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To the people who made this journey memorable

At least I learned something from all of this...

What’s that?

> How to deal with frustration, disappointment, and irritating cynicism.

It’s not the size of the ship...

Never pay more than 20 bucks for a computer game.

– Guybrush Threepwood



Abstract

Presentation and communication of characteristics about products and, in

general, collections of objects or services are of crucial relevance in several fields.

The most prominent application is given by the necessity of manufacturers and

stores to advertise their offers to potential customers. To this purpose, paper

or digital catalogs are often employed. Furthermore, catalogs may have goals

that differ from the advertisement of physical products. They may also build

on the presentation of knowledge (e.g. in a library or museum) or refer to

services provided by some company or individual. With the growing diffusion

of smartphones, tablets, and head-mounted displays, new possibilities arise

for the catalogs to be presented by taking advantage of Mixed Reality (MR)

concepts that allow the blending of virtual elements within the real world. To

this end, this thesis proposes a computational framework that supports the

creation of MR catalogs throughout the stages of design, development, and

fruition of the catalog itself. The creation of MR catalogs involves several

aspects. The key ones among them are investigated in this research. These

include 3D geometry reconstruction, material appearance acquisition, and

presentation of the MR catalog. Researchers have largely investigated these

fields separately. This thesis aims to tackle specific problems of their usage

in the creation of an MR catalog. 3D geometry reconstruction finds use in

the creation of virtual 3D models of real elements for display in MR catalogs.

The problem of selecting the most suitable 3D reconstruction method is

addressed. In addition to 3D geometry, the look and feel of virtual elements

are crucial to make them appear realistic. This thesis proposes the design and

development of a low cost portable device for material appearance acquisition.

Finally, the presentation of the MR catalog involves the rendering of the

virtual elements and interaction with the user. In order to accomplish that, a

generic framework for the creation of MR catalogs is defined. Possible use

case scenarios of the proposed framework in the development of MR catalog

applications are investigated.
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1 Introduction

Presentation and communication of characteristics and knowledge about

products and, in general, collections of objects or services are of crucial

relevance in several fields. The most prominent application is given by the

necessity of manufacturers and stores to advertise their offers to potential

customers. To this purpose, paper or digital catalogs are often employed.

Furthermore, catalogs may have goals that differ from the advertisement

of physical products for sale. They may also build on the presentation of

knowledge (e.g. in a library or museum) or refer to services provided by some

company or individual.

Paper catalogs are among the older kind of ways to provide information

about a collection of objects or services. They provide direct advertising of

those elements by indicating their characteristics in a more or less exhaustive

way which may include: pictures, textual description, options, prices, ordering

information, payments, and delivery modalities. While we still find and use

paper catalogs nowadays, new technological advances allow us to provide

catalogs in digital forms. With the creation of the Internet and the diffusion of

Personal Computers, we witnessed the development of digital twins of paper-

printed catalogs and later the introduction of enriched digital experiences

in such digital copies through new features, interactivity, and rich media

presentation.

With the growing diffusion of smartphones, tablets, and head-mounted

displays, new possibilities arise for the catalogs to be presented by taking

1



advantage of Mixed Reality (MR) concepts that allow the presentation and

blending of virtual elements within the real world. To this end, this thesis

proposes a computational framework that supports the creation of MR catalogs

throughout the stages of design, development, and fruition of the catalog

itself. The creation of MR catalogs involves several aspects. The key ones

among them are investigated in this research. These include 3D geometry

reconstruction, material appearance acquisition, and presentation of the MR

catalog. Researchers have largely investigated these fields separately. This

thesis aims to tackle specific problems of their usage in the creation of an MR

catalog.

3D geometry reconstruction finds use in the creation of virtual 3D models of

real elements for display in MR catalogs. Virtual elements may range from

single objects, such as products, to buildings and entire cities, depending

on the catalog content target. For this reason, different scales and levels of

details of the 3D reconstruction may be necessary. Several 3D reconstruction

solutions may be adopted as well. The research question is: how do we choose

the best for our specific task?

In addition to 3D geometry, the look and feel of virtual elements are crucial

to make them appear realistic. Material appearance acquisition is the task

that allows us to capture the optical properties of surfaces and thus enabling

their accurate reproduction in the virtual world. Precise acquisition of such

properties requires complex and expensive hardware. The research challenge

is: can we design an accurate enough but low cost and portable device for

material appearance acquisition?

Finally, the presentation of the MR catalog involves the rendering of the

virtual elements and interaction with the user. To accomplish this task,

a generic framework for the creation of MR catalogs is defined. Such a

framework embeds the concepts of 3D geometry reconstruction and material

appearance acquisition. Considering that several kinds of MR catalogs can

be created, each requiring specific abilities and characteristics, the framework

acts as a blueprint customizable to fit specific needs. The framework is

further explored and validated by investigating possible use case scenarios in

the design and development of MR catalog applications. These include the

2



1.1 Contributions

presentation of virtual textile products with realistic look-and-feel and the

virtual try-on of eyeglasses.

This thesis discusses all of the above aspects and shows how it is possible

to adapt methods and pre-existing research to support the creation of MR

catalogs. Obtained results show that it is possible to tackle all of the challenges

by providing cheap solutions. However, limitations, open problems, and future

research directions arise as well.

1.1 Contributions

The main contribution of this research is the definition of a framework

to aid the creation of mixed reality catalogs. However, in this thesis, several

aspects of the design, development, and fruition of a Mixed Reality catalog

are tackled. These include 3D geometry reconstruction, material appearance

acquisition, rendering, and interaction. Each of them presents its research

challenges that are addressed in this thesis. In more detail,

1. a method for the evaluation of 3D reconstruction pipelines that enables

testing and stressing specific conditions and setups by using synthetic

data is defined.

2. A software toolset for simplifying the creation of accurate synthetic

data for 3D reconstruction evaluation is presented.

3. The aforementioned software is used to create different synthetic datasets

and validate their usefulness in evaluating and comparing 3D recon-

struction pipelines under several aspects.

4. A low cost device for material appearance acquisition of planar surfaces,

which allows acquisition and modeling of the characteristics of real-world

surfaces for later use in render engines, is proposed. The quality of the

obtained appearance representations is also evaluated.

5. A generic framework for the creation of Mixed Reality catalogs that

3



1.2 Organization of this thesis

embed methods for both the development and fruition of such catalogs

is proposed. This framework includes the proposed 3D reconstruction

evaluation and material appearance acquisition methods previously

proposed. It also acts as a blueprint that can be customized to fit

specific use cases.

6. Adaptations of the generic Mixed Reality catalog framework to specific

use case scenarios through the design and development of catalog pro-

totypes are proposed and evaluated. Those include a virtual catalog

of textiles, an eyeglasses virtual try-on application, and a smart mirror

that features the same virtual try-on application as a new means of

interaction.

In an effort to support the reproducibility of results and encourage further

research on the topics of this thesis, the software and datasets developed are

publicly available online. Here below are summarized links to the resources.

• Software

– SfM Flow – https://github.com/davidemarelli/sfm_flow

• Datasets

– IVL-SYNTHSFM – http://www.ivl.disco.unimib.it/

activities/evaluating-the-performance-of-structure-

from-motion-pipelines/

– IVL-SYNTHSFM-v2 – https://doi.org/10.17632/fnxy8z8894

– ENRICH – https://doi.org/10.17632/md7f7c5pzn (to appear)

1.2 Organization of this thesis

This section details the structure of this thesis and the contents of each

chapter. For each chapter are also listed the relevant publications in chrono-

logical order.
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1.2 Organization of this thesis

CHAPTER 1: INTRODUCTION

This is the current chapter, which introduces the content of this thesis, the

challenges of the presented research, and the most relevant contributions.

The rest of the chapter will outline the remainder of the document and its

content.

CHAPTER 2: BACKGROUND AND RELATED WORK

This chapter presents the concepts and reasons behind the development of

Mixed Reality catalogs. Existing types of catalogs, their characteristics, and

issues are presented. The chapter also introduces the concepts of Virtual,

Augmented, and Mixed Reality. It also discusses the research fields involved in

the design, development, and fruition of Mixed Reality catalogs. Furthermore,

the chapter reviews existing literature about Mixed Reality catalogs in their

several forms and fields of application. For each task covered in the thesis,

there will be a task-specific state-of-the-art review in the related chapter.

CHAPTER 3: 3D GEOMETRY RECONSTRUCTION

This chapter explores the use of 3D geometry reconstruction in the context

of Mixed Reality catalogs. It reviews the Structure from Motion 3D recon-

struction technique as well as existing 3D datasets. It then focuses on the

definition of methods and datasets to simplify and speed up the selection of a

3D reconstruction pipeline that best suits a given task. A tool for generating

accurate synthetic evaluation data and partially automating the procedure

is also presented. Extensive experiments show the validity of the proposed

synthetic datasets and their impact in evaluating 3D reconstructions.

The results and methods described in this chapter are based on the work

published in the following papers:

• Davide Marelli, Simone Bianco, Luigi Celona, and Gianluigi Ciocca.

“A Blender plug-in for comparing Structure from Motion pipelines”. In:

2018 IEEE 8th International Conference on Consumer Electronics -

Berlin (ICCE-Berlin). 2018, pp. 1–5.
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• Simone Bianco, Gianluigi Ciocca, and Davide Marelli. “Evaluating

the Performance of Structure from Motion Pipelines”. In: Journal of

Imaging 4.8 (2018).

• Davide Marelli, Simone Bianco, and Gianluigi Ciocca.

“IVL-SYNTHSFM-v2: A synthetic dataset with exact ground truth for

the evaluation of 3D reconstruction pipelines”. In: Data in Brief 29

(2020), p. 105041.

• Davide Marelli, Simone Bianco, and Gianluigi Ciocca. “SfM Flow: A

comprehensive toolset for the evaluation of 3D reconstruction pipelines”.

In: SoftwareX 17 (2022), p. 100931.

• Davide Marelli, Luca Morelli, Elisa Mariarosaria Farella, Simone

Bianco, Gianluigi Ciocca, and Fabio Remondino. “ENRICH: multi-

purposE datasets for beNchmaRking In Computer vision and pHo-

togrammetry”. In: ISPRS Journal of Photogrammetry and Remote

Sensing (2023). (minor review).

CHAPTER 4: MATERIAL APPEARANCE ACQUISITION

This chapter focuses on the task of characterizing the optical properties

of a surface that is complementary to the 3D geometry reconstruction. It

reviews existing methods and models for material appearance acquisition. It

then describes on the design and development of a low cost portable device

for tackling such a task. The chapter presents the hardware and software

component involved, as well as the evaluation of the obtained results.

Part of this work has been done with the supervision of Professor Alain

Tremeau, Professor at University Jean Monnet, Laboratoire Hubert Curien,

University of Saint-Etienne, during the (virtual) abroad period. The results

of the collaboration will be presented in a joint journal paper that is currently

in preparation and will be submitted in the next few months.

CHAPTER 5: RENDERING AND INTERACTION

This chapter presents the generic Mixed Reality catalog framework and
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how the 3D reconstruction and material appearance acquisition fit it. The

framework is responsible for both; the creation of the catalog and its fruition

(rendering and interaction). The generic framework suits different kinds

of Mixed Reality catalogs. It is also validated through the creation of two

prototypes for different use cases; a virtual catalog of textiles and an eyeglasses

virtual try-on application. Furthermore, this chapter presents the results

of experimentation of eyeglasses virtual try-on on a prototype smart mirror

which provides a new means of interaction.

The results and methods described in this chapter are based on the work

published in the following papers:

• Davide Marelli, Simone Bianco, and Gianluigi Ciocca. “A Web

Application for Glasses Virtual Try-on in 3D Space”. In: 2019 IEEE

23rd International Symposium on Consumer Technologies (ISCT). 2019,

pp. 299–303.

