series becomes

HS
[
CB of [(A.2)/Z2]wr S4

]
(x|ω; t) = HS [CB of (A.36)/Z2] (x|ω; t)

= HS
[
CB of (A.2)wr S4

]
(x; t)× PE

[
ω

(
x2 + x + 1 + 1

x
+ 1

x2

)
t4

+ω

(
x2 + 2x + 2 + 2

x
+ 1

x2

)
t6 +

{
ω

(
x2 + 2x + 4 + 2

x
+ 1

x2

)
−
(

x4 + x3 + 2x2 + 2x + 3 + 2
x
+ 2

x2 + 1
x3 + 1

x4

)}
t8 +O(t10)

]
.

(A.39)

Unrefining it by setting x = 1 and ω = 1, we obtain

HS
[
CB of [(A.2)/Z2]wr S4

]
(t) = HS [CB of (A.36)/Z2] (t)

= PE
[
t2 + 10t4 + 14t6 + 22t8 + 13t10 − 50t12 − 177t14 − 309t16 +O(t18)

]
.

(A.40)

Again, as for the Z4 case, the quantization of the charges of the U(1)T
(1234) symmetry does not

change upon gauging the (Z[1]
2 )C 1-form symmetry. Therefore, this leads to the conclusion

that there is no mixed anomaly between (Z[1]
2 )C and U(1)T

(1234).

B Discrete gauging of the (AN , AN ) theories

In this appendix, we consider discrete gauging of the Argyres-Douglas (AN , AN ) theories.
One of the features of such theories is that their 3d mirror is described by a complete graph
with edge multiplicity 1 of N + 1 U(1) gauge nodes [102–104], where, upon decoupling an
overall U(1), we arrive at a complete graph of N U(1) gauge nodes such that each of them
has one hypermultiplet of charge 1 transforming under it. The latter description allows us to
wreath such a quiver with any subgroup of SN . Therefore, the Higgs branch of the discretely
gauged (AN , AN ) theory can be determined by studying the Coulomb branch of the wreathed
magnetic quiver. We remark that discrete gauging of Argyres-Douglas theories whose 3d
mirror theories are complete graphs with even edge multiplicity has been studied in [34]. The
results in this appendix are complementary to those of [34].

B.1 (A3, A3)

Let us consider the 3d mirror theory of (A3, A3), which is depicted by the following quiver.

U(1)

U(1)U(1)

[1]

[1][1]
(B.1)

The Coulomb branch Hilbert series is given by

HS [CB of (B.1)] (z; t) = (1− t2)−3 ∑
u1,u2,u3∈Z

t2∆zu1
1 zu2

2 zu3
3 , (B.2)
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where z1,2,3 are the fugacities associated with each U(1) topological symmetry, (1 − t2)−3

is the dressing factor and

2∆ =
3∑

i=1
|ui|+

∑
1≤j<k≤3

|uj − uk|. (B.3)

Explicitly, it reads

HS [CB of (B.1)] (z; t)

= PE
[
3t2 +

(
z1 +

1
z1

+ z2 +
1
z2

+ z3 +
1
z3

+ z1z2z3 +
1

z1z2z3

)
t3

+
(

z1z2 +
1

z1z2
+ z1z3 +

1
z1z3

+ z2z3 +
1

z2z3

)
t4

−
(
2z1z2 +

2
z1z2

+ 2z1z3 +
2

z1z3
+ 2z2z3 +

2
z2z3

+ 4
)

t6 +O
(
t7
)]

.

(B.4)

From the coefficient at order t2, we observe that the Coulomb branch symmetry is indeed U(1)3.
Setting zi = 1, the unrefined Hilbert series admits the following closed form (see [105, (4.8)]):

HS [CB of (B.1)] (t) = 1− 2t + 3t2 + 2t3 − 2t4 + 2t5 + 3t6 − 2t7 + t8

(1− t)6(1 + t)2 (1 + t2) (1 + t + t2)2
. (B.5)

In the following subsections, we consider the Z2, Z3 and S3 wreathing of this theory. The
gauge fluxes get restricted and the dressing factors are consequently modified in a similar
manner as in the previous examples.

B.1.1 Z2 wreathing

Let us perform the Z2 wreathing on two of the U(1) gauge nodes, e.g. those associated
to the magnetic fluxes u1 and u3. The gauge fluxes restrictions and the corresponding
dressing factors are as follows.

