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In this paper, a class of resampling techniques for finite populations under πps sampling design is intro-
duced. The basic idea on which they rest is a two-step procedure consisting in: (i) constructing a “pseudo-
population” on the basis of sample data; (ii) drawing a sample from the predicted population according to an
appropriate resampling design. From a logical point of view, this approach is essentially based on the plug-
in principle by Efron, at the “sampling design level”. Theoretical justifications based on large sample theory
are provided. New approaches to construct pseudo populations based on various forms of calibrations are
proposed. Finally, a simulation study is performed.
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1. Introduction

The use of resampling methods in survey sampling has a long history, and several different
techniques have been proposed in the literature. The common starting point consists in observing
that the classical bootstrap method, as proposed by Efron [22], does not work in survey sampling,
because of the dependence among units due to the sampling design itself.

Adaptations taking into account the non i.i.d. nature of the data are required when the sample
is collected through a general sampling design, possibly assigning different probability to every
population unit to be included in the sample. The literature on resampling from finite populations
is mainly devoted to estimate variances of estimators; cfr. Mashreghi et al. [34]. The main ap-
proaches are essentially two: ad hoc approaches and plug in approaches (cfr. Ranalli and Mecatti
[37], Chauvet [15] and references therein).

The basic idea of ad hoc approaches consists in resampling from the original sample through
a special design, that accounts for the dependence among units. This approach is pursued in Mc-
Carthy and Snowden [35], Rao and Wu [38], where the re-sampled data produced by the “usual”
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i.i.d. bootstrap are properly rescaled, as well as in Sitter [39], Beaumont and Patak [2], Chatterjee
[14], Conti and Marella [18], where a “rescaled bootstrap process” based on asymptotic results
is proposed. Among the ad hoc approaches we also quote the recent paper by Antal and Tillé [1],
where an ingenious mixed resampling design is proposed to account for the dependence among
observations.

Plug-in approaches are based on the idea of “expanding” the sample to a “pseudo-population”
that plays the role of a “surrogate” (actually a prediction) of the original one. Then, bootstrap
samples are drawn from such a pseudo-population according to some appropriate resampling
design. The most intuitive choice consists in using the same sampling design used to draw the
original sample from the population; cfr. Gross [25], Chao and Lo [13], Booth et al. [10], Holm-
berg [28], Chauvet [15], as well as Mashreghi et al. [34]. Applications of resampling methods
based on pseudo-populations are in Marella and Vicard [33], where the structural learning of
graphical models with data coming from a complex sample survey is dealt with, in Conti et al.
[20], where a statistical matching problem is studied, and in Lahiri [30].

Virtually all resampling techniques proposed for finite populations rest on the same justifica-
tion: in case of linear statistics, the variance of the resampled statistic should match (or should
be very close to) the “usual” variance estimator, possibly with approximated forms of the second
order inclusion probabilities; cfr. Antal and Tillé [1]. This is far from the arguments commonly
used to justify the classical bootstrap and its variants, that are based on asymptotic considerations
involving the whole sampling distribution of a statistic (cfr., for instance, Bickel and Freedman
[7] and Lahiri [31]): the asymptotic distribution of a bootstrapped statistic should coincide with
that of the “original” statistic. This argument is actually used in Conti and Marella [18].

In the present paper, a class of resampling techniques for finite populations is proposed. It is
based on a two-phase procedure. In the first phase, a pseudo-population, that can be viewed as a
prediction of the population, is constructed. In the second phase, a (re)sample is drawn from the
pseudo-population. In a broad sense, this approach parallels the plug-in principle by Efron [23].
The pseudo-population is plugged in the sampling process, and acts as a surrogate of the actual
finite population. In other terms, the predicted population mimics the real population, and the
(re)sampling process from the predicted population mimics the (original) sampling process from
the real population. From a formal point of view, the main justification of the whole procedure is
based on large sample arguments. In this sense, the approach pursued in the present paper offers
a principled framework for resampling from finite populations that parallels the arguments used
for classical Efron’s bootstrap of i.i.d. data. For this reason, some preliminary developments of
large sample theory for finite populations are needed. The asymptotic framework considered here
is essentially that in Isaki and Fuller [29], where a sequence of finite populations of increasing
size is considered, and the sample size correspondingly increases. Furthermore, high entropy
sampling designs are considered, similar to those studied in Conti [17], Conti and Marella [18],
but with an important addition: the possible relationships between the variable of interest and
the design variables are explicitly taken into account. This dramatically changes the asymptotic
results in Conti [17]. As a matter of fact, the resampling method defined in Conti and Marella
[18], based on rescaling Efron’s bootstrap, does not apply when there is dependence between the
variable of interest and the design variables, which is often the case in real applications.

The results in Propositions 1–3 have strong connections with other results recently appeared
in the literature: cfr. Boistard et al. [8], Bertail et al. [6]. In the first paper, the authors study the
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asymptotic behaviour of the process (25), under fairly general conditions on the sampling design,
including high entropy sampling designs as special cases. In Bertail et al. [6], empirical processes
indexed by classes of functions are studied for high-entropy sampling designs. However, there are
important differences, that should be highlighted. In the present paper, we study our functional
central limit theorems conditionally on the realization of the superpopulation, as both the sample
and population sizes go to infinity. In a sense, they are in the same spirit as limit results in
Bickel and Freedman [7]. Functional central limit theorems in Boistard et al. [8] are studied
unconditionally. The need to establish conditional results is due to two reasons. First of all, here
we consider a design-based approach, where the only source of variability is the sampling design:
see, for example, Cassel et al. [12], Ch. 1. In the second place, the asymptotic study of resampling
procedures requires conditioning. The results in Bertail et al. [6] are conditional results, in the
same spirit as the present paper. However, they are established for Horvitz–Thompson estimator
of the population distribution function, and not for the Hájek estimator as in the present case.
Furthermore, regularity assumptions in Bertail et al. [6] are slightly different from ours.

The paper is organized as follows. In Section 2, basic notions are introduced, and in Section 3
different strategies to construct pseudo-populations are discussed. Section 4 contains the main
technical assumptions on which the paper rests. Sections 5, 6 are devoted to asymptotic results
for a wide class of estimators of appropriate population parameters. Section 7 describes the pro-
posed resampling and the basic theoretical results. Properties of calibrated pseudo-populations
are studied in Section 8. In Section 9, different methods to construct pseudo-populations are
compared via a Monte Carlo simulation study. Conclusions are provided in Section 10. Techni-
cal lemmas and proofs are gathered in Appendix [19].

2. Basics aspects and notation

Let UN be a finite population of size N . The character of interest is denoted by Y , and its value
for unit i by yi ; furthermore, let yN = (y1, . . . , yN).

A sample s is a subset of UN . Denote by Di the sample membership indicator of unit i,
namely a Bernoulli random variable (r.v.), such that i is (is not) in the sample s whenever Di = 1
(Di = 0); clearly, s = {i ∈ UN : Di = 1}. Denote further by DN the N -dimensional r.v. of com-
ponents (D1, . . . ,DN). A (unordered, without replacement) sampling design P is the probability
distribution of the random vector DN . From now on, the symbols EP , VP , CP will denote ex-
pectation, variance and covariance w.r.t. a sampling design P .

The expectations πi = EP [Di] and πij = EP [DiDj ] are the first and second order inclusion
probabilities, respectively. The suffix P denotes the sampling design used to select the sample s.
The sample size is ns = D1 + · · · + DN .

The first order inclusion probabilities are frequently taken proportional to an auxiliary vari-
able X . In symbols: πi ∝ xi , where xi is the value of X for unit i (i = 1, . . . ,N ). The rationale
of this choice is simple: if the values of the variable of interest are positively correlated with (or,
even better, approximately proportional to) the values of the auxiliary variable, then the Horvitz–
Thompson estimator of the population mean will be highly efficient. The symbol xN , from now
on, will denote the sequence (x1, . . . , xN).