• Davide Marelli, Simone Bianco, and Gianluigi Ciocca. “Faithful

Fit, Markerless, 3D Eyeglasses Virtual Try-On”. In: Pattern Recogni-

tion. ICPR International Workshops and Challenges. Cham: Springer

International Publishing, 2021, pp. 460–471.

• Simone Bianco, Luigi Celona, Gianluigi Ciocca, Davide Marelli, Paolo

Napoletano, Stefano Yu, and Raimondo Schettini. “A Smart Mirror for

Emotion Monitoring in Home Environments”. In: Sensors 21.22 (2021),

p. 7453.

• Davide Marelli, Simone Bianco, and Gianluigi Ciocca. “Designing an

AI-Based Virtual Try-On Web Application”. In: Sensors 22.10 (2022).

CHAPTER 6: CONCLUSION

Finally, this chapter concludes this thesis. Findings are highlighted and

insights on possible future research that may spark from the results presented

within this thesis are provided.
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2 Background and related work

2.1 Background

A catalog provides direct advertising, presenting the products manufac-

tured or sold by a firm, indicating their characteristics in a more or less

exhaustive way (references, sizes, options, prices, payment, delivery, use, and

aftersales service modalities). Furthermore, catalogs may have goals that

differ from the advertisement of products for sale. They may also build on

the presentation of knowledge (e.g. in a library or museum), provide virtual

tours (e.g. of cultural heritage or buildings), or refer to services provided by

some company or individual. In a world where advertising reaches customers

in many ways, catalogs remain relevant tools in omnichannel marketing mixes

[100] because consumers still use them.

Printed catalogs are now facing ecological concerns and new technological

advances they can benefit from. Catalogs are increasingly taking digital forms,

which allows for them to be displayed on multiple devices and reach customers

in many forms. These range from digital copies of paper-printed catalogs

to newer enriched digital experiences which are introduced in Section 2.1.1.

These catalogs also benefit from the advantages of new technologies in terms

of features, interactivity, and rich media presentation.

Research on printed catalogs is dense and covers several topics such as their

design, impact on purchases, attractiveness, and consultation experiences

[47, 70, 98, 100]. On the opposite, less research has been done on catalogs
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that use innovative digital technologies providing features and experiences

that were not possible with paper catalogs. As a result, the studies on

printed catalogs appear somewhat outdated and not fully applicable to digital

catalogs.

Although digital catalogs are not a new concept, new technologies are

being integrated to provide those enriched experiences, and their adoption is

now gaining momentum. Even IKEA in 2020 decided to drop its successful

paper catalog [128]. IKEA started printing its catalog in 1951 and began

to provide a digital version of it in 2000. The success of the catalog kept

increasing till 2016 when it reached the peak of 200 million copies printed and

distributed worldwide. But times have changed even for this successful media,

and IKEA, as other companies, was hit by the change in media consumption

and customer behaviors. To second this transformation they increasingly

moved their investments toward the digital world and finally discontinued the

paper catalog.

2.1.1 Introduction to e-catalogs

This section introduces e-catalogs which may appear in different variations

thanks to the use of various technologies. The most direct transposition of

the traditional paper-printed catalog is its digital or online version. The

online catalog is thus a digital version of the paper catalog; it retains the

same characteristics (e.g., layout, information, pages to turn), making them

familiar to people used to paper-printed catalogs. It is thus an immaterial

reproduction of the real-world paper catalog being its virtual twin. While this

implies that the digital catalog is a simple transposition of the paper catalog,

it can also be considered as an amplification of the real world and thus of

the traditional catalog [157]. Thus, this creates the potential to provide new,

enhanced, and rich experiences.

A new kind of catalog exploits these new possibilities and provides enriched

experiences: the enriched digital catalog. It is still a digital catalog but also

provides augmented content and richness by adding new information and
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exploiting modern technologies for visualization. The quality of the catalog

is thus improved by adding detailed and useful information that could not be

included in printed catalogs (due to limits of the paper catalog in both layout

and media type), but that becomes available in digital forms. These details

include product and commercial information, informative or promotional

videos about the product or the brand, and redirection toward a webpage

or product sheet. The enriched catalog aims thus to provide an immersive

and compelling experience. However, a study by Garnier and Poncin [91]

shows that the presence of enrichment elements does favor immersion but

does not create a compelling experience nor increase intentions to use the

digital catalog. Nonetheless, enriched catalogs still solve one of the problems

of digital ones; they offer a means to directly buy the product, whereas

traditional catalogs require consumers to use another channel (e.g., website,

physical store) to make a purchase.

In recent years newer technologies in the field of Mixed Reality (MR, which

is explained in Section 2.1.2) have been increasingly used to create product

catalogs. The goal is to provide more immersive and compelling experiences

than enriched catalogs. However, MR technologies are usually employed to

extend the functionalities of enriched catalogs. MR can be thus exploited

to provide additional capabilities, such as virtually showing a product in

a real-world environment or allowing a user to check the appearance of a

wearable product on himself (i.e. the Virtual Try-On use case). This can be

accomplished in different ways involving a variable degree of blending between

real and virtual-world elements. While this blending allows unprecedented

experiences for the users, the technology is still under heavy development,

and several problems need to be tackled. Common issues are related to

the reproduction of physical characteristics of the virtual elements, such as

material properties and sizes. These problems usually make the MR catalog

experience more entertaining than functional [147].

Nevertheless, it is also to consider that each type of catalog described

in this section can be seen as an extension of its predecessor. For example,

the enriched catalog extends the digital one by adding new content; the

MR catalog adds new features to ones already provided by the enriched
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catalog. Furthermore, in a world where advertising reaches customers through

omnichannel strategies, it is also possible to see an integration of digital,

enriched, and MR catalogs in other types of media as well as in paper-printed

catalogs. This integration still presents some challenges since only 17% of

consumers seek enrichment through QR codes leading to complementary

information, and the remaining 83% feel indifferent or even annoyed by them

[91].

Finally, it has also to be observed that these new catalogs eliminate

printing and mailing costs but require substantial investments to create the

catalogs themselves and the distribution platform.

2.1.2 Introduction to Mixed Reality

The kind of catalogs presented in the previous section make use of tech-

nologies that allow to blend together elements of the real and virtual worlds.

This blending can be achieved in a variety of ways and in a broad spectrum:

from a fully real world to a fully virtual world. This is known as the concept of

Reality-Virtuality Continuum that was first introduced in 1994 by Milgram et

al. [191]. Although concepts and keywords of Virtual and Augmented Reality

started to emerge earlier [280, 286], the work of Milgram et al. is the first to

provide a clear definition of this continuum, the concepts, and keywords. The

proposed Reality-Virtuality Continuum is schematized in Figure 2.1. In this

continuum, the real environment and the virtual one are placed at the left

and right ends of the spectrum respectively. The real environment consists

solely of real objects and includes elements that might be observed when

viewing a real-world scene either directly in person, through some kind of

window, or via some sort of display. The virtual environment consists solely

of virtual objects, such as computer graphic simulations, either monitor-based

or immersive. Everything that blends these two environments, with various

degrees of balance between real and virtual, ends in the macro-category of

the Mixed Reality (MR) environment. Common concepts in this range are

Virtual Reality (VR) and Augmented Reality (AR).
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A VR environment is one in which the observer is fully immersed in a virtual

world. This synthetic world may or may not stick to concepts of the real-world

such as physics, time, and material properties. It also may be a virtual copy

of a real environment or a fictional one. VR is closely related to completely

virtual environments, but in those environments, it is possible to include

elements of the real world, thus moving towards the real environment.

Instead, AR presents more real elements than virtual ones. Virtual elements

are thus usually superimposed onto directly viewed real scenes through panel-

mounted or head-mounted displays (HMDs). Those displays provide the

possibility to see the real world through them. While this is the state-of-the-

art way to provide an augmented reality experience, new technologies allow

the creation of monitor-based AR systems. These are non-fully immersive

systems that still provide a "window-on-the-world" (WoW). The concept of

AR still applies if computer-generated images are overlaid onto live or stored

real-world content. Following this reasoning, smartphones have been recently

used as HMDs and handheld displays to provide AR systems by superimposing

virtual content on the live video feed of the onboard video camera [105, 211].

An MR system is thus defined by several factors that include but are not

limited to the hardware and technology used to provide the experience (which

defines immersion and directness of view of the real world) and the ratio of

real/virtual world elements (which determines the reality or virtuality).

Figure 2.1: Reality-Virtuality Continuum.
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2.1.3 Fields involved in a Mixed Reality catalog

A Mixed Reality catalog involves methods and techniques from several

fields. Those can be additionally split into fields required for its development

and its fruition. Those fields include 3D geometry reconstruction and modeling

to provide 3D geometry of elements either of the real or virtual world, as

well as material appearance acquisition to represent the material properties

of such geometries. For the fruition of a mixed reality catalog rendering

and interaction cover a crucial role. While this mainly focuses on software

components such as rendering engines and computer vision, the hardware

used to experience the catalog is of equal importance.

This thesis focuses on the software and hardware required for the acquisition

of 3D objects and their materials, as well as the software platform required

for the fruition of a mixed reality catalog.

2.2 Related work

This section reports a high-level state-of-the-art review of the works and

methods used to create a mixed reality catalog. A detailed state-of-the-art

review describing the existing literature for each investigated task and use

case is provided in each chapter.

Mixed reality catalogs can dramatically change the way a user interacts

with a product or environment. Such a technology shift finds usage in the

form of several applications. Here are reviewed MR systems in the fields of

interest.

AR product configurators make product visualizations accessible and

configurable. A configurator is a software tool that allows the configuration

of a product based on a list of possible customizations; depending on the

complexity of the product, constraints on possible configurations may apply.

Customization is performed using 3D models in AR that allow performing this

task by superimposing the personalized product on the real one. This kind of
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configurator finds application in several domains, such as apparel and fashion

items, furniture, real estate, cars, and luxury objects. Gehring et al. [97]

presented an early work that explored the use of an AR mobile application for

the on-the-fly customization of products at the point of sale. The application

allows the user to change the color of a soap dispenser. The customization

works based on two possible interaction schemes. In the first scheme, the user

picks a color directly; in the second one, the most fitting color is automatically

computed from the environment. Thus, the app can dynamically adapt the

product based on both user and environmental constraints. Another early

concept of Gehring [96] used a smartphone to track a real object in the video

feed of the camera and provide a customized version of it on the display of

the device. Furthermore, the same work proposed the use of a phone with

an integrated pico-projector to project a custom personalized version of a

box over a real completely white box. Wiwatwattana et al. [314] presented a

prototype for ice dessert customization and ordering, which comprises an iOS

AR application (customer interface) and a web application (store interface).

The ice flavors and toppings are augmented over the real cone/cup by the

customer himself. The customer can see what he will get with his order

as it is shown in real-time on the mobile screen before he can then order

the preferred combination from the smartphone, and the shop assistant will

receive it through the web application. Recently, Gottschalk et al. [107]

proposed an AR configurator that splits the products into sub-components

and allows users to customize them. While the concept can be applied to

multiple products, they presented a case study in which a manufacturer of

modular kitchens can provide the ability to order customized kitchens for

their customers. The application considers product requirements, user needs,

and environmental constraints, assuring that none is violated.

