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Thesis Abstract: 

 

Soil Organic Carbon (SOC) is a crucial parameter for assessing soil quality and serves as a 

vital indicator of environmental health. Access to detailed information about SOC and its 

spatial distribution is essential for addressing climate change mitigation and implementing 

effective environmental policies. However, obtaining such data presents a challenge, especially 

in mountainous environments. The main objective of this thesis is to apply machine learning 

models (ML) to predict and model the spatial distribution of SOC in different landscapes, with 

a specific focus on mountainous areas using  Digital Soil Mapping (DSM) approach. 

 

The thesis covers a series of case studies conducted at various locations, employing different 

spatial resolutions, all aimed at predicting the spatial distribution of SOC content and SOC 

stock using environmental covariates and different machine learning models: Multivariate 

Adaptive Regression Splines (MARS), Random Forest (RF), Support Vector Regression 

(SVR), Elastic Net (ENET), Extreme Gradient Boosting (XGBoost), and Boosted Regression 

Tree (BRT). The case studies were conducted in three locations, two in the central Italian Alps: 

Valchiavenna Valley and Andossi Plateau (an alpine grassland), another one in the Bohemian 

uplands in the Czech Republic, in Krasna Hora nad Vltavou. The maps in this work mainly 

focus on different soil layers: 0-10, 10-30, and 0-30 cm. For model validation, we used 10-fold 

cross-validation and calculated the following metrics for all our case studies: R², Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and Bias. For SOC mapping, we 

utilized the best-performing model based on the best validation metrics results. 

 

The first case study is carried out in Valchiavenna, an alpine valley in northern Italy: we created 

a detailed map with a 20-meter spatial resolution of the SOC stock and the associated 

uncertainties. The used dataset contains soil data collected from 110 soil profiles; various 

environmental variables were set as covariates, including geomorphometric parameters derived 

from a Digital Terrain Model (DTM), climatic maps, and a land cover map. The results of the 

DSM showed that the RF model had the best validation results, with the highest R² and the 

lowest RMSE. For uncertainty assessment and mapping, we analyzed the standard deviation 

(SD) from 50 iterations of the best-performing RF model. This chapter was published as a 

scientific paper in the Land journal (January 2024) under the special issue: Digital Soil 

Mapping, Decision Support Tools, and Soil Monitoring Systems in the Mediterranean. 

 

The second case study takes place in the Andossi Plateau, an alpine grassland situated in the 

northern part of  Valchiavenna. Covering an area of 350 hectares, our goal was to map the SOC 

stock and soil pH using RF model to obtain a high-resolution map (10 m). Data from 126 soil 

profiles was used together with geomorphometric parameters, vegetation type maps, and soil 

type maps as covariates. We tried to apply different ML models; however, the only suitable 

map was the RF model, which was used for modeling and mapping SOC stock and soil pH in 

two different soil layers (0-10 and 10-30 cm). 
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In the last case study, we employed three decision tree machine learning models; RF, XGBoost, 

and BRT to predict the spatial distribution of SOC content in the Bohemian uplands of Krasna 

Hora nad Vltavou (Czech Republic) in the first 30 cm of soil. Our dataset consisted of 102 soil 

profiles and the resulting map exhibits a spatial resolution of 10 meters. The models validation 

demonstrate that the XGBoost model emerged as the best performer. 

 

In summary, the results demonstrate the effectiveness of the DSM methodology in creating 

detailed SOC maps, and that the decision tree models provide the best results. 
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Riassunto: 

 

Il Carbonio Organico del Suolo (SOC) è un parametro cruciale per valutare la qualità del suolo 

e serve come indicatore vitale della salute ambientale. L'accesso a informazioni dettagliate sul 

SOC e sulla sua distribuzione spaziale è essenziale per affrontare la mitigazione del 

cambiamento climatico e implementare politiche ambientali efficaci. Tuttavia, ottenere tali dati 

presenta una sfida, soprattutto in ambienti montani. L'obiettivo principale di questa tesi è 

applicare modelli di apprendimento automatico (ML) per prevedere e modellare la 

distribuzione spaziale del SOC in diversi paesaggi, con un focus specifico sulle aree montane 

utilizzando un approccio di Mappatura Digitale del Suolo (DSM). 

 

La tesi copre una serie di studi di caso condotti in diverse località, impiegando diverse 

risoluzioni spaziali, tutti mirati a prevedere la distribuzione spaziale del contenuto di SOC e 

utilizzando covariate ambientali e diversi modelli di apprendimento automatico: Multivariate 

Adaptive Regression Splines (MARS), Random Forest (RF), Support Vector Regression 

(SVR), Elastic Net (ENET), Extreme Gradient Boosting (XGBoost) e Boosted Regression Tree 

(BRT). Gli studi di caso sono stati condotti in tre località, due nelle Alpi centrali italiane: la 

Valchiavenna e l'Altopiano degli Andossi (un pascolo alpino), e un'altra nelle colline e alture 

boeme nella Repubblica Ceca, a Krasna Hora nad Vltavou. Le mappe risultanti in questa tesi 

si concentrano principalmente su diversi strati del suolo: 0-10, 10-30 e 0-30 cm. Per la 

validazione del modello, abbiamo utilizzato la cross-validazione a 10 pieghe e calcolato le 

seguenti metriche per tutti i nostri studi di caso: R², Errore Medio Assoluto (MAE), Errore 

Quadratico Medio (RMSE) e Bias. Per la mappatura del SOC, abbiamo utilizzato il modello 

con le migliori prestazioni basato sui migliori risultati delle metriche di validazione. 

 

Il primo studio di caso è stato svolto in Valchiavenna, una valle alpina nel nord Italia: abbiamo 

creato una mappa dettagliata con una risoluzione spaziale di 20 metri dello stock di SOC e 

delle incertezze associate. Il dataset utilizzato contiene dati del suolo raccolti da 110 profili del 

suolo; varie variabili ambientali sono state impostate come covariate, inclusi parametri 

geomorfometrici derivati da un Modello Digitale del Terreno (DTM), mappe climatiche e una 

mappa della copertura del suolo. I risultati del DSM hanno mostrato che il modello RF ha 

ottenuto i migliori risultati di validazione, con il più alto R² e il RMSE più basso. Per la 

valutazione e la mappatura dell'incertezza, abbiamo analizzato la deviazione standard (SD) di 

50 iterazioni del modello RF con le migliori prestazioni. Questo capitolo è stato pubblicato 

come articolo scientifico nella rivista Land (gennaio 2024) nell'edizione speciale: Digital Soil 

Mapping, Decision Support Tools, and Soil Monitoring Systems in the Mediterranean. 

 

Il secondo studio di caso si svolge sull'Altopiano degli Andossi, un pascolo alpino situato nella 

parte settentrionale della Valchiavenna. Coprendo un'area di 350 ettari, il nostro obiettivo era 

mappare lo stock di SOC e il pH del suolo utilizzando modelli RF per ottenere una mappa ad 

alta risoluzione (10 m). Il dataset in questo lavoro consisteva di dati provenienti da 126 punti 

di campionamento del suolo. Applicando l'approccio DSM, abbiamo incorporato parametri 

geomorfometrici, mappe del tipo di vegetazione e mappe del tipo di suolo come covariate. 
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Abbiamo provato ad applicare diversi modelli di ML; tuttavia, l'unico adatto è risultato essere 

il modello RF, che è stato utilizzato per modellare e mappare lo stock di SOC e il pH del suolo 

in due diversi strati del suolo (0-10 e 10-30 cm). 

 

Nell'ultimo studio di caso, abbiamo impiegato tre modelli di apprendimento automatico basati 

sugli alberi decisionali; RF, XGBoost e BRT per prevedere la distribuzione spaziale del 

contenuto di SOC nelle alture boeme di Krasna Hora nad Vltavou (Repubblica Ceca) nei primi 

30 cm di suolo. Il nostro dataset consisteva di 102 profili del suolo e la mappa risultante 

presenta una risoluzione spaziale di 10 metri. La validazione dei modelli ha dimostrato che il 

modello XGBoost è emerso come il migliore. 

 

In sintesi, i risultati dimostrano l'efficacia della metodologia DSM nella creazione di mappe 

dettagliate del SOC, e che i modelli basati sugli alberi decisionali forniscono i migliori risultati. 
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Chapter 01: Introduction to  Digital soil Mapping approach 

and Soil organic carbon mapping 

 
 

1.1. Introduction to digital soil mapping  

 

Soil is an indispensable natural resource, functioning as a crucial link among various Earth 

systems, including air, water, and organisms. Soil formation results from interactions between 

parent material, climate, living organisms, and land morphology over time (Baize, 2021). The 

environmental conditions of the landscape directly influence soil formation and its 

characteristics. Moreover, soil plays a critical role in ecosystem function, delivering valuable 

services (Baize, 2021; Duchaufour, 1989). Soil supports plant growth by retaining and 

supplying nutrients, sustains biodiversity by providing habitats, acts as a filter for water, and 

regulates climate dynamics. An essential aspect of soil lies in its capacity for biomass 

production and carbon storage, which is crucial for climate regulation through the carbon cycle. 

Soil holds a crucial place in socio-economic development, intricately related to urgent global 

challenges like ensuring food security, managing water scarcity, and addressing climate change 

(Dorji et al., 2014; Garcia-Pausas et al., 2007; Guru et al., 2012; Hoffmann et al., 2014). 

 

A good understanding of soils, gained through soil survey and mapping, is crucial for 

preserving healthy ecosystems and supporting sustainable development. This understanding is 

essential for applying effective soil and land management strategies, which serve various 

applications such as agronomy, risk assessment, and forest planning (Legros, 1996). Scientific 

research on soil has significantly increased due to rising threats like pollution, erosion, land 

degradation, and the connected effects of climate change on soil (Montanarella et al., 2016). 

Consequently, the soil science community has established soil mapping and data collection as 

tools to address these issues. Over recent years, numerous efforts have been made to map soil 

properties using DSM (Arrouays et al., 2014; Lagacherie et al., 2006).  

 

DSM, which is the creation and population of spatial soil information systems using numerical 

models (McBratney et al., 2003), aims to produce soil information maps. 

 

1.1.1. Brief  history of soil mapping   

 

The history of soil surveying spans centuries, evolving through various methods, challenges, 

and technological advancements. It dates back to ancient times when people used soil 

observations to find suitable areas for farming, laying the foundation for modern soil science. 

Soil mapping formally began in the late 1700s with Arthur Young's efforts to create a map of 

French agricultural regions, highlighting the relationship between soils and plant species 

(Young, 1794). This early map set the stage for understanding how soil characteristics affect 

agricultural productivity. 
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Key developments in soil mapping occurred in Europe and beyond. In 1856, Eugène Risler 

mapped Geneva's land, contributing to our understanding of soil distribution. At the turn of the 

20th century, Russian soil scientist Dokuchaiev and his students crafted a comprehensive soil 

map of western Russia, significantly advancing the field. However, the disruption caused by 

wars in Europe briefly slowed soil mapping progress (Legros, 1996). 

 

In the 20th century, digital technologies and advanced methods significantly transformed soil 

mapping, particularly in the United States. The journey began in 1882 when T.C. Chamberlin 

created the first soil map in Wisconsin, marking the inception of systematic soil mapping in 

the USA. This was followed by A.R. Whitson's second soil map in 1927, further advancing the 

field. By 1976, F.D. Hole produced another soil map, showcasing the continuous evolution of 

mapping techniques. Initially, soil mapping in the United States focused on soil texture and 

physiography, with early efforts centered on country-level surveys. These surveys gradually 

evolved into more detailed statewide soil maps, reflecting the advancements in mapping 

precision and detail. 

 

The 1990s brought a significant change as soil scientists transitioned from traditional paper-

based methods to digital processes. This shift coincided with the emergence of digital soil 

mapping and the adoption of new observational techniques such as Ground-Penetrating Radar 

(GPR), Electromagnetic Induction (EMI), and cone penetrometers (Hartemink et al., 2012). 

These advancements have greatly enhanced the accuracy and efficiency of soil mapping, 

allowing for more precise soil management and conservation strategies. 

 

1.2. Objectives and Applications of Soil Mapping 

1.2.1. Understanding the Natural Environment 

 

The fundamental objective of pedological mapping is to systematically catalog and delineate 

the spatial distribution of soils, providing pivotal information applicable across diverse sectors. 

Soil maps serve as essential tools for various scientific disciplines, including geography, 

phytoecology, hydrology, and geology. These maps are utilized to spatially analyze and 

understand other environmental components, reflecting the interconnections between soil 

characteristics and various natural resources (Legros, 1996). In 1993, Lindholm demonstrated 

the applicability of soil maps for geological mapping in a 2,200 km² area of the Culpeper Basin 

in Virginia. His research indicated that the maps he created using soil data were not only 

accurate but, in some instances, superior to earlier versions (Lindholm, 1993).  

 

Urban planners also turn to soil maps for insights into the physical and chemical attributes of 

soils, which are crucial for urban construction and soil restoration projects (Morris, 1966). 

Government agencies and policymakers find soil maps indispensable, especially regarding the 

storage of SOC, were data is essential for developing strategies to mitigate climate change. 

Similarly, managers of protected natural areas require comprehensive knowledge of soil types 

and properties to formulate effective conservation and restoration plans. Thus, pedological 

mapping not only supports scientific research and environmental analysis but also informs 
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practical applications in urban planning and policy-making, highlighting its broad utility and 

significance. 

 

1.2.2. Scientific research  

 

Soil mapping is a vital method for understanding how soil interacts with its natural 

environment, considering factors like climate and land cover changes over time. When research 

shows links between different soils and the environment, it is not based on guesswork but on 

rigorous statistical analysis (Legros, 1996). Soil maps are crucial for researchers in agriculture, 

ecology, geology, hydrology, and environmental science. They help in understanding aspects 

such as plant growth, biodiversity, earth changes, water movement, and moisture behavior. 

 

Soil maps also play a critical role in identifying areas at risk of landslides, floods, and erosion, 

aiding in land management and risk reduction. They provide invaluable data for assessing soil 

properties and their impacts on various environmental processes. By offering detailed, accurate 

information on soil distribution and characteristics, soil maps enable informed decision-making 

and scientific research based on real soil data (Legros, 1996). 

 

 

 

1.3. Soil Mapping Approaches  

1.3.1. The concept of Soil Mapping 

 

Understanding the spatial distribution of various soil types and their properties at different 

scales is crucially facilitated by soil mapping (Legros, 1996). The evolution of spatial data 

infrastructures, driven by the increasing availability of data and advancements in tools across 

diverse domains, has significantly enhanced soil mapping capabilities (McBratney et al., 2003). 

Digital maps created from these databases provide substantial insights, although many soil 

datasets suffer from inaccuracies and inconsistencies in collection and measurement methods. 

Moreover, there are notable disparities in the size and accuracy of soil maps globally, with 

significant differences between countries. Some nations boast extensive, high-resolution 

coverage, while others contend with limited, low-resolution data. This issue is especially 

pronounced in larger countries like Australia and Brazil, which face notably deficient soil map 

coverage, exacerbating the challenges they encounter (Lagacherie et al., 2006). 

 

The limitations of conventional soil survey methods, characterized by low accuracy and high 

costs, have resulted in a paucity of available soil spatial data. In response, the advent of DSM 

techniques aims to establish comprehensive spatial soil information systems by incorporating 

field and laboratory observations. DSM is defined as "the creation and population of spatial 

soil information systems using numerical models, driving the spatial and temporal variation of 

soil types and properties from soil observations, knowledge, and related environmental 

variables" (McBratney et al., 2003). This paradigm shift has led to the creation of maps at 

various scales, including regional, river basin, and national levels. 
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DSM offers several advantages over traditional soil mapping approaches. It can more 

effectively capture soil spatial variability without the need for intensive pedological surveys, 

making it a more rapid and efficient approach. DSM emerges as a discipline harnessing various 

methods for predicting soil properties or classes (Lagacherie et al., 2006). This modern 

approach not only enhances the accuracy and efficiency of soil mapping but also addresses the 

limitations and challenges associated with conventional methods, providing a more 

comprehensive understanding of soil distribution and characteristics. 

 

 

 
Figure 1.1.  Representation of DSM approach (Biswajit and Divya, 2020) 

 

1.3.2. Traditional Approaches of Soil Mapping 

 

Traditional soil investigation and mapping methods rely on field observations and aerial photo 

interpretation. This approach is based on the principle that soil formation results from 

interactions among factors such as climate, parent material, vegetation, and land morphology 

over time. Traditional mapping involves various tasks, including collecting soil samples and 

data through on-site surveys, using thematic maps, creating specialized maps, and interpreting 

aerial images. Regions are grouped into map units, which can contain a single soil type 

(consociations) or a mix of different soils (complexes). Some units may also include smaller 

areas of similar soils (inclusions), which are often not shown on the map. 

 

This process follows the soil-landscape concept, where each combination of landscape 

elements corresponds to distinct soil types. Initially, it involves creating landscape units maps, 

often using aerial photos. Then, the soil characteristics in each unit are confirmed through field 

surveys. While this method has value, the resulting soil map often closely resembles the 

landscape units map with added soil information. However, it faces challenges, particularly in 

accurately defining the boundaries of the delineated areas (polygons) on the map. This makes 

the process time-consuming and less reliable, increasing the likelihood of simplifications and 

prediction errors (Zhu et al., 2007). 
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1.3.3. The pedological theory: fundamentals for the DSM approach methodologies  

 

 

Understanding the relationship between pedogenesis and soil mapping approaches is essential 

for advancing soil prediction methodologies. Pedogenesis, the process of soil formation, is a 

complex phenomenon that can be mathematically captured to explain DSM models. At its core, 

pedogenesis can be represented through a mathematical equation: 

𝑠(𝑡) =  ∫ 𝑓𝜏(𝐸)𝑑
𝑡

𝑡0

𝜏                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.1 

 

 

In this equation, "s(t)" represents the development of soil over time, and "E" encompasses the 

intricate processes of soil formation. This equation shows the dynamic relationship between 

soil evolution and the environmental factors that shape it. "t" stands for time, and "ƒ" 

symbolizes the complex interplay between soil development and environmental factors. Within 

"E," various elements such as climate, topography, and parent materials contribute to 

understanding the complexities of soil formation. Additionally, "S" represents soil, carrying a 

fuzzy membership value indicating the similarity between different soils. However, calculating 

"S" directly based on the precise nature of "ƒ" is nearly impossible due to its inherent 

complexity. 