Restriction Dressing factor

u1 < u3 (1− t2)−3

u1 = u3 (1− t2)−2(1− t4)−1

(B.6)

Setting z1 = z3 ≡ x, we obtain the following Coulomb branch Hilbert series:

HS
[
CB of (B.1)wrZ2

]
(x,z2; t)=PE

[
2t2+

(
x+ 1

x
+z2+

1
z2

+x2z2+
1

x2z2

)
t3

+
(

x2+ 1
x2+xz2+

1
xz2

+1
)

t4+
(

x+ 1
x

)
t5

−
(

x2+ 1
x2+xz2+

1
xz2

+2
)

t6+O
(
t7
)]

.

(B.7)

The unrefined Hilbert series is

HS
[
CB of (B.1)wrZ2

]
(t) = 1− 2t + 3t2 + 2t5 + 3t8 − 2t9 + t10

(1− t)6(1 + t)2 (1 + t2)2 (1 + t + t2)2
, (B.8)

from which it is clear that the dimension of the CB is not changed by the discrete gauging.
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B.1.2 Z3 wreathing

Let us now perform the Z3 wreathing on all the U(1) gauge nodes. The gauge fluxes get
restricted and the dressing factor is modified as follows.

Restriction Dressing factor

u1 < u2 ≥ u3 (1− t2)−3

u1 = u2 = u3 (1− t2 + t4)
(
1− t2

)−2 (1− t6
)−1

(B.9)

Setting z1 = z2 = z3 ≡ x, the Coulomb branch Hilbert series is

HS
[
CB of (B.1)wrZ3

]
(x; t)=PE

[
t2+

(
x3+x+ 1

x
+ 1

x3

)
t3+

(
x2+1+ 1

x2

)
t4

+
(
2x+ 2

x

)
t5+

(
x2+2+ 1

x2

)
t6+

(
x3+x+ 1

x
+ 1

x3

)
t7

−t8−
(

x3+3x+ 3
x
+ 1

x3

)
t9+O

(
t10
)]

,

(B.10)
whose unrefinement leads to the following closed expression:

HS
[
CB of (B.1)wrZ3

]
(t) = 1− 2t + t2 + 2t3 − 2t4 + 2t5 + t6 − 2t7 + t8

(1− t)6(1 + t)2 (1 + t2) (1 + t + t2)2
. (B.11)

B.1.3 S3 wreathing

Finally, we can consider the S3 wreathing of quiver (B.1). The restrictions and the corre-
sponding dressing factors are listed in the table below.

Restriction Dressing factor

u1 < u2 < u3 (1− t2)−3

u1 = u2 < u3 (1− t2)−2(1− t4)−1

u1 < u2 = u3 (1− t2)−2(1− t4)−1

u1 = u2 = u3 (1− t2)−1(1− t4)−1(1− t6)−1

(B.12)

Also in this case, we set z1 = z2 = z3 ≡ x, obtaining the following Coulomb branch
Hilbert series

HS
[
CB of (B.1)wr S3

]
(x; t) = PE

[
t2 +

(
x3 + x + 1

x
+ 1

x3

)
t3 +

(
x2 + 1 + 1

x2

)
t4

+
(

x + 1
x

)
t5 − t8 −

(
x + 1

x

)
t9 +O

(
t10
)]

.

(B.13)

Once unrefined, this admits the following closed formula:

HS
[
CB of (B.1)wr S3

]
(t) = 1− 2t + 2t2 − t4 + 2t5 − t6 + 2t8 − 2t9 + t10

(1− t)6(1 + t)2 (1 + t2)2 (1 + t + t2)2
. (B.14)

We remark that the pole in the denominator of the unrefined Hilbert series is the same
for all types of wreathing we are considering. This phenomenon is very similar to that of [28,
figure 9], in agreement with the fact that the dimension of the Coulomb branch of magnetic
quivers is preserved upon wreathing.
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B.2 (A4, A4)

The 3d mirror theory of (A4, A4) is given by the following quiver

U(1)

U(1)

U(1)

U(1)

[1]

[1]

[1]

[1] (B.15)

Similarly to (B.2), the Coulomb branch Hilbert series without wreathing is given by

HS [CB of (B.15)] (t) = 1 + 8t4 + 18t6 + 11t8 + 44t10 + 11t12 + 18t14 + 8t16 + t20

(1− t)8 (1 + t)8 (1 + t2)2 (1− t + t2)2 (1 + t + t2)2
. (B.16)

Let us now consider the Z2, Z3, S3, Z4 and S4 wreathings of (B.15). The procedure is
similar to the one described in section 3 and appendix A, but without the PUSp(2n) factor. In
the following, we simply report the closed forms of the unrefined Coulomb branch Hilbert
series of (B.15).