MR virtual tours are closely related to AR configurators. They still make

product visualization accessible through Mixed Reality but are missing the

ability to personalize and configure the objects. Virtual tours find application

in the visualization of single objects (e.g., apparel, fashion items, cars, furni-

ture) as well as complete environments (e.g., real estate, theme parks). Back

14



2.2 Related work

in 1987 Brooks [40] proposed a VR tour of buildings, allowing an architect to

show a building prototype to the client and enabling discussion and design

iteration about it. This application was mainly limited by the technology of its

time, which allowed it to achieve only nine updates per second of the generated

virtual environment. Thanks to technological advances, newer applications

have been proposed. ARQuake (Thomas et al. [285]) was developed as an

extension to the popular Quake desktop game. The application exploits AR

and a see-through HMD to show game elements (monsters, weapons, objects

of interest) in indoor and outdoor spaces. Interestingly, the application was

also used as an AR visualization tool to aid architects in conveying their

ideas to their clients. The application made it possible to show the building

design in an outdoor AR environment, which allows users to discover issues

and present alternative designs. Chhugani et al. [54] introduced visibility

computation and data organization algorithms that enable high-fidelity walk-

throughs of large 3D scenes. Their walkthrough system performs computation

proportional only to the required detail in visible geometry at the rendering

time, allowing them to build large virtual tours with higher framerates. The

Arch-Explore user interface [42] tackled the problem of VR exploration of

architectural 3D models in the limited interaction space of small laboratory

setups. Du et al. [68] extended the virtual tour of buildings allowing multiple

users to interact in the virtual environment at the same time.

Augmented and Virtual shops provide additional content in a physical

store or in a virtual environment in which the customers can discover and

interact with products in new ways. In an augmented shop, AR is used to

provide additional information about products. A virtual shop may provide

3D real-size visualization of the products allowing the user to interact with

them and discover alternative products. These new shops bring consumers an

immersive online shopping experience. Guven et al. [112] presented a mobile

AR application that extends such social content from the computer monitor

into the physical world through mobile phones. The application provides

information on products (by superimposition) to help in buying decisions. In

detail, online or in-store reviews are provided, and the user can interact with
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reviewers via text or voice using virtual avatars. ShelfTorchlight [172] uses

a mobile phone and a pico-projector to help the user to find a product on

a shelf in a store. The authors demonstrated the usability of the device in

two different scenarios: a library and a retail environment. While searching

for a book in a library, the system shows customer reviews for the books by

highlighting a book and projecting the related review score. In the retail

environment, the device takes user preferences to highlight products that

fit them better. Rashid et al. [239] propose the use in conjunction of AR

and RFID technology to provide augmentation of products on a smart shelf.

A single marker is used to trigger an AR application in front of the shelf.

The shelf provides the application with the approximate position and type

of objects in the AR app thanks to the RFID technology. The application

can thus superimpose additional information. Furthermore, interaction with

the system is both visual and vocal. In 2016 Alibaba launched Buy+, a new

virtual shop that uses VR technology to create a 3D shopping environment

and provide virtual interaction with products sold by the platform. Later,

Ouellet et al. [218] demonstrated the feasibility and validity of a virtual

shop experience. They created a virtual shop that measures approximately

3.5x6.5m and contains common shop elements. Its layout comprises two

central shelves and three refrigerators in a 3D virtual environment that is

fully immersive and usable through HMDs. It supports navigation (via natural

walking), item selection (via a pointer), and conversation with a character (via

natural talking). However, the objective of their research was the assessment

of everyday memory, not the creation of a VR shop.

MR tourist guides allow users to obtain information about the objects

in their close surroundings ranging from objects in a museum or historical

buildings of a city. The relevant information is superimposed based on the

object in front of the camera. This finds application in the tourism and

cultural heritage industries. An early example of an AR museum guide is a

prototype of an automated audio tour guide proposed in 1995 by Bederson

[23]. The system allows visitors to hear descriptions of exhibited pieces just by

walking up to them. Descriptions may be heard in any order and can be cut
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short by walking away. Mase et al. [185] proposed another early prototype, the

Meta-Museum. This prototype blends virtual reality and artificial intelligence

technologies with conventional museums to maximize the utilization of a

museum’s archives and knowledge base to provide an interactive experience

for visitors. The system can present additional details about the exhibits

through HMDs and personalizes the contents based on the visitor’s interests.

Hall et al. [113] propose to use MR to enhance user experience and learning

in museums. The system uses a sophisticated portable MR device called

the periscope inside exhibits to allow visitor interaction and visualization of

artifacts and their related information. The Archeoguide system [303] allows

users to see virtually restored cultural assets by superimposing a virtual

3D object on the real-world through HMDs. The system uses a back-end

server, mobile units (HMDs and PDAs), a wireless network, and a tracking

system (based on GPS location and imaging). The ARCO system [313]

provides a complete tool chain for virtual museum environments. It supports

the digitization of a museum collection through photogrammetry, collection

refinement, management, and VR/AR visualization of galleries and artifacts.

Liarokapis and White [164] experimented with the use of AR to visualize

incomplete or broken real objects as they were in their original state. The

result is achieved by the superimposition of the missing parts through 3D

reconstruction and virtual model enhancement. Holz et al. [125] introduced

the Mixed Reality Agent Guide (MIRA) guidance system, which combines

HMDs and robots in museum rooms. MIRA guides visitors to aim AR devices

toward markers placed in the museum to make the system recognize them and

present virtual content. Miyashita et al. [193] proposed an AR museum guide

that embeds AR content as well as audio guidance. AR mode is activated

based on some AR stations inside the museum. The device enables the AR

mode when the visitor is near an AR station. Otherwise, the visitor is guided

through the exhibition by a voice guide. Sinthanayothin et al. [269] proposed

an interactive virtual three-dimensional photo gallery on mobile devices. The

application allows users to take pictures with their mobile device and exhibit

them as a virtual 3D gallery and navigate or walk through the gallery by

pressing a button or moving the device. Shih [267] created a virtual tour
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of the city of London by integrating the ability to see tourists’ avatars and

interact with them in Google Street Map. The virtual tour is guided by

a native English-speaking instructor. Soga [271] developed two systems to

support exhibits at a museum with additional content. The first one is a

walk-through system in 3D space using Kinect; the latter uses goggles to show

a stereoscopic 3D image. Interaction is supported by gesture recognition.

Recently, Hammady et al. [115] designed and developed MuseumEye, an

HMD-based museum guidance system based on the immersion and presence

theory. This approach examines the influence of interactivity, spatial mobility,

and perceptual awareness of individuals within MR environments to enhance

customer experience and reduce the number of human tour guides in museums.

MR publishing features refers to the integration of Augmented Reality with

paper-printed documents. Using an AR-ready device over the surface of a

printed document allows for its augmentation with virtual objects. It allows for

the addition of dynamic content in newspapers, paper catalogs, advertisement

flyers, books, and games. Löchtefeld et al. [171] proposed the use of a mobile

phone and a portable projector to detect markers and display additional

information. The system is suitable for different tasks, including providing

digital navigable twins of paper-printed content (e.g. maps) and augmenting

books with personalized content. Löchtefeld et al. [173] investigated the

use of AR to bridge the digital divide on advertising leaflets. In particular,

they explored the use of AR to easily compare products of different retailers

and different strategies for visualizing cross-selling recommendations inside

the leaflets. Kim and Kim [148] created a markerless augmented reality

application system developed that uses leaflets and outdoor signboards of

stores to augment the three-dimensional model-based indoor information

and booking information of stores and makes possible users’ direct booking.

Zulkifli et al. [340] proposed a mobile AR application to complement a paper

brochure. Through the application, users can access information in the form

of virtual content which cannot be acquired from a typical paper brochure.

Virtual try-on allows customers to virtually try a product on themselves.

Several types of virtual try-on have been proposed over the years, including the
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try-on of eyeglasses, clothes, accessories, jewelry, makeup, hairstyle, and hair

color. The try-on may appear on a real-time video feed or in a deferred manner

on video, images, or 3D models. Eisert et al. [72] proposed an early concept

of virtual try-on for shoes. The system uses a camera to acquire a video feed

of the user’s shoes and a display on which the result of the try-on is displayed.

Sophisticated 3D imaging techniques are used to virtually wear the shoes

on the user, track them in real-time, and adapt the rendering to the motion

of the user. Later several applications and approaches have been proposed

for the virtual try-on of different products [66, 145, 169, 227, 250, 293]. An

in-depth review of existing virtual try-on applications is provided in Section

5.1.1.
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3 3D geometry reconstruction

Three-dimensional geometry reconstruction is the process that allows

to capture the geometry of an object or an entire scene. In the last years,

interest has developed in the use of 3D reconstruction for reality capture,

gaming, and virtual and augmented reality. These techniques have been

used to create video game assets [114, 232], virtual tours [254] as well as

mobile 3D reconstruction apps [73, 200, 209]. Some other areas in which 3D

reconstruction can be used are Computer Aided Design (CAD) software [26],

computer graphics and animation [132, 274], medical imaging [45], virtual

and augmented reality [210], cultural heritage [241].

In the context of Mixed Reality catalogs 3D geometry reconstruction is

employed in the creation of virtual 3D models of real elements for display

in virtual or augmented reality. The virtual elements may range from single

objects such as products (e.g., AR configurators, AR publishing features),

and buildings (e.g., virtual tours), to entire cities (e.g. tourists guides). For

this reason, different scales and levels of details of the 3D reconstruction may

be necessary. In the literature there are several benchmark datasets that

can be used to evaluate reconstruction algorithms. However, not all these

datasets comprise the level of details, scales, and challenges necessary for

Mixed Reality catalogs.

This chapter defines a method for the generation of synthetic datasets that

can be used to evaluate different state-of-the-art 3D reconstruction pipelines.

This method has been used to generate sample datasets to test different
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aspects of the reconstruction pipelines. The data itself and the evaluation

procedure are presented as well. Having real scenes as reference models is not

trivial; thus, a software toolset has been developed to create an evaluation

dataset starting from synthetic 3D scenes. This allows us to rapidly and

efficiently create datasets with different subjects and levels of scales stressing

the pipelines under various conditions and comparing them to select the best

solution for a specific MR catalog.

Over the years, a variety of techniques and algorithms for 3D reconstruc-

tion have been developed to meet different needs in various fields of application

ranging from active methods that require the use of special equipment to cap-

ture geometry information (e.g., laser scanners, structured lights, microwaves,

ultrasound) to passive methods that are based on optical imaging techniques

only. The latter techniques do not require special devices or equipment and

are thus easily applicable in different contexts. Among the passive techniques

for 3D reconstruction there is the Structure from Motion (SfM) pipeline

[32]. As shown in Figure 3.1, given a set of images acquired from different

observation points, it recovers the pose of the camera for each input image

and a three-dimensional reconstruction of the scene in the form of a sparse

point cloud. After this first sparse reconstruction, it is possible to run a dense

reconstruction phase using Multi-View Stereo (MVS) [85].

Figure 3.1: 3D reconstruction using Structure from Motion.

In recent years deep learning-based methods for 3D reconstruction have

also been researched. They are usually constrained to specific reconstruction

tasks or single subjects [331]. For this reason this chapter considers the SfM

pipeline which presents a generic and suitable tool for several MR catalogs.
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However, deep learning has also been used for some of the processing in the

SfM pipeline (e.g. local feature extraction), and such techniques are thus

considered in the experiments of this chapter. Deep learning-based methods

are also later investigated for the Virtual Try-On use case (Section 5.3.1).

The chapter is organized as follows. Section 3.2 reviews the SfM 3D

reconstruction method as well as the most relevant 3D benchmark datasets.

Section 3.1 explains the usefulness and challenges of 3D reconstruction in the

field of MR catalogs. Section 3.3 defines a common method for the evaluation

of different 3D reconstructions. Section 3.4 presents a toolset for the creation

of 3D reconstruction synthetic benchmarking datasets. Section 3.5 describes

the proposed synthetic datasets. Finally, Section 3.6 proves the usefulness and

quality of the proposed datasets and the method of their generation by using

them to evaluate different phases or tasks involved in the 3D reconstruction

process.