 

To address this challenge, the soil-landscape model, as conceptualized by Hudson in 1992, 

offers an alternative perspective. This model suggests that the interaction between soil-forming 

factors: climate, organisms, parental materials, and topography, over time results in unique soil 

compositions or soil types. This concept implies that areas with similar environmental 

conditions may have similar soil types and characteristics. In DSM, accurately predicting soil 

changes over time is crucial. A modified equation,  S = f(E)  (Zhu, 1999), provides a more 

practical method. It simplifies the soil attribute within a fixed context, which is useful for 

mapping but may introduce errors in areas where soil changes significantly due to unusual 

events or human activities. To understand the factors that shape soil (E), it's important to 

balance geographical context and data availability. 

 

In summary, the connection between soil formation (pedogenesis) and DSM is crucial for soil 

prediction methods. Using mathematical models to represent soil formation enhances our 

understanding of how soils change over time and how they are influenced by environmental 

factors. This, in turn, improves the accuracy of DSM models. 
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1.3.4. Digital Soil Mapping: Concepts and Techniques 

 

The Digital Soil Mapping (DSM) approach is grounded in the integration of collected or 

generated data and the extraction of mathematical relationships between input data (factors 

influencing soil formation) and output data (soil characteristics). This integration forms the 

foundation of DSM, enabling the creation of digital maps of soil and its functions using various 

advanced techniques and data modeling methods. 

 

At the end of the 20th century, the scientific basis for soil mapping was encapsulated in the 

CLORPT model. Initially introduced by Dokuchaev and Hilgard, and later refined by Hans 

Jenny (Jenny, 1994), the model is represented as S = ƒ(cl,o,r,p,t,...). This model captures the 

complex interactions among climate (cl), organisms (o), relief (r), parent material (p), and time 

(t). These factors, along with others indicated by the ellipsis, work together over time to shape 

soil development. The CLORPT model underscores that by understanding the intricate 

relationships between soil characteristics and these environmental factors, we can create 

predictive models to forecast soil attributes in unobserved areas. 

 

McBratney et al. (2003) revitalized the state factor model, emphasizing the importance of soil 

maps as crucial visual representations of the position of different soil features in space. 

Traditional soil mapping approaches have relied heavily on conceptual frameworks, resulting 

in maps with legends defining various soil types. However, interpreting these maps can often 

be challenging. 

 

The transition to modern mapping techniques marks the era of DSM, which emphasizes 

quantitative methods. DSM involves a comprehensive process: starting with data collection 

from field and laboratory observations, followed by the application of spatial and non-spatial 

methods to infer soil properties. This process results in the creation of spatial soil information 

systems, which are presented as raster predictions along with associated uncertainties. These 

predictions can be continuously refined with the addition of new data (Ma et al., 2019). Overall, 

the DSM approach represents a significant advancement in soil mapping methodologies, 

providing a robust framework for understanding and predicting soil characteristics based on a 

thorough analysis of environmental factors and their interactions. 

 

1.3.5. Generalization challenges and overcoming them through DSM 

 

In the field of soil mapping, the traditional approach has faced challenges related to two types 

of generalization: spatial and parameter generalization. These challenges have imposed 

limitations and introduced errors in soil maps. Spatial generalization involves the simplification 

of detailed geographical features due to cartographic constraints and map scale. This can lead 

to the merging of smaller delineations into larger polygons and the grouping of dissimilar 

components within a complex, resulting in the loss of precise spatial information. Additionally, 

the conventional method often struggles to capture variations in soil characteristics that 

continuously change across landscapes due to evolving environmental conditions. These 

variations, although evident during fieldwork, prove challenging to quantify and effectively 
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represent on traditional soil maps, particularly when dealing with large areas. As a result, the 

representation of soil properties at polygon boundaries becomes abrupt, and the true values of 

soil characteristics at specific locations cannot be reliably determined from the soil survey data 

alone. On the other hand, parameter generalization deals with capturing the gradual changes in 

soil characteristics across landscapes. These variations are often observed during fieldwork but 

are challenging to measure and nearly impossible to depict accurately on traditional soil maps, 

especially in large areas. When a vector data model is used to represent spatial soil information, 

this challenge leads to abrupt shifts in soil properties at the boundaries of polygons. As a result, 

it becomes impossible to determine the precise values of soil properties at a specific location 

based solely on the soil survey data (Zhu et al., 2007). 

 

To tackle the generalization challenges in traditional soil mapping methods, the raster model 

is more suitable than the vector model. This is because the raster model represents uniform and 

continuous geographical features and phenomena. The level of detail provided by the raster 

model depends on its spatial resolution, which is constrained by the input data, not by 

cartographic techniques. In raster soil mapping, each pixel (with a spatial resolution determined 

by the input data) portrays the soil information at that specific location. This means that 

information about small, distinct soil types is retained. However, it assumes that the soil within 

a pixel is uniform, and any variation in soil properties within that pixel is considered negligible. 

This assumption is valid if the pixel size is sufficiently small; otherwise, spatial generalization 

issues may reappear. The DSM approach involves breaking down the territory into a matrix, 

essentially creating a grid within the survey area that structures a geodatabase in a GIS 

environment. In this multidimensional space, the study area is divided into pixels, each 

identifiable by its geographical coordinates. Within the geodatabase, each point (considered as 

a pixel) is linked to values representing the chosen variables for describing factors related to 

soil formation. This association results in a vector being connected to each pixel. The matrix 

formed comprises rows and columns, where rows are records corresponding to the pixels in 

the survey area's raster, and columns represent the variables associated with each pixel. The 

intersection of a record and a column gives a datum, which is a specific value for a particular 

variable at a given pixel. This allows the representation of spatial variation in the terrain as 

continuous in both the spatial and parameter aspects (Lozbenev et al., 2022; McBratney et al., 

2003; Zhu et al., 2007). 

 

The process of creating a map, whether using DSM techniques or traditional mapping 

procedures, involves three fundamental steps: 

 

✓ Soil sampling, where soil samples are collected. 

✓ Analysis of these soil samples to characterize them. 

✓ Spatialization, which is the process of mapping point data collected in the field. 

 

The fundamental shift in soil mapping methods, from traditional to digital, highlights the 

field's dynamic evolution. As technology continues to shape our understanding and 

interaction with the environment, the precision, detail, and efficiency offered by digital soil 
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mapping have the potential to revolutionize not only the field of soil science but also broader 

land management and environmental decision-making processes. 

 

 

1.4.  The main Methodologies of DSM 

 

We may group the DSM approach in two fundamental groups: geostatistical methodologies 

and machine learning methodologies.  

 

1.4.1. Geostatistical methodology 

 

In the field of DSM, the work of McBratney et al. (2003) provides a comprehensive 

understanding of the application of geostatistical methods in soil mapping, particularly trend 

surfaces and kriging. These methods serve as crucial tools for improving the accuracy and 

reliability of soil mapping. 

  

Trend surfaces are an effective method for capturing spatial trends by using simple 

mathematical functions based on spatial coordinates. The authors of the study referenced 

several research projects that have employed trend surfaces since the late 1960s and the 

beginning of the 1970s. For instance, Davies and Gamm (1970) applied this approach to 

analyze soil pH values in Kent County, England. Similarly, Edmonds and Campbell (1984) 

used third-degree polynomials to describe average annual soil temperatures across a network 

of monitoring stations in Virginia and nearby regions, successfully explaining a significant 

portion of the observed variability. On the other hand, Kiss et al. (1988) faced challenges when 

attempting to describe the spatial distribution of 137Cs activity in the agricultural area of 

Saskatchewan. This highlighted the limitations of using second-order trend surfaces for 

complex spatial patterns. While trend surfaces are valuable tools, it's important to acknowledge 

that they offer simplified representations, and to capture intricate spatial patterns more 

advanced models are often needed. 

 

Kriging is a notable strategy capable of analyzing complex spatial patterns. This methodology 

involves treating soil variables as regionalized variables within the geostatistical framework. 

Seminal contributions by Burgess and Webster (1980a, b) have established the foundations for 

kriging methodologies. These techniques offer the ability to predict both continuous soil 

properties and classes. Additionally, they provide estimates for varying spatial units and 

incorporate uncertainty estimations, thereby enhancing the reliability of generated predictions. 

In addition to kriging, co-kriging is a valuable strategy for enhancing the accuracy of soil 

predictions. Co-kriging utilizes extensive sets of secondary variables that are cross correlated 

with primary variables to improve the precision of soil predictions. Studies conducted by 

McBratney and Webster (1983), Vauclin et al. (1983), and Goulard and Voltz (1992) used other 

soil variables as additional predictors. With the GIS, co-kriging has evolved to include detailed 

secondary datasets derived from digital elevation models and satellite images, resulting in 

significantly improved precision in soil mapping (Odeh et al., 1994). 

 

13



To sum up, the geostatistical methods offer valuable insights into the realm of digital soil 

mapping, presenting approaches to enhance the prediction of soil attributes and overall spatial 

representation accuracy.  

 

1.4.2. The Machine learning methodology 

 

Machine learning has become a key tool in digital mapping, using training data to predict 

outcomes for new data. Supervised learning, a subset of machine learning, is especially 

valuable for addressing regression problems. It provides uncertainty maps that guide future 

field activities and data collection. 

The selection of predictor variables is crucial for the effectiveness of machine learning 

algorithms. Traditional soil survey methods have limitations that modern technologies and 

machine learning aim to overcome. By combining geospatial advancements and machine 

learning, soil-landscape parameter mapping seeks to understand soil behavior in diverse 

ecosystems and gain a holistic view of the Earth's dynamic terrain (Garg et al., 2020). 

In the past decade, DSM has seen the adoption of various machine learning algorithms, 

including Linear Regression (LR), Classification and Regression Trees (CDT), Random Forest 

(RF), Artificial Neural Networks (ANN), and Support Vector Machines (SVM). LR has been 

particularly useful for creating soil class maps by combining different interpolation techniques 

and using terrain attributes, remote sensing data, and physiographic regions as predictive 

variables. Multiple Linear Regression (MLR) has demonstrated its effectiveness in generating 

simulated soil maps by connecting the distribution of soil types with terrain characteristics. 

Comparing Binary Logistic Regression and MLR has shown that geomorphology maps play a 

crucial role in improving accuracy when producing soil class maps. CDT, on the other hand, 

has expanded its application to increase the coverage of soil class maps and improve existing 

soil mapping by predicting soil drainage classes and modeling individual soil attributes (Garg 

et al., 2020). Ensemble techniques, including Random Forest (RF), Artificial Neural Networks 

(ANN), Decision Trees (DT), and Support Vector Machines (SVM), have found applications 

in DSM. RF has been effective in mapping Soil Organic Carbon (SOC) and predicting topsoil 

and subsoil properties by integrating environmental data and soil mapping details. Using ANN 

and DT within GIS enables the modeling of complex soil property relationships (Garg et al., 

2020; Lagacherie et al., 2006). 

 

 1.5. State of Art in Digital soil mapping  

 

As mentioned earlier, DSM has gained popularity due to the growing need for precise soil data. 

In 2003, McBratney et al. suggested that DSM should focus on creating maps that provide 

information about soil properties, soil classes, soil function, and risk assessment. This 

information can be grouped into three categories: 

 

✓ Maps showing soil properties and classifications. 

✓ Maps illustrating soil functions and potential threats. 

✓ Predicted outcomes for various scenarios. 
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1.5.1. Mapping diverse soil properties through DSM 

Recent research in DSM has made significant strides in predicting and mapping various 

essential soil properties, such as soil organic matter, carbon content, pH, and sand content. This 

growing interest extends beyond single-property mapping, emphasizing the simultaneous 

prediction of multiple soil attributes and showcasing DSM's capability to offer comprehensive 

insights into soil composition and behavior. One notable large-scale initiative is the 

GlobalSoilMap project. An exemplary study in this context is by Chen et al. (2022), who 

reviewed 244 articles published between 2003 and 2021. Their review focused on large-scale 

DSM efforts as part of the GlobalSoilMap project, particularly emphasizing the mapping of 12 

crucial soil properties. Among these, mapping soil organic matter/carbon content and soil 

organic carbon stocks stood out due to their significance in food security and climate 

regulation. A significant contribution to this field is the work by Were et al. (2015), who 

utilized machine learning techniques to predict soil properties. They employed Support Vector 

Regression (SVR), Artificial Neural Networks (ANN), and Random Forest (RF) models to 

predict SOC stocks in Kenya's Eastern Mau Forest Reserve. Their findings highlighted the 

superiority of the SVR model in predicting SOC stocks, demonstrating the potential of machine 

learning techniques in achieving precise spatial predictions of soil properties. Similarly, 

Zeraatpisheh et al. (2019) focused on mapping soil properties in a semi-arid area of central Iran 

using multiple machine learning techniques. They integrated non-linear models such as Cubist, 

RF, and Regression Tree with environmental data from digital elevation models and satellite 

imagery, successfully predicting properties like SOC, Calcium Carbonate Equivalent (CCE), 

and clay content. This study emphasized the importance of utilizing remote sensing data and 

complex models to understand spatial variability in soil properties. 

 

Overall, these advancements in DSM, through the integration of diverse data sources, advanced 

modeling techniques, and machine learning algorithms, underscore the field's progress in 

accurately predicting and mapping essential soil properties on various scales. This progress not 

only enhances our understanding of soil composition and behavior but also contributes to 

better-informed decisions in agriculture, environmental management, and climate regulation. 

1.5.2.  DSM for accurate classification  models and maps 

DSM has been widely employed in soil classification models and mapping, leveraging various 

data sources, interpretive methodologies, and machine learning algorithms to enhance the 

precision of soil class mapping. Numerous studies have demonstrated the efficacy of DSM in 

this regard. Camera et al. (2017) optimized the use of Random Forest for mapping soil classes 

in Cyprus, highlighting DSM's utility in environmental studies and soil erosion assessment, 

despite some challenges in property predictions. Heung et al. (2016) conducted a comparative 

study of machine learning techniques for soil classification, providing insights into their 

varying effectiveness in reproducing different soil classes. Teng et al. (2018) integrated 

traditional soil profile classifications, visible-near-infrared spectroscopy, and digital soil class 

mapping to update Australia's national soil maps, resulting in improved soil classification 
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accuracy. To address the issue of imbalanced data, Sharififar and Sarmadian (2023) introduced 

techniques like extreme gradient boosting and cost-sensitive decision trees, which enhanced 

mapping precision. Kaya et al. (2022) focused on predicting soil texture classes in northwestern 

Türkiye using different machine learning algorithms. Fantappiè et al. (2023) explored the use 

of neural networks within DSM to map derived soil profiles in Italy. Keshavarzi et al. (2022) 

utilized Random Forest for soil texture mapping in Iran's Piedmont plain. 

 

These studies underscore the effectiveness of using machine learning models in soil mapping, 

demonstrating how they have contributed to the advancement of DSM, particularly in 

improving soil classification and mapping precision. 

1.5.3.  Several case studies and the evolution of DSM for future prospective 

Several studies exemplify the advancements in DSM methodologies. Araujo-Carrillo et al. 

(2021) introduced the IRAKA system, a Colombian soil information system that utilizes DSM 

with machine learning techniques like random forests to improve soil property mapping 

accuracy. Cahyana et al. (2022) focused on revealing soil-landscape relationships in East Java, 

Indonesia, using a fuzzy logic approach. They assessed accuracy and soil-landscape 

connections through machine learning, demonstrating DSM's potential to detect intricate 

relationships between soil types and local environmental conditions. Radočaj et al. (2022) 

conducted a comprehensive analysis of four soil mapping techniques, highlighting the 

superiority of ensemble machine learning (EML) in mapping essential soil properties, 

particularly total soil carbon and nitrogen: EML outperformed other methods significantly.  

Zhang et al. (2021) introduced a novel sampling strategy, the Multiple Soil Properties Oriented 

Representative Sampling (MPRS), to enhance prediction accuracy and sample 

representativeness for multiple soil properties.  

As we have mentioned in the previous sections, during the last 20 years of research in DSM 

various methods have been explored that has influenced the development of this technique. 

Arrouays et al. (2017) analyzed the substantial growth of DSM since the early 2000s, resulting 

in numerous national, continental, and global DSM products. They emphasized the need to 

refine uncertainty assessment methods and intensify soil data collection. Regional or local-

level implementation, increased investment in soil mapping, and capacity-building initiatives 

are recommended. The article highlights DSM advancements in countries like Scotland, Chile, 

Madagascar, France, Brazil, India, and Belgium. While not detailing DSM methodology, it 

highlights the use of ancillary information and environmental data to improve accuracy. It also 

mentions challenges in applying uncertainty theory from pedometricians to sparse DSM 

datasets. Zhang et al. (2017) provided an extensive review of the progress in DSM over the 

past decade, emphasizing advancements in legacy soil data, environmental covariates, 

sampling, predictive models, and applications. The paper acknowledges existing challenges 

and opportunities for future development. Machine learning algorithms, as highlighted by 

Wadoux (2020), offer a new approach to modeling soil attributes and environmental factors, 

leading to improved predictive accuracy. Wadoux (2020) stresses the importance of combining 

machine learning models with plausibility, interpretability, and explain ability, integrating soil 

scientists' expertise with predictive models. 
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Collectively, these studies highlight the evolving domain of DSM, with a broader range of 

mapped soil attributes and innovative methodologies. This research contributes to advancing 

sustainable soil management and provides valuable insights for various stakeholders. As DSM 

continues to mature, addressing challenges and embracing emerging technologies will further 

improve its accuracy and effectiveness. 