Wreathing Hilbert series

Z2
1−t2+7t4+7t6+5t8+22t10+5t12+7t14+7t16−t18+t20

(1−t)8(1+t)8(1+t2)2(1−t+t2)2(1+t+t2)2

Z3
1−2t2+6t4+2t6+5t8+16t10+5t12+2t14+6t16−2t18+t20

(1−t)8(1+t)8(1+t2)2(1−t+t2)2(1+t+t2)2

S3
1−2t2+6t4−t6+2t8+8t10+2t12−t14+6t16−2t18+t20

(1−t)8(1+t)8(1+t2)2(1−t+t2)2(1+t+t2)2

Z4
1−3t2+7t4−t6+9t8+4t10+9t12−t14+7t16−3t18+t20

(1−t)8(1+t)8(1+t2)2(1−t+t2)2(1+t+t2)2

S4
1−3t2+6t4−5t6+4t8−t10+4t12−5t14+6t16−3t18+t20

(1−t)8(1+t)8(1+t2)2(1−t+t2)2(1+t+t2)2

(B.17)

C The Hilbert series of Cn/G(k, p, n) and C2n/G(k, p, n)

In this appendix, we present a systematic method of computing the Hilbert series of
Cn/G(k, p, n) and C2n/G(k, p, n), where G(k, p, n) is a complex reflection group in the nota-
tion of [106] such that p divides k. For a detailed exposition on the subject, we refer the reader
to the works [2, 107–109] available in the physics literature, as well as the works [110, 111]
available in the mathematics literature. The space C2n/G(k, p, n) is of particular significance,
as it is isomorphic to both the Higgs and Coulomb branches of the [U(n + x)k × U(n)−k]
ABJ(M) theory [47, 48], as well as its Zp quotient [108, 112], viewed as a 3d N = 4 SCFT.
As pointed out in [46], this arises from twisted compactification of the 4d N = 4 SYM theory
with a classical gauge algebra. In the following, we start by discussing the Hilbert series of
Cn/G(k, p, n) and then generalize this result to C2n/G(k, p, n).
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C.1 Complex reflection groups G(k, p, n) acting on Cn

If we take the coordinates on Cn to be (z1, . . . , zn), then the complex reflection groups
G(k, p, n) acting on Cn are generated by permutations of z1, . . . , zn together with

(zi, zj) → (e2πi/kzi, e−2πi/kzj) , other zl fixed , (C.1)
zi → e2πip/kzi , other zj fixed. (C.2)

Some special cases are the following:

• G(k, p, 1) is Zk/p ,

• G(1, 1, n) is the n-fold symmetric product of C, i.e. Symn(C) ∼= Cn/Sn ,

• G(k, k, 2) is the dihedral group D2n of order 2n .

The Hilbert series of Cn/G(k, p, n) can be derived starting from the Molien formula

HS [Cn/G(k, p, n)] (t) = 1
|G(k, p, n)|

∑
g∈G(k,p,n)

1
det (1n − tg) , (C.3)

where |G(k, p, n)| = knn!/p is the order of the group, 1n is the n × n identity matrix and the
summation is over n-dimensional representations of the group elements. An n-dimensional
representation of the generators consists of the permutation matrices Si of n objects,28 with
i = 1, . . . n!, together with the n × n matrices

Aa =





e2πi/k

e−2πi/k

1
. . .

1
1


, . . . ,



1
e2πi/k

e−2πi/k

1
. . .

1


,

. . . ,



1
. . .

e2πi/k

e2πi/k

. . .
1


, . . . ,



1
1

. . .
1

e2πi/k

e−2πi/k




,

(C.4)

28In general, the permutation group Sn of n objects is generated by the adjacent transpositions, namely
⟨(12), (23), . . . , (n − 1, n)⟩. As an example, the matrix representation of (12) is given by(

X 0

0 1

)
, with X =

(
0 1
1 0

)
.

Several explicit examples will be given below.
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where a = 1, . . . , n(n − 1)/2, and

Bb =





e2πip/k

1
. . .

1
1


, . . . ,



1
e2πip/k

1
. . .

1


,

. . . ,



1
. . .

1
e2πip/k

1


, . . . ,



1
1

. . .
1

e2πip/k




,

(C.5)

with b = 1, . . . , n, implementing (C.1) and (C.2), respectively. It turns out that

HS [Cn/G(k, p, n)] (t) =
n∏

j=1

1
1− tdj

, (C.6)

where dj = {k, 2k, . . . , (n − 1)k, kn/p} are the degrees of the basic invariants of the group
(see [110, table 1]). Note that, for p = 1, this is actually equal to the dressing factor
PU(n)(m, m, . . . , m; tk/2) used throughout this paper (see [52, (A.12)]);29 the examples for
n = 2 and n = 3 are given explicitly in (2.7).