Resampling finite populations 1047

For each unit i, let pi be a positive number, with p1 + · · · + pN = n. The Poisson sampling
design (Po, for short) with parameters p1, . . . , pN is characterized by the independence of the
r.v.s Dis, with PrPo(Di = 1) = pi . In symbols

Pr
Po

(DN) =
N∏

i=1

p
Di

i (1 − pi)
1−Di .

The rejective sampling, or normalized conditional Poisson sampling (cfr. Hájek [26], Tillé
[41]) is obtained from the Poisson sampling by conditioning w.r.t. ns = n. Using the suffix PR

to denote the rejective sampling design, EPR
[Di] is not generally equal to pi , although they are

asymptotically equivalent, as N and n increase (Hájek [26]). In Chen et al. [16] an algorithm is
proposed to compute pis in terms of πis for the conditional Poisson sampling.

The rejective sampling design is characterized by a fundamental property: it possesses maxi-
mum entropy among all sampling designs of fixed size and fixed first order inclusion probabilities
(as shown in Hájek [27]), where the entropy of a sampling design P is

H(P ) = −EP

[
log Pr

P
(DN)

] = −
∑

D1,...,DN

Pr
P

(DN) log
(
Pr
P

(DN)
)
.

The Hellinger distance between a sampling design P and the rejective design is defined as

dH (P,PR) =
∑

D1,...,DN

(√
Pr
P

(DN) −
√

Pr
PR

(DN)
)2

. (1)

3. Pseudo-population: Construction based on calibration

The class of resampling techniques we consider rests on a two-phase procedure. In the first
phase, on the basis of the sampling data a pseudo-population, that is, a design-based predictor
of the actual population, is constructed. In the second phase, a sample of size n (the same as the
“original” one) is drawn from the pseudo-population, according to a πps sample design P ∗ (the
resampling design) with inclusion probabilities again proportional to xis. Intuition suggests to
use a resampling design of the same type as the sampling design used to draw the sample s from
the population. This point will be discussed later, in Section 7.2.

Formally speaking, a pseudo-population U∗
N∗ is{(

N∗
i Di, yi, xi

); i = 1, . . . ,N
}

(2)

where N∗
i s are integer-valued r.v.s, with (joint) probability distribution Ppred. In practice, (2)

means that N∗
i Di population units are predicted to have y-value equal to yi and x-value equal to

xi , for each sample unit i. In the sequel, the symbols y∗
k , x∗

k will be used to denote the y-value
and x-value of unit k of the pseudo-population, respectively. The quantity

N∗ =
N∑

i=1

N∗
i Di. (3)

is the size of the pseudo-population.
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A relevant aspect that would potentially affect the performance of resampling, is how the
pseudo-population is constructed. The intuition behind pseudo-populations is simple: the pseudo-
population should be as “similar” as possible to the actual finite population. In a sense, the
pseudo-population should be somehow calibrated w.r.t. the population. Such an intuition can be
put into practice in several ways. In the present section, some classical proposals are reviewed,
and some new proposals based on different calibration approaches are illustrated.

3.1. Holmberg pseudo-population

Following the popular Horvitz–Thompson (HT) approach to πps sampling and estimation, each
unit i ∈ s should be “predicted” in U∗

N∗ a number of times equal to its design weight π−1
i ,

provided they are all integers. For the general non-integer case the following strategy has been
proposed by Holmberg [28]. Let ri = π−1

i −�π−1
i �, and consider independent Bernoulli r.v.s εis

with Pr(εi = 1|DN,YN,XN) = ri . A HT pseudo-population is constructed by replicating every
sampled unit i ∈ s N∗HT

i = �π−1
i �+ εi times, with corresponding values yi , xi . The size of a HT

pseudo-population is N∗HT = ∑N
i=1 N∗HT

i Di , which is not generally equal to N .

3.2. Multinomial pseudo-population

For k = 1, . . . ,N , perform independent trials consisting in choosing a unit from the original
sample, where each unit i is selected with probability

π−1
i /

∑
j∈s

π−1
j = x−1

i /
∑
j∈s

x−1
j .

If at trial k unit i is selected, unit k of the pseudo-population will take values y∗
k = yi and x∗

k = xi .
If N∗MUL

i , i ∈ s, is the number of replications of unit i in the pseudo-population, then (condi-
tionally on DN , YN , XN ) the r.v. (N∗MUL

i ; i ∈ s) possesses a multinomial distribution, with

E
[
N∗MUL

i |DN,YN,XN

] = NDiπ
−1
i /

N∑
j=1

Djπ
−1
j (4)

V
(
N∗MUL

i |DN,YN,XN

) = N

(
Diπ

−1
i

/ N∑
j=1

Djπ
−1
j

)

×
(

1 − Diπ
−1
i

/ N∑
j=1

Djπ
−1
j

)
(5)

C
(
N∗MUL

i ,N∗MUL
h |DN,YN,XN

) = −NDiDhπ
−1
i π−1

h

/(
N∑

j=1

Djπ
−1
j

)2

, h �= i. (6)
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This approach goes essentially back to Sverchkov and Pfeffermann [40] and guarantees by con-
struction a pseudo-population calibrated w.r.t. the population size.

3.3. Conditional Poisson pseudo-population

The Holmberg scheme in Section 3.1 is essentially based on drawing a Poisson sample from s,
with inclusion probabilities ris, i ∈ s. A simple idea to calibrate such scheme in order to produce
a pseudo-population of exactly N units, consists in defining the quantities

τi = N
π−1

i∑
k∈s π−1

k

−
⌊
N

π−1
i∑

k∈s π−1
k

⌋
, i ∈ s

and in drawing from s a sample s0 of

n0 =
∑
i∈s

τi = N −
∑
i∈s

⌊
N

π−1
i∑

k∈s π−1
k

⌋
units, according to a conditional Poisson sampling design with first order inclusion probabili-
ties τis.

For each unit i ∈ s, let εi be equal to 1 iff i is in s0, and εi = 0 otherwise. Each unit i of the
original sample is replicated in the pseudo-population exactly

N∗CPP
i =

⌊
N

π−1
i∑

k∈s π−1
k

⌋
+ εi (7)

times.

3.4. Double-calibrated pseudo-population

The conditional Poisson pseudo-population illustrated in Section 3.3 is calibrated w.r.t. the pop-
ulation size N , but not w.r.t. the mean of the auxiliary variable X. A natural idea would consist
in modifying N∗CPP

i defined by equation (7) in order to satisfy a further constraint: the mean of
X in the pseudo-population is equal to the mean of X in the actual population.

Take N∗CPP
i , i ∈ s, as an “initial” solution for replicates of sample units in the pseudo-

population, and let further N∗ be the total number of pseudo-population units (cfr. (3)), and

XN = N−1
N∑

i=1

xi, X
∗
N∗ = N∗−1

N∑
i=1

N∗
i xiDi. (8)

The basic idea is to choose pseudo-population replicates that satisfy both constraints on pop-
ulation size and mean of X, and that are as close as possible to the initial N∗CPP

i s. More for-
mally, the pseudo-population replicates are taken equal to N∗DCal

i s, the solution of the following
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quadratic problem: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
∑
i∈s

(
N∗

i − N∗CPP
i

)2

N∗ = N

X
∗
N∗ = XN

N∗
i ≥ 1

(9)

The values N∗DCal
i s obtained by solving (9) are not necessarily integer-valued. In order to

obtain integer values, it is enough to apply to N∗DCal
i s a randomization device similar to that of

CPP pseudo-population described in Section 3.3.