 

 

1.6.  SOC mapping and DSM approach  

1.6.1 .  SOC and its importance  
 

Soils are the largest terrestrial carbon reservoir, containing both SOC and soil inorganic carbon 

(SIC) components. SOC represents the measurable fraction of organic carbon within soil 

organic matter (SOM), a diverse carbon reservoir that includes fine fragments of litter, 

microbial biomass, and products of microbial decay and other biotic processes. This organic 

matter comprises simpler compounds like sugars and polysaccharides. SOC content varies with 

soil type and landscape, yet it plays a crucial role in controlling the physical, chemical, and 

biological processes of soil (Jansson et al., 2010; Perlata et al., 2022). 

 

Soil provides essential ecosystem services, including food production, water infiltration, and 

disturbance regulation. Additionally, it regulates greenhouse gases, reduces nutrient export, 

controls pests, supports biodiversity, and stores carbon. This carbon storage is vital for 

regulating the global carbon cycle and combating climate change (Baer & Birgé, 2018). 

Consequently, soil is a key natural resource for achieving the Sustainable Development Goals 

(SDGs). 

 

Improving soil management practices can enhance its carbon sequestration capabilities, can be 

useful to remove carbon from the atmosphere annually through optimized soil management 

(Baveye et al., 2023). SOC is an indicator of soil health and correlates with various soil 

services, especially climate change mitigation. However, the process of soil carbon 

sequestration and its capacity to draw carbon from the atmosphere is challenging. Many private 

carbon finance programs focus on agricultural soils, yet increasing soil carbon stocks takes 

decades, as soils eventually reach an equilibrium where no additional carbon can be stored. 

The rate and extent of carbon storage at this equilibrium are influenced by soil characteristics 

such as pH and texture. Thus, precise information about soil properties is crucial. This 

information is essential for implementing sustainable management practices that reduce 

atmospheric greenhouse gas concentrations and maintain soil carbon storage. Consequently, 

the availability of SOC data is intricately linked to achieving SDGs. Additionally, SOC serves 

as an indicator for monitoring shifts in land and soil quality. A decline in SOC leads to a 

decrease of  food security, public health, clean water access, climate regulation (Lorenz et al., 

2019). 

 

Traditional SOC mapping methodologies often rely on "class matching", where average SOC 

values for each class (e.g., soil type) are derived using national maps or other spatial factors 
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like land use category, climate type, and biome (Lettens et al., 2004). This approach is useful 

when specific spatial coordinates for the source data are unavailable. However, employing 

machine learning models within the framework of DSM offers more effective approach for 

modeling and mapping SOC. This methodology generates precise and comprehensive data on 

the spatial distribution of SOC, elucidating the environmental factors influencing SOC storage 

and distribution in soil.  

 

1.6.2. State of art of SOC mapping  

The GlobalSoilMap project, initiated in 2006 and formalized in 2010, aimed to produce soil 

property information at 100-meter spatial resolution worldwide. This project provided vital 

specifications for digital mapping of soil properties, including soil carbon. Additionally, the 

Global Soil Partnership (GSP) and the Intergovernmental Technical Panel on Soils (ITPS) 

undertook the development of the Global Soil Organic Carbon map (GSOCmap) in the top 30 

cm of soils at one-kilometer spatial resolution, an integral part of the Global Soil Information 

System (GLOSIS).  

 

In recent years, the field has witnessed a surge in research aimed at optimizing SOC prediction 

using the DSM paradigm, a systematic approach to digitally map SOC concentration and stock. 

Researchers have delved into a multitude of environmental covariates and predictive 

algorithms, seeking the most accurate predictions. Notably, they have shifted from Linear 

Models towards Machine Learning (ML) techniques. Hybrid models within the Regression 

Kriging (RK) framework have shown impressive performance. Among the ML techniques, 

Random Forest (RF) has emerged as a standout performer, surpassing Multiple Linear 

Regression (MLR) and others in various studies. The toolbox of competitive techniques also 

includes Cubist, Neural Network (NN), Boosted Regression Tree (BRT), Support Vector 

Machine (SVM), and Geographically Weighted Regression (GWR). 

 

The studies have made substantial progress in identifying crucial environmental covariates for 

SOC mapping. Those representing organism/organic activities have frequently featured in the 

top five covariates, followed closely by climate and topography variables. Climate, in 

particular, has been instrumental in determining SOC levels at regional scales, along with 

parent materials, topography, and land use. However, for finer-scale mapping, such as at the 

farm or plot level, land use and vegetation indices have taken precedence in predicting SOC 

variations. To strengthen the credibility of these digital maps, validation has been a key focus, 

with 41% of the studies estimating spatially explicit prediction uncertainty (Piikki et al., 2021). 

While only a fraction (9.2%) of studies have performed external validation, most have 

employed data-splitting and cross-validation techniques. This ongoing journey has brought us 

closer to achieving precise and comprehensive SOC maps, thereby advancing our 

understanding of this critical soil attribute (Piikki et al., 2021) 

. 

 

Despite the studies for SOC stock digital mapping in the recent years, we still face a huge gap 

of information and data lack, and from the analysis of the literature we may confirmed that the 
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use of DSM approach to map soil properties, in particular SOC in mountainous environment, 

is rare, for that the aims of this thesis are:  

 

• the use of machine learning models to predict the spatial distribution of SOC content 

and SOC stock, mainly in mountainous areas at a local scale, as a DSM approach.  

• Find a suitable ML model to predict the spatial distribution of SOC in these 

environment. 

• Understand the environmental factors that influence the spatial distribution of SOC in 

mountainous and uplands environments. 
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Uncertainties in an Alpine Valley (Northern Italy) Using 

Machine Learning Models 
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Abstract: In this study, we conducted a comprehensive analysis of the spatial distribution of soil
organic carbon stock (SOC stock) and the associated uncertainties in two soil layers (0–10 cm and
0–30 cm; SOC stock 10 and SOC stock 30, respectively), in Valchiavenna, an alpine valley located in
northern Italy (450 km2). We employed the digital soil mapping (DSM) approach within different
machine learning models, including multivariate adaptive regression splines (MARS), random forest
(RF), support vector regression (SVR), and elastic net (ENET). Our dataset comprised soil data from
110 profiles, with SOC stock calculations for all sampling points based on bulk density (BD), whether
measured or estimated, considering the presence of rock fragments. As environmental covariates
for our research, we utilized environmental variables, in particular, geomorphometric parameters
derived from a digital elevation model (with a 20 m pixel resolution), land cover data, and climatic
maps. To evaluate the effectiveness of our models, we evaluated their capacity to predict SOC stock
10 and SOC stock 30 using the coefficient of determination (R2). The results for the SOC stock 10 were
as follows: MARS 0.39, ENET 0.41, RF 0.69, and SVR 0.50. For the SOC stock 30, the corresponding
R2 values were: MARS 0.45, ENET 0.48, RF 0.65, and SVR 0.62. Additionally, we calculated the root-
mean-squared error (RMSE), mean absolute error (MAE), the bias, and Lin’s concordance correlation
coefficient (LCCC) for further assessment. To map the spatial distribution of SOC stock and address
uncertainties in both soil layers, we chose the RF model, due to its better performance, as indicated
by the highest R2 and the lowest RMSE and MAE. The resulting SOC stock maps using the RF model
demonstrated an accuracy of RMSE = 1.35 kg m−2 for the SOC stock 10 and RMSE = 3.36 kg m−2 for
the SOC stock 30. To further evaluate and illustrate the precision of our soil maps, we conducted an
uncertainty assessment and mapping by analyzing the standard deviation (SD) from 50 iterations
of the best-performing RF model. This analysis effectively highlighted the high accuracy achieved
in our soil maps. The maps of uncertainty demonstrated that the RF model better predicts the SOC
stock 10 compared to the SOC stock 30. Predicting the correct ranges of SOC stocks was identified as
the main limitation of the methodology.

Keywords: SOC stock; DSM; machine learning models; uncertainty mapping

1. Introduction

Soil is an essential resource that offers numerous benefits for sustainable development,
especially in the domains of food security and environmental regulation. One of its critical
services is the storage of soil organic carbon (SOC), which is pivotal for both climate
change mitigation and adaptation. Moreover, SOC plays a vital role in water management,
enhancing soil capacity to address both floods and droughts [1,2]. Poor soil management
can lead to significant disruptions in soil parameters and characteristics, resulting in
changes in SOC stocks. These changes, in turn, can cause the release of substantial amounts
of carbon into the atmosphere. Sequestering carbon in the soil is a valuable method for
controlling greenhouse gas levels in the atmosphere [3]. Studies indicate that this approach
has the potential to capture approximately 0.8 to 1.5 billion metrics tons of carbon annually.
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As a result, there is a high demand for accurate information and maps explaining the actual
SOC stock and the soil capacity for SOC sequestration [4].

Mountain ecosystems are characterized by a substantial amount of biological and
cultural diversity, and they play a crucial role in providing essential services such as water
and food security, and energy generation, as well as aesthetic and spiritual qualities [5].
According to the IPCC’s WGII Sixth Assessment Report on Mountains [6], it is assumed
that these ecosystems are extremely vulnerable to global changes. Mountainous soil is
naturally vulnerable, and it is increasingly sensitive to changes in the environment [7].
Understanding the spatial distribution of SOC stocks in alpine mountains is essential
for developing sustainable management strategies and environmental policies that can
effectively address future global changes. However, this task remains difficult due to the
complex morphology of these environments, which makes the collection of soil data chal-
lenging. Furthermore, comprehensive soil maps and information in the alpine mountains
are scarce [8]. In Italy, where a significant portion of the land area is covered by mountains,
the monitoring and assessment of the functionality of mountain soils becomes crucial.
Detailed and accurate maps of SOC ensure that local and global decision makers have
access to precise information. From a pedological perspective, soils in the Italian Alps
show diversity due to variations in factors related to pedogenesis [9]. These factors are
associated with the differing landscape, including diverse climatic conditions, geological
substrates, geomorphological processes, and the heterogeneity in land use and land cover
(LU/LC) [10].

The development of geographic information systems (GISs), remote sensing, and math-
ematical algorithms have improved the techniques of digital soil mapping (DSM), which is
suitable for mapping soil parameters in mountainous areas. In recent years, there has been
a surge in studies that focus on mapping soil properties by applying various strategies such
as geostatistics and machine learning [11]. These methodologies have sought to overcome
the limitations of traditional methods, which are time-consuming and labor-intensive and
cannot capture the real variability of soil properties in complex environments. The machine
learning models can be used to gain an understanding of the complex interactions between
soil properties and environmental factors and generate accurate predictions and maps [12].
In scientific research focused on SOC in alpine mountains, the primary approach involves
examining the connections between SOC and environmental factors. These factors typically
include topography, vegetation cover, and climate parameters, which serve as the main
variables employed in DSM techniques. Yang et al. in 2016 employed boosted regression
trees (BRTs) and random forest (RF) to model and map the SOC content of the Tibetan
plateau. The two models showed good results, explaining about 70% of the SOC spatial
distribution [13]; vegetation cover and the topographic variables were the most important
covariates for SOC prediction. The mapping of SOC stock of several land cover types was
carried out in the Bernese Alps, Switzerland, using different approaches [7]. The results of
this research showed that, except for Regression Kriging, all interpolation approaches ex-
hibited little variability in the RMSE of the expected SOC stock [7]. The spatial distribution
of SOC stock in the Andossi plateau, Valchiavenna, was mapped at high resolution using
Regression Kriging with geomorphometric parameters. A detailed vegetation map was
produced to improve the model performance [14]. The geomorphometry influences soil
formation and the storage of SOC in mountainous environments because it controls many
factors of pedogenesis; for example, in the upper part of the slope, water and soil sediment
(including organic matter) are lost without being compensated. On the other hand, at the
foot of the slopes, sediment inputs lead to soil accretion. Southern exposures are warmer
and drier, and vegetation tends to be thermophilic or xerophilic, while northern exposures
are colder [15].

The diversity of geomorphometric conditions influences the spatial distribution of soil
properties; therefore, geomorphometry is a mandatory variable in DSM methodology. Most
of the research cited [8,14] pointed out the need to enhance mapping methods to gather
precise and comprehensive data on mountainous areas [1,16,17].
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Uncertainty mapping is a critical step in the DSM approach, although it is not yet
used in all DSM papers. Soil maps are a simplified representation of a more complex
reality. As a result, no model is error-free, and no map is 100% accurate [18,19]. The causes
of uncertainty in DSM are diverse; we may highlight four major sources of uncertainty:
(a) errors related to soil sampling and laboratory measurements; (b) uncertainty of soil
geospatial position measurement; (c) uncertainties in covariate calculation; and (d) errors
linked to modeling approaches. These lead to several errors in DSM outcomes. Statistical
analyses of uncertainties and their mapping are strong tools for assessing map errors; they
are critical for soil map users since they provide additional information about the error
average that should be considered during the decision-making process [19–21].

The main objectives of our research were to compare four machine learning models
as DSM techniques, using geomorphometric and climatic variables, as well as land cover
as covariates. To: (i) map the SOC stocks of two layers (0–10 cm: SOC stock 10 and
0–30 cm: SOC stock 30), (ii) estimate the associated uncertainties in an alpine valley, as
well as understand the spatial distribution of SOC stock and the uncertainties within each
land cover.

2. Materials and Methods
2.1. Study Area

Valchiavenna is a valley in the Central Alps, located in the province of Sondrio, Lom-
bardy. It has a north–south orientation and covers an area of 450 km2; it is characterized by
a varied landscape; the elevation changes from around 200 to 3279 m a.s.l. The morphology
of the valley is linked to the action of water and glaciers, which act at different times and
in different ways. Glacial erosion is responsible for the transverse U-shaped profiles of
the valley and its hanging sides. In addition, fluvial erosion forms have influenced and
frequently re-shaped previous glacial morphologies. Valchiavenna has a considerable
range of lithologies with crystalline–acidic character, mainly of metamorphic origin, and
subordinately igneous rocks (late-Alpine Pluton intrusive body of Val Màsino and Val
Bregaglia), as well as mesozoic cover and the group of mafic and ultramafic rocks (ophi-
olitic complex). In restricted areas (Pian dei Cavalli and the Andossi plateau), there are
outcrops of sedimentary rocks of carbonate type. According to the classification of climates
by Köppen (1936), the climate of Valchiavenna is Cfb (humid temperate with maximum
summer rainfall), with an average annual precipitation in the range of 1000–1400 mm.
The average annual temperature at the foot of the valley is 12.8 ◦C, as measured by the
Chiavenna meteorological station at 333 m a.s.l.; in the upper part of the valley, at Montes-
pluga station (1908 m a.s.l.), the mean annual temperature drops to 2.7 ◦C. Valchiavenna
has a high diversity in terms of vegetation and land use, from meadows and arable land
in the lower parts to oak forests, coniferous forests, and finally, alpine grasslands at high
altitudes. Various soil types are present in the study area, classified as: Leptosols, Regosols,
Cambisols, Umbrisols, Podzols, and Histosols (according to the World Reference Base
(WRB) for Soil Resources) [22]. The soils in this study area are mostly coarse-textured
(sandy loam; sometimes loam or loamy sand), often with a high content of rock fragments.
In general, soil thickness ranges from 20 to 90 cm.

2.2. DSM Approaches in SOC Stock Mapping

To achieve our objectives, we performed the following steps:

• Soil survey and laboratory analyses.
• Calculation of SOC stock at each sampling point.
• Calculation of environmental covariates.
• Preparation of the covariate maps (with a spatial resolution of 20 × 20 m).
• Extraction of the environmental covariates at each soil sampling point.
• Environmental covariates selection, using a statistical correlation matrix.
• Comparison of different machine learning models to estimate the SOC stocks.
• SOC stock mapping.
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• Obtaining estimation uncertainty maps.

2.2.1. Soil Survey and Data Collection Strategy

The sampling was scattered across 18 topographic transects, chosen according to the
physical nature of the study area. The main sampling transects were on the north–south
axis, corresponding to the main orientation of Valchiavenna, and in transverse directions
(generally east–west) along its secondary valleys (Figure 1). The position of each soil profile
was chosen based on elevation (approximately every 300 m). Since changes in altimetry
across the topographic transects are associated with changes in the landscape (geomor-
phometry and vegetation), this sampling method provides an accurate representation of
the valley landscape and its pedological variability. All the sampled soil profiles were
georeferenced using a high-accuracy GPS. After the description of the profile, soil samples
were collected from each horizon. At the end of the pedological survey, 110 soil profiles
were described, for a total of 496 soil samples. The density of sampling points by km2 is
represented in Tables S3 and S4 (see Supplementary Materials).
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2.2.2. Laboratory Analysis Methods

The soil samples collected in the field were air-dried and sieved through a 2 mm sieve.
The standard laboratory analyses were performed on the fine earth.

Soil pH was measured potentiometrically in a soil-to-water ratio of 1:2.5. The or-
ganic carbon was determined via oxidation with K2Cr2O7 in an acid environment: for
samples very rich in organic matter and those taken from Histosols, we measured OM via
incineration in a muffle furnace at 550 ◦C (LOI). The sieving and sedimentation method
(pipette method) was used to obtain textural fractions: coarse sand (2.0–0.1 mm), fine sand
(0.1–0.05 mm), silt (0.05–0.002 mm), and clay (<0.002 mm).

As the main objective of this work was to map the SOC stock by soil layers, the
calculation per unit area was carried out as follows: the SOC content and that of the rock
fragments (described in the field) of each soil layer was calculated; then the bulk density
of the fine earth of each layer (BD1 and BD2, 0–10 cm and 10–30 cm depths, respectively;
Equations (1) and (2)) was estimated using pedotransfer functions (unpublished) obtained
in a detailed study of soils on the Andossi plateau (upper Valchiavenna). After obtaining
these data, we calculated the SOC stock of each soil layer using Equation (3).