3.1 Challenges of 3D reconstruction in Mixed

Reality catalogs

3D geometry reconstruction is a topic of interest in Computer Vision

and Photogrammetry. For this reason, several pipelines and datasets for

3D reconstruction exist in the literature. However, datasets present specific

acquisition setups and conditions, and not all 3D reconstruction methods

are suitable for individual cases. In the creation of a Mixed Reality catalog,

3D geometry reconstruction covers a key topic, and being able to select

the correct 3D reconstruction solution is crucial. 3D reconstruction may

be employed to provide 3D visualization of objects to sell; it can also be

handy in AR where virtual elements are blended with real environments

(e.g. to understand placement and occlusions). Furthermore, depending on

the context of the virtual catalog, different scales and levels of detail may

be required in different situations. For example, an MR catalog of single

objects may require reconstructing the object itself to be shown or a whole
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environment. This environment can again be a single room or an outdoor

scene ranging from a single location to an entire city. Another consideration

is the modality of availability of such reconstruction. It can happen in an

offline way where processing times are not relevant (e.g. a catalog of products)

or in an online way where processing times directly impact the usability

of the catalog (e.g. virtual try-on). For all of these reasons being able to

evaluate, compare, and select the most suitable 3D reconstruction technique

and method is important for MR catalogs.

3.2 Related work

This section presents a literature review of the commonly adopted 3D

reconstruction technique of Structure from Motion, as well as the most relevant

datasets for 3D reconstruction.

3.2.1 Structure from Motion

The SfM pipeline allows the reconstruction of three-dimensional structures

starting from a series of images acquired from different observation points.

As it can be seen from Figure 3.2, a typical SfM pipeline comprises different

processing steps, each of which tackles a different problem. Each step can

exploit different algorithms to solve the problem at hand, and thus many

different SfM pipelines can be built.

Figure 3.2: Incremental Structure from Motion pipeline.

In particular, incremental SfM is a sequential pipeline that consists of
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a first phase of correspondence search between images and a second phase

of iterative incremental reconstruction. The correspondence search phase is

composed of three sequential steps: Feature Extraction, Feature Matching, and

Geometric Verification. This phase takes as input the image set and generates

as output the so-called Scene Graph (or View Graph) that represents relations

between geometrically verified images. The iterative reconstruction phase

is composed of an initialization step followed by three reconstruction steps:

Image Registration, Triangulation, and Bundle Adjustment. Using the scene

graph, it generates an estimation of the camera pose for each image and a

3D reconstruction as a sparse point cloud.

3.2.1.1 SfM building blocks

This section describes the building blocks of a typical incremental SfM

pipeline illustrating the problem that each of them addresses and the possible

solutions exploited.

Feature Extraction: For each image given in input to the pipeline, a

collection of local features is created to describe the points of interest of the

image (keypoints). For feature extraction different solutions are available;

the choice of the algorithm influences the robustness of the features and

the efficiency of the matching phase. Once keypoints and their description

are obtained, the correspondences of these points in different images can be

searched by the next step.

Feature Matching: The keypoints and features obtained through

Feature Extraction are used to determine which images portray common

parts of the scene and are therefore at least partially overlapping. If two

points in different images have the same description, then those points can

be considered as being the same in the scene with respect to the appearance.

If two images have a set of points in common, then it is possible to state

that they portray a common part of the scene. Different strategies can be

used to efficiently compute matches between images; solutions adopted by

SfM implementations are reported in Table 3.1. The output of this phase is
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a set of images overlapping at least in pairs and the set of correspondences

between features.

Geometric Verification: This phase of analysis is necessary because

the previous matching phase only verifies that pairs of images apparently

have points in common; it is not guaranteed that found matches are actual

correspondences of 3D points in the scene, and outliers could be included.

It is necessary to find a geometric transformation that correctly maps a

sufficient number of points in common between two images. If this happens,

the two images are considered geometrically verified, thus meaning that

the points are also corresponding to the geometry of the scene. Depending

on the spatial configuration used to acquire the images, different methods

can be used to describe their geometric relationship. A homography can

be used to describe the transformation between two images of a camera

that acquires a planar scene. Instead, the epipolar geometry allows the

description of the movement of a camera through the essential matrix E if the

intrinsic calibration parameters of the camera are known; alternatively, if the

parameters are unknown, it is possible to use the uncalibrated fundamental

matrix F . Algorithms used for geometric verification are reported in Table

3.1. Since the correspondences obtained from the matching phase are often

contaminated by outliers, it is necessary to use robust estimation techniques

such as RANSAC (RANdom SAmple Consensus) [80] during the geometry

verification process [120, 196]. Instead of RANSAC, some of its optimizations

can be used to reduce execution times. Refer to Table 3.1 for a list of possible

robust estimation methods. The output of this phase of the pipeline is the

so-called Scene Graph, a graph whose nodes represent images and edges join

the pairs of images that are considered geometrically verified.

Reconstruction Initialization: The initialization of the incremental

reconstruction is an important phase because a bad initialization leads to

a poor reconstruction of the 3D model. To obtain a good reconstruction

it is preferable to start from a dense region of the scene graph so that the

redundancy of the correspondences provides a solid base. If the process starts

from an area with few images, the Bundle Adjustment process does not have

sufficient information to refine the position of the reconstructed camera poses
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and points; this leads to an accumulation of errors and a bad final result.

For the initialization of the reconstruction, a pair of geometrically verified

images is chosen in a dense area of the scene graph. If more than one pair of

images can be used as a starting point, the one with the most geometrically

verified matching points is chosen. The points in common with the two

images are used as the first points of the reconstructed cloud; they are also

used to establish the pose of the first two cameras. Subsequently, the Image

Registration, Triangulation, and Bundle Adjustment steps add iteratively new

points to the reconstruction considering a new image at a time.

Image Registration: Image registration is the first step of incremental

reconstruction. In this phase a new image is added to the reconstruction

and is thus identified as registered image. For the newly registered image

the pose of the camera (position and rotation) that has acquired it must be

calculated; this can be achieved using the correspondence with the known

3D points of the reconstruction. Therefore, this step takes advantage of the

2D-3D correspondence between the keypoints of the newly added image and

the 3D reconstruction points that are associated with the keypoints of the

previously registered images. To estimate the camera pose it is necessary

to define the position in terms of 3D coordinates of the reference world

coordinates system and the rotation (pitch, roll, and yaw axes), for a total of

six degrees of freedom. This is possible by solving the Perspective-n-Point

(PnP) problem. Various algorithms can be used to solve the PnP problem

(see Table 3.1). Often outliers are present in the 2D-3D correspondences; the

aforementioned algorithms are used in conjunction with RANSAC (or its

variants) to obtain a robust estimate of the camera pose. The newly recorded

image has not yet contributed to the addition of new points; this will be done

by the triangulation phase.

Triangulation: The previous step identifies a new image that certainly

observes points in common with the 3D point cloud reconstructed so far. The

new registered image may observe further new points that can be added to the

3D reconstruction if they are observed by at least one previously registered

image. A triangulation process defines the 3D coordinates of the new points

that can be added to the reconstruction and thus generate a more dense point
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cloud. The triangulation phase takes a pair of registered images with points

in common to estimate the respective camera poses. Then, it tries to estimate

the 3D coordinates of each point in common between the two images. To solve

the problem of triangulation, an epipolar constraint is placed. It is necessary

that the positions from which the images were acquired allow identification

of the position of acquisition of the counterpart in the image; these points

are called epipoles. In the ideal case, it is possible to use the epipolar lines

to define the epipolar plane on which lies the point whose position is to be

estimated. However, because of the inaccuracies in the previous phases of the

pipeline, it is possible that the point does not lie in the exact intersection

of the epipolar lines; this error is known as a reprojection error. To solve

this problem, special algorithms that take into account the inaccuracy are

necessary. Algorithms used by SfM pipelines are listed in Table 3.1.

Bundle Adjustment: Since the estimation of camera poses and the

triangulation can generate inaccuracies in the reconstruction it is necessary

to adopt a method to minimize the accumulation of such errors. The purpose

of the Bundle Adjustment (BA) [292] phase is to prevent inaccuracies in the

estimation of the camera pose to propagate in the triangulation of cloud’s

points and vice versa. BA can therefore be formulated as the refinement of

the reconstruction that produces optimal values for the 3D reconstructed

points and the calibration parameters of the cameras. The algorithm used

for BA is Levenberg-Marquardt (LM), also known as Damped Least-Squares;

it allows the resolution of the least squares method for the non-linear case.

Various implementations exist as shown in Table 3.1. This phase has a high

computational cost and must be executed for each image that is added to the

reconstruction. To reduce processing time BA can be executed only locally

(i.e., only for a small number of images/cameras, the most connected ones);

BA is executed globally on all images only when the rebuilt point cloud has

grown by at least a certain percentage since the last time global BA was

made.
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3.2.1.2 Incremental SfM pipelines

Over the years many different implementations of the SfM pipeline were

proposed. This subsection focuses on the most popular ones with publicly

available source code that could allow customization of the pipeline itself.

Among the available noteworthy pipelines are COLMAP, Theia, OpenMVG,

VisualSFM, Bundler, and MVE. The following briefly describes each pipeline,

while Table 3.1 details their implementations with the algorithms used in

each processing block.

COLMAP [259]—is an open-source implementation of the incremental

SfM and MVS pipeline. The main objective of its creators is to provide a

general-purpose solution usable to reconstruct any scene introducing enhance-

ments in robustness, accuracy, and scalability. The C++ implementation also

comes with an intuitive graphical interface that allows the configuration of

pipeline parameters. It is also possible to export the sparse reconstruction

for different MVS pipelines.

Theia [282]—is an incremental and global SfM open-source library. It

includes many algorithms commonly used for feature detection, matching,

pose estimation, and 3D reconstruction. Furthermore, it is possible to extend

the library with new algorithms using its software interfaces. Implementation

is in the form of a C++ library. Obtained sparse reconstruction can be

exported into Bundler or VisualSFM NVM file format that can be used by

most MVS pipelines.

OpenMVG [197]—is an open-source library to solve Multiple View

Geometry problems. It provides an implementation of the SfM pipeline

for both incremental and global cases. Different options are provided for

feature detection, matching, pose estimation, and 3D reconstruction. It is also

possible to use geographic data and GPS coordinates for the pose estimation

phase. The library is written in C++ and can be included in a bigger project

or can be compiled in multiple executables, each one for a specific set of

algorithms. Sample code to run SfM is also included. Sparse reconstruction

can be exported in different file formats for different MVS pipelines.

VisualSFM [317]—implements the incremental SfM pipeline. Compared

28



3.2 Related work

to other solutions, this is less flexible because only one set of algorithms can

be used to make reconstructions. The software provides an intuitive graphical

user interface that allows SfM configuration and execution. Reconstructions

can be exported in VisualSFM’s NVM format or Bundler format. It is also

possible to execute the dense reconstruction steps using CMVS/PMVS directly

from the user interface.

Bundler [270]—is one of the first incremental SfM pipeline implementa-

tions of success. It also defines a Bundler ’out’ format that is commonly used

as an exchange file between SfM and MVS pipelines.

MVE [83] (Multi-View Environment)—is an incremental SfM implemen-

tation. It is designed to allow multi-scale scene reconstruction, comes with a

graphical user interface, and also includes an MVS pipeline implementation.

Linear SFM [335]—is a new approach to the SfM reconstruction that

decouples the linear and nonlinear components. The proposed algorithm starts

with small reconstructions based on Bundle Adjustment that is afterward

joined hierarchically.