3.5. Hot-deck pseudo-population

The basic idea of the calibrated pseudo-population introduced in Section 3.4 consists in con-
structing a pseudo-population that is “similar” for some characteristics of the auxiliary vari-
able X w.r.t. the original population. This idea is pursued by taking only the sample xis values.
When xis are available for all population units, the notion of pseudo-population can be extended
by considering predictors of the form {(x∗

i , y∗
i ), i = 1, . . . ,N}, where x∗

i = xi for every unit
i = 1, . . . ,N and y∗

i = ŷi = imputed value for yi , according to hot-deck imputation. In detail,
the hot-deck pseudo-population is composed by N units, i.e. U∗

N∗ = U∗
N . A pair of values (x∗

i , y∗
i )

corresponds to each unit i ∈ U∗
N , with

x∗
i = xi, i = 1, . . . ,N (10)

y∗
i =

⎧⎨⎩yi if i ∈ s

yj with j = argmin
j∈s

|xj − xi | if i ∈ U∗
N \ s. (11)

In other terms, for each unit i ∈ U∗
N a donor unit j (i) is chosen, such that

j (i) :=
⎧⎨⎩i if i ∈ s

|xj (i) − xi | = min
j∈UN\s |xj − xi | if i ∈ U∗

N \ s.

The value y∗
i for unit i is then taken equal to those of its donor, leading to a pseudo-population

which is calibrated by construction w.r.t. both population size N and the entire distribution of the
auxiliary variable X.

4. Basic assumptions

Denote by Y the character of interest, and let yi be its value for unit i. T1, . . . ,TL are the design
variables, and ti1, . . . , tiL are their values for unit i. The design variables may include strata
indicators, as well as variables measuring cluster and unit characteristics (cfr. Pfeffermann [36]).



Resampling finite populations 1051

They are used to construct the sampling design, and to compute the sampling weights, that is,
the reciprocals of the first order inclusion probabilities.

The basic assumptions on which the present paper relies are listed below.

A1. (UN ;N ≥ 1) is a sequence of finite populations of increasing size N .
A2. For each N , (yi, ti1, . . . , tiL), i = 1, . . . ,N are realizations of a superpopulation model

{(Yi, Ti1, . . . , TiL), i = 1, . . . ,N} composed by i.i.d. (L+ 1)-dimensional r.v.s. The sym-
bol P denotes the (superpopulation) probability distribution of r.v.s (Yi, Ti1, . . . , TiL)s,
and E, V are the corresponding mean and variance, respectively.

A3. For each population UN , sample units are selected according to a sample design with pos-
itive first order inclusion probabilities π1, . . . , πN , and fixed sample size n = π1 + · · · +
πN . The first order inclusion probabilities are taken proportional to xi = h(ti1, . . . , tiL),
h(·) being an arbitrary, strictly positive function. To avoid complications in the notation,
we will assume that πi = nxi/

∑N
i=1 xi for each unit i.

Although the sample size n, the inclusion probabilities πis, and the r.v.s Dis, as well,
depend on N , in order to use a simple notation the symbols n, πi , Di are used, instead of
the more complete nN , πi,N , Di,N . It is also assumed that

lim
N,n→∞E

[
πi(1 − πi)

] = d > 0. (12)

A4. The sample size n increases as the population size N does, with

lim
N→∞

n

N
= f, 0 < f < 1. (13)

A5. For each population (UN ;N ≥ 1), let PR be the rejective sampling design with inclusion
probabilities π1, . . . , πN , and let P be the actual sampling design (with the same inclusion
probabilities). Then

dH (P,PR) → 0 as N → ∞, a.s.-P.

A6. E[X2
1] < ∞, so that the quantity in (12) is equal to:

d = f

(
1 − E[X2

1]
E[X1]2

)
+ f (1 − f )

E[X2
1]

E[X1]2
> 0. (14)

Cfr. Further Lemma 1 in the Appendix.

Assumptions A2, A3 allow one to take into account the possible dependence between the
design variables and the study variable. Of course, this is a key motivation for using non-simple,
probability-proportional-to-size designs (dubbed πps sampling designs), where the dependence
between Xis and Yis is important for the efficiency of the estimation of the population mean (and
other population parameters, as well). Notice that assumptions A2, A3 do not limit the kind of
dependence between Xis and Yis, that can be completely general.

Assumption A2 is not as restrictive as it could appear at a first glance. For instance, it al-
lows for stratification in a simple way. Suppose there is a unique design variable T , taking L

values t(1), . . . , t(L). The stratum l is composed by all units for which T takes the value t(l)
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(l = 1, . . . ,L), and the distribution of Yi in each stratum, i.e. the distribution of Yi conditionally
on Ti = t(l), may vary across strata.

Remark. Assumption A2 is not necessary for the validity of theoretical results in Sections 5–
7, and it is stated in the present form only for the sake of simplicity. In fact, assumption A2
is used to prove Lemmas 1–4, that involve the use of the (strong) law of large numbers for
appropriate functions of (Yi,Xi). But independence assumption is not necessary for the va-
lidity of the strong law of large numbers. Suppose, for instance, that the population units are
clustered into M clusters, where cluster m is of size Nm, m = 1, . . . ,M . If the r.v.s (Yi,Xi)s
are correlated within clusters and independent across clusters, and if, as N → ∞, M → ∞
and Nms remain bounded, then Lemmas 1–5 still hold, as well as all other results of the pa-
per.

An obvious example of sampling designs satisfying A3 are πps sampling designs, where the
first order inclusion probability of unit i is proportional to the value of a size measure. Another el-
ementary example is the stratified design. Assume that the population is subdivided into L strata,
composed by N1, . . . ,NL units, respectively (N1 + · · · + NL = N ). Let further wl = Nl/N ,
and let g1, . . . , gL be arbitrary positive numbers such that g1 + · · · + gL = 1. The stratified
design drawing (by simple random sampling) nl = ngl units from stratum l (= 1, . . . ,L) can
be considered as a special πps sampling design where the first order inclusion probability
for unit i is taken proportional to an auxiliary variable (acting as a size measure) xi defined
as

xi = gl

wl

if unit i is within stratum l. (15)

In fact, from (15) it easily follows that

πi = ngl

Nwl

= nl

Nl

if unit i is within stratum l. (16)

In particular, if gl = wl , then the sampling design reduces to stratified proportional sam-
pling.

As discussed in Conti [17], assumption A5 implies that the Kullback–Leibler divergence of
the actual sampling design P w.r.t. the rejective design

�KL(P ‖PR) = H(PR) − H(P ) (17)

tends to zero as both n, N increase. Hence, the sampling designs satisfying assumption A5 are
essentially “high entropy”, single-stage, sampling designs. The importance of the high entropy
property of sampling designs is discussed in Brewer and Donadio [11], Grafström [24] and ref-
erences therein. Examples of sampling designs satisfying A5, as shown in Berger [3], Berger [4],
Berger [5], are simple random sampling, Rao–Sampford design, Chao design, stratified design
(with bounded number of strata). The systematic sampling design does not satisfy A5, due to
its low entropy. However, the randomised systematic sampling design is a high entropy design
satisfying A5.
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The population distribution function (p.d.f., for short) is:

FN(y) = 1

N

N∑
i=1

I(yi≤y), y ∈ R (18)

where the indicator function I(yi≤y) is equal to 1 if yi ≤ y, and is equal to 0 otherwise.
A finite population parameter is a functional (not necessarily real-valued) of the p.d.f.:

θN = θ(FN). (19)

The simplest approach to estimate a finite population parameter of the form (19) consists in
estimating first the p.d.f. (18), and then in replacing FN in (19) by such an estimate. As an
estimator of the p.d.f. (18) we consider here the Hájek estimator:

F̂H (y) =
∑N

i=1
1
πi

DiI(yi≤y)∑N
i=1

1
πi

Di

(20)

which is a proper distribution function. It can be considered as the “finite population version” of
the empirical distribution function, that plays a fundamental role in nonparametric statistics. The
finite population parameter (19) is then estimated by

θ̂H = θ(F̂H ). (21)

In a sense, (21) is the “finite population version” of statistical functionals.
The main task of Sections 5, 6 is to study the asymptotic properties of (20), (21), respectively.