BD1 = −0.293ln(SOC) + 1.253
(

n = 110; R2 = 0.08
)

(1)

BD2 = −0.242ln(SOC) + 1.2002
(

n = 66; R2 = 0.66
)

(2)

SOC stock
(

kgm−2
)
=

(
1 − vrf

100

)
× ht × BD × SOC

10
(3)
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where: SOC = organic carbon content (%); BD = bulk density (g cm−3); ht = horizon
thickness (cm); and vrf = volumetric rock fragments content (%).

2.2.3. Environmental Covariates

The environmental variables used as covariates are illustrated in Table 1. The covari-
ates were calculated with different methodologies and transferred to raster layers with a
20 m spatial resolution in a GIS environment, using the open-source software QGIS 3.16.1.
We used three different types of environmental covariates, geomorphometric, climatic, and
land cover, as follows:

• Geomorphometric covariates: To calculate these covariates, we used the digital terrain
model (DTM), delivered from the regional geo-portal of Lombardy (www.geoportale.
regione.lombardia.it (accessed on 15 October 2022), and extracted 16 morphometric
parameters. The calculation was carried out in QGIS 3.16.1 using the integrated
SAGA tool.

• Climatic covariates: We used mean annual air temperature (T) and precipitation (P)
delivered from WorldClim (www.worldclim.org (accessed on 5 January 2023) with
a spatial resolution of 1 km2. We applied a statistical downscaling technique using
a 30-year time series of climatic data registered at seven meteorological stations in
Valchiavenna, to obtain climatic covariate maps with the same spatial resolution as the
other environmental variables (20 m). Working in an alpine valley, the downscaling
technique was based on statistical correlations between climatic variables and eleva-
tion, and also with latitude and longitude [23]. The results of the correlations were
used to obtain T and P maps of the area, correcting the estimated values for slope and
exposure, which have a direct impact on microclimatic conditions in mountainous
environments [24]. The equations used for climate downscaling are explained in the
Supplementary Materials (Equations (S1)–(S5)).

• Land cover covariates: We used the most recent land cover maps of Lombardy, related
to agricultural and forestry use (DUSAF 7.0) [25], and identified six land cover classes
in the study area: broadleaf forests, coniferous forests, grasslands (low elevation),
prairies (high elevation), peatlands, and rocky soils.

Table 1. Main statistics of climate and geomorphometric covariates extracted from the 20 m DTM.

Covariates Names Abbreviations
Main Statistics

Min Mean Median Max SD

Elevation (m) Elv 197 1558.57 1664.21 3262 723.48

Slope (◦) Slp 0 31.75 32.93 80.08 15.40

Northness Index N_ind −0.99 −0.14 −0.31 1 0.74

Eastness Index E_ind −0.99 −0.05 −0.07 0.99 0.67

Profile Curvature Pr_cur −0.277 −0.000118 −0.00003 0.208 0.007

Plan Curvature Pl_cur −14.224 0.000095 0.00062 8.503 0.045

Min Curvature Min_cur −0.666 −0.010872 −0.00515 0.242 0.023

Log Curvature Log_cur −0.919 −0.000248 −0.00004 0.680102 0.039003

General Curvature Gen_cur −1.426 0.000063 0 1.167034 0.07111

Max Curvature Max_cur −0.309 0.010903 0.00539 0.483 0.022

Transversal Curvature Tra_cur −0.773112 0.000311 0.00007 0.829 0.04

Total Curvature Tot_cur 0 0.000986 0.00015 0.319 0.003
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Table 1. Cont.

Covariates Names Abbreviations
Main Statistics

Min Mean Median Max SD

Tang Curvature Tan_cur −0.269201 0.000099 0.000071 0.298031 0.014142

Terrain Ruggedness Index TRI 0.0013 11.09 10.27 94.32 7.119

Terrain Position Index TPI −81.178 0.0055 −0.0012 65.2903 4.351

Flow Accumulation Fl_Acc 0 106.35 3 61576 1109.12

Vector Ruggedness Measure VRM 0 0.09 0.06 0.75 0.06

Topographic Wetness Index TWI 2.808 7.944 7.324 19.311 2.715

Mean annual Temperature (◦C) T 1.62 4.97 3.12 14.61 3.74

Mean annual Precipitations (mm) P 514.8 1278.56 1268.6 1531.1 132.39

2.2.4. Covariate Selections and Modeling Approaches

We used the statistical variable selection strategy, which is a mandatory step in DSM,
to improve the models’ performance and guard against noise and overfitting problems.
Firstly, we created a correlation matrix between the different continuous variables, and
when pairs showed a correlation coefficient >0.8 we removed one member of the pair. We
chose this strategy as it is not a time-consuming methodology with a good performance.
All the categorical variables (land cover) were used in the modeling by using binary (0/1)
indicator variables for each category.

To understand the differences in the distribution of SOC stock according to the land
cover, we used the one-way ANOVA with the post hoc Tukey HSD test (Tables S1 and S2).
The statistical analysis and modeling were performed using R software version 4.3.0
(R Development Core Team, 2021). For the DSM approach, we built different machine
learning models: MARS, ENET, RF, and SVR using the “Caret” and “Train” packages of
the R software version 4.3.0 [26]. We also applied hyperparameter tuning to automatically
select the best model structures according to the lowest prediction errors. We applied
data standardization (Z score normalization) to models (SVR and ENET) that require this
preprocessing step. For the hyperparameter optimization, we applied the grid search for
each algorithm:

• Multivariate adaptive regression splines (MARS). In 1991, Friedman unveiled a new
methodology that amalgamated linear regression with spline mathematical modeling
through binary recursive partitioning [27]. This method constructs a model step by
step, assessing variable importance and regularization to unimportant covariates.
MARS is flexible, identifying complex nonlinear interactions between input variables,
and it requires minimal pre-processing. Until now, the MARS model has not been
widely applied in soil property prediction [28,29].

• Elastic net model (ENET). The model was introduced by Zou and Hastie in 2005 [30].
Similar to Lasso and Ridge Regression, it employs a regulation and variable selection
technique, choosing the most advantageous combination of the two models. For
studies with few observations and a high number of predictors, it is advised to use
this model [30–32].

• Random forest (RF). Proposed by Breiman in 2001 [33], RF is the most used machine
learning algorithm in DSM, as it has proven effective in mapping soil properties over
an extensive variety of data sources and scales of soil heterogeneity. The model uses
decision trees for training, combining them to produce single predictions for each
observation in the datasets using an out-of-bag (OOB) strategy [34].

• Support vector machine (SVM). An effective machine learning method for mapping
soil properties, largely used by soil mappers in recent years [35,36]; it is a kernel-
based model, highly used to analyze nonlinear relationships over a high-dimensional
induced feature space. SVM uses decision surfaces specified by a kernel function [37].
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In the DSM approach, SVM is frequently used for classification, but it is also used for
regression predictions.

2.2.5. Prediction Validation and Uncertainties Mapping

A 10-fold cross-validation was employed to assess the model. In DSM, cross-validation
is frequently employed since it splits the data into several training and test datasets.
Moreover, it is advisable to utilize the cross-validation technique when conducting studies
in regions where data collection is limited, such as mountainous areas [38,39]. We employed
the following metrics to validate the models: the mean absolute prediction error (MAE), the
root-mean-squared error (RMSE), the coefficient of determination (R2), Lin’s concordance
correlation coefficient (LCCC), and bias. To map the uncertainties, we used the standard
deviation (SD) of 50 runs, as proposed by the Global Map Project [19,20,34]; in addition, the
zonal statistics was applied to understand the uncertainty distribution under the different
land cover types. To better grasp how SOC stock is spread out across the valley, we
examined its distribution based on certain geomorphometric parameters like slope, aspect,
and elevation. We created boxplots to show the SOC stock within various classes of these
parameters (Figures S6–S8 in Supplementary Materials).

3. Results
3.1. SOC Stock Statistical Analysis

The SOC stock values at 10 and 30 cm soil layers are summarized in Table 2. The
results illustrate that the soils in our study area store a significant amount of SOC, especially
in the top 30 cm, where the average is 8.72 kg m−2. The mean SOC stock for 30 cm is
approximately twice as high as that for 10 cm, which averaged 4.29 kg m−2. The SD results
reveal a high variability in the SOC stock data, indicating a high spatial heterogeneity in
the distribution of SOC stock in our study area. This is a result of the high pedodiversity
characterizing the Valchiavenna valley.

Table 2. Analytical data of Valchiavenna soils.

Soil Properties
Statistical Metrics

Min 1st Qu Median Mean 3rd Qu Max SD

SOC stock 10
(kg m−2) 0.02 2.88 4.00 4.29 5.55 9.31 2.10

SOC stock 30
(kg m−2) 0.03 5.13 7.27 8.72 10.93 29.90 5.51

The correlation matrix of the SOC stock with the environmental covariates is shown in
Figure 2. Many variables are highly correlated, as, for example, temperature and elevation.
Notably, parameters such as Pl_cur, Max_cur, and TPI exhibit significant correlations.
Additionally, climatic factors such as T and P are shown to exert control over the SOC
stock. It is important to note that while the Pearson correlation coefficient indicates this
relationship, its capacity to explain the complex statistical dynamics of the relationship
between SOC stock and the environmental parameters remains limited.

The boxplot of the distribution of SOC stock by land cover types (Figure 3) shows
that by far the highest SOC storage is found in peatlands, while the lowest is found in
high-altitude, thin, and skeletal soils. In the other cases, SOC storage is comparable, but that
of soils in coniferous forests is on average lower than that of broadleaf forests and natural or
cultivated grasslands. The results of the ANOVA analysis confirm this statistically: Tukey’s
HSD test shows that the greatest differences are found between rocky soils and peatlands
(Tables S1 and S2).
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quantile (Q1, Q3), maximum, minimum values, and outliers.

3.2. Model Validation and SOC Stock Prediction

The model validation results, obtained from an average of 50 training trials of the
models, are shown in Table 3 and Figures S2 and S3 (see Supplementary Materials). For
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both soil layers, the RF model demonstrated the best validation results, with the highest R2

and LCC and the lowest RMSE, MAE, and bias close to zero. However, the errors of SOC
stock prediction are higher for the SOC stock 30 (MAE = 2.48 kg m−2), compared to the
SOC stock 10 (MAE = 1.10 kg m−2).

Table 3. Validation performance of the different investigated machine learning models.

Model Performance
Machine Learning Models

MARS ENET RF SVR

SOC stock 10
(kg m−2)

RMSE 1.63 1.61 1.35 1.50

R2 0.39 0.41 0.69 0.50

MAE 1.25 1.23 1.10 0.98

LCCC 0.55 0.56 0.66 0.59

Bias 0.75 −1.25 0.01 −0.025

SOC stock 30
(kg m−2)

RMSE 3.47 3.97 3.36 3.46

R2 0.45 0.48 0.65 0.62

MAE 2.67 3.01 2.48 2.25

LCCC 0.62 0.64 0.73 0.70

Bias 0.52 −0.67 0.03 −0.56

The SVR model also showed good results, better than for ENET and MARS, which
were almost equal in performance. However, the results of bias illustrated that ENET
notably underestimated the SOC stock, while the MARS model tended to overestimate it.

The results showed that the RF model performed well in predicting SOC stock in
both soil layers, with particularly good results in the 0–10 cm compared to the 0–30 cm
layer. When we compared MAE with the average SOC stock values (0–10 cm: 4.29 kg m−2,
0–30 cm: 8.72 kg m−2), the RF model displayed a 26% error rate for SOC stock at 10 cm
and a 28% error rate for SOC stock at 30 cm. Interestingly, the SVR consistently showed
better results of MAE compared to the RF model. The results of bias illustrated that
while ENET model highly underestimate the SOC stock, the MARS model show an
important overestimation.

The order of importance of the predictors (Figure 4 and Figures S4 and S5 in
Supplementary Materials) changes from one model to another, depending on the type of
model and its structure. The MARS and ENET models used fewer variables than RF and
SVR. In the RF model, land cover was the most important predictor, followed by climate
parameters and several geomorphometric variables (mainly curvatures).
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soils; GR: grasslands; PR: prairies; BF: broadleaf forests; CF: coniferous forests): (a) SOC stock 0–10 cm;
(b) SOC stock 0–30 cm.

33



Land 2024, 13, 78 10 of 16

3.3. Maps of SOC Stock and Uncertainty Estimation

We employed the RF model to represent the spatial distribution of SOC stock and the
associated uncertainties (Figure 5) since it produced the best prediction results (Table 3).
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The prediction maps of SOC stocks show a similarity in the spatial pattern of the two
soil layers considered. The central region of the valley has a higher storage of organic
carbon: these are areas covered by broadleaf forests, coniferous forests, and grasslands,
located at medium altitudes. The lowest values correspond to high-altitude and sloping
areas, where the vegetation is sparse, and the soil is thin and rich in rock fragments (Figures
S6 and S7 in Supplementary Materials). The valley floor areas show a different behavior:
for the 0–10 cm layer they have stock values comparable to those of the forest areas, while
for the 0–30 cm layer they have significantly lower stockage. This difference arises from
the management of soils on the valley floor, which are alternated between grassland and
arable land. Mechanically ploughing the soil results in a substantial loss of organic matter
due to oxidation. Additionally, soils managed as grassland are also subjected to ploughing
after a limited number of years. The value of the SOC stock, estimated cartographically, is
obviously greater for the 0–30 cm layer (2.9 to 19.5 kg m−2, with an average of 7.73 kg m−2),
than for the 0–10 cm layer (0.8 to 6.8 kg m−2, with an average of 3.72 kg m−2). Comparing
these estimations to the observed data in Table 2, the average SOC stock across the entire
area is lower than the observed average SOC stock values.

The maps displaying the uncertainty (obtained as the variance from 50 repetitions of
the estimates) of SOC stock 10 has a range between 0.01 and 0.15 kg m−2. For SOC stock
30 the error varies between 0.04 and 0.54 kg m−2. These results indicate that there are
generally low levels of uncertainty, underscoring the model’s stability.

A statistical analysis of the uncertainty distribution across different land cover types,
as shown in Figure 6, reveals that errors in SOC stock predictions tend to be higher at
elevated altitudes, especially in areas with significant slopes and rocky soils.
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4. Discussion
4.1. Models’ Performance

The performance of machine learning models can vary because each model operates
differently, due to its unique structure. The choice of variables, which differs from model
to model, has a significant impact on how well the model performs. For instance, in the
MARS model, which presented the least accurate predictions, only a few variables were
chosen, resulting in a loss of information about the relationship between SOC stock and
environmental factors. In contrast, RF and SVR used a more extensive set of variables,
leading to much better model performances. Our research obtained results consistent with
previous scientific work on predicting and mapping soil properties such as SOC stock,
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demonstrating the robust performance of the RF model. In complex tropical landscapes,
RF rivalled the predicting power of the boosted regression tree (BRT) algorithm, skillfully
handling data variability and mitigating irrelevant factors [40]. Similarly, in a study using
Sentinel-1 and Sentinel-2 for soil mapping, RF competed effectively among machine learn-
ing methods for SOC prediction, highlighting its promise when coupled with multi-source
sensor data [41]. In a study focused on employing machine learning for SOC prediction in
agriculture, XGBoost demonstrated exceptional accuracy. In the same study, the RF model
also performed admirably. Furthermore, the integration of Sentinel-1 and Sentinel-2 data
significantly enhanced the precision of these predictions [42]. Another research project
focused on predicting SOC content using RF, k-nearest neighbors (kNNs), SVM, artificial
neural network (ANN), and ensembles. RF stood out, with excellent predictive perfor-
mance [43]. Similarly, the work of Zhang et al. (2022) aims to map the SOC distribution
in China using machine learning; when comparing models, RF emerged as superior, with
higher R2 and lower RMSE values across soil depths (0–10, 10–20, 20–30, and 30–40 cm) [32].

4.2. SOC Stock Spatial Distribution: The Main Drivers and Uncertainties

The results of the RF model show that the main environmental drivers of SOC stocks
in Valchiavenna are land cover types, climate, and geomorphometric variables (slope, cur-
vatures, and TWI). These results are in agreement with previous studies [16,17], which have
shown that SOC stocks in mountain environments are strongly influenced by vegetation
cover and climatic conditions.

Previous research has shown that the type of land cover and habitat significantly
influence the storage of SOC stock in alpine mountains. Consequently, the type of vege-
tation is a crucial parameter because it directly impacts the storage of organic carbon in
the soil [44]. Our results illustrate that peatlands, grasslands, and coniferous forests can
store considerably more carbon in the soil compared to broadleaf forests and prairies. Our
results also show that the SOC stock is significantly influenced by climatic conditions. Air
temperature has a strong influence as it controls the rate of mineralization of organic matter
in the SOC balance and therefore affects the output rate. In alpine ecosystems, there is
a negative relationship between temperature and SOC storage, at least beyond the belt
of natural grasslands, where thin and rocky soils have only sparse and discontinuous
vegetation, in addition SOC stocks increase with elevation in these areas [45]. As a result
of ongoing climate change, increases in temperature are expected to reduce SOC storage.
Mitigation measures favoring carbon sequestration strategies (protection or restoration of
peatlands, afforestation, sustainable grassland cultivation, etc.) should focus on the most
fragile mountain ecosystems [44,46].