Table 3.1: Incremental SfM pipelines algorithm comparison.

Feature Extraction Feature Matching Geometric Verification Image Registration Triangulation Bundle Adjustment Robust Estimation

COLMAP

SIFT [176] Exaustive 4 Point for Homography [120] P3P [88] sampling-based DLT [259] Multicore BA [318] RANSAC [80]

Sequential 5 Point Relative Pose [277] EPnP [156] Ceres Solver [4] PROSAC [55]

Vocabulary Tree [260] 7 Point for F-matrix [120] LO-RANSAC [56]

Spatial [259] 8 Point for F-matrix [120]

Transitive [259]

OpenMVG

SIFT [176] Brute force affine transformation 6 Point DLT [120] linear (DLT) [120] Ceres Solver [4] Max-Consensus

AKAZE [8] ANN [198] 4 Point for Homography [120] P3P [88] RANSAC [80]

Cascade Hashing [53] 8 Point for F-matrix [120] EPnP [156] LMed [246]

7 Point for F-matrix [120] AC-Ransac [195]

5 Point Relative Pose [277]

Theia

SIFT [176] Brute force 4 Point for Homography [120] P3P [88] linear (DLT) [120] Ceres Solver [4] RANSAC [80]

Cascade Hashing [53] 5 Point Relative Pose [277] PNP (DLS) [123] 2-view [166] PROSAC [55]

8 Point for F-matrix [120] P4P [43] Midpoint [121] Arrsac [235]

P5P [151] N-view [120] Evsac [81]

LMed [246]

VisualSFM

SIFT [176] Exaustive n/a n/a n/a Multicore BA [318] RANSAC [80]

Sequential

Preemptive [317]

Bundler
SIFT [176] ANN [13] 8 Point for F-matrix [120] DLT based [120] N-view [120] SBA [175] RANSAC [80]

Ceres Solver [4]

MVE
SIFT [176] + SURF [20] Low-res + exaustive [83] 8 Point for F-matrix [120] P3P [88] linear (DLT) [120] own LM BA RANSAC [80]

Cascade Hashing

Commercial software also exists, usually providing full implementations

that allow sparse and dense reconstruction. Some examples are Agisoft

PhotoScan and Metashape1, Capturing Reality RealityCapture2, Autodesk

1http://www.agisoft.com/
2https://www.capturingreality.com/
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ReCap3.

3.2.2 3D reconstruction datasets

Over the past two decades, the need to evaluate new computer vision

and photogrammetry algorithms have motivated the research community

toward the creation of 2D and 3D datasets for different scenarios (e.g., indoor,

outdoor, laboratory, urban, buildings) and tasks (such as image matching,

image retrieval, structure from motion, and SLAM).

As a tool for scientists, a benchmark dataset is a set of data to evaluate or

compare the performance of sensors, platforms, or processing algorithms [16]

against high-quality and accurate ground truth. Nonetheless, the acquisition

of a sufficient amount of data is still a challenge. Barriers to their realization

are related to the costs and time for obtaining data diversity (like scale or

scene) and the collection of precise annotations and accurate and reliable

ground truth.

Driven by the achievements and pending research issues in the 3D re-

construction sector [24, 242], many scientific initiatives have been recently

proposed to evaluate the current status of available processing methods while

boosting further investigations, both in the photogrammetric and computer

vision research fields. These activities have encouraged developers and users

to deliver comparative performance analyses focusing, in particular, on image-

based 3D reconstruction [32, 139, 261].

In recent years, advanced deep learning-based algorithms for extracting

complex information and features from visual data have been effectively

applied in many domains and scenarios, such as image analysis, remote

sensing, computer vision, and geoscience research, outperforming standard

approaches or opening to new applications not possible with classical methods.

However, applying these techniques implies the availability of a large amount

of data for training the underlying models. Moreover, real data collected and

targeted for a given task are rarely complete and heterogeneous enough (in

3https://www.autodesk.com/products/recap/overview
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Table 3.2: Comparison of the most popular benchmark datasets and the
proposed datasets (in bold).

Name Setting Real/Synthetic Resolution Image format Videos SfM SLAM Stereo MVS Depth GCP Lighting

Middleburry stereo Indoor Real 2-6 Mpx fixed – – – ✓ – ✓ – varying
Middleburry MVS Lab Real 0.3 Mpx fixed – ✓ – – ✓ – – fixed
DTU Lab Real 2 Mpx fixed – ✓ – – ✓ – – varying
KITTI Streets Real 0.5 Mpx fixed ✓ – ✓ ✓ ✓ ✓ – fixed
Strecha Monuments Real 6 Mpx fixed – ✓ – – ✓ – – fixed
Tanks and Temples Indoor/Outdoor Real 8 Mpx fixed ✓ ✓ ✓ – ✓ – – fixed
3DOMcity Lab Real 24 Mpx varying – ✓ – – ✓ – ✓ fixed
ETH3D Indoor/Outdoor Real 0.4-24 Mpx varying ✓ ✓ ✓ ✓ ✓ ✓ – fixed
DIODE Indoor/Outdoor Real 0.8 Mpx fixed – – – – – ✓ – varying
BlendedMVS Multi-scale Blended 3 Mpx fixed – ✓ – – ✓ ✓ – varying

IVL-SYNTHSFM Objects Synthetic 2 Mpx varying – ✓ – – ✓ – – fixed
IVL-SYNTHSFM-v2 Objects outdoor Synthetic 2 Mpx varying – ✓ – – ✓ – – varying
ENRICH Multi-scale outdoor Synthetic 24 Mpx varying – ✓ – – ✓ ✓ ✓ varying

terms of, e.g., acquisition condition, point of view, signal distortion) to enable

the design of robust and flexible algorithms and approaches. Finally, the

training set must be annotated, and this process is frequently time-consuming

and resource-intensive. Synthetic heterogeneous and annotated datasets have

proved to be an effective and efficient way to overcome the current limitations

of real data [208, 291, 325].

Here are presented the most popular public datasets and benchmark

datasets available for the photogrammetric and computer vision research

communities (Figure 3.3). Table 3.2 summarizes their characteristics. For

each dataset it reports the acquisition setting, its source, image properties,

covered tasks, and lighting conditions.

• Middleburry stereo4 [256]. The dataset contains 32 + 24 stereo

scenes (published in 2014 and 2021, respectively) to evaluate stereo

algorithms on 6 and 2-megapixel images. Each scene is composed of a

single stereo pair with substantial exposure variations, while scenes and

cameras are static. The ground truth consists of accurate depth maps.

• Middleburry MVS5 [263]. The dataset, designed for evaluating multi-

view stereo reconstruction algorithms, consists of undistorted images

(640x480 pixels) of a plaster Greek temple and a dinosaur. The ground

truth is a laser-scanner model (not released), while image orientations

are provided.

4https://vision.middlebury.edu/stereo/data/
5https://vision.middlebury.edu/mview/
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(a) Middleburry stereo (b) Middleburry MVS (c) DTU

(d) KITTI (e) Strecha (f) Tanks and Temples

(g) 3DOMcity (h) ETH3D (i) DIODE

(j) BlendedMVS

Figure 3.3: Samples from the most popular benchmark datasets reported in
Table 3.2.

• DTU Robot Image Data Sets6. It contains two different collections

of scenes, one designed to evaluate local features [2], the other for

multi-view-stereo (MVS) investigations [136]. Images (2 megapixels)

of miniatures were acquired, varying the illumination conditions. A

structured light scanner was mounted on the same arm, and both the

camera poses and the geometric model are provided. The trajectory of

6http://roboimagedata.compute.dtu.dk/
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the images follows a circular path for all objects.

• KITTI7 [99]. This benchmark dataset is used in the context of au-

tonomous driving. The data derive from several devices mounted on

a car: two grayscale and two color cameras, a laser scanner, and an

inertial navigation system (GPS/IMU). The goal was to provide training

and testing images for different computer vision tasks, such as stereo

matching, SLAM, 3D object detection, and depth prediction.

• Strecha8 [278]. This benchmark dataset is designed to compare the

reliability of passive 3D reconstruction methods with active stereo

systems. Data consists of LiDAR and camera acquisitions of outdoor

scenes up to 6 megapixels. The authors have provided camera poses

and calibrations and the laser-scanner model.

• Tanks and Temples9 [150]. It is a benchmark dataset for image-based

3D reconstruction algorithms. The data consists of real outdoor scenes

divided into training and test sets derived from 4K videos (acquired

with two rolling shutter and one global-shutter cameras). Laser scanner

point clouds are provided as ground truth, as well as the reconstruction

and camera pose obtained by processing the images with an “out of the

box” approach based on COLMAP [259].

• 3DOMcity10 [219]. It is a multipurpose and high-resolution (6, 016x4, 016

pixels) benchmark dataset, including 420 nadir and oblique aerial im-

ages, to assess the performance of the image-based pipeline for 3D urban

reconstruction and 3D data classification. Laser scanner point clouds

and reference measurements are provided to evaluate image orientation,

dense image matching, and point cloud classification results.

• ETH3D11 [262]. This dataset is composed of multi-sensors low and

high-resolution images and videos for MVS investigations, with scenes

7http://www.cvlibs.net/datasets/kitti/
8http://cvlab.epfl.ch/data
9https://www.tanksandtemples.org/

10https://3dom.fbk.eu/3domcity-benchmark
11http://www.eth3d.net
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acquired both indoor and outdoor and laser-scanner data as ground

truth. Moreover, a benchmark is available dedicated to the evaluation

of SLAM algorithms.

• DIODE12 [300]. It is a dataset specifically created for the depth

estimation task. It contains color images with accurate laser-scanned

depth measurements of indoor and outdoor scenes. It also includes

validity masks for the ground truth depth scans and surfaces normal

vector ground truth.

• BlendedMVS13 [325]. Similarly to ENRICH, it provides synthetic

sets of images consisting of about 17,000 rendered images with a max

resolution of 2, 048x1, 536 pixels representing 113 different scenes, both

aerial and terrestrial. The peculiarity of this dataset is that the rendered

images are obtained from a linear combination of low-pass and high-

pass filters applied to the original and rendered images to preserve

the realism of lights. This procedure implies that no new synthetic

views can be generated in the dataset. BlendedMVG is a superset of

BlendedMVS, expanded with additional 389 scenes for a total of about

110,000 rendered images.

The tasks covered by the presented benchmark datasets are mainly re-

lated to evaluating the performance of the entire SfM pipeline, focusing,

on multi-view stereo reconstruction algorithms (Middlebury MVS, DTU,

Strecha, KITTI, 3DOM city, Tanks and Temples, and ETH3D). In addi-

tion, KITTI and ETH3D propose methods for evaluating SLAM or Visual

Odometry techniques. The strength of KITTI is the long image sequences

for autonomous driving applications. Tanks and Temples use only video se-

quences for SfM reconstructions, while Strecha offers, in addition to standard

datasets with calibrated cameras, also datasets with uncalibrated cameras,

e.g., for reconstructions from internet photos. DIODE and BlendedMVS are

designed to train algorithms for depth estimation. KITTI also allows evaluat-

ing algorithms for object detection, while 3DOMcity deals with classification

12https://diode-dataset.org/
13https://github.com/YoYo000/BlendedMVS
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problems. BlendedMVS is the only dataset with accurate ground truth from

synthetic models and image generation. Middlebury stereo, DTU, DIODE,

and BlendedMVS present environments with very different lighting conditions

within the same scene to test their effects on image orientation and final 3D

reconstruction.