In the sequel, the joint superpopulation d.f. of (Yi,Xi) will be denoted by

H(y,x) = P(Yi ≤ y,Xi ≤ x) (22)

and the marginal superpopulation d.f.s of Yi and Xi by

F(y) = P(Yi ≤ y) = H(y,+∞), G(x) = P(Xi ≤ x) = H(+∞, x), (23)

respectively. Furthermore, the notation

Kα(y) = E
[
Xα

1 |Y1 ≤ y
]
, y ∈R, α = 0,±1,±2 (24)

will be used. Note that Kα(+∞) = E[Xα
1 ].

5. Estimating population distribution function

The goal of the present section is to derive the limiting distribution of the Hájek estimator (20), as
the sample size and the population size increase. To this purpose, consider the stochastic process
WH

N = (WH
N (y);y ∈R), where

WH
N (y) = √

n
(
F̂H (y) − FN(y)

); y ∈R. (25)
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It can be viewed as the finite population sampling version of the well-known empirical process.
The main result of the present section is Proposition 1, that establishes the weak convergence of
WH

N to a Gaussian limiting process. Proposition 1 is in spirit similar to the main result in Conti
[17], but with fundamental differences that will be stressed in the sequel.

Before stating Proposition 1, we stress that in our asymptotic approach the actual popula-
tion yis and xis values are considered as fixed. The only source of variability is the sampling
design, namely DN . If we let the population size N go to infinity, we must also consider cor-
responding sequences y∞ = (y1, y2, . . . ), x∞ = (x1, x2, . . . ) of yis and xis values. The actual
yN = (y1, . . . , yN), xN = (x1, . . . , xN) are the segments of the first N yis, xis in the sequences
y∞, x∞, respectively. As N increases, yN tends to y∞ and xN tends to x∞. By A2, y∞, x∞
live in a probability space ((R2)∞,B(R2)∞,P∞), where B(R2)∞ is the product Borel σ -field
over (R2)∞, and P

∞ is the product measure on (R∞,B(R)∞) generated by P. The probability
statements we consider are of the form PrP (·|yN,xN), with N going to infinity. Conditioning
w.r.t. yN , xN means that yis and xis are considered as fixed (although produced by a superpopu-
lation model). The suffix P means that the probability refers to the sampling design. The results
we will obtain hold for “almost all” sequences y∞, x∞ that the superpopulation model in A2 can
produce, that is, for a set of sequences having P

∞-probability 1. With a slight lack of precision,
but more simply and intuitively, in the sequel we will use the expression “for almost all yis, xis
values”.

Proposition 1. If the sampling design P satisfies assumptions A1–A6, with P-probability 1, con-
ditionally on yN , xN the sequence (WH

N ;N ≥ 1), converges weakly, in D[−∞,+∞] equipped
with the Skorokhod topology, to a Gaussian process WH = (WH (y);y ∈ R) with zero mean
function and covariance kernel

CH (y, t) = f

{
E[X1]

f
K−1(y ∧ t) − 1

}
F(y ∧ t)

− f 3

d

(
1 − K1(y)

E[X1]
)(

1 − K1(t)

E[X1]
)

F(y)F (t)

− f

{
E[X1]

f

(
K−1(y) + K−1(t) −E

[
X−1

1

] − 1
)}

F(y)F (t), (26)

with d given by (12), and a ∧ b = min(a, b).

The covariance kernel (26) implies expectation w.r.t. the superpopulation model. This does not
contradict the consideration of sampling design probabilities conditionally on yN , xN , but it is
only a consequence of the strong law of large numbers. The set of sequences y∞, x∞ for which
Proposition 1 holds possesses P

∞-probability 1, and is determined by the strong law of large
numbers.

When Xi and Yi are independent, the covariance kernel (26) reduces to

f (A − 1)
(
F(y ∧ t) − F(y)F (t)

)
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where

A = E[X1]
f

E
[
X−1

1

]
(27)

is, with P-probability 1, the limit of

1

N

N∑
i=1

1

πi

as N goes to infinity. Taking into account that u ∧ v − uv is the covariance kernel of a Brownian
bridge B = (B(t);0 ≤ t ≤ 1) (i.e., a Wiener process tied down at 1), we have thus proved the
following corollary of Proposition 1.

Corollary 1. If the sampling design P satisfies assumptions A1–A6, and if Xi and Yi are inde-
pendent, with P-probability 1, conditionally on yN , xN the sequence (WH

N ;N ≥ 1), converges
weakly, in D[−∞,+∞] equipped with the Skorokhod topology, to a Gaussian process that can
be represented in the form (

f (A − 1)B
(
F(y)

);y ∈ R
)

(28)

as N goes to infinity, where B is a Brownian bridge and A is given by (27).

Corollary 1 essentially coincides with Proposition 2 in Conti [17]. Proposition 1 is new. Due
to the choice of the inclusion probabilities in A3, that is, πi ∝ xi , and due to the possible depen-
dence between Xi and Yi (that usually comes true in practice), the limiting Gaussian process is
not proportional to a Brownian bridge. Proposition 1 shows how the dependence between vari-
able of interest and design variables affects the covariance kernel of the Gaussian limiting law of
WH

N . If compared to Proposition 2 in Conti [17], its main consequence is that, whenever there is
some kind of dependence between the design variables (or, equivalently, the sampling weights)
and the variable of interest, the empirical process (25) does not converge weakly to a Brownian
bridge, but to a Gaussian process with a covariance kernel having a complicated form, depending
on the relationships between the character of interest and the design variables. The form of such
a relationship is usually unknown.

Before ending the present section we note, in passing, that Proposition 1 implies that, with
P-probability 1, conditionally on yN , xN :∣∣F̂H (y) − FN(y)

∣∣ p→ 0 as N → ∞ (29)

where the symbol
p→ denotes the convergence in probability w.r.t. the sampling design (or better,

w.r.t. the sequence of sampling designs in A3). Using the same arguments as the proof of the
Glivenko–Cantelli theorem, it is not difficult to prove the following further result.

Proposition 2. If the sampling design P satisfies assumptions A1–A6, with P-probability 1,
conditionally on yN , xN , supy |F̂H (y)−FN(y)| converges to 0 in probability w.r.t. the sampling
design.
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6. Estimating finite population parameters

The goal of the present section is to study the large sample distribution of estimators of the
finite population parameters that are functions of p.d.f. FN(·). In particular, we concentrate on
estimators of the form (21). In a sense, the results of the present section can be viewed as a finite
population version of the theory of statistical functionals, that mainly refers to the case of i.i.d.
observations (cfr. van der Vaart [42], Ch. 20).

The appropriate tool to study asymptotic properties of statistical functionals is the notion
of Hadamard-differentiability. Let θ(·) : l∞[−∞,+∞] → E be a map having as domain the
normed space l∞[−∞,+∞] (endowed with the sup-norm), and taking values on an appropriate
normed space E with norm ‖ · ‖E . The map θ(·) is Hadamard-differentiable at F if there exists
a continuous linear mapping θ ′

F : l∞[−∞,+∞] → E such that∥∥∥∥θ(F + tht ) − θ(F )

t
− θ ′

F (h)

∥∥∥∥
E

→ 0 as t ↓ 0, for every ht → h. (30)

The quantity θ ′
F (·) is the Hadamard derivative of θ at F . Let us consider the (sequence of)

stochastic process

T H
N = √

n
(
θ(F̂H ) − θ(FN)

)
, N ≥ 1. (31)

In view of Theorem 20.8 in van der Vaart [42] and Proposition 1, the following result holds.

Proposition 3. Suppose that θ(·) is (continuously) Hadamard-differentiable at F , with Hada-
mard derivative θ ′

F (·). Under assumptions A1–A6, with P-probability 1, conditionally on yN ,
xN , the sequence (T H

N ;N ≥ 1) converges weakly to θ ′
F (WH ), as N increases.