Precipitation also controls the dynamics of SOC storage in mountain soils: it is es-
sential for net primary production (NPP) and has an impact on soil moisture, pH, and
respiration [47]. However, research assessing the impact of changes in precipitation on the
soil SOC budget is still limited [47,48]. Geomorphometric and topographic factors have an
important influence on SOC stock spatial distribution, although their impact is generally
less significant than climatic factors. The importance of geomorphometrical predictors on
the spatial distribution of SOC stock differs between the top 10 cm and the top 30 cm of
soil. For example, Figure 3 illustrates that the wetness index has a more notable effect on
SOC stock distribution in the upper 10 cm compared to the upper 30 cm, as it is related
to the soil water content, which influences indirectly the SOC stock. Slope and aspect
control the solar radiation and soil moisture: steeper slopes often experience higher rates of
erosion, which can result in reduced soil development and SOC storage; aspect influences
the exposure to sunlight, affecting vegetation growth and decomposition rates, which,
in turn, impact SOC accumulation. The landforms, such as the curvatures, control the
zones of SOC erosion and deposition. Previous research has already demonstrated the
relationship between SOC stock variability and geomorphometry [17,36,49]. The SOC stock
maps and analyses of its distribution by topographical parameters (Figures S6–S8) confirm
a strong link between topographic attributes and SOC stock levels. Specifically, elevations
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between 1500 and 2500 m show higher SOC stocks, declining beyond 2500 m (Figure S6).
Additionally, areas with steep slopes tend to have a lower SOC stock (Figure S7). Our study
highlights those regions situated to the east and north exhibit high carbon stock (Figure S8).
These areas, characterized by the highest precipitation, the coldest temperatures of the
valley, and vegetation such as peatlands, grasslands, and coniferous forests, consistently
demonstrate elevated SOC storage (Figure S1).

By examining the uncertainty maps, it appears that there is a correlation between
topographical parameter attributes and prediction errors. Higher altitudes with significant
slopes and rocky soils exhibit greater prediction errors, particularly in regions with complex
topography and shallow soils prone to erosion. In contrast, valleys and low-lying areas
display lower uncertainties due to their more uniform soils. Peatlands stand out with
notably increased uncertainty, especially for SOC stock 30. This is attributed to the limited
number of peatland soils sampled and to the variability of their soil characteristics in
our study area. Further, the analysis of uncertainty distribution by land use indicates a
threefold higher uncertainty in predicting SOC stock 30 compared to SOC stock 10. This
underscores the complexity of the SOC stock prediction and highlights the need for more
data acquisition and model calibration.

It is essential to note that when comparing the SOC stock ranges depicted in the final
maps with those observed in the actual data, a noticeable trend emerges. The RF model
appears to impose a limitation on the SOC stock range. For instance, in the observed
dataset, the SOC stock 10 spans from 0.02 to 9.31 kg m−2; however, in the generated map,
this range contracts to 0.85 to 6.75 kg m−2. Similarly, examining the SOC stock 30 in the
map, the range shifts from 2.85 to 19.50 kg m−2, while in the observed data it increases
from 0.03 to 29.90 kg m−2. The differences in SOC stock ranges between the model’s maps,
and the actual data highlight the fact that the model does not perform perfectly for soils
with very high or very low SOC stock amounts. This mismatch in accuracy is due to
several factors that are partly, but not solely, due to the modeling process. The complicated
mountain landscape makes the modeling harder, and the difficulties in collecting data in
this area make the challenges higher. The complex terrain and the problems with obtaining
representative samples both contribute to this issue. The SOC stock uncertainty maps reveal
insights into predictive accuracy across diverse land covers and depths. These findings
contribute to our understanding of carbon dynamics and underscore challenges in modeling
complex terrains and land covers. Our research demonstrates that the Valchiavenna stocks
a high amount of SOC. According to EIONET-SOIL data [50], Italian soils have an average
SOC stock (0–30 cm) of 5.63 kg m−2, compared to 8.72 kg m−2 of the Valchiavenna soils in
the same soil layer; this means that the soils of this valley provide important ecosystem
services that should be taken into consideration to mitigate and adapt the impact of climate
change and that it is necessary to manage soils carefully and protect them from degradation
to avoid the loss of SOC, especially under climatic change scenarios.

5. Conclusions

The machine learning models applied in our research showed different performances,
which is important in the context of DSM approaches to better understand the suitable
modeling techniques. The RF model showed the best performance results compared to
the other models. The results highlight the crucial role that machine learning models play
in accurately capturing the complex relationships between SOC stock and environmental
factors. Our research indicates that land cover and climatic factors are the most important
predictors of SOC stock spatial distribution; geomorphometric parameters (slope, curva-
tures, and TWI) also demonstrated a significant impact in our mountainous environments.
While the machine learning application yielded promising results in predicting the spatial
distribution of SOC stock, the methodology revealed significant limitations, particularly in
accurately estimating the entire range of SOC stock values.

The future development of this work may involve enhancing data collection in areas
where uncertainties are great: the precision and accuracy of the output’s maps might be
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improved by a future data-gathering design for the models’ validation. Using additional
predictors such as parent material maps and the history of land use may also improve
the quality of the maps. The use of future projection scenarios of climate and land use
changes would be a way to include temporal data to enhance knowledge of SOC dynamics
over time in this environment, for the adoption of sustainable land management strategies.
Therefore, the next step of this work is the prediction of SOC stocks under future climate
change scenarios using machine learning and climatic models.

This study contributes to the understanding of SOC dynamics and mapping at a
local scale: the knowledge of SOC stocks can be used by decision makers to protect
regions with high actual carbon storage potential, such as mountain forests, peatlands, and
grasslands, or zones at high risk of losing SOC stock, such as the upper belts of the valley.
Finally, our research offers valuable information into the distribution of soil organic carbon
stock in mountainous areas and can be used to assess ecosystem services, environmental
management strategies, and support plans to mitigate climate change in these areas.
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Supplementary Material 

 

1. Methodology for obtaining climatic map covariates via statistical downscaling: comprehensive 

technical steps 

This supplementary section provides a comprehensive overview of the technical steps employed to 

generate climatic map covariates, as outlined in the main text. At first, we established a correlation 

between Reanalysis Temperature data from Worldclim and an elevation raster with a spatial resolution of 

1x1 km, as expressed by the following equation: 

T = -E+2333.3/174.15                               Eq S1 

Where T is the predicted annual temperature in °C and E is the elevation in m. 

Subsequently, Equation S1 was employed to predict temperature values for each individual pixel within a 

high-resolution Digital Terrain Model (DTM) of the study area, with a spatial resolution of 20 x 20 m. 

To obtain a more accurate temperature assessment, we introduced a correction approach based on 

geomorphometric attributes extracted from the DTM. This correction aims to capture the thermal 

variations controlled by the valley topography. Specifically, the correction is based on the empirical 

equations of Belloni and Pelfini (1987), which take aspect into account, supplemented by an additional 

slope factor introduced in this study. Aspect is taken into account via the Northness Index (cosine of the 

aspect in radians), allowing the K1 factor to be calculated: 

       K1 = -0.2914 x Northness Index             Eq S2 

The K2 factor is used to account for the slope: 

        K2 = 0.02 x Slope (%)                  Eq S3 

Finally, K3 (final correction) is calculated as the product of K1 and K2:  

K3 = K1 x K2                     Eq S4 

The resulting value, expressed in degrees Celsius, is then either added to or subtracted from the initial 

temperature estimation derived from the elevation-temperature regression. 

For the prediction and mapping of precipitation, a nonlinear empirical correlation between elevation, 

latitude (North coordinates), and longitude (East coordinates) was employed: 

P = (-25009.26-933.87×Long +757.44×Lat -0.0000000906×E3+0.0002959×E2-0.21628×E) Eq S5 

Where P is the predicted annual precipitation (mm), Long is the longitude (m UTM), and Lat is the latitude 

(m UTM), E is the elevation (m). 

Figure S1 shows the obtained climate maps. 
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Figure S1: Climatic maps from the downscaling approach and the land cover map: (a) temperature map; (b) precipitation map; (c) 

land cover map (DUSAF). 

 

2. Supplementary analysis of statistical results and model validation 

Table S1: Results of ANOVA (Tukey's Post-Hoc Test) for comparison of SOC stock 10 and land cover (CF: Coniferous forests; P: 

Prairies; GR: Grasslands; BF: Broadleaf forests; RS: Rocky soils; PT: Peatlands) (red for significance level <0.05). 

Land cover  CF P GR BF RS PT 

CF   0.989495 0.998613 0.999668 0.019960 0.058766 

P 0.989495   0.386496 0.999672 0.008412 0.000747 

GR 0.998613 0.386496   0.936488 0.000211 0.011557 

BF 0.999668 0.999672 0.936488   0.019843 0.011353 

RS 0.019960 0.008412 0.000211 0.019843   0.000121 

PT 0.058766 0.000747 0.011557 0.011353 0.000121   
 

Table S2: Results of ANOVA (Tukey's Post-Hoc Test) for comparison of SOC stock 30 and land cover (CF: Coniferous forests; P: 

Prairies; GR: Grasslands; BF: Broadleaf forests; RS: Rocky soils; P: Peatlands)(red for significance level <0.05). 

Land cover CF P GR BF RS PT 

CF 
 

0.999937 0.996404 0.999864 0.173845 0.000202 

P 0.999937 
 

0.770880 0.990456 0.061761 0.000120 

GR 0.996404 0.770880 
 

0.999943 0.004853 0.000121 

BF 0.999864 0.990456 0.999943 
 

0.056134 0.000152 

RS 0.173845 0.061761 0.004853 0.056134 
 

0.000120 

PT 0.000202 0.000120 0.000121 0.000152 0.000120 
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Figure S2: Biplot of SOC stock 10 observed and predicted data: (a) RF; (b) MARS; (c) SVR; (d) ENET.  
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Figure S3: Biplot of SOC stock 30 observed and predicted data: (a) RF; (b) MARS; (c) SVR; (d) ENET.  

 

  
Figure S4: Variables importance of a) MARS and b) ENET models in the prediction of SOC stock 10 (see table 1 for the variables 

names abbreviations). 
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Figure S5: Variables importance of a) MARS and b) ENET model in the prediction of SOC stock 30 (See table 1 for the variables 

names abbreviation). 

 

 

Table S3: Soil sampling point distribution by elevation classes.  

Elevation a.s.l (m) <500 500-1000 1000-1500 1500-2000 2000-2500 >2500 

Area  

(km2) 

71.18 65.33 103.718182 137.27 134.58 44.69 

Number  

of  points 

7 11 21 28 27 11 

Density of sampling 

(point.km-2) 

0.09 0.17 0.20 0.20 0.20 0.25 

 

Table S4: Soil sampling point distribution by slope classes. 

Slope (°)  <10 10-20 20-30 30-40 40-50 >50 

Area  

(km2)  

67.797 55.743 42.934 156.276 101.620 60.292 

Number  

of  points  

14 11 21 28 27 11 

Density of sampling 

(point.km-2) 
0.21 0.20 0.49 0.18 0.27 0.18 
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Figure S6: SOC stock distribution by elevation (left: SOC stock10; right: SOC stock30). The boxplots represent the following metrics: 

the median first and third quantile (Q1, Q3), maximum, minimum values, and outliers. 

 

 

  
 

Figure S7: SOC stock distribution by slope (left: SOC stock10; right: SOC stock30). The boxplots represent the following metrics: the 

median first and third quantile (Q1, Q3), maximum, minimum values, and outliers. 

 

 

 

46



  

Figure S8: SOC stock distribution by aspect (F: Flat; N: North; NE: North East; E: East; SE: South East; S: South; SW: South West; W: 
West; NW: North West) (left: SOC stock10; right: SOC stock30). The boxplots represent the following metrics: the median first and 

third quantile (Q1, Q3), maximum, minimum values, and outliers. 

 

 

References: 

https://www.worldclim.org/  

https://www.geoportale.regione.lombardia.it/news/-/asset_publisher/80SRILUddraK/content/dusaf-7.0-uso-e-
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Chapter 3: Mapping of SOC stock and soil pH in an alpine 

grassland using RF model: the case study of the Andossi 

plateau, Northern Italy 

 
Abstract: 

 

In this chapter, we employed RF model to generate maps of  SOC stock and soil pH for two 

distinct soil layers, namely the 0-10 cm and 10-30 cm depths (SOCstock10, SOCstock10-30, 

pH10, pH10-30, respectively), of an alpine grassland. Our research was conducted in the 

Andossi plateau, located in the northern part of Valchiavenna, known for its diverse landscape. 

This study is part of the PascolAndo project, a regional initiative aimed at promoting 

sustainable management of alpine grasslands. 

We based our DSM methodology on data collected from 126 georeferenced soil profiles, 

sampled by horizons to a depth of 50 cm or until the substrate. SOCstock for all sampling points 

was calculated, taking into account bulk density (BD) and soil rock fragment content of each 

soil horizon. Additionally, we used 27 geomorphometric parameters, derived from a 4-meter 

DTM, along with vegetation and soil type maps. For additional understanding of soil 

characteristics and dynamics, we obtained a map of the ratio between SOCstock10 and 

SOCstock0-30, and also between pH10 and pH10-30. 

Our approach's results revealed a high diversity in the spatial distribution of SOCstock and soil 

pH in the Andossi plateau, due to the pronounced geomorphological, pedological and 

vegetational complexity of the area. The results of carbon stock mapping serve as a critical 

indicator of the valuable ecosystem services provided by the alpine grassland, contributing to 

climate change mitigation and sustainability promotion. 

 

Keywords: RF, DSM, alpine grassland, Soil organic carbon stock, soil pH. 
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3.1. Introduction 

 

Alpine grasslands stand as important mountainous ecosystems, playing a pivotal role in climate 

regulation, biodiversity conservation, and the provision of essential ecosystem services 

(Canedoli et al., 2020; Ferré et al., 2020). These habitats are characterized by heterogeneous 

environmental conditions, high biodiversity, and diverse vegetation compositions. 

Additionally, they sequester substantial amounts of SOC. The socioeconomic challenges have 

caused a decline in population in mountainous regions, leading to the abandonment of 

mountainous grasslands (Battaglini et al., 2014). This trend leads to grazing activity reduction, 

favoring the proliferation of less herbaceous species with limited foraging value, crucial for 

ecosystem services (Cislaghi et al., 2019; Mascetti et al., 2023). Moreover, the extension of 

mountainous pastures below the forest line facilitates the recolonization of tree and shrub 

species, resulting in diminished forage biomass productivity, reduced plant biodiversity, and 

soil functionality, such as carbon sequestration and water retention capacity, as it improves the 

soil structure, and soil porosity (Mascetti et al., 2023). The impacts of climate change further 

exacerbate the deterioration of alpine pastures, amplifying the urgency of sustainable 

management practices (Dibari et al., 2021; Guidi et al., 2014). 

 

In alpine grasslands, grazing activity and livestock density have a direct impact on vegetation 

diversity, highly correlated to key soil parameters, such as SOCstock and soil pH (Ferré et al., 

2023). These soil parameters exert significant influence over soil fertility, nutrient cycling, and 

overall ecosystem health. SOC supports cation exchange capacity, biodiversity support, 

nutrient cycling, water retention, and soil structure preservation (Dorji et al., 2014; Garcia-

Pausas et al., 2007; Guru et al., 2012). Correspondingly, soil pH influences various biological 

and chemical-physical factors, including species diversity, microbial characteristics, soil 

carbon, nitrogen dynamics, and greenhouse gas emissions. This implies that management 

practices in alpine grasslands have a direct impact on soil functionality and their services 

(Hoffmann et al., 2014; Elizabeth et al., 2021; Shedayi et al., 2016; Yang et al., 2014). 

 

Mapping soil properties in alpine grasslands assumes high importance, facilitating a deep 

understanding of ecosystem dynamics, aiding in the assessment of land management practices, 

and enabling accurate predictions of soil responses to environmental changes. Leveraging 

machine learning models presents a potent methodology for producing detailed and accurate 

maps of soil properties in mountainous ecosystems, particularly in alpine environments, where 

local-scale studies focusing on SOCstock and pH mapping utilizing DSM approaches and 

machine learning models are rare. 

 

This chapter attempts to conduct high-resolution mapping of SOCstock and soil pH within an 

alpine grassland utilizing the DSM methodology. The primary objectives of our research 

include the application of the RF model to predict and map the spatial distribution of C stock 

and soil pH, as well as understanding the primary environmental factors governing the spatial 

distribution of soil parameters and the dynamics of SOC storage in alpine grasslands. 
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3.2.  Materials and Methods 

3.2.1.  The study area 

 

The research area is the Andossi plateau, an alpine pasture that covers an area of 350 ha, located 

in the high Valchiavenna. The Andossi has a north-south orientation. According to the regional 

grazing plan, the Andossi plateau has an average livestock rate of 0.71 bovines per hectare. 

The Andossi plateau is characterized by a high diversity of landscapes. The elevation ranges 

between 1800 and 2050 meters above sea level. The southern part of the plateau contains 

carbonate substrate, while the northern part is dominated by discontinuous acidic glacial 

deposits. The Andossi plateau was studied by previous researchers and there is a high 

pedodiversity which is correlated with the vegetation biodiversity and geomorphological 

heterogeneity (Ballabio et al., 2011; Ferré et al., 2020, Ferré et al., 2023). According to the 

WRB (World Reference Base 2022), the Andossi plateau has the following soil types: 

Leptosols, Regosols, Cambisols, Podzols, Histosols and Umbrisols (Ferré et al., 2023). 

 

Our research in the Andossi plateau is in the frame of the Pascol-Ando project, which is a 

regional project aiming to ensure sustainability management of the pasture. The project is 

targeting technicians, livestock farmers, and various stakeholders in alpine regions, including 

the dairy chain and research entities, as well as public administration officials and information 

workers. The project combines scientific research with public awareness efforts to achieve its 

goals. The results of our DSM maps are one of the project outcomes prospective (Mascetti et 

al., 2023).  

 

 
                             Figure 3. 1: Study area geographic location 
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3.2.2. Soil survey and data collection 

  

The soil sampling plots were selected to reflect the diversity of the landscape, according to 

geomorphology and vegetation types variability, to guarantee a pedological survey 

representing the spatial distribution of soil characteristics. The sampling was carried out in 

summer 2021. Soil data from 126 soil profiles were collected and georeferenced using high-

accuracy GPS. 