The methods and tools for the generation of datasets and the datasets

themselves that are presented in this chapter are intended to complement

existing benchmark datasets, most of which offer low-resolution images and

scenes of limited size. BlendedMVS also proposes multi-scale datasets but

with quite low-resolution images and only upright. The proposed datasets

jointly present high-resolution and multi-scale images, camera rotations, and

accurate ground truth of poses and 3D models. Accuracy is ensured by

synthetic image generation, while the use of 3D reality-based surveys and 3D

synthetic models guarantees texture realism.

3.3 Evaluation method for SfM 3D reconstruc-

tion

Once a 3D reconstruction has been performed using the SfM and MVS

pipelines, it is possible to evaluate the quality of the results obtained by

comparing them to a ground truth with the same data representation. An

evaluation method applicable to the reconstructions obtained from real and

synthetic datasets is here defined. This method requires the ground truth

geometry of the model to be reconstructed and the ground truth camera

pose for each image. The proposed evaluation method is composed of four

phases: (i) alignment and registration, (ii) evaluation of sparse point cloud,

(iii) evaluation of camera pose, (iv) evaluation of dense point cloud.

Another approach to the evaluation of the SfM reconstructions is the one

presented by Tefera et al. [284]. The authors designed a Web application

that can visualize reconstruction statistics, such as minimum, maximum and

average intersection angles, point redundancy, and density. All mentioned
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statistics do not require a ground truth.

3.3.1 Alignment and registration

Since the reconstruction and the ground truth use different reference

coordinate systems (RCSs), it is necessary to find the correct alignment

between the two. The translation, rotation, and scale factors to align the

two RCS can be defined using a rigid transformation matrix T . The adopted

procedure finds this matrix by aligning the reconstructed sparse point cloud

to the ground truth geometry using a two-step process. A first phase of

coarse alignment and a second phase of fine registration allow to overlap in

the best possible way the reconstruction to the ground truth. Alignment and

registration steps generate two transformation matrices T1 and T2 of size 4x4

in homogeneous coordinates. By multiplying the matrices to each other in

the order in which they were identified, it is possible to obtain the global

alignment matrix T = T2·T1. This matrix is applied to the reconstructed

clouds (sparse and dense) and also to the estimated camera poses to obtain the

reconstruction aligned and registered with the ground truth. The ground truth

can present itself as a dense points cloud or a mesh. Alignment algorithms

work only with point clouds, so in the case where the ground truth is a mesh,

a cloud of sampled points is used to bring the problem back to the alignment

of two point clouds.

Alignment: To increase the probability of success of the Fine registration

step (Section 3.3.1) and to reduce the processing time, it is necessary to find

a good alignment of the reconstructed point cloud with the ground truth.

This operation can be performed manually by defining the parameters of

rotation, translation, and scale or, more conveniently, by specifying pairs of

corresponding points to be aligned by a specific algorithm (i.e. Horn [126]).

This algorithm uses three or more points of correspondence between the

reconstructed cloud and the ground truth to estimate the transformation

necessary to align the specified matching points. The method proposed by

Horn estimates the translation vector by defining and aligning the barycenters
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of the two point clouds. The scaling factors are defined by looking for the scale

transformation that minimizes the positioning error between the specified

matching points. Finally, the rotation that allows the best alignment is

estimated using unit quaternions from which the rotation matrix can be

extracted. The algorithm then returns the transformation matrix T1 which is

the composition of translation, rotation, and scaling.

Fine registration: After aligning the reconstruction to the ground truth,

it is possible to refine such alignment using a process of fine registration.

The algorithm used for this phase is Iterative Closest Point (ICP) [27, 52].

It takes the two point clouds and a criterion for stopping the iterations as

input, then it produces a rigid transformation matrix T2 that allows better

alignment.

The stopping criterion is usually a threshold to be reached in the decrease

of the RMSE measure. For very large point clouds it is also useful to also

limit the number of iterations allowed to the algorithm. Furthermore, ICP

does not work well if the point cloud to be registered and the reference cloud

are very different, for example when one cloud includes portions that are not

present in the other. In this case, it is first necessary to clean the clouds so

that both represent the same portion of a scene or object.

3.3.2 Evaluation of sparse point cloud

The sparse point cloud generated by SfM can be evaluated in comparison

to the ground truth of the reconstruction. The evaluation considers the

distance between the reconstructed points and the geometry of the ground

truth. Once the reconstruction is aligned with the ground truth, it is possible

to proceed with the evaluation of the reconstructed point cloud, calculating

the distance between the reconstructed points and the ground truth.

If the ground truth is available as a dense point cloud, the distance can

be evaluated by calculating the Euclidean distance. For each 3D point of the

cloud to be compared, the nearest point is searched in the reference cloud

calculating the Euclidean distance. Octree [188] data structures can be used
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to partition the three-dimensional space and speed up the calculation. Once

the distance values are obtained for all points in the cloud, the mean value

and standard deviation are calculated.

If the ground truth is available as a mesh, the distance is calculated

between a reconstructed point and the nearest point on the triangles of

the mesh. This can be done using the algorithm defined by David Eberly

[71]. Given a point of the reconstructed point cloud, for each triangle of

the mesh the algorithm searches the point with the smallest square distance.

Among all the selected points (one for each triangle) the one with the smallest

square distance is chosen and the square root of this value is returned. This

calculation is repeated for each point of the reconstructed cloud. Even in this

case octree data structures can be used to partition the three-dimensional

space and speed up the computation. Once distance values are obtained for

all points in the cloud, the mean value and standard deviation are computed.

In both cases, the reconstructed cloud must contain only points relative to

objects included in the ground truth model used for comparison. Usually, the

ground truth includes only the main object of the reconstruction, ignoring the

other elements visible in the dataset’s images. If the reconstruction includes

parts of the scene that do not belong to the ground truth, the distance

calculation will be distorted. To overcome this problem, it is possible to

cut out the cloud of points of the reconstruction, manually eliminating the

parts in excess before evaluating the distance. If this is not possible (mainly

because the separation between the objects of interest and those not relevant

is not simply identifiable), then the same result can be achieved by specifying

a maximum distance allowed for the evaluation of the reconstruction. If a

reconstruction point is evaluated with a greater distance from the ground

truth than allowed, it is discarded so that it does not affect the overall

assessment.
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3.3.3 Evaluation of camera pose

In addition to the sparse points cloud, the SfM pipeline also generates

information about the camera poses. The pose of each camera can be compared

to the corresponding ground truth. In particular, the method defined here

provides information on the distance between the positions and the difference

in orientation between each pair of ground truth and estimated camera pose.

Ideally, if a camera is reconstructed in the same position as its ground truth,

it observes the same points. Consequently, its orientation is the same as that

of the ground truth. However, in real cases, it is possible to observe slight

differences between the orientations, and for this reason, an evaluation is

provided.

Position evaluation: The position of a reconstructed camera is evaluated

by calculating the Euclidean distance between the reconstructed position and

the corresponding ground truth camera position. Such values can also be

used to calculate average distance and standard deviation.

Orientation evaluation: The differences in orientation of the cameras

are evaluated using the angle of the rotation necessary for the relative trans-

formation that, applied to the reconstructed camera, brings it to the same

orientation as the corresponding ground truth camera. The camera orientation

can be defined using a unit quaternion. Therefore, it is possible to define qGT

as the camera ground truth orientation and qE as the reconstructed camera

orientation. The relative transformation that aligns the reconstructed camera

at the same orientation of the ground truth is defined by the quaternion qR

with components w, x, y, z that is calculated as follows:

qR = qE
−1 · qGT (3.1)

where qE
−1 is the inverse quaternion of qE calculated by Equation 3.2 where

qE
∗ is the conjugate of qE and ||qE|| is the norm.

qE
−1 =

qE
∗

||qE||2 (3.2)
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By substituting in Equation 3.1 the term qE
−1 with his definition, the equation

becomes:

qR =
qE

∗

||qE||2 · qGT (3.3)

Being rotations expressed with unit quaternions, the norm of qE is always 1

accordingly the equation can be simplified obtaining:

qR = qE
∗ · qGT (3.4)

Quaternion qR represents the rotation transformation necessary to change

the orientation of the reconstructed camera so that it is the same as the

ground truth. This can be expressed by defining a rotation axis and the angle

necessary to rotate the camera around it. This rotation angle can be used as

a quality measure of the reconstructed camera rotation. If the orientation

of the reconstructed camera is the same as the ground truth camera, the

rotation angle of the defined transformation is 0; when the orientation of the

reconstructed camera is different from that of the ground truth, the value

of the rotation angle necessary to align the orientation of the camera also

increases.

The representation of qR in terms of axes a (vector with components x, y, z)

and rotation angle α is defined as follows:

qR = cos
(

α

2

)

+ i ax sin
(

α

2

)

+ j ay sin
(

α

2

)

+ k az sin
(

α

2

)

(3.5)

Angle α is expressed in radians and the rotation axis can be extracted from

the quaternion using Equations 3.6 and 3.7. The identified angle is always

positive.

α = 2 · arccos (qRw) (3.6)

ax =
qRx√

1 − qRw
2

ay =
qRy√

1 − qRw
2

az =
qRz√

1 − qRw
2

(3.7)

Using this representation particular attention should be paid when the rotation

angle is 0◦. When this happens the rotation axis is arbitrary, and the result is

the same whichever is chosen. The quaternion is in the form q = 1+i0+j0+k0,
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and consequently division by 0 must be avoided when applying Equation 3.7.

To solve the problem an arbitrary axis with unitary norm can be chosen; in

this way, there is no need to compute a rotation axis, and the length is still

unitary. Angle α from Equation 3.6 can be converted from radians to αdeg

expressed in degrees. This angle can vary from 0◦ to 360◦; it also must be

taken into account that αdeg is a rotation around the axis of direction a or a

rotation of −αdeg around the opposite direction axis. Moreover, a rotation

greater than 180◦ around the a axis can also be expressed as a rotation

of −(360 − αdeg) degrees around the same axis. To correctly compute the

difference of orientations the smallest angle must be considered, independently

of its direction; therefore in the αdeg > 180 case the difference between the

camera’s orientations is computed as 360−αdeg. The differences in orientations

measured through angle α can also be used to calculate the average distance

value and the standard deviation.

3.3.4 Evaluation of dense point cloud

The Multi-View Stereo (MVS) pipeline reconstructs the dense points

cloud of the scene observed by the set of images. This cloud of points can be

evaluated in comparison to the ground truth of the object. The evaluation

takes place in terms of the distance between the reconstructed points and the

geometry of the ground truth. Once the dense reconstruction is registered in

the best possible way with the ground truth, it is possible to proceed with

the evaluation of the reconstructed cloud by calculating the distance between

the reconstructed points and the ground truth. This evaluation can be done

in the same way used for the sparse point cloud, as illustrated in Section

3.3.2.
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3.4 SfM Flow: synthetic data generation [182]

In the literature, evaluation of 3D reconstruction pipelines is often per-

formed on data specifically acquired to test the designed pipeline and algo-

rithms [275]. The data is not always made available to the research community

making it difficult to perform comparisons. Although available datasets ex-

ist (see Section 3.2.2), they may lack some characteristics that are needed

to highlight the peculiarities of different 3D reconstruction solutions. The

need for ad-hoc real scenes as reference models for the evaluation process is

restrictive and not always practical.

For these reasons SfM Flow is proposed, an add-on for Blender [35]

that allows rapid and efficient evaluation and comparison of different 3D

reconstruction pipelines. SfM Flow allows the generation of datasets to

stress the pipelines under different conditions of lighting, multiple camera

effects, and scene complexity [32, 181, 183]. The data are generated from

synthetic scenes that provide a known geometry and allow an easy, and precise,

evaluation of the reconstruction.