Before discussing the action of the groups G(k, p, n) on C2n, we can verify the validity
of equation (C.6) by performing the explicit computation of the Hilbert series in the simple
cases n = 1, 2, 3.

The case of n = 1. The generator is simply B = exp (2πip/k) and the Molien formula (C.3)
coincides with the Hilbert series of C/Zk/p:

HS [C/G(k, p, 1)] (t) = HS
[
C/Zk/p

]
(t) = 1

k/p

k/p−1∑
j=0

1
1− tBj

= 1
1− tk/p

= PE
[
tk/p

]
. (C.7)

This is consistent with the fact that G(k, p, 1) is Zk/p.

The case of n = 2. The generators are

S1 =
(
1 0
0 1

)
, S2 =

(
0 1
1 0

)
, (C.8)

A =
(

e2πi/k 0
0 e−2πi/k

)
, (C.9)

B1 =
(

e2πip/k 0
0 1

)
, B2 =

(
1 0
0 e2πip/k

)
. (C.10)

29We remark that the conventions of t in [52] and in our paper are different: tours = t2[52].
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The Molien formula (C.3) reads

HS
[
C2/G(k, p, 2)

]
(t) = 1

2
1

2k2/p

2∑
i,b=1

k−1∑
l=0

k/p−1∑
j=0

1
det (12 − tSiAlB

j
b)

= 1
(1− tk)(1− t2k/p)

= PE
[
tk + t2k/p

]
,

(C.11)

in agreement with the results of [107, table 2].

The case of n = 3. The generators are

S1 =

1 0 0
0 1 0
0 0 1

 , S2 =

1 0 0
0 0 1
0 1 0

 , S3 =

0 1 0
1 0 0
0 0 1

 ,

(C.12)

S4 =

0 1 0
0 0 1
1 0 0

 , S5 =

0 0 1
1 0 0
0 1 0

 , S6 =

0 0 1
0 1 0
1 0 0

 ,

A1 =

e2πi/k 0 0
0 e−2πi/k 0
0 0 1

 , A2 =

e2πi/k 0 0
0 1 0
0 0 e−2πi/k

 , A3 =

1 0 0
0 e2πi/k 0
0 0 e−2πi/k

 , (C.13)

B1 =

e2πip/k 0 0
0 1 0
0 0 1

 , B2 =

1 0 0
0 e2πip/k 0
0 0 1

 , B3 =

1 0 0
0 1 0
0 0 e2πip/k

 . (C.14)

The Molien formula (C.3) reads

HS
[
C3/G(k, p, 3)

]
(t) = 1

3
1

6k3/p

6∑
i=1

k−1∑
l,m=0

k/p−1∑
j=0

[
1

det (13 − tSiA
l
1A

m
2 B

j
1)
+

+ 1
det (13 − tSiA

l
1A

m
3 B

j
2)

+ 1
det (13 − tSiA

l
2A

m
3 B

j
3)

]

= 1
(1− tk)(1− t2k)(1− t3k/p)

= PE
[
tk + t2k + t3k/p

]
.

(C.15)

C.2 Complex reflection groups G(k, p, n) acting on C2n

The Molien formula for the Hilbert series of C2n/G(k, p, n) is

HS
[
C2n/G(k, p, n)

]
(z; t) = 1

|G(k, p, n)|
∑

g∈G(k,p,n)

1
det (12n − t2ng) , (C.16)

where 12n is the 2n × 2n identity matrix, t2n is the 2n × 2n diagonal matrix

t2n =
(

t11n 0

0 t21n

)
, (C.17)

and the summation is over 2n-dimensional representations of the group. The fugacity z

corresponding to the u(1) or su(2) symmetry can be introduced by taking t1 = tzp/k and
t2 = tz−p/k, from which we can recover the unrefined Hilbert series by setting z = 1.
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We take as generators the 2n × 2n block diagonal matrices Ti = Si ⊕ Si, explicitly

Ti =
(
Si 0

0 Si

)
, i = 1, . . . , n! , (C.18)

together with the 2n × 2n matrices

Pa =
(
Aa 0

0 A−1
a

)
, a = 1, . . . , n(n − 1)/2 , (C.19)

and

Qb =
(
Bb 0

0 B−1
b

)
, b = 1, . . . , n , (C.20)

corresponding to the 2n-dimensional uplift of the n× n matrices (C.4) and (C.5) respectively.
Observe that (C.19) and (C.20) are block diagonal matrices with inverse actions between
the two n-dimensional blocks, meaning that the complex reflection group acts with opposite
parameters k and −k on the two copies of Cn.