 

3.2.2.1. Soil sampling  

Soil sampling was carried out in two ways depending on practicality, with each point deciding 

whether to use a cylindrical sampler 4 cm in diameter and 50 cm long, which is particularly 

useful for distinguishing and describing soil horizons, or a minipit down to the substrate (Figure 

3.2). The thickness of the soil profiles varies according to the soil type and the presence of rock 

fragments, which sometimes prevent further excavation.  

 

 
3.2.2.2. Vegetation survey 

 

In each plot the vegetation was described within a 1 m2 square, chosen to be representative of 

a uniform area and corresponding to the soil sampling point. The list of all the species found 

in each plot was created, then percent of cover for each plant species was calculated.  

 

Figure 3.2.Soil sampling methods used in Alpe Andossi: (a) minipit opening and (b) cylindrical sampler. 

a b 
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 3.2.3. Laboratory analysis methods 

 

The samples taken in the field were air-dried and sieved through a 2 mm. Soil pHw and pHKCl 

were measured potentiometrically in a soil-to-solution ratio of 1:2.5 in water or solution of KCl 

1 N). The determination of organic carbon was done by combustion, using the analyzer FLASH 

1112, which measures the total amount of C by flash combustion. The organic carbon stock 

(per unit area) for each horizon was calculated using BD, horizon thickness, and rock fragment 

content. The bulk density of each horizon was estimated using two pedo-functions established 

for a mountain environment; all the applied equations are presented and explained in Agaba et 

al. (2024) and in chapter 2 of this thesis. 

 

3.2.4. Environmental covariates preparation and selection  

 

We utilized various environmental covariates that represent the key factors of soil formation in 

mountainous areas. Geomorphometric variables: 22 variables were calculated and extracted 

from the DTM of the study area at a resolution of 10 meters. Vegetation type maps were also 

employed, utilizing a map with a spatial resolution of 10 meters of the most representative 

vegetation types of the grassland: calcareous (CL), earth hummock (EH), rich pasture (RP), 

poor pasture (PP), peatland (PL) and shrubs (SH). This map was derived from observed 

vegetation type data collected in the field during the pedological and vegetation survey. Using 

a RF model and high-resolution vegetation indices calculated from Sentinel-2 images, 

alongside geomorphometric parameters, we mapped the vegetation types of the grassland 

(Ferré et al., 2023). In addition, the soil type map was considered as an environmental covariate, 

containing the main soil types of the study area: Leptosols (LP), Regosols (RG), Cambisols 

(CM), Umbrisols (UM), Gleysols (GL), Podzols (PZ), and Histosols (HS) .  

It is crucial to utilize soil types as covariates in soil properties mapping, as they contain vital 

information about the characteristics of each soil type, significantly influencing the spatial 

distribution of SOCstock and soil pH. Furthermore, integrating soil maps as covariates is 

Figure 3.3. Positioning of the 126 soil and 

vegetation survey points carried out in 2021. 
Figure 3.4. Vegetation survey on a 1 x 1 m area, with 
a grid useful for the visual estimation of the % cover 
individual species. 
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essential for better understanding the carbon stock potential within the different soil types of 

our study area and their role in predicting the spatial distribution of soil properties. The soil 

type map was produced using the same methodology as the vegetation map, based on data from 

126 soil profiles (Ferré et al., 2023)(Figure 3.5). 

 

Finaly, we carefully selected the significant variables for machine learning modeling, as we 

have previously explained in Chapter 2, to mitigate issues such as model overfitting and 

accuracy concerns during soil properties modeling and mapping. 

 

 

 

Figure 3.5. vegetation types and soil types maps. (a): Vegetation map; (b): Soil map (Ferré et al., 2023) 

 
Table3.1. Geomorphometrical covariates 

Covariate Abbreviation Covariate Abbreviation 

Elevation Elv Longitudinal Curvature LongCurv 

Slope slp General Curvature GenCurv 

Northness index Nth Flow Direction FlwDir 

 Eastness index Est Catchment Area CatchA 

Wind Effect WinEff Topographic Position Index TPI 

Vertical Distance to Channel Network VDtCN Topographic wetness index TWI 

Fllow accumulation FA Terrain Ruggedness Index TRI 

Convergence Index ConvI LS factor LS 

Total Curvature TotCurv Mass Balance Index MBI 

cross-sectional curvature CrossSC Tangential curvature TangCurv 

Profile Curvature ProfCurv Plan Curvature PlanCurv 
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3.2.5. Statistical analysis and application of Machine Learning models for the DSM 

approach 

 

We commenced our data analysis by conducting basic statistical analysis to comprehend the 

correlation between soil properties and various environmental covariates. In this chapter we 

endeavored to apply the same machine learning models employed in Chapter 2, following the 

identical methodology of model development, which included parameter tuning and validation 

using 10-fold cross-validation. However, for our dataset, the best model was the RF model. All 

statistical analyses and modeling conducted in this chapter were performed using the R 

software. We utilized the following metrics, namely R2, RMSE, and MAE, for evaluating the 

models performance. 

In our modeling approach, we excluded soil data of Histosols, because these soil profiles 

primarily consist of organic horizons. Integrating them into the modeling process have 

introduced bias and errors in modeling and mapping soil pH and SOCstock. 

Using the final maps of SOCstock10 and SOCstock10-30, we created the map of SOCstock30 

(a result of simple sum of the tow maps). Additionally, we generated a map showing the ratio 

of SOCstock10 to SOCstock30 to analyze and understand the vertical dynamics of SOCstock 

in our study area. Similarly, we created a ratio map for soil pH, comparing pH10 and pH10-

30, to examine the vertical variations in soil acidity. 

 

    3.3. Results and Discussion 

3.3.1.  Soil properties and statistical analysis  

 

The statistical analysis of soil properties is showed in Table 3.2, and the correlation between 

the SOCstock and the selected environmental parameters is represented in Figure 3.6. The two 

layers of soil store a high amount of organic carbon with a high variability: this is related to the 

study area heterogeneity and pedodiversity (Ferré et al., 2023). The pH results indicate that the 

Andossi plateau soils are mainly acid, due to the lithology of the parent material (glacial acid 

deposits), especially in the northern part of the pasture (Ferré et al., 2023); in the southern part 

the parent material is carbonate and the pH tends toward neutrality.  
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Table 3.2. Statistical analysis of Soil properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correlation matrix results (Figure 3.6) indicate a notable relationship between the low pH 

levels and the high storage of organic carbon. The low pH of soils, together with the humid and 

cold climate of the alpine environment, significantly decrease the process of mineralization of 

dead plant material, making the SOM more abundant and stable, especially in the topsoil. The 

geomorphological parameters exhibit a significant correlation with both SOCstock and soil pH. 

The correlation results indicate a positive association with elevation, which profoundly 

influences climatic conditions, vegetation communities composition and distribution. This, in 

turn, impacts the rate of organic matter decomposition and plant productivity (Zhu et al., 2019). 

The SOCstock increase with elevation: this pattern is attributed to temperature decrease, which 

suppresses microbial activity and slows down the decomposition rate of SOM, thus facilitating 

SOC accumulation (Parras Alcántara et al., 2015). 

 

 

Soil properties Min 1st Q median mean 3rd Q max SD 

SOCstock10 (kg m-2) 1.92 5.97 7.37 7.2 8.63 10.63 1.92 

pH10 2.97 3.99 4.36 4.69 5.31 7.5 

 

1.03 

 

SOCstock10-30 (kg 

m-2) 
0.1 

 

3.49 

 

 

5.12 

 

 

5.55 

 

 

7.37 

 

 

15.25 

 

 

3.12 

 

pH10-30 3.15 4.08 4.46 4.84 5.53 7.46 

 

1.08 
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Figure 3.6. Correlation matrix of the soil properties and the different environmental parameters. 

Slope, curvatures, and geomorphometric parameters related to erosion dynamics (such as VRM 

and TPI) exhibit a negative correlation with SOCstock and a positive correlation with soil pH. 

This correlation trend is related to soil erosion, which is more pronounced in areas with steeper 

slopes, leading to unstable SOM inputs followed by a decrease in SOC storage, and an increase 

of pH values. Geomorphometric parameters related to pedoclimatic conditions, such as TWI 

and TotIns, illustrate an interesting correlation trend with C stock.  Increased soil water content, 

as explained by TWI, reduces SOM decomposition and mineralization, increasing SOC storage  

and soil acidification. The TotIns has a negative correlation with SOC. This parameter 

influences soil temperature, and in areas where soil radiation is high, litter decomposition is 

considered active due to increased biological activity and soil respiration: this results in faster 

mineralization of organic matter, consequently leading to a decrease in SOCstock. 

Furthermore, the northern aspect index reveals that soil profiles with a northern exposure store 

more carbon compared to profiles facing south and east exposures. Soils tend to be more acidic 

in the northern parts of the Andossi plateau due to the presence of glacial acid deposits, while 

they tend to neutrality in the southern part because of the presence of carbonate parent 

materials. In the northern areas acidophilic shrubs cover a high portion of the plateau, where 

the dominant species is Vaccinium myrtillus. This vegetation produce litter with chemical 

compounds that are more resistant to microbiological activity, attributed to the presence of 

tannins and lignin in plant tissues. This leads to the formation of more stable SOC due to the 

prolonged humification process. 
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The analysis of stock distribution by soil types (Figure 3.7), and ANOVA test revealed 

significant statistical differences in both soil layers (FSOCstock10 = 3.104, p = 0.007; FSOCstock10-30 

= 12.29, p =0.000). Post-hoc Tukey's HSD analysis indicated significant differences in mean 

stock 10 among soil types, particularly between RG and GL (p = 0.005) and between RG and 

PZ (p = 0.037). Similarly, significant differences in mean stock 10-30 cm, were observed 

between various soil types, notably between GL and CM (p =0.000), GL and LP (p =0.000), 

and GL and RG (p =0.000), as well as between HS and CM (p =0.000), LP and HS (p = 0.000), 

and RG and HS (p = 0.000). These results underscore the heterogeneous distribution of SOC 

among different soil types and layers, emphasizing the importance of considering soil type in 

stock mapping. 

 

 

 
 

Figure 3.7. C stock distribution by soil types and vegetation types: (a) Soil type; (b) vegetation type. 

 

In contrast, the ANOVA test results for SOCstock 10  across different vegetation types showed 

no significant differences (F value = 0.532, p > 0.05). Despite some variations in mean 

SOCstock (Figure 3.7), the post-hoc Tukey's HSD test revealed no significant differences 

between any pair of vegetation types after adjusting for multiple comparisons (all p > 0.05). 

However, for stock 30, a significant difference was found (F value = 6.336, p < 0.001). Post-

hoc Tukey's HSD analysis identified several significant pairs, indicating varying influences of 

vegetation on soil organic carbon storage dynamics in this soil layer. Notably, significant 

differences were observed between peatland and the other vegetation types: CL (p = 0.000), 

EH (p = 0.000), PP (p = 0.000), RP (p = 0.000), and SH (p = 0.000). These findings confirm 

that the main significance difference is related to peatland vegetation. 
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Figure 3.8. Soil pH distribution by soil types and vegetation types: (a) Soil type; (b) vegetation type. 

Moving on to the analysis of soil pH distribution by soil and vegetation types (Figure 3.8), 

significant differences were found in pH10 among different soil types (FpH10= 10.06, p < 0.001). 

Post-hoc Tukey's HSD revealed several significant pairwise differences, highlighting the 

importance of considerig soil types when evaluating soil pH mapping. Particularly associations 

were observed, including PZ-CM (p =0.000), LP-GL (p =0.000), PZ-LP (p =0.000), RG-PZ (p 

=0.000), and UM-PZ (p =0.000). For pH10-30, significant differences in soil pH among 

different soil types were observed (F pH310-30 = 11.66, p < 0.001). Again, post-hoc Tukey's HSD 

analysis showed several significant pairwise differences for this layer. Notable associations 

included LP-CM (p = 1.227e-02), PZ-CM (p =0.000), LP-GL (p =0.000), RG-GL (p =0.000), 

PZ-LP (p =0.000), RG-PZ (p  =0.000), and UM-PZ (p =0.000). 

 

The previous results indicate that soil types play a crucial role in the spatial distribution of 

SOCstock and soil pH. The variability in pedogenesis is the primary factor contributing to the 

chemical and physical characteristics diversity of soils in our study area. Histic Gleysols store 

a high amount of SOC in both topsoil and subsoil (9.72 and 13.15 kg.m-2, respectively): the 

storage of SOC in these soils is related to the formation process, caused by the high level of 

groundwater that increase water saturation (reduction conditions and gleyic properties), thereby 

reducing plant tissue decomposition (Zech et al., 2022). Histosols, due to their characteristics 

of water saturation and low biological activity, also store a high amount of organic carbon in 

both soil layers (SOCstock 10 and 30: 8.04 and 11.87 kg m-2, respectively). Similarly, 

Umbrisols wich are typical mountain soils, demonstrate a significant capacity for SOC storage 

(7.45 and 7.35 kg m-2 for 0-10 and 10-30 cm layers): these soils are characterised by stable 

structure, low pH and high SOC, related to the low OM turnover due to the acidic, humid and 

cold conditions; much part of OM is occluded in aggregates (Zech et al., 2022). Podzols 

demonstrate significant storage of SOC, especially in the subsoil (SOCstock10-30), with an 

average of 5.98 kg m-2. This is attributed to the strong acidity and sandy texture of Podzols. In 

our study area, Podzols are observed under acidophilic vegetation (shrubs and earth 
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hummocks), this condition results in partial organic decomposition in the organic layer and the 

formation of organic acids. These acids are introduced into the mineral topsoil, causing 

intensive weathering of minerals and movement of SOC into the subsoil (spodic horizon). The 

SOC in these horizon is more stable and less susceptible to microbial degradation due to its 

association with secondary minerals (organo-metallic complex) (Blum et al., 2018; Baize, 

2021).  

Leptosols in mountainous regions are thin and young soils due to steep slopes causing rapid 

runoff and high erosion rates, limited weathering of exposed parent rock, and harsh climatic 

conditions that slow soil development; parse vegetation also contributes to minimal organic 

matter input. In the Andossi plateau these soil store lesser amount of SOC compared to other 

soil types investigated: for SOCstock10 the average of  storage  is 6.97 kg m-2, and for 

SOCstock10-30 the range  is 11.12 ± 0.1 kg m-2. Leptosols in our study area are predominantly 

observed under calcareous vegetation, where pH values are high and the mineralisation of OM 

is faster. Similary, Regosols and Cambisols exhibit low SOC storage capacity, due to the 

pedological characteristics and environmental conditions where these soils are observed (see 

Figure 3.7).  

 

The results of C stock and soil pH distribution by vegetation type demonstrate that peatlands 

store a significant amount of SOC. This phenomenon can be related to the formation process 

of this important habitat, which is characterized by prolonged water saturation resulting from 

the presence of Sphagnum mosses. The water retention capacity of peatlands creates an 

environment with slow microbial activity due to wetness, low temperature, oxygen deficiency, 

and acidity (Zech et al., 2022). These factors collectively contribute to the slow decomposition 

of plant residuals, resulting in a high storage of organic carbon and a decrease of soil pH 

(Pullens et al., 2016). 

 

Soil pH is also influenced by soil types (see Figure 3.8): as previously explained it is closely 

related to parent material, vegetation type, microclimatic conditions and SOM accumulation. 

The pedological diversity in the Andossi plateau significantly contributes to the spatial 

diversity of SOCstock and soil pH. The results indicate a high capacity for SOC storage in this 

area, particularly in well-developed soils such as Umbrisols and Podzols. Additionally, 

peatlands in the Andossi plateau provide significant ecological functions and ecosystem 

services due to their high SOC storing. 

 

 

3.3.2. Models’ validation and environmental predictors  

 

As mentioned in the methodology, we excluded peatlands and Histosols data to minimize 

prediction errors. The validation outcomes of the RF model for SOCstock and soil pH 

prediction are outlined in Tables 3.3. In the topsoil layer, the RF model yields favorable results, 

indicated by high R2 and low RMSE values for both SOCstock and soil pH. However, 

prediction errors are more pronounced in the 10-30 cm layer, particularly for SOCstock. This 

discrepancy is related to the higher standard deviation observed in the second soil layer. 
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Table 3.3. Model performance. 

 

RF model  RMSE R2 MAE 

SOCstock10 1.32 0.79   1.11   
SOCstock10-30 2.09 0.83 1.64 

pH 10    0.43  0.87  0.34 

pH 30 0.52 0.81 0.41 

 

Figure 3.9 illustrates the observed and the predicted stock plot using the RF model. The 

outcomes affirm that the greatest errors in predicting stock, notably in the SOCstock30, stem 

from data points representing both high and low carbon stocks (e.g., Gleysols with SOCstock 

exceeding 10 kg m-2) as well as those with very low stocks (Leptosols, as depicted in Figure 

3.7). The presence of this broad spectrum of data poses a significant challenge to modeling. 

For soil pH predection (Fig. 3.10) we noted that errors generated by RF model are mainly 

higher in the second soil layer 

  

Figure 3.9. RF model biplot of C stock in the two layers ; (a): SOCstock10, (b): SOCstock10-30 

 

 
Figure 3.10.  RF model biplot of soil pH prediction vs observation; (a): pH10, (b): pH10-30 

 

 

3.3.4. Spatial distribution of SOCstock and soil pH and related environmental predictors 

The DSM output maps generated in our study  are represented in (Figures 3.11 and 3.13). The 

spatial distribution pattern of SOCstock shows a significant similarity across both soil layers 

(SOCstock 10 and SOCstock 10-30). Soils in the Andossi plateau show a high accumulation 

of SOC in the northern part of the plateau, due to the presence of acidic substrates along with 

cold and humid climate, that contribute to slow mineralization rate of organic matter, thereby 

resulting in higher SOC storage. The outcomes from the soil pH maps unveil a heterogeneous 
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spatial distribution pattern for both soil layers. Our maps demonstrate high accuracy and offer 

a realistic depiction; areas with elevated SOC storage predominantly exhibit lower soil pH 

values. 