To the best of our knowledge, SyB3R [158] is the only similar tool sup-

porting synthetic dataset creation for 3D reconstruction. Recently, a few

rendering engines started providing API to interact with them [234, 299],

mainly for machine learning tasks, and none of them is specifically designed

for 3D reconstruction. Existing synthetic datasets are usually generated

using rendering engines and application-specific automation scripts that lack

flexibility. To exploit the features of SfM Flow, it is usually necessary to use

multiple software to manually build and render a synthetic dataset, run a 3D

reconstruction pipeline and perform a reconstruction evaluation. SfM Flow

supports the complete workflow in a single package.

SfM Flow is an add-on for Blender that focuses on providing an easy-to-

use toolkit for the evaluation of 3D reconstructions performed starting from

images. This add-on covers both the steps required for image generation

and reconstruction evaluation. To facilitate the use of the tool, each phase

of the evaluation is available in the user interface as a separate tool. The

images are rendered from a custom virtual 3D scene, thus allowing the
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simulation of a variety of acquisition setups without requiring the use of

dedicated hardware for the acquisition of real scenes. The SfM Flow add-on

is publicly available at https://github.com/davidemarelli/sfm_flow, a

complete wiki is also accessible at https://github.com/davidemarelli/

sfm_flow/wiki. Details about SfM Flow’s software architecture and an

example of step-by-step usage are available in Appendix A and B.

3.4.1 Software functionalities

The main functionalities of SfM Flow can be grouped by scope as scene

setup, data generation, 3D reconstruction pipeline execution, and 3D recon-

struction evaluation. SfM Flow provides tools for the complete workflow. To

offer higher flexibility, each group of features also works standalone. This

section illustrates the functionalities in the order in which they are used for a

complete workflow.

Scene initialization The first set of tools concerns the 3D scene initializa-

tion or rather the operations that support the user during the definition of

the 3D scene that will be used for the subsequent steps of data generation

and reconstruction evaluation. In this phase, a virtual 3D scene is created by

defining the portrayed objects, the environment setting, the lighting setup,

as well as the image acquisition viewpoints. After choosing the main subject

of the scene, the environment can be set up in different ways by selecting

a scene type and a lighting condition through the “Initialize current scene”

functionality. The available scene types are floor and hemisphere. The first

one adds a concrete-looking floor to the scene. The latter includes the scene in

a smooth hemisphere with the objects placed on its floor. The lighting options

available are sky & sun and point lights. The first one creates a procedural sky

and places a sunlamp in the scene to simulate an outdoor setup. The point

lights option places four point-lights around the scene to provide uniform

illumination. It is also possible to skip one or both the configuration of scene

type and light, and instead use an existing or a custom setup. Finally, if the
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initialize camera flag is enabled, the intrinsic camera calibration parameters

are set to the default values. In any case, the rendering engine is switched to

Cycles, and some render default values are applied. Objects added to the scene

by this toolset are placed in a new collection named “SfM_Environment”.

After defining the scene, Ground Control Points (GCPs) can be manually

added to it. SfM Flow provides several commonly used patterns for GCPs.

Sample GCPs are visible in Figure 3.4. The placement of GCPs is guided by

the add-on, which automatically rotates them in alignment with the closest

surface.

(a) Cross shape (b) Round shape

Figure 3.4: Example of Ground Control Point patterns.

Multiple cameras can be used to acquire images of the same scene. SfM

Flow allows the provision of different camera characteristics (resolution, focal

length, etc.) and different acquisition paths. A camera can be manually

defined by the user or selected from a list of commercial cameras whose

parameters are set by the add-on. The cameras can also be configured

to perform single-camera acquisitions or multi-camera acquisitions, thus

simulating configurations required for aerial imaging. The add-on also provides

aid to ensure the desired Ground Sample Distance (GSD) when configuring a

camera.

The “Animate camera” functionality simplifies the camera animation

process by providing tools for the camera path setup to allow image acquisition

portraying the scene from different viewpoints. The type of camera animation

and its duration can be customized. It is also possible to use random camera
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positions around the computed points to simulate a non-perfect acquisition

setup. Multiple animations can be chained to obtain a complex acquisition

setup. Predefined animation types include: aerial, helix, hemisphere, circle,

and multiple circles moving the target viewpoint upwards. SfM Flow also

provides a way to visualize all the acquisition positions of the camera to show

at a glance the animation of the camera in the 3D viewport.

Similarly, if the scene is initialized with the Sky & Sun lighting setup,

it is possible to animate the sun constraining it to follow a semi-circular

path around the scene. The sun animation can be randomized to simulate

acquisition at different hours. Thanks to the flexibility of Blender, the outcome

of each of these operations can be further manually manipulated to create a

custom setup to fit specific needs.

Data generation The second group of tools allows the generation of syn-

thetic images and additional data necessary for the execution and evaluation

of the 3D reconstruction. A custom rendering tool generates the synthetic

images and camera ground truth information. Available image output for-

mats are JPEG, PNG, BMP, and AVI. It is also possible to apply camera

effects such as motion blur and depth of field (DoF) during image rendering.

The motion blur effect can be applied to random frames using user-specified

probability and shutter time. For a realistic DoF simulation, the camera focus

distance is automatically set to the first object intersection along the camera’s

look-at direction during the camera animation setup. EXIF metadata are set

for each image saved as JPEG or PNG file. In addition to RGB images, the

SfM Flow add-on also produces depth maps containing metric depth for each

pixel in the camera’s field of view. This depth information is saved as an

OpenEXR file. A colored preview of the depth information is also provided

as PNG files.

The rendering process also generates four Comma-Separated Values (CSV).

A file named “scene.csv” describes the acquisition setup using the following

fields:

1. scene_name: string, name of the acquisition setup, same as the 3D

model name
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2. images_count: integer, number of images in each set, always 100

3. unit_system: string, measurement unit system, always METRIC

4. unit_length: string, length unit, always METERS

5. scene_center_x,y,z: three floats, coordinate of the scene’s center

6. scene_ground_center_x,y,z: three floats, coordinate of the scene’s

ground center

7. scene_width,depth,height: three floats, size of the scene along X, Y

and Z axes

8. mean_cam_dist_center: float, mean camera distance from the center

of the scene

9. mean_cam_dist_obj: float, mean camera distance from the object’s

surface, computed as the distance between the camera and the first

point of intersection with the object along the camera’s look-at direction

10. mean_cam_height: float, mean camera height from scene’s ground

The (“cameras.csv”) file contains information about camera position, camera

rotation, camera look-at direction, depth of field, motion blur, and sun lighting

position (if any) for each image.

1. label: string, the filename of the image the entry refers to, including

the extension.

2. position_x,y,z: three float numbers representing the global position

of the camera.

3. omega, phi, kappa: Omega, Phi, Kappa angles defining the rotation

of the camera. Three floats, representing angles in radians.

4. yaw, pitch, roll: rotation of the camera using Yaw, Pitch, Roll

angles. Three floats, representing angles in radians.
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5. rotation_w,x,y,z: four floats, representing the camera rotation quater-

nion.

6. lookat_x,y,z: three floats, representing the camera look-at direction

vector.

7. depth_of_field: boolean, ‘True’ if image rendered with depth of field

enabled, ‘False’ otherwise

8. motion_blur: boolean, ‘True’ if image rendered with motion blur

enabled, ‘False’ otherwise

9. sun_azimuth: float, azimuth angle in radians of the sunlamp illuminat-

ing the scene

10. sun_inclination: float, inclination angle in radians of the sunlamp

illuminating the scene

The values are defined according to a global coordinate reference system,

having X growing right/east, Y growing forward/north, and Z growing up-

ward/zenith. Omega, Phi, and Kappa are counterclockwise (CCW) local rota-

tions along the X, Y, and Z axis, applied in the following order R = Rx ·Ry ·Rz.

Pitch and Roll are CCW local rotations along the X and Y-axis respectively;

Yaw is a clockwise (CW) local rotation along the Z-axis. The order of appli-

cation is R = Rz · Rx · Ry. In any case, the parameters define the world-space

rotation and position transformations defining the mapping of the camera

space to the global coordinate reference system. Thus, a camera with a 0

translation and a 0° rotation along all axes is placed at the origin and aligned

to the global coordinate system (looking along the -Z axis with its up direction

aligned with +Y and right direction aligned to +X).

The third file “gcp_list.csv” describes the 3D location of the GCPs used in

the scene. The reported fields are:

1. gcp_name: string, unique identifier of the GCP.

2. x_east, y_north, z_altitude: three floats, representing the global

coordinates of the center of the GCP in the scene.
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3. type: string, defines the shape of the GCP either cross or round.

The last file “gcp_images_list.csv” contains the GCPs visibility information

for each rendered image. The reported fields are:

1. image_name: string, the filename of the image that portrays the GCP.

2. gcp_name: string, unique identifier of the GCP.

3. image_x,y: two floats, X and Y coordinate of the center of the GCP in

the image (0,0 is the top left corner of the top left pixel in the image, X

grows right and Y grows downwards).

It is also possible to export the geometry ground truth as a Wavefront

OBJ file. The exported file excludes by default the environment objects that

are part of the “SfM_Environment” collection. It is also possible to export

only the current object selection as geometry ground truth.

Pipeline execution 3D reconstruction pipelines can be run directly from

the user interface. SfM Flow provides direct support for popular incremental

SfM pipelines such as COLMAP [259], OpenMVG [197], Theia [282], and

VisualSFM [316]; commands for other custom pipelines are configurable in the

user preferences. Before the execution, the user can specify a reconstruction

workspace in which the add-on will create a separate folder for each pipeline

where to save the reconstruction and the execution log.

Reconstruction evaluation The reconstruction evaluation is carried out

following the procedure defined in Section 3.3. After importing a reconstruc-

tion through SfM Flow, it is possible to proceed in the evaluation process

by registering the reconstructed point cloud to the scene’s geometry. It

can be done using either the integrated Iterative Closest Point (ICP) [27]

implementation or a registration matrix provided by an external tool. The

ICP-based algorithm uses by default only 25% of the point cloud for the

alignment process and allows a maximum number of iterations defined as 1%

of the size of the point cloud.
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A point cloud filtering functionality takes into account the presence in

the reconstruction of points that are not part of the ground truth. This tool

can filter the point cloud before the ICP registration, discarding points that

are more distant than a given threshold from the ground truth. Once the

point cloud has eventually been filtered, the alignment tool performs ICP

registration of the remaining points.

Finally, the reconstruction evaluation tool generates an evaluation report

that contains information about the reconstructed point cloud and the camera

poses evaluation. The first part is an evaluation of the geometry in terms

of the Euclidean distance between the reconstructed 3D points and a dense

point cloud sampled over the ground truth of the virtual 3D model(s). This

evaluation can be performed either on the filtered point cloud or the full

one. Currently, SfM Flow provides only the commonly used cloud-to-cloud

euclidean distance metric. However, other metrics (cloud accuracy, com-

pleteness, point density, and roughness) may be more suitable depending on

the use case. The reconstruction evaluation module is designed to be easily

extendable to fit specific needs by implementing other metrics.

The second part evaluates camera poses in terms of camera position

distance and orientation differences. The position is evaluated using the

Euclidean distance between the reconstructed camera position and the ground

truth one. The orientation difference is computed using the angle of the

rotation transformation needed to align the reconstructed camera to its

corresponding ground truth, forcing them to the same position. Finally, the

camera orientation is evaluated as the non-oriented angle between look-at

vectors of each pair of reconstructed and ground truth camera pose. The

camera pose evaluation also reports the percentage of images used by the

reconstruction pipeline. All evaluations report the minimum, maximum,

mean, and standard deviation values of each metric considered.

Command line execution The rendering process of complex scenes is

resource-intensive and thus often performed on servers. With this scenario in

mind, SfM Flow comes with additional command line parameters to enable

execution from scripts. Such parameters allow rendering with all the possible
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combinations of effects described in Section 3.4.1 and post-rendering export

of addition ground truth files.