Proposition 3 essentially provides, under mild conditions, an asymptotic approximation for the
sampling distribution of T H

N . In particular, if θ is real-valued, since θ ′
F (·) is linear and WH is a

Gaussian process, the law of θ ′
F (WH ) is normal with mean zero and variance

σ 2
θ = E

[
θ ′
F

(
WH

)2]
. (32)

7. A class of resampling procedure and its basic properties

The main goal of this section is to provide a sound theoretical justification of the two-phase re-
sampling approach described in Section 3. Our argument is of asymptotic nature: the probability
distribution of the estimator θ(F̂H ) and its approximation based on resampling both converge to
the same limit. This is actually the main argument in favour of the classical (nonparametric) boot-
strap for i.i.d. data: cfr., for instance, Bickel and Freedman [7]. The results of the present section
can be viewed as an attempt to reconciliate the arguments used in sampling finite populations
with those used in classical nonparametric statistics.

The first attempt to define a resampling technique for finite populations based on asymptotic
distribution theory is in Chatterjee [14] for simple random sampling, and in Conti and Marella
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[18] for general designs. In the latter paper, a technique based on rescaling classical bootstrap
is proposed, and its properties are studied. However, two points have to be stressed. The first
one is that the technique developed in Conti and Marella [18] is specifically designed to estimate
quantiles. The second one is that it is fully justified from an asymptotic point of view only when
there are no relationships between πis (and hence xis) and yis. In other words, the rescaled
bootstrap proposed in Conti and Marella [18] does not work when the dependence between yis
and xis cannot be neglected.

In view of the above remarks, in this section a new resampling algorithm for finite population
is introduced, that works

(i) for general estimators θ(F̂H ) of general population parameters θ(FN);
(ii) when xis (i.e., the design variables) and yis (i.e., the variable of interest) are related by

some kind of dependence. No special assumption is made on the relationship between xis
and yis.

In the sequel, the term sampling design P denotes the sampling procedure drawing n units
from the “original” population UN . The resampling design P ∗ is the sampling procedure drawing
n units from the predicted (pseudo-)population U∗

N∗ . Details of the two phases on which the
resampling procedure relies are in Sections 7.1, 7.2.

7.1. Phase 1: Pseudo-population

Consider a pseudo-population U∗
N∗{(

N∗
i Di, yi, xi

); i = 1, . . . ,N
}

where N∗
i Di population units are predicted to have y-value equal to yi and x-value equal to xi ,

for each sample unit i. The d.f. of the pseudo-population is equal to

F ∗
N∗(y) = 1

N∗
N∗∑
k=1

I(y∗
k ≤y) =

N∑
i=1

N∗
i

N∗ DiI(yi≤y), y ∈ R (33)

where N∗ (3) is the number of pseudo-population units.
As far as the terms N∗

i are concerned, we will make the following assumptions on expectations,
variances, covariances w.r.t. Ppred.

P1. E[N∗
i |DN,YN,XN ] = π−1

i DiK1N(DN,YN,XN)

P2. V (N∗
i |DN,YN,XN) ≤ π−1

i DiK2N(DN,YN,XN)

P3. |C(N∗
i ,N∗

h |DN,YN,XN)| ≤ c
N

π−1
i π−1

h DiDhK3N(DN,YN,XN) i �= h

c being a (finite) constant, with

K1N(DN,YN,XN) → 1 (34)

and KjN(DN,YN,XN), j = 2,3 are bounded in probability, conditionally on DN , YN , XN , as
N increases. The symbol → in (34) denotes convergence in probability w.r.t. DN and for almost
all yis, xis.
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7.2. Phase 2: Resampling design from the pseudo-population

In phase 2 a sample s∗ of size n (the same as the original sample) is selected from the predicted
population according to a resampling design P ∗ satisfying the high entropy condition A5 and
with first order inclusion probabilities π∗

k = nx∗
k /

∑N∗
h=1 x∗

h . The most obvious choice is to use a
resampling design of the same kind as the original sampling design, but with first order inclusion
probabilities π∗

k s, even if the use of a resampling design different from the original one could be
justified by reduction of the computational burden when N , n are large. The Hájek estimator of
the d.f. of the predicted population F ∗

N∗(y) is equal to

F̂ ∗
H (y) =

∑N∗
k=1

D∗
k

π∗
k
I(y∗

k ≤y)∑N∗
k=1

D∗
k

π∗
k

(35)

where D∗
k = 1 if the unit k of the predicted population is drawn, and D∗

k = 0 otherwise.
Next proposition shows that, in terms of size N∗, the pseudo-population in equivalent to the

actual one.

Proposition 4. Under assumptions A1–A6, P1–P3, for almost all yis, xis values, and in proba-
bility w.r.t. DN ,

N∗

N
→ 1 in probability w.r.t. Ppred (36)

as N goes to infinity.

Constructing the pseudo-population and drawing samples from it essentially adds a further
“randomness layer” to the whole sampling process. The behaviour of such an additional ran-
domness layer is studied in Proposition 5, where it is shown that sampling from the pseudo-
population is asymptotically equivalent to sampling from the original population. The proof of
Proposition 5 is fairly similar to the proof of Lemmas 1–5.

Proposition 5. Under assumptions A1–A6, P1–P3, conditionally on yN , xN , DN , as N in-
creases the statements of Lemmas 1–5 hold true for the predicted population, and for almost all
yis, xis values, and in probability w.r.t. DN and Ppred.

The statement “in probability w.r.t. DN ” means that the set of DN s values, for which Propo-
sition 5 holds, possesses a probability tending to 1 as N increases.

Define now the “resampled version” of the processes WH
N (25) and T H

N (31), namely

WH∗
N = (√

n
(
F̂ ∗

H (y) − F ∗
N∗(y)

)
, y ∈R

)
, N ≥ 1; (37)

T H∗
N = √

n
(
θ
(
F̂ ∗

H

) − θ
(
F ∗

N∗
))

, N ≥ 1. (38)

Proposition 6 contains the main result of the present section and it can be proved essentially
with the same technique as Propositions 1, 3, respectively.
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Proposition 6. Suppose that the sampling design P and the resampling design P ∗ both satisfy
assumptions A1–A6, and that conditions P1–P3 are fulfilled. Conditionally on yN , xN , DN ,
(D1N

∗
1 , . . . ,DNN∗

N), the following statements hold.

R1. The sequence (WH∗
N ;N ≥ 1) converges weakly, in D[−∞,+∞] equipped with the Sko-

rokhod topology, to a Gaussian process WH with zero mean function and covariance
kernel (26).

R2. If θ(·) is continuously Hadamard differentiable at F , then (T H∗
N ;N ≥ 1) converges

weakly to θ ′
F (WH ), as N increases.

In both R1, R2 weak convergence takes place for a set of yis, xis having P-probability 1, and for
a set of DN s and (N∗

1 , . . . ,N∗
N) of probability tending to 1.

Proposition 6 shows that the resampled process WH∗
N (T H∗

N ) possesses the same limiting law
as the “original” process WH

N (T H
N ) in Proposition 1 (3). In other words, the proposed resampling

procedure asymptotically recovers the probability law of WH
N (·) and T H

N (·), respectively.
From a technical point of view, Proposition 6 does not require that the resampling design

coincides with the original sampling design, as in Holmberg [28], even if this is the most intuitive
choice. The essential required conditions are two: (i) the predicted population is constructed as
in phase 1; (ii) the first order inclusion probabilities of the resampling design are proportional
to the corresponding xi values, exactly as the original sampling design. Intuitively speaking,
this happens because both the original sampling design and the resampling design possess high
entropy, and in this case their limiting behaviour essentially depends on the first order inclusion
probabilities.