The environmental covariates that govern the spatial distribution of SOCstock and soil pH are 

shown in Figures 3.12 and 3.14. The analysis of variable importance in predicting SOCstock 

10, several variables emerged as significant contributors to SOCstock spatial variation. 

Notably, TWI and TotIns exhibited the highest importance, indicating the substantial influence 

of terrain moisture conditions and solar radiation exposure, on SOC accumulation processes. 

Additionally, factors such as slope and the curvature of the land surface (both ProfC and TotC) 

demonstrated considerable importance in predicting C stock in the topsoil layer. These findings 

suggest that topographic features and soil characteristics play pivotal roles in governing the 

distribution of SOC in alpine grassland soils. 

Furthermore, variables related to vegetation cover, such as the presence of calcareous 

vegetation types, shrubs, and earth hummocks, showed relatively high importance in predicting 

SOCstock10. This suggests that vegetation composition influence SOC storage dynamics, 

other environmental factors, related to terrain morphology and solar radiation exposure, exert 

greater control over SOC accumulation processes in alpine grassland soils. Additionally, the 

absence of a significant influence of soil types and aspect (Nrt and Est) on SOCstock 

underscores the dominance of other environmental variables in shaping SOC dynamics in this 

ecosystem. For SOCstock 10-30, TWI and TotIns remain pivotal factors, reaffirming their 

significant roles in governing pedoclimatic conditions (soil moisture and soil temperature), 

which in turn influence SOC accumulation processes. Furthermore, variables such as LS, 

ProfCurv, and TotCurv continue to exhibit considerable importance in predicting SOCstock30, 

indicating their sustained impact on SOC dynamics across different soil depths. MBI and ConvI 

show decreased importance compared to their influence on Cstock 10. This suggests that while 

these variables may still contribute to SOC distribution patterns, their impact diminishes as soil 

depth increases. Additionally, elevation contributes to variations in environmental conditions, 

thereby influencing SOC dynamics at various soil depth. Moreover, vegetation types  and soil 

types demonstrate an importance in predicting SOCstock30. 
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Figure 3. 11. Spatial distribution of the SOCstock in the Andossi plateau, in SOCstock10 and SOCstock10-30  

 
Figure 3. 12. Environmental covariates importance in predicting the SOCstock; a: SOCstock10; b: SOCstock10-

30.  

Continuing the analysis of variable importance, we delve into the significance of environmental 

factors influencing soil pH at different depths. For soil pH 10, vegetation types (EH and CL), 

and soil types (RG and UM) emerge as the most influential factors. These results suggest the 

role of vegetation composition and the pedogenesis factors on soil acidity and its spatial 

distribution. Furthermore, terrain morphology plays an important role in soil pH, with rugged 

terrain likely leading to varied soil drainage patterns and consequent differences in pH levels. 

for soil pH 30, soil types retain their significance as influential variables, emphasizing their 

persistent roles in controlling soil pH across deeper soil layers. Vegetation types demonstrate 

an increased control over the spatial distribution of soil pH. Additionally, topographic variables 

such as TPI and ProfC demonstrate notable importance in predicting soil pH at both depths, 

reflecting the influence of terrain geomorphology on soil pH variation. These results highlight 

the complex interplay between vegetation, soil types, and topography in governing soil pH 

dynamics in alpine grassland ecosystems. 
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Figure 3.13. Spatial distribution of  soil pH in the  Andossi plateau, of pH10 and pH10-30   

 

 
Figure 3.14. Environmental covariates importance in predicting soil pH; a) pH10; b) pH10-30   

The results of the SOCstock10 by SOCstock30  and pH 10 by pH10-30 spatial distribution are 

illustrated in Figure 3.15. Regions with a ratio value close to one indicate a relatively uniform 

accumulation of SOC throughout the soil profile, with no significant differences. These areas 

are mainly located in the southern part of the study area, where the dominant soil types are 

Cambisols and Leptosols. Very low values of the ratio suggest that deeper soil layers have 

stored more organic carbon compared to the topsoil layer, particularly in areas with Umbrisols 

and Gleysols. Conversely, areas with a high ratio, located in the northern part of the pasture, 

signify a greater accumulation of SOC in the topsoil compared to the subsoil. These areas are 

predominantly characterized by the presence of Podzols and Regosols. Similarly, for soil pH, 

areas with ratio values close to one indicate a uniform vertical distribution of soil pH. Areas 

with low values of the ratio represent profiles where soil pH increases with depth. This 

additional analysis is crucial for providing insights into the spatial distribution of the vertical 

dynamics of SOC storage and soil acidity. Understanding these dynamics helps to better assess 

the carbon sequestration potential and soil health of the study area. It also aids in identifying 

regions where soil management practices can be optimized to enhance SOC storage and 

increase soil functionality. 
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Figure 3.15. Spatial distribution of  SOCstock10 by SOCstock30 and pH10 by pH10-30. 

 

 

 

 

 

 

3.5. Conclusions  

In conclusion, the dynamics of soil SOC  storage and soil pH in the Andossi plateau are 

influenced by a complex interaction of environmental factors. Our analysis reveals significant 

variations in SOCstock distribution among different soil types and layers. Soil types play a 

crucial role in determining the spatial distribution of SOCstock, with Gleysols, Histosols, 

Umbrisols, and Podzols exhibiting substantial capacity for SOC storage, attributed to their 

pedogenic processes and to soil characteristics. Vegetation types as well demonstrated 

interesting influence of SOC storage and soil pH distribution. 

The effectiveness of the RF model in predicting soil properties, including SOCstock and soil 

pH, is evident, particularly in the topsoil layer. However, challenges arise in predicting 

SOCstock10-30,high RMSE and MAE (2.09 and 1.64 kg.m-2 respectively) comparing to the 

SOCstock10. Nevertheless, the RF model offers valuable insights into understanding the spatial 

distribution of SOCstock and soil pH across different soil layers. 

Environmental factors such as terrain wetness index, total insolation, slope, and curvature of 

the land surface emerge as significant predictors of SOCstock variation, highlighting the 

importance of topographic features and soil characteristics in governing SOC dynamics. 

Additionally, vegetation cover, particularly the presence of calcareous vegetation, shrubs, and 

earth hummocks, influences SOC accumulation processes, indicating the intricate relationship 

between vegetation composition and SOC dynamics. 

Similarly, soil pH is influenced by soil types, terrain morphology, and vegetation cover. While 

soil types retain significance in controlling soil pH across deeper soil layers, vegetation types 
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demonstrate an increased control over spatial distribution, albeit with diminishing influence 

with increasing soil depth. 

Overall, the findings underscore the multifaceted nature of environmental factors influencing 

SOC dynamics and soil pH in alpine grassland ecosystems. By using DSM techniche and 

applying modeling approaches with spatial analysis techniques, we gain valuable insights into 

the intricate relationships between soil properties, environmental factors, and landscape 

characteristics, thereby enhancing our understanding of ecosystem functioning and services in 

alpine grassland environments. 
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Chapter 04: Machine Learning application to predict and map 

Soil Organic Carbon in the Bohemian uplands (Czech 

Republic). 
 

 

 Abstract: 

 

In this chapter, decision tree machine learning models were utilized to map soil organic carbon 

(SOC) content in Krasna Hora nad Vltavou, Czech Republic, focusing on the first 30 cm of the 

soil (SOC 30) across the study area, which encompasses three different land use types: forest 

land, agricultural lands, and grasslands. Krasna Hora nad Vltavou covers an area of 

approximately 500 km², with elevations ranging from 268 to 574 meters above sea level. The 

predominant soil types are Cambisols, Regosols, and Gleysols. Soil data from 102 

georeferenced soil profiles were used, and three machine learning models, Random Forest 

(RF), Extreme Gradient Boosting (XGBoost), and Boosted Regression Trees (BRT), were 

employed for Digital Soil Mapping (DSM) application. Various environmental covariates such 

as geomorphometric parameters, climatic variables, and remote sensing indices was used in 

our modelling approach. Model performance was evaluated using 10-fold cross-validation and 

four metrics: RMSE, R², MAE, and Bias. Among the used models, XGBoost demonstrated the 

best performance with the highest metrics: RMSE = 0.27, R² = 0.82, MAE = 0.1, and Bias = -

0.01. The XGBoost model was used for SOC 30 mapping; the map obtained map has high 

spatial distribution variability( the range 2.7 ± 0.54  and the  mean: 1.45%). 

 

 

 

Keywords: soil organic carbon, Decision Trees, XGBoost, DSM 
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4.1. 1ntroduction 

 

SOC stands as a crucial indicator of soil health, playing a vital role in sustaining plant growth, 

regulating soil structure, and facilitating water infiltration (Amundson et al., 2015). Its 

significance extends to supporting soil biodiversity and ecosystem functions, making it 

indispensable for maintaining overall soil functionality. Additionally, SOC plays a critical role 

in agricultural productivity and climate change dynamics, representing the primary terrestrial 

carbon reservoir (Adeniyi et al., 2023; Purghaumi et al., 2013). Consequently, accurate 

mapping of SOC content is essential for various agricultural and environmental applications, 

including crop selection, irrigation management, and soil conservation (Chen et al., 2019; Guo 

et al., 2022; Lu et al., 2023). Identifying areas with high carbon sequestration potential or low 

SOC content is imperative for implementing targeted soil management strategies to increase 

carbon sequestration process. 

In the Czech Republic, DSM approaches have been employed to predict various soil features 

across diverse landscapes. Notably, the primary focus of these studies has been on agricultural 

lands, which constitute up to 50% of Czech soils. Earlier research in the application of DSM 

in the Czech Republic primarily relied on a combination of field surveys, laboratory analyses, 

and remote sensing techniques to generate maps of soil properties such as texture, organic 

matter content, and pH, utilizing various machine learning models. In a study delivered by 

Žížala et al. (2022), high-resolution soil property maps for the Czeck Republic (20 x 20 m) 

were generated. The approach involved employing a quantile random forest model with 

prediction interval determination, integrating a mosaic of bare soils from Sentinel-2 satellite 

data, a Gaussian pyramid of terrain attributes, and a buffer distance map for predictive mapping 

of soil organic carbon (SOC), texture, pH, bulk density, and soil depth. The resulting maps 

demonstrated high accuracy, although the study identified increased inaccuracies in areas with 

extreme values, particularly in soils with high SOC content, suggesting the need for further 

investigation through more detailed sampling using adapted methods (Žížala et al., 2022). 

Another study by Sarkodie et al. (2023) focused on mapping the spatial distribution of SOC 

stocks within the surface organic horizon, mineral topsoil, and subsoil horizons of the natural 

forest areas (NFA) in the Czech Republic, utilizing machine learning algorithms. The study 

also highlighted limitations associated with the combined and harmonized soil data used, 

including differences in sampling depth and laboratory methods (Sarkodie et al., 2023). The 

collective findings from previous DSM research in the Czech Republic underscore the 

significance of creating detailed maps of soil properties. 

The use of machine learning algorithms in DSM and effective environmental covariates is an 

important tool for soil parameters prediction. Incorporating geomorphometric parameters, 

climatic variables, and remote sensing data is essential for enhancing the accuracy of SOC 

mapping. Geomorphometric parameters provide valuable information on terrain 

characteristics, such as slope, aspect, and curvature, which influence soil formation and 

distribution patterns. Climatic variables, including temperature and precipitation, directly 

impact soil organic matter decomposition rates and vegetation growth, thereby influencing 

SOC levels (Luo et al., 2017). Vegetation indices, such as the Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), offer valuable 

indicators of vegetation health and moisture content, respectively, which are closely linked to 
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SOC dynamics (Guo et al., 2021; Mallik et al., 2020). Land Use and Land use maps are also 

important environmental covariates that may help to map SOC content and other soil properties 

in different land use types within the same study area and the same model. Moreover, accurate 

maps generated using machine learning are useful for soil management strategies for 

optimizing carbon sequestration and mitigating soil degradation. 

The main objective of this chapter is to map SOC content within the upper 30 cm of soil across 

three different land use types (agricultural land, forest, and grassland) in Krasna Hora Nad 

Vltavou. The use of regression tree algorithms as a DSM approach and different environmental 

covariates (geomorphometric parameters, climatic variables, and vegetation indices) are the 

principal aims of this work in order to gain a comprehensive understanding of the factors 

influencing the spatial distribution of SOC content in Bohemian uplands. 

      

4.2. Methodology 

4.2.1. Study area 

 

The study area is Krasna Hora nad Vltavou, situated in the Central Bohemian Region in the 

Příbram District, approximately 60 kilometers south of Prague, Czech Republic. Covering an 

area of about 500 km², the elevation ranges from 268 to 574 meters above sea level. 

Geographically, Krasna Hora nad Vltavou is classified as Bohemian highland with gently 

undulating mountains. It is characterized by landscape diversity with sandy loam Cambisols as 

the dominant soil type. The land use consists of  agricultural lands, forest areas, and non-

permanent grasslands. The study area is bordered by the Vltava river and intersected by smaller 

streams such as Brzina. Krasna Hora Nad Vltavou is characterized by a transitional climate, 

exhibiting characteristics between oceanic (Cfb) and continental humid temperate (Dfb). The 

mean annual temperature is 8.3 °C with precipitation of about 550 mm. 

 

72



 

 

4.1. Geographical location of the study area 

 

 

4.2.2. Data Collection and laboratory analysis  

 

The fieldwork was conducted according to a pedological survey, which involved the selection 

of sampling plots representing the landscape of the study area. The selection was based on the 

geomorphometric variability and the diversity of land use. In 2022, soil information was 

gathered from 51 soil profiles. Additionally, data from another 51 soil profiles provided by the 

Czech Republic's National Institute of Soil and Water Conservation (VUMOP), sampled in 

2017, were utilized. Soil samples were collected from genetic horizons. 

Both sets of soil samples from 2017 and 2022 were prepared and analyzed according to 

international methodologies endorsed by the pedological society. The soil samples were air-

dried and sieved through a 2 mm mesh. Organic carbon was determined through flash 

combustion to measure the total quantities of carbon present in the samples. For samples with 

a pH higher than 7, we measured the carbonate content and then calculated the difference 

between the total carbon and the carbonate content to obtain the SOC content. Subsequently, 

the weighted mean of the SOC content, expressed as a percentage within the first 30 cm of soil 

depth, was calculated using the SOC percentage value at each soil horizon. 
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 4.2.3. Environmental covariates 

 

We prepared a set of environmental covariates for our study after their selection (see Table 

4.1). These covariates were prepared as raster files at a resolution of 10 meters. The variables 

were prepared using QGIS software and SAGA. The variables employed for this case study 

can be categorized into four main groups: 

Geomorphometric variables: The geomorphoneyric variables were used, as they provide 

information into the interactions  between SOC and topographic factors. Thirteen covariates 

were derived from a Digital Terrain Model (DTM) with a spatial resolution of 10 meters. After 

the application of a correlation matrix eight geomorphometric variables were selected. 

Climatic variables: Climatic data were obtained from a time series spanning 90 climate 

stations monitored by the Czech Hydrometeorological Institute. Orographic interpolation and 

geomorphological parameters was utilized for climatic variable mapping for a time averages 

(2009–2018). Due to the relatively limited coverage of meteorological stations in the area, data 

were acquired at a coarse resolution of 500 m per pixel and subsequently rescaled through 

simple resampling to 10 m per pixel for modeling purposes (Žížala et al., 2022). Remote 

sensing variables: The study employed remote sensing techniques, utilizing cloud-free 

spectral bands of Sentinel-2 imagery (processed at level 2A) from March to October between 

2016 and 2020. The processing was conducted on the Google Earth Engine platform, where 

the median of spectral bands was calculated for time series images. Reflectance values from 

the 10 spectral bands of Sentinel-2 were used to calculate three vegetation indices: Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), and 

Bare Soil Index (BSI). NDVI, derived from near-infrared (NIR) and red bands, measures 

vegetation greenness and density, aiding in vegetation health assessment and indirectly 

inferring SOC content. NDMI, derived from NIR and shortwave infrared (SWIR) bands, 

provides insights into vegetation water content and moisture stress, crucial for monitoring 

moisture availability in various landscapes. BSI identifies areas without vegetation cover, 

complementing NDVI and NDMI by offering information on soil exposure and land surface 

characteristics. Land use Map: We utilized the ESRI 2022 land use map with a spatial 

resolution of 10 meters. Analysis of the land use map for Krasna Hora Nad Vltavou revealed 

that 53% of the study area is covered by agricultural land, while 40% is forested, 4% urban 

area, and 3% water bodies. To ensure model accuracy, urban areas and water bodies were 

excluded from our analysis. 
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Table. 4.1. Continuous environmental used covariates 

 

Environmental covariates Abbreviation Mean SD 

 

Geomorphometric 

variables 

 

 

Slope (°) Slp  

7.03 

 

5.02 

Minimum Curvatures min_curv -0.001  

0.002 

 

Tangential Curvatures tang_curv  

0.0002 

 

 

0.002 

 

Longitudinal Curvatures long_curv -0.0001  

0.003 

 

General Curvatures Gen_curv  

0.002 

 

0.034 

 

Vector Ruggedness 

Measure 

VRM  

0.005 

 

 

0.013 

 

Roughness Rgh 1.59 

 

1.19 

 

Plan curvatures plan_curv -0.003 

 

 

0.018 

 

Northnes Nrt 0.238  

0.705 

 

Easternes Est  

-0.01971 

 

 

0.667 

 

Climatic variables Temperature (C°) Temp  

8.32 

 

0.267 

Remote sensing variables Normalized Difference 

Vegetation Index 

NDVI  

0.541 

 

 

0.347 

 

Normalized Difference 

Moisture Index 

NDMI  

0.131 

 

 

0.286 

 

 

Bare Soil Index 

 

 

BSI 

 

 

-0.090 

 

 

0.286 
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4.2.4. Statical analysis and machine learning approach  

4.2.4.1.  statistical analysis and data preprocessing 

 

We calculated the statistical metrics of soil data and environmental covariates (Tables 4.1 and 

4.2). Next, we cleaned the dataset by removing outliers and missing data, which is a crucial 

preprocessing step for both machine learning and DSM techniques. Another key step in data 

preprocessing is data selection. To accomplish this, we employed a correlation matrix, which 

allowed us to identify and remove variables that were highly correlated with each other, a 

method that we have detailed in previous chapters. 
 