From the special cases listed at the beginning of this section, it follows that in general

HS
[
C2n/G(k, 1, n)

]
(z; t) = HS

[
Symn(C2/Zk)

]
(z; t). (C.21)

The case of n = 1. The generators

T =
(
1 0
0 1

)
, Q =

(
e2πip/k 0

0 e−2πip/k

)
(C.22)

coincide with those of the Ak/p−1 singularity [87, (3.9)], meaning that the Molien for-
mula (C.16) coincides with the Hilbert series of C2/Zk/p:

HS
[
C2/G(k, p, 1)

]
(z; t) = HS

[
C2/Zk/p

]
(z; t) = 1− t2k/p

(1− t2)(1− tk/pz)(1− tk/pz−1)
= PE

[
t2 + (z + z−1)tk/p − t2k/p

]
.

(C.23)

Again, this is consistent with the fact that G(k, p, 1) is Zk/p.

The case of n = 2. The generators are

T1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , T2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , (C.24)

P =


e2πi/k 0 0 0
0 e−2πi/k 0 0
0 0 e−2πi/k 0
0 0 0 e2πi/k

 , (C.25)

Q1 =


e2πip/k 0 0 0

0 1 0 0
0 0 e−2πip/k 0
0 0 0 1

 , Q2 =


1 0 0 0
0 e2πip/k 0 0
0 0 1 0
0 0 0 e−2πip/k

 . (C.26)
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The Molien formula (C.16) reads

HS
[
C4/G(k, p, 2)

]
(z; t) = 1

2
1

2k2/p

2∑
i,b=1

k−1∑
l=0

k/p−1∑
j=0

1
det (14 − t4SiAlB

j
b)

(C.27)

and we have the following special cases:

• HS
[
C4/G(k, k, 2)

]
(z; t) = HS

[
C4/D2k

]
(z; t) ,

• HS
[
C4/G(k, 1, 2)

]
(z; t) = HS

[
Sym2(C2/Zk)

]
(z; t) ,

• HS
[
C4/G(4, 4, 2)

]
(z; t) = HS

[
C4/D8

]
(z; t) = HS

[
Sym2(C2/Z2)

]
(z2; t) ,

where the last equality follows from G(4, 4, 2) ∼= G(2, 1, 2) (see [111, Theorem 2.16]). Observe
that, for p = k, since the determinant in (C.27) is multilinear and alternating, the genera-
tors (C.24), (C.25), and (C.26) produce the same result of the four-dimensional representations
of the dihedral group of order 2k D2k reported in [113, (C.5)] for z = 1.

The case of n = 3. The generators are

T1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, T2 =



1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0


, T3 =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1


,

T4 =



0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0


, T5 =



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


, T6 =



0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0


,

(C.28)

P1 =



e2πi/k 0 0 0 0 0
0 e−2πi/k 0 0 0 0
0 0 1 0 0 0
0 0 0 e−2πi/k 0 0
0 0 0 0 e2πi/k 0
0 0 0 0 0 1


, P2 =



e2πi/k 0 0 0 0 0
0 1 0 0 0 0
0 0 e−2πi/k 0 0 0
0 0 0 e−2πi/k 0 0
0 0 0 0 1 0
0 0 0 0 0 e2πi/k


,

P3 =



1 0 0 0 0 0
0 e2πi/k 0 0 0 0
0 0 e−2πi/k 0 0 0
0 0 0 1 0 0
0 0 0 0 e−2πi/k 0
0 0 0 0 0 e2πi/k


,

(C.29)
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Q1 =



e2πip/k 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 e−2πip/k 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, Q2 =



1 0 0 0 0 0
0 e2πip/k 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 e−2πip/k 0
0 0 0 0 0 1


,

Q3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 e2πip/k 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 e−2πip/k


.

(C.30)

The Molien formula (C.16) reads

HS
[
C6/G(k, p, 3)

]
(z; t) =1

3
1

6k3/p

6∑
i=1

k−1∑
l,m=0

k/p−1∑
j=0

[
1

det (16 − t6TiP
l
1P

m
2 Q

j
1)

+ 1
det (16 − t6TiP

l
1P

m
3 Q

j
2)

+ 1
det (16 − t6TiP

l
2P

m
3 Q

j
3)

]
,

(C.31)

which, in the special case p = 1, coincides with the Hilbert series of Sym3(C2/Zk).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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