In Proposition 6, the probability distribution of WH∗
N (T H∗

N ) is considered conditionally on yN ,
xN , DN , (D1N

∗
1 , . . . ,DNN∗

N). In other terms, the predicted population is considered as fixed
(as well as yN , xN , DN ), and the only source of variability is the resampling design from the
predicted population. Using Lemmas 1.1, 1.2 in Csörgő and Rosalsky [21], it is possible to see
that the same result also holds when one considers the distribution of WH∗

N (T H∗
N ) conditionally

on yN , xN , DN . In this case only yN , xN , DN are taken as fixed, and there are two sources
of variability: (i) the variability of the process generating the predicted population and (ii) the
variability of the resampling design from the predicted population. More precisely, the following
proposition (that can be proved with the same reasoning as in Csörgő and Rosalsky [21], based
on Lemmas 1.1, 1.2 in the above paper) holds true.

Proposition 7. Suppose the sampling design P and the resampling design P ∗ satisfy assump-
tions A1–A6. Conditionally on yN , xN , DN , the following statements hold.

U1. The sequence (WH∗
N ;N ≥ 1) converges weakly, in D[−∞,+∞] equipped with the Sko-

rokhod topology, to a Gaussian process WH with zero mean function and covariance
kernel (26).

U2. If θ(·) is continuously Hadamard differentiable at F , then (T H∗
N ;N ≥ 1) converges

weakly to θ ′
F (WH ), as N increases.

In both U1, U2 weak convergence takes place for a set of yis, xis having P-probability 1, and for
a set of DN s of probability tending to 1.
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The main consequence of Propositions 6, 7 is that in generating the bootstrap samples two
different approaches can be followed:

1.1 Conditional Approach: construct a predicted population and generate M bootstrap sam-
ples s∗ from it;

1.2 Unconditional approach: construct M predicted populations and generate one bootstrap
sample s∗ from each of them.

Clearly, the unconditional approach is more computationally intensive and time consuming than
the conditional one.

The basic steps of the resampling procedure are described below. To simplify the notation, in
the sequel we will assume that θ(·) is real-valued, that is, we will consider the case of scalar
population parameters.

Step 1 Generate M independent bootstrap samples s∗ of size n on the basis of the two-phase
procedure described above.

Step 2 For each bootstrap sample, compute the corresponding Hájek estimator (35). They will
be denoted by F̂ ∗

H,m(y), m = 1, . . . ,M .
Step 3 Compute the corresponding estimates of θ(·):

θ̂∗
m = θ

(
F̂ ∗

H,m

); m = 1, . . . ,M.

Step 4 Compute the M quantities

Z∗
n,m = √

n
(
θ̂∗
m − θ

(
F ∗

N∗
)) = √

n
(
θ
(
F̂ ∗

H,m

) − θ
(
F ∗

N∗
)); m = 1, . . . ,M. (39)

Step 5 Compute the variance of (39):

Ŝ2∗ = 1

M − 1

M∑
m=1

(
Z∗

n,m − Z
∗
M

)2 = n

M − 1

M∑
m=1

(
θ̂∗
m − θ

∗
M

)2 (40)

where

Z
∗
M = 1

M

M∑
m=1

Z∗
n,m, θ

∗
M = 1

M

M∑
m=1

θ̂∗
m.

Denote further by

R̂∗
n,M(z) = 1

M

M∑
m=1

I(Z∗
n,m≤z), z ∈R (41)

the empirical distribution function of Z∗
n,ms, and by

R̂∗−1
n,M(p) = inf

{
z : R̂∗

n,M(z) ≥ p
}
, 0 < p < 1 (42)

the corresponding pth quantile.
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The empirical d.f. (41) is essentially an approximation of the (resampling) distribution of T H∗
N

as defined by equation (38). In Proposition 8, it is shown that it converges to the same limit as
the d.f. of T H∗

N , and that a similar result holds for the quantiles (42).

Proposition 8. Suppose that assumptions A1–A6 are satisfied, let σ 2
θ be defined as in (32), let

	0,σ 2
θ

be a normal distribution function with expectation 0 and variance σ 2
θ , and let 	−1

0,σ 2
θ

(p) be

the p-quantile of 	0,σ 2
θ

(i.e., the unique solution of 	0,σ 2
θ
(z) = p), 0 < p < 1.

For almost all yis, xis values, and in probability w.r.t. DN , (N∗
1 , . . . ,N∗

N), conditionally on
yN , xN , DN , (N∗

1 , . . . ,N∗
N), the following results hold:

sup
z

∣∣R̂∗
n,M(z) − 	0,σ 2

θ
(z)

∣∣ a.s.→ 0; (43)

R̂∗−1
n,M(p)

a.s.→ 	−1
0,σ 2

θ

(p), ∀0 < p < 1 (44)

as M , N go to infinity.
In addition, if the sequence (Z∗

m − Z
∗
M)2 is dominated by a r.v. U with finite expectation, that

is, (Z∗
m −Z

∗
M)2 ≤ U for each n, N and M , then in probability w.r.t. yN , xN , DN , (N∗

1 , . . . ,N∗
N),

conditionally on yN , xN , DN , (N∗
1 , . . . ,N∗

N) it yields

Ŝ2∗ → σ 2
θ as M,N → ∞ (45)

where convergence in (45) is in probability w.r.t. resampling replications.

The main consequences of Proposition 8 are two. First of all, the estimator Ŝ2∗ is a consistent
estimator of the variance of θ(F̂H ). In the second place, the confidence intervals[

θ̂H − n−1/2R∗−1
n,M(1 − α/2), θ̂H − n−1/2R∗−1

n,M(α/2)
]

(46)[
θ̂H − n−1/2zα/2Ŝ

∗, θ̂H + n−1/2zα/2Ŝ
∗] (47)

both possess asymptotic confidence level 1 − α as N and M increase.

8. Theoretical properties of calibrated pseudo-populations

In view of Proposition 6, all techniques to construct a pseudo-population are asymptotically
equivalent, provided that they satisfy conditions P1–P3 of Section 7.1. In this sense, in the
present paper a unified approach for resampling based on pseudo-populations is given. However
in practical applications, that is, for finite n, a crucial aspect that would potentially affect the
performance of resampling, is how the pseudo-population is constructed. In the present section,
theoretical properties of the (calibrated) pseudo-populations introduced in Section 3 are studied.
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8.1. Holmberg pseudo-population

Holmberg pseudo-population has been introduced in Section 3.1. Its size N∗HT is not generally
equal to N . However, the ratio N∗HT/N tends in probability to 1 as N , n increase, as it may
be easily proved. Furthermore, HT pseudo-population satisfies the regularity conditions P1–P3,
and hence the resampling distribution of

√
n(θ(F̂ ∗

H ) − θ(F ∗
N∗)) tends to the same limit as the

sampling distribution of
√

n(θ(F̂H ) − θ(FN)).

8.2. Multinomial pseudo-population

Multinomial pseudo-population has been introduced in Section 3.2. The r.v. (N∗MUL
i ; i ∈ s) pos-

sesses a (conditional) multinomial distribution, with moments (4)–(6). Again, conditions P1–P3
are satisfied, so that the resampling distribution of

√
n(θ(F̂ ∗

H ) − θ(F ∗
N∗)) tends to the same limit

as the sampling distribution of
√

n(θ(F̂H ) − θ(FN)).

8.3. Conditional Poisson pseudo-population

The Conditional Poisson pseudo-population has been introduced in Section 3.3. It satisfies con-
ditions P1–P3, as established in the next proposition.

Proposition 9. The conditional Poisson pseudo-population satisfies conditions P1–P3.

As a consequence, the resampling distribution of
√

n(θ(F̂ ∗
H )−θ(F ∗

N∗)) tends to the same limit
as the sampling distribution of

√
n(θ(F̂H ) − θ(FN)).

8.4. Double-calibrated pseudo-population

Double-Calibrated pseudo-population has been introduced in Section 3.4. The main result is in
the next proposition.