 

4.2.4.2.  Modelling approach 

 

We employed three decision tree models, established using the "Caret" and "Train" packages 

in the R software. Hyperparameter adjustments were conducted to optimize model performance 

for accurate predictions with minimal errors. Model assessment utilized a 10-fold cross-

validation methodology, evaluating metrics such as R2, RMSE, MAE and bias. The model with 

the best validation results was selected to map SOC. BRT, XGBoost, and RF models belong to 

the ensemble learning family, which combines multiple trees to enhance predictive 

performance.  

In this chapter, decision tree models were chosen based on their demonstrated effectiveness in 

prior chapters and studies (Agaba et al., 2024). RF, in particular, has exhibited notable 

performance in accurately predicting soil organic carbon levels, influencing our decision to 

employ these models in this chapter. 

 

 RF: Introduced by Breiman (2001), the RF algorithm stands as a widely adopted machine 

learning model in DSM. Its effectiveness in mapping soil properties across diverse data sources 

and scales has solidified its popularity in SOC mapping. RF employs decision trees during 

training, amalgamating them to generate individual predictions for each dataset observation 

through an out-of-bag (OOB) strategy. 

 

XGBoost: Developed by Chen and Guestrin (2016), operates on a boosting framework, 

distinguished from RF by employing an iterative approach rather than averaging results over T 

rounds. The algorithm follows a meticulous training process, utilizing a "forward distribution 

algorithm" for greedy learning. At each iteration, a Classification and Regression Tree (CART) 

is learned to fit the residual between the prediction result of the previous T-1 tree and the actual 

value of the training sample. This iterative model construction involves entering predicted 

values for each sample, calculating the derivative of the loss function, and establishing a new 

tree based on the derivative information. The XGBoost model proves to be more efficient, 

flexible, and lightweight compared to RF, making it a powerful tool for predictive modeling.  

 

BRT: Introduced as an ensemble learning approach, systematically builds a sequence of 

decision trees, with each successive tree rectifying the errors of its predecessors. Fine-tuning 

of the model is achieved through a 10-fold cross-validation setup facilitated by the `train` 

function. Tuning parameters, encompassing the number of trees, interaction depth, shrinkage, 

and the minimum number of observations in a terminal node, undergo optimization 

throughout the cross-validation process. This thorough tuning process ensures that the BRT 

model skillfully discerns the inherent patterns within the data, striking a balance to prevent 

overfitting (Elith et al., 2008). 
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The main differences between BRT, XGBoost, and RF lie in their underlying ways they 

leverage ensemble learning. BRT, as a boosting algorithm, sequentially builds decision trees 

to correct errors, exhibiting high sensitivity to outliers and complex patterns. XGBoost, an 

advanced form of gradient boosting, emphasizes iterative model construction with optimized 

tuning parameters, showcasing both strength and sensitivity to nuanced relationships in the 

data. On the other hand, RF, a bagging method model, builds independent decision trees, 

providing robustness through diversity but with less sensitivity to individual observations. 

 

 

4.3. Results and Discussion 

 

4.3.1. Statistical Results 

 

 

 

 
 

     Figure 4.2. Correlation matrix 

The results illustrated in Figure 4.2 demonstrate the statistical relationship between SOC and 

the utilized variables. It is evident that SOC exhibits a negative correlation with most 

geomorphometric covariates, such as curvatures and elevation. This is likely because increased 

curvature and slope elevate soil erosion factors, leading to SOC loss and decreased SOM 

accumulation. Precipitation shows a positive correlation with SOC, indicating that higher 

precipitation levels enhance soil humidity, which in turn promotes organic matter 

accumulation. Conversely, temperature has a negative correlation with SOC. As air 

temperature rises, the mineralization process accelerates, causing a rapid turnover of SOM and 

subsequent SOC decrease. Vegetation indices exhibit a positive relationship with SOC. These 
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parameters provide information about vegetation health and intensity, which  increase  SOM 

and SOC content in soil. This highlights the significant role of vegetation in maintaining and 

enhancing SOC levels. 

 
Table 4.2: Statistical description of the SOC content 

 

SOC distribution by land use types is showed in Figure 4.3.  Agricultural land contains the 

lowest SOC values, with a mean value of 1.27%. In contrast, forested areas have a higher SOC 

average of around 1.77%, and grasslands have an average SOC of 1.51%. The ANOVA test 

demonstrates that the difference in mean SOC is statistically significant (p = 0.018). 

 

 
Figure 4.3. SOC30 distribution by land use  

 

4.3.2. Models validation and environmental predictors importance 

 

The performance of the models used for predicting SOC content was examined through four 

key metrics: RMSE, R², MAE, and bias. The results of SOC content are showed in Table 4.3. 

XGBoost is the best-performing model for predicting SOC30, showing the lowest RMSE and 

MAE, and the highest R². While BRT demonstrated good performance, the RF model exhibited 

comparatively lower results in predicting SOC30. The bias values indicated that the models 

slightly underestimate values of SOC 30. Nonetheless, it is clear that all the decision tree 

models displayed robust results in predicting SOC content when compared to other models 

utilized in previous chapters. The results in Figure 4.4 showed that the XGBoost model slightly 

underestimates and overestimates the range of SOC30.  

 
Table 4.3. Different SOC 30 models validation.   

MODELS RMSE R2 MAE BIAS 

RF 0.34 0.70 0.28 -0.04 

XGBoost 0.27 0.82 0.21 -0.01 

BRT 0.32 0.73 0.23 -0.02 

 

Statistics Min 1st Qu Median Mean 3rd Qu Max 

SOC 30 (%) 0.46  0.98  1.26  1.35  1.60  3.45  
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Figure 4.4.  XGBoost model biplot of  observed vs predicted SOC. 

 

 
 

Figure 4.5 . Variables importance of SOC content using XGBoost model. 

 

 

The geomorphometric parameters (roughness, curvatures, VRM, and slope) together contribute 

to over 30% of the SOC 30 prediction, highlighting their pivotal roles in shaping the spatial 

patterns of SOC content. These attributes influence soil erosion and deposition patterns, water 

movement, soil moisture distribution, and microclimate conditions, all of which directly impact 

SOC redistribution and storage across the landscape. 

 

Remote sensing indices showed significant importance in predicting SOC, contributing 22% 

to the total environmental covariates' importance in SOC prediction, this means that the 

vegetation cover and its intensity and health, has an important influence on SOC spatial 

distribution. NDVI emerged as the second key predictor, providing essential information about 

vegetation density and health. This indirectly indicates the presence and activity of vegetation, 
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which profoundly influences SOC content. Healthy and dense vegetation typically signifies 

healthy soil and organic matter accumulation. As plants undergo photosynthesis, they absorb 

carbon dioxide from the atmosphere and store it in their tissues. Upon decomposition, this 

stored carbon is released into the soil, contributing to SOC storage. Consequently, areas with 

higher NDVI values, such as forested lands in our study, tend to exhibit higher SOC content. 

BSI also plays a crucial role in predicting SOC content. Regions with lower BSI values, 

indicating higher vegetation cover, tend to exhibit increased organic matter accumulation and 

SOC content. 

 

NDMI provides valuable insights into soil moisture levels, which directly influence SOC 

dynamics. Soil moisture levels typically correlate with vegetation health, potentially resulting 

in higher SOC content. Additionally, NDMI can act as a proxy for vegetation density and 

growth, indirectly capturing the influence of vegetation on SOC content. Moreover, 

temperature also plays a significant role in influencing SOC content spatial patterns. Warmer 

temperatures generally accelerate soil processes such as microbial activity and decomposition 

rates, potentially leading to  SOC decrease. Conversely, colder temperatures can slow down 

decomposition rates and preserve organic matter in the soil, promoting SOC accumulation over 

time. Temperature also indirectly affects SOC dynamics by influencing soil moisture 

availability, vegetation growth, and evaporation rates, all of which contribute to the inputs and 

outputs of organic matter into the soil, thus shaping SOC content across the landscape(Figure 

4.2). 

 

Decision tree models proved effective in predicting and mapping SOC content, providing 

reasonably accurate predictions. Their performance may vary due to their distinct 

characteristics. In particular, XGBoost models demonstrated high performance in consistently 

predicting and mapping SOC content, outperforming other models, as corroborated by prior 

research.  

 

4.3.4. Spatial distribution of  SOC 

 

The results shown in Figure 4.6 indicate a high variability in the spatial distribution of SOC 

30, ranging from 0.5% to 2.78%, with a mean value of 1.35%. When comparing the predictive 

metrics of SOC 30 to the observed data, the predictive errors for SOC 30 content are relatively 

low. However, it is important to note that biases primarily stem from inaccuracies in predicting 

the distribution range, as evidenced by the negative bias values presented in Table 4.2. 

Additionally, errors related to laboratory experiments and environmental covariates calculation 

contribute to the biases, increasing the uncertainties in the DSM maps. 

 

Additionally, our findings suggest that predictive errors are more pronounced in areas with 

high and very low SOC content, which was underestimated and overestimated respectively. 

This issue is pronounced in our previous results. Our hypothesis is that the error in range 

prediction is likely related to the data distribution, specifically the limited number of 

observations at the range limits. This issue may be addressed in future works by improving the 

sampling design and increasing the number of sampling points to ensure a better representation 

of the studied landscape. 
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Figure 4.3. SOC content spatial distribution in the first 30  cm across Krasna Hora nad Valtavu. 
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4.4. Conclusion 

 

In conclusion, the work of this paper has demonstrated interesting results about the prediction 

and spatial distribution of SOC content, using XGBoost model as DSM approach, particularly 

the we have identified its high performance in predicting SOC 30, highlighting its potential for 

accurate SOC mapping. Our analysis of key environmental factors influencing SOC 

distribution revealed the significance of using remote sensing variables DSM approach. These 

findings deepen our understanding of SOC dynamics and confirm the importance of 

considering different environmental drivers in SOC modeling and mapping. However, our 

study is not without limitations. While decision trees models offer promising results, challenges 

remain in accurately predicting SOC content in areas with highly diversity and few collected 

data, particularly in cases of high SOC levels. Looking ahead, future research efforts should 

focus on addressing these limitations by refining machine learning algorithms, and 

incorporating additional environmental covariates. Furthermore, longitudinal studies and field 

validation efforts are essential to validate our model predictions and enhance the robustness of 

SOC mapping techniques. In summary, our research contributes to advancing our 

understanding of SOC dynamics and provides important information for sustainable land 

management practices in Bohemian uplands environment. 
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5. General discussion 
 

This doctoral thesis has thoroughly investigated the complex task of SOC mapping using 

machine learning models within the DSM approach in mountainous and upland environments. 

Through three distinct case studies, we have not only assessed the performance of various 

machine learning algorithms in SOC prediction and mapping but also analysed the 

environmental drivers behind SOC and other soil parameters, such as soil pH, distribution at 

different scales and under various land uses and land covers. Furthermore, we have addressed 

the uncertainties and challenges that arise in the application of DSM methodology for SOC 

mapping, particularly in regions characterized by complex terrain and heterogeneous soil 

compositions, such as alpine environments. 

 

5.1. Performance evaluation of machine learning models 

 

Our work focused on assessing the performance of machine learning models in predicting SOC 

distribution. Each model exhibited its own set of strengths and weaknesses, influenced by 

factors ranging from structural intricacies to variable selection strategies. While RF and 

XGBoost consistently demonstrated robust predictive capabilities across different landscapes, 

models like MARS presented limitations due to their narrower variable selection. This 

highlights the need to experiment with different machine learning models to choose the right 

ones and include relevant environmental factors to accurately predict soil properties. 

The results of our modeling techniques align with previous research on the application of 

machine learning models in predicting the spatial distribution of SOC and various soil 

properties. Our findings suggest that RF and XGBoost are among the most effective models 

for soil properties prediction and mapping. These models are widely used due to their robust 

performance. RF employs bagging methods, while XGBoost uses gradient boosting techniques, 

both of which enhance their stability and accuracy in SOC prediction and mapping (Chen et 

al., 2022; Khalaf et al., 2023; Sun et al., 2023). 

 

5.2. Identification of environmental drivers for SOC spatial distribution  

 

Our research identified various environmental factors that directly shape the spatial distribution 

of SOC. From geomorphometric attributes and land use/land cover (LU/LC) to climatic 

conditions, a complex interplay of variables emerged as pivotal in modulating SOC storage 

patterns. In our three case studies, topographic attributes including slope, aspect, and curvature 

exerted considerable influence on SOC distribution patterns, underlining the intricate 

interdependencies within mountainous and upland ecosystems. In mountainous environments, 

land cover and vegetation types demonstrated a high importance in SOC sequestration. For 

example, in the Valchiavenna Valley, peatlands, grasslands, and coniferous forests emerged as 

significant contributors to SOC stock, while climatic variables such as temperature and 

precipitation exerted more subtle effects on SOC dynamics. Additionally, soil type played an 

important role in SOC stock spatial distribution, as demonstrated in the Andossi plateau case 

study. 
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5.3. Addressing uncertainties and challenges 

 

Despite the advancements in the modelling techniques developed in our research, uncertainties 

persist in SOC mapping endeavours, particularly in areas with limited observation data and 

extreme SOC values (very low and very high values). These challenges underscore the 

necessity of improving our modelling methodologies. The discrepancies between model-

predicted SOC ranges and observed data highlight the difficulties in accurately capturing 

extreme variations in SOC content. Nevertheless, some algorithms demonstrated better 

accuracy (in our case, decision tree models) than others, depending on the nature of the data 

and the specific objectives of the mapping activity. 

 

5.4. The use of DSM SOC maps for climate action and soil health: future prospects 

 

The findings of our research are highly significant for climate change mitigation and 

sustainable soil management. By creating high-resolution maps of SOC and related soil 

parameters, such as soil pH, and identifying the key environmental factors that influence their 

spatial distribution, policymakers and land managers can develop targeted strategies to increase 

SOC sequestration and reduce carbon emissions. For instance, in the PASCOL-ANDO project 

at the Andossi plateau, our results will be used by local stakeholders and regional policymakers 

in the Lombardy region to preserve and sustainably manage alpine pastures and mountainous 

grasslands. Our SOC maps provide accurate information about areas with high SOC storage 

potential, such as the peatlands in the Valchiavenna valley, enabling land managers to prioritize 

conservation efforts in these regions. Our DSM maps can also guide sustainable agricultural 

practices to maximize carbon retention in soil, as demonstrated by the SOC maps from the 

Krasna Hora nad Vltavou case study in the Bohemian uplands of the Czech Republic. By 

utilizing this detailed maps of soil properties, we can help mitigate climate change and promote 

sustainable land use to maintain soil health and its functionality. 

Future prospects include modelling SOC changes under various climate change scenarios using 

the outputs of our DSM maps. Integrating land use dynamics changes into predictive models 

can further refine our understanding of the complex drivers of SOC distribution.  Additionally, 

we are aiming to improve modelling approaches and innovative soil sampling methodologies 

offer to improve the accuracy and resolution of SOC mapping outputs. Enhancing sampling 

methods and covariate selection techniques, such as using embedded and ensemble methods of 

feature selection, can significantly increase the accuracy of SOC predictions (Chen et al., 

2022b). Additionally, applying ensemble machine learning and super techniques may help 

reduce uncertainties in our results (Taghizadeh-Mehrjardi et al., 2021; Wadoux et al., 2020). 

In summary, this research represents a thorough investigation into the intricacies of SOC 

mapping in mountainous and upland environments, having examined the performance of 

machine learning models, identified the environmental drivers of SOC distribution, and 

addressed inherent uncertainties and challenges. 
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6. General conclusion 
 

In conclusion, this doctoral thesis represents a significant advancement in our understanding 

of SOC spatial distribution dynamics in mountainous and upland environments. Through three 

distinct case studies, this research has illuminated the complex relationship of environmental 

variables shaping SOC spatial patterns and demonstrated the effectiveness of machine learning 

models in predicting SOC distribution at various scales. 

The findings highlight the crucial roles of vegetation cover, climatic conditions, topographic 

attributes, and soil properties in influencing SOC sequestration rates across diverse landscapes. 

From the lush peatlands of Valchiavenna to the agricultural lands of bohemian uplands, each 

case study has provided significant insights into the environmental drivers of SOC dynamics, 

enriching our understanding of carbon cycling processes in mountainous regions. 

Furthermore, this thesis has clarified the strengths and limitations of different machine learning 

algorithms in predicting SOC spatial distribution. By rigorously evaluating RF, SVR, and 

XGBoost models, we have identified RF and XGBoost as robust performers, capable of 

delivering accurate predictions across heterogeneous landscapes. These findings not only 

advance methodological approaches in DSM application in mountainous ecosystems but also 

offer practical guidance for policymakers and land managers aiming to improve SOC 

monitoring and management. 

Looking forward, the insights from this thesis serve as a foundation for future research aimed 

at further exploring SOC distribution dynamics in mountainous and upland environments under 

environmental changes. Additionally, it underscores the importance of addressing uncertainties 

and challenges in SOC mapping. Enhancing sampling methodologies to capture extreme SOC 

variations is crucial, and there are numerous prospects for improving methodological accuracy 

and modeling techniques. 

In essence, this doctoral work contributes significantly to the academic research on SOC 

dynamics and has important implications for climate change mitigation, ecosystem 

conservation, and sustainable soil management. By bridging the gap between theoretical 

insights and practical applications, this research aims to equip stakeholders with the knowledge 

and tools necessary to protect our soil resources for future generations sustainability. 
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