Proposition 10. The calibrated pseudo-population with replicates N∗DCal
i that solves the opti-

mization problem (9) possesses the following property:

N∗DCal
i

N∗CPP
i

p→ 1 as n,N → ∞. (48)

Intuitively speaking, Proposition 10 tells us that as N , n increase, the solution of the optimiza-
tion problem (9) tends to coincide with N∗CPP

i . Hence, for “very large” population and sample
size, N∗CPP

i s can be taken as a good approximation of the actual solution of the optimization
problem (9). Of course, this is only an asymptotic result, and for the use of “not too large” n, N ,
the use of N∗DCal

i instead of N∗CPP
i could produce considerably different results in the resampling

procedure.
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8.5. Hot-deck pseudo-population

Hot-deck pseudo-population has been introduced in Section 3.5. It satisfies conditions P1–P3, as
established in the next proposition.

Proposition 11. If the pseudo-population is constructed via hot-deck imputation of ys values,
then, as n, N increase, the resampling distribution of

√
n(θ(F̂ ∗

H ) − θ(F ∗
N∗)) tends to the same

limit as the sampling distribution of
√

n(θ(F̂H ) − θ(FN)).

9. Simulation study

Main goal of the simulation is to empirically evaluate the effects that different choices for con-
structing the pseudo-population U∗

N∗ (where resampling is actually performed) may have upon
the accuracy of the resulting inference in practical applications. The simulation has been designed
by focusing on three key points:

(a) exploration of small to moderate n and N in order to highlight differences due to finite
sizes as well as to evaluate the asymptotic approximations provided in the first part of the
present paper;

(b) analysis of specific features of the pseudo-population U∗
N∗ due to different construction

choices;
(c) investigation of the statistical properties of the final estimates provided by resampling from

different pseudo-populations.

The simulated scenarios, parameters and estimators are summarized in Table 1.
In addition to the five strategies proposed in Section 3, the direct bootstrap (Antal and Tillé

[1]) is also considered in the simulation, since it is a recent competitor based on a non-predictive
resampling approach. For the sake of comparability, the variates Y , X have been simulated under
the same model as in Antal and Tillé [1]. In more details, a finite population of size N was
generated from the model

yi = (
β0 + β1x

1.2
i + σεi

)2 + c (49)

Table 1. Simulated scenarios, population parameters and estimators

Scenarios

N = 200,400 n = (0.2N) = 40,80
correlation between Y and X � 0.8

Parameters Hájek Estimators HT Estimator

YN = ∑N
i=1 yi/N ŶH = ∑N

i=1 Diπ
−1
i yi/

∑N
i=1 Diπ

−1
i Ŷ HT = N−1 ∑N

i=1 Diπ
−1
i yi

QN(p) = inf{y : FN(y) ≥ p} Q̂H (p) = inf{y : F̂H (y) ≥ p}
with p = 0.5,0.75
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where xi = |ji | and ji ∼ N(0,7), εi ∼ N(0,1) and σ = 15. The model regression parameters
are β0 = 12.5, β1 = 3 and c = 4000. As far as the inclusion probabilities are concerned, they are
taken proportional to the value of a variable Z, generated from the equation Z = Y 0.2W where
W has a lognormal distribution (lnN(μ,σ 2)) with parameters μ = 0 and σ 2 = 0.025.

Samples have been simulated under two different fixed size πps designs of increasing en-
tropy: Pareto sampling and (normalized) conditional Poisson sampling (CPS for short), this lat-
ter already mentioned in Section 4 as a maximum entropy design. Notice that Pareto design is
high entropy, although not yet proved asymptotically maximum entropy; however it is heuristi-
cally recognized to be very close to the asymptotically maximum entropy Rao–Sampford design
(Bondesson et al. [9], Lundqvist [32]). Moreover, unlike the CPS design, the Pareto sampling
is very simple to implement, and can be used in simple acceptance-rejection rules to produce
CPS samples with a significant reduction of computational burden. Simulation has been imple-
mented partly in Mathematica code and partly in the R environment. 1000 Monte Carlo (MC)
runs, simulating the sample space, have been combined with M = 1000 resampling runs from
each generated sample. The MC error deriving from these choices has been controlled via the

empirical bias of the (unbiased) Horvitz–Thompson estimator ˆ̄YHT, and it has been kept under
1% (relative to the true population mean Ȳ ).

Simulation results are gathered in Tables 2–5 where the simulated methods to construct
the pseudo-population are indicated by the following acronyms: HT illustrated in Section 3.1;
MUL for the Multinomial pseudo-population in 3.2; CPP for the conditional Poisson pseudo-
population in 3.3; DCal for the double-calibrated pseudo-population in 3.4; HD for the hot-deck
pseudo-population in 3.5; and Dir for the direct bootstrap by Antal and Tillé [1].

Results in Table 2 offer indications about the ability of the pseudo-population U∗
N∗ as a predic-

tor of the actual population UN , according to key point (b) above. Except for the direct bootstrap
involving no pseudo-population, it has been checked in two respects: (i) the pseudo-population
size N∗ and mean of the auxiliary variable X̄∗ as predictors of (known) population N and X̄N

respectively, as measured via empirical (relative) bias RB[N∗;N ] = 100 × [EMC(N∗) − N ]/N

Table 2. U∗
N∗ as a predictor of UN (N = 200,400)

RB[X̄∗; X̄N ] RB[N∗;N ] SupMC |F ∗
N∗ (y) − FN(y)|

PARETO sampling design
HT 0.03 0.04 −0.44 0.38 0.87 0.51
MUL 5.46 3.39 0 0 0.93 0.54
CPP 5.46 3.38 0 0 0.88 0.52
DCal 0.02 −0.02 0.003 −0.01 0.55 0.46
HD 0 0 0 0 0.47 0.37

CPS sampling design
HT −0.02 0.02 −1.05 −1.40 0.50 0.52
MUL 5.06 3.39 0 0 0.53 0.55
CPP 5.04 3.88 0 0 0.51 0.52
DCal 0.06 −0.04 0.04 −0.04 0.46 0.47
HD 0 0 0 0 0.48 0.33
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Table 3. 95% Resampling CI – percentile method (N = 200,400)

ˆ̄YH Q̂H (0.5) Q̂H (0.75)

EC AL EC AL EC AL

PARETO
HT 0.89 0.90 0.23 0.17 0.88 0.91 0.33 0.22 0.91 0.93 0.37 0.28
MUL 0.87 0.89 0.23 0.17 0.67 0.79 0.33 0.14 0.82 0.79 0.38 0.28
CPP 0.89 0.90 0.23 0.17 0.89 0.92 0.33 0.22 0.92 0.94 0.38 0.29
DCal 0.95 0.95 0.24 0.18 0.95 0.97 0.33 0.23 0.95 0.95 0.39 0.30
HD 0.97 0.98 0.27 0.20 0.95 0.95 0.36 0.26 0.99 0.99 0.43 0.33

CPS
HT 0.90 0.91 0.24 0.17 0.91 0.92 0.33 0.22 0.90 0.93 0.38 0.29
MUL 0.89 0.92 0.24 0.17 0.73 0.81 0.34 0.22 0.82 0.79 0.39 0.29
CPP 0.90 0.90 0.24 0.17 0.91 0.92 0.34 0.22 0.91 0.94 0.38 0.29
DCal 0.96 0.96 0.25 0.18 0.98 0.97 0.34 0.23 0.95 0.94 0.40 0.30
HD 0.98 0.98 0.27 0.20 0.96 0.95 0.37 0.26 0.99 0.99 0.44 0.33

(where EMC indicates the average over all the Monte Carlo runs and RB[X̄∗; X̄N ] follows ac-
cordingly); and (ii) how able the pseudo-population is to reproduce the actual p.d.f. as measured
by the maximal MC value of the Kolmogorov statistic maxMC supy |F ∗

N∗(y) − FN(y)|, y ∈R.
A clear connection appears between the conservation of both N and X̄ and the ability of

reproducing the entire population d.f.: HD and DCal pseudo-populations emerge as the best
performers, uniformly in all the simulated scenarios. Also, this reflects on the ability of the
resampling algorithm based on such pseudo-populations, to reproduce the estimator distribution.

According to key point (c) above, both kinds of confidence intervals (CI) illustrated in Sec-
tion 7 have been simulated. Table 3 concerns CI (46) which basically correspond to bootstrap
percentile method, and Table 4 refers to CI (47). Performances at (nominal) confidence level 95%
has been investigated via empirical coverage (EC), with respect to the true population parame-
ter, and average length (AL). Notice that although the percentile method is the crudest available
for producing CI via resampling, we rate it appropriate for the goals of the present simulation
because it allows the evaluation of the ability of the resampling algorithm to produce p-values,
and ultimately to reproduce the estimator sampling distribution particularly in its tails. In Ta-
ble 3 all the methods investigated for constructing U∗

N∗ provide acceptable levels of empirical
coverage based on the 0.025 and 0.975 percentiles of the resampling distribution. Moreover,
they all tend to improve for increasing sizes N and n, as expected according to asymptotic re-
sults in Section 7. However HD and DCal, which provide the best predictor of UN , also give the
best coverage probabilities, uniformly in all scenarios simulated for both linear and non linear
estimators. Notably, HD shows the largest average lengths in addition to the largest empirical
coverages, which suggests a tendency to supply conservative CI.

A similar behaviour can be observed in Table 4, although the resampling plays here a mi-
nor role, limited to the (point) bootstrap estimate (40) for the estimator variance then coupled
with standard normal distribution percentiles, also named bootstrap-t CI. Notice that this is also
the method for interval estimation suggested for the non-predictive direct bootstrap. However,
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Table 4. 95% Standard Normal CI with resampling variance estimate (N = 200,400)

ˆ̄YH Q̂H (0.5) Q̂H (0.75)

EC AL EC AL EC AL

PARETO
HT 0.90 0.91 0.24 0.17 0.90 0.91 0.36 0.24 0.93 0.91 0.40 0.30
MUL 0.90 0.91 0.24 0.17 0.89 0.92 0.36 0.24 0.92 0.91 0.41 0.30
CPP 0.91 0.92 0.24 0.17 0.89 0.92 0.36 0.24 0.93 0.92 0.40 0.30
DCal 0.84 0.86 0.25 0.18 0.85 0.89 0.38 0.25 0.88 0.90 0.43 0.33
HD 0.91 0.93 0.27 0.20 0.92 0.94 0.40 0.27 0.95 0.96 0.44 0.34
Dir 0.89 0.90 0.22 0.16 0.86 0.87 0.32 0.21 0.92 0.90 0.38 0.28

CPS
HT 0.91 0.91 0.24 0.17 0.89 0.90 0.37 0.24 0.92 0.90 0.40 0.30
MUL 0.90 0.92 0.24 0.17 0.89 0.92 0.38 0.24 0.90 0.90 0.41 0.31
CPP 0.91 0.92 0.24 0.17 0.90 0.91 0.37 0.24 0.92 0.91 0.40 0.31
DCal 0.85 0.87 0.25 0.19 0.87 0.87 0.39 0.25 0.89 0.89 0.44 0.33
HD 0.94 0.95 0.27 0.20 0.90 0.93 0.40 0.27 0.97 0.95 0.45 0.34
Dir 0.90 0.90 0.23 0.16 0.85 0.88 0.33 0.21 0.92 0.88 0.38 0.28

Dir exhibits lower empirical coverage probabilities than the predictive pseudo-population based
methods, seemingly due to systematic smaller lengths. The notable exception of DCal may be
explained by its weaker ability to produce accurate point bootstrap estimates than the other pre-
dictive methods simulated. Still HD emerges as the best performer for uniformly giving the larger
empirical coverages in all scenarios simulated and for maintaining its conservative peculiarity.

Finally, a popular property of the classic i.i.d. Efron’s bootstrap has been investigated, that is,
the ability of the resampled distribution of an estimator of the population mean to match the (orig-
inal) sample mean as its empirical first moment. Such property, dubbed bootstrap unbiasedness,
has been measured by the (percentage) relative bias RB[θ̂∗

m; θ̂] = 100 × EMC{[E∗(θ̂∗
m) − θ̂ ]/θ̂}

where E∗ indicates the empirical average over the M resampling runs and by taking θ̂ = Ȳ and
θ̂∗
m,m = 1 · · ·M as its resampled distribution. Table 5 reports simulation results with respect to

both Horvitz–Thompson and Hájek estimation of population mean. Empirical evidence high-
lights that HT and Dir perform better under the conventional Horvitz–Thompson estimation of
linear parameters, as it is expected by their construction.

As a final remark concerning the actual implementation of specific algorithms, note that all the
simulated populations have been checked to ensure πi < 1, i = 1, . . . ,N . However, for MUL it
may still occur π∗

k ≥ 1 for one or more (sampled) unit k included in the pseudo-population. This
empirically appears to be often the case as the number of MC runs increases. As a consequence,
an ad hoc routine has to be implemented on top of the resampling algorithm, aiming at including
such units in each bootstrap sample and sequentially recomputing the resampling inclusion prob-
ability until they are all strictly smaller than 1, and by simultaneously reducing the (re)sample
size accordingly (see, for instance, Tillé [41] for details).
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Table 5. Bootstrap-unbiasedness (N = 200,400)

PARETO CPS

RB[ ˆ̄Y ∗
HT − ˆ̄Y HT] RB[ ˆ̄Y ∗

H − ˆ̄YH ] RB[ ˆ̄Y ∗
HT − ˆ̄Y HT] RB[ ˆ̄Y ∗

H − ˆ̄YH ]
HT 0.06 −0.16 0.87 0.72 −0.16 −0.13 0.97 0.63
MUL 5.57 3.11 0.92 0.65 4.96 3.74 1.07 0.65
CPP 5.46 3.15 0.84 0.70 4.84 3.73 1.01 0.64
DCal 1.66 1.12 −0.33 0.20 1.38 1.36 −0.34 −0.11
HD 3.17 2.07 0.35 0.59 2.55 2.27 0.34 0.28
Dir 0.01 −0.01 0.70 0.41 −0.02 0.01 0.68 0.41

10. Conclusions

In this paper, a new class of resampling methods applying to non-i.i.d. finite population sampling
is proposed under a principled predictive approach. The proposed resampling unifies any method
based on pseudo-populations, i.e. according to the plug-in principle upon which the original
Efron’s bootstrap is based. A large sample theory is derived for the predictive resampling, in
the Hájek finite population asymptotic setup, and according to the classical asymptotics for i.i.d.
bootstrap by Bickel and Freedman [7]. It is also proved that all techniques producing the pseudo-
population are asymptotically equivalent, under mild regularity conditions.

In addition, five strategies for constructing the pseudo-population have been illustrated. Two of
them go back to results already appeared in the literature and the remaining three are new propos-
als with improved performance, as shown in the simulation study. Empirical evidence confirms
that how to construct the pseudo-population is a crucial choice for small to moderate population
and sample sizes, under general sampling designs such as πps designs. As a general recommen-
dation such choice should be guided by enforcing the ability of the pseudo-population to be a
good predictor of the actual population. The simulation study indicates the pseudo-population
based on hot-deck imputation (HD) as the soundest method, provided that auxiliary xis values
are available for all population units. When xis are known only for sample units, as it might be
the case in applications, good results are offered by a pseudo-population calibrated w.r.t. both
the population size and the mean (total) of the auxiliary variable (DCal), when combined with
percentile confidence intervals.

Supplementary Material

Supplement to “A unified principled framework for resampling based on pseudo-
populations: Asymptotic theory” (DOI: 10.3150/19-BEJ1138SUPP; .pdf). Supplementary in-
formation.

https://doi.org/10.3150/19-BEJ1138SUPP
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