3.4.2 Impact

SfM Flow provides a fast way to test and stress the 3D reconstruction

pipelines using synthetic images, and allow the simulation of a variety of scene

setups. By using synthetic data it is possible to overcome the limitations

imposed by the need for real 3D model acquisition, which is tricky, requires

dedicated hardware, and complex setup making it not suitable in many

situations. SfM Flow is intended for use by researchers and final users

for the evaluation of the existing 3D reconstruction pipelines as well as to

provide support for the development of new 3D reconstruction methods. The

availability of SfM Flow as an add-on for Blender integrates its functionalities

with a well-known and widely adopted 3D modeling software, making it easily

usable by experts in the 3D reconstruction field as well as by newcomers.

Finally, SfM Flow is written in Python, a popular programming language that

encourages further development including the addition of new functionalities

and its adaptation to specific needs. Version 1.0.0 of SfM Flow was used

to create the IVL-SYNTHSFM-v2 [181] dataset; its preliminary version was

previously used to develop the IVL-SYNTHSFM dataset [32]. Version 1.1.0,

which is still under development, was used to create the ENRICH dataset

[183].

3.5 Proposed synthetic datasets for 3D recon-

struction evaluation

As stated in previous sections, the evaluation of 3D reconstruction pipelines

requires some datasets of source images and associated ground truth. Over

the years, various datasets of real-world objects have been created (see Section
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3.2). Those usually contain the ground truth of the object as a dense point

cloud, acquired through high-accuracy laser scanners. In some cases, the

ground truth is made available as a three-dimensional mesh generated starting

from a scanner acquisition or a high-quality reconstruction obtained directly

from the images that compose the dataset. In any case, the accuracy of the

ground truth depends on the quality of the instrumentation used and the

process used to acquire it. The assumption that must be made to use the

ground truth so generated is that it is more precise than the reconstruction

generated by the pipelines. Otherwise, having a low-quality ground truth, it

would not be possible to evaluate the accuracy of the reconstructed model.

Usually, these datasets do not report the ground truth of the camera poses

and thus do not allow for evaluation of the pose of reconstructed cameras.

The generation of such datasets encounters limitations due to the equipment

or the scene to be captured itself, making it complex to generate a set of

images that fully comply with the guidelines. Moreover, it is difficult to

find available datasets that include model ground truth, and even when it is

available its quality is low, and occluded surfaces are missing.

To overcome the problems in creating real datasets is possible to use

virtual 3D models to generate synthetic datasets with good image quality,

intrinsic parameters for each image, and optimal 3D model ground truth.

Concerning real datasets usually acquired with physical imaging devices,

synthetic datasets make it possible to have accurate and infinitely precise

ground truths. We can generate synthetic datasets by capturing images of

virtual 3D models employing rendering software. For such purposes, Blender

[35] and the SfM Flow add-on (see Section 3.4) are employed. Firstly the

subject of the dataset needs to be chosen; for optimal results, the 3D model

must have a highly detailed geometry and texture. The model must then

be placed in a scene where lights and other objects can be included. A

camera is then added, and all its intrinsic calibration parameters must be

set. Such a camera is then animated to observe the scene from different

viewpoints; each frame of the animation will be used as an image of the

dataset. Once everything is set, the images can be rendered, and thanks to

SfM Flow additional metadata and ground truth information can be exported
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from the 3D virtual scene setup. This approach was followed to propose three

new synthetic datasets. In detail,

1. IVL-SYNTHSFM [32] – contains images and ground truth information

of five single-object 3D scenes. It aims to support the evaluation of

3D reconstruction methods when reconstructing a single object in an

isolated environment without any other reference in the scene.

2. IVL-SYNTHSFM-v2 [181] – is an extension of the previous dataset that

also provides a basic environment around the objects. It aims to

stress the 3D reconstruction pipelines introducing strong light variations

between the acquisitions, depth of field, and motion blur artifacts.

3. ENRICH [183] – contains three sub-datasets aiming to support the evalu-

ation of 3D reconstruction methods at different scales. It includes an

aerial view of a city, a ground view of a square, and a ground view of a

statue. Multiple cameras and lighting conditions are included.

Table 3.3: Comparison of the proposed datasets.

Name Setting Real/Synthetic Resolution Image format SfM MVS Depth GCPs Lighting Camera effects

IVL-SYNTHSFM Objects Synthetic 2 Mpx varying ✓ ✓ – – constant –
IVL-SYNTHSFM-v2 Objects outdoor Synthetic 2 Mpx varying ✓ ✓ – – varying ✓

ENRICH Multi-scale outdoor Synthetic 24 Mpx varying ✓ ✓ ✓ ✓ varying –

The three datasets aim to enable the evaluation of different aspects of 3D

geometry reconstruction. A quick comparison of the characteristics of the

datasets is provided in Table 3.3.

The IVL-SYNTHSFM dataset provides images of a single object acquired

with a white background to simulate a controlled environment. Different

objects are provided to evaluate the overall 3D reconstruction pipeline perfor-

mances w.r.t. different object sizes, geometrical complexity, and texture. The

IVL-SYNTHSFM-v2 is an extension of the previous dataset, which introduces

camera effects (i.e. motion blur and depth of field), variable lighting condi-

tions, and a non-uniform outdoor-like background. This dataset relaxes the

controlled environment assumption of its previous version. Both sets allow

evaluation of 3D reconstruction pipelines in the context of MR catalogs for the
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acquisition of 3D models of real objects to be virtually shown in a catalog (e.g.,

AR product configurators, MR virtual tours, MR publishing features, Virtual

try-on, see Section 2.2). The characteristics of the datasets allow to evaluate

the impact of different acquisition configurations and pipeline parameters

on the final result. The ENRICH dataset aims instead to enable evaluation

of the impact of changes in single steps of the pipeline, as well as different

acquisition setups at various scales. It is best suited for the evaluation of 3D

reconstruction methods for the creation of 3D virtual environments. This is

again relevant in the creation of 3D virtual environments for MR catalogs

(e.g., MR tourist guides, Augmented and Virtual shops, see Section 2.2). All

of them provide pixel-precise ground truth and additional information.

3.5.1 The IVL-SYNTHSFM dataset [32]

The goal of this dataset is to make it possible to evaluate the ability

to reconstruct a single 3D object when no other elements are included

in the scene. The dataset has been made publicly available for down-

load at http://www.ivl.disco.unimib.it/activities/evaluating-the-

performance-of-structure-from-motion-pipelines/. The images in this

dataset are generated from the five 3D models shown in Figure 3.5.

Figure 3.5: 3D models used for synthetic data generation: (a) Statue. (b)
Empire Vase. (c) Hydrant. (d) Bicycle. (e) Jeep.

Five synthetic datasets of different 3D models (Figure 3.5) have been generated

using the tool described in Section 3.4:

53

http://www.ivl.disco.unimib.it/activities/evaluating-the-performance-of-structure-from-motion-pipelines/
http://www.ivl.disco.unimib.it/activities/evaluating-the-performance-of-structure-from-motion-pipelines/


3.5 Proposed synthetic datasets for 3D reconstruction evaluation

• Statue14 — set of images about a statue of height 10.01 m, composed

of 121 images;

• Empire Vase15 — set of images about an ancient vase of height 0.92 m,

composed of 86 images;

• Hydrant16 — set of images about an hydrant of height 1.00 m, composed

of 66 images;

• Bicycle17 — set of images about a bicycle of height 2.66 m, composed

of 86 images;

• Jeep18 — set of images about a jeep of height 2.48 m, composed of 141

images.

The selected 3D models (Figure 3.5) were chosen based on the different

levels of geometry complexity and texture detail which translates into different

levels of complexity for the reconstruction process. The Statue model is

composed of 60k vertices, 295k for the Vase, 9k for the Hydrant, 300k for the

Bicycle, and 2335k for the Jeep model.

All the images of each dataset have been acquired at resolution 1920x1080px

using a virtual camera with a 35mm focal length and 32x18mm sensor. To

achieve this, each model is placed in a reference scene and is rendered using a

virtual camera moving in a circle around the object. The reference scene does

not include any other object and provides a white uniform background for the

main object. Lighting is provided by four point-lights to generate shadows

on the object itself. An example of the sequence of operations needed to set

up the virtual scene is visible in Figure 3.6. This dataset has been created

using a preliminary version of the SfM Flow add-on which allowed basic scene

setup operations and ground truth export from the virtual scene.

14https://free3d.com/3d-model/statue-92429.html
15https://www.blendswap.com/blends/view/90518
16https://www.blendswap.com/blends/view/87541
17https://www.blendswap.com/blends/view/67563
18https://www.blendswap.com/blends/view/82687
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(a) (b) (c)

(d) (e)

Figure 3.6: Example of synthetic dataset generation steps. (a) 3D model. (b)
Scene setup. (c) Camera motion around the object. (d) Images rendering.
(e) 3D model geometry and camera pose ground truth export.

The data can be used to evaluate and compare 3D reconstructions of

single objects from multiple images obtained using various techniques. The

data is of interest to researchers who would like to test and compare various

3D reconstruction methods to check the results of different approaches to the

reconstruction of single objects. It can be used to assess the performance of

state-of-the-art methods as well as evaluate and compare new techniques. The

data can be used to determine how a 3D reconstruction method reacts when

used on images of objects with differences in size, geometry, and texture details.

The data contains information about camera intrinsic and extrinsic calibration

parameters that allow precise camera positioning, reconstruction estimation,

and evaluation. It is highly relevant for the evaluation of reconstructions

made by techniques that assume unknown camera poses (e.g. Structure from

Motion) and reconstructions pipelines that require known camera poses, such

as Multi-View Stereo (MVS).

55



3.5 Proposed synthetic datasets for 3D reconstruction evaluation

3.5.2 The IVL-SYNTHSFM-v2 dataset [181]

The IVL-SYNTHSFM-v2 dataset is an extension of the previous IVL-

SYNTHSFM dataset. While maintaining the same goal of the IVL-SYNTHSFM

dataset, it also tries to test the robustness of the reconstruction pipelines

on different image acquisition setups. It also aims to allow evaluation of the

impact of variations in illumination conditions, depth of field, and motion blur

on the reconstruction pipelines. The dataset is publicly available for download

at https://doi.org/10.17632/fnxy8z8894. The images in this dataset are

generated from the same five 3D models used for IVL-SYNTHSFM (Figure

3.5). Each model is placed in a reference scene and is rendered under different

lighting and camera conditions. Eight scenes are created for each object,

and images are acquired from different viewpoints. Each scene is composed

of a set of 100 captured images. The list of the image sets, along with the

acquisition setup, is shown in Table 3.4.

All the images rendered for each 3D scene are available as JPG files of

resolution 1920x1080 pixels. The images were acquired using a perspective

virtual camera with a 35mm focal length and 18x32mm sensor; this information

can also be found in the EXIF metadata (version 2.3) of each image.

The dataset was created using Blender as 3D modeling and rendering

software with the aid of the SfM Flow add-on. For each scene portraying a

single object, a 3D model is placed in the center of the scene leaning on a

plane, and a sunlamp lights up the environment. The floor is textured with a

Table 3.4: List of available images sets for each object in the dataset.

Set name Lighting setup Depth of field Motion blur

Fs Sun, fixed position No No
fs-dof Sun, fixed position Yes, on all images No
fs-mb Sun, fixed position No Yes, on random images
fs-dof-mb Sun, fixed position Yes, on all images Yes, on random images
Ms Sun, random position No No
ms-dof Sun, random position Yes, on all images No
ms-mb Sun, random position No Yes, on random images
ms-dof-mb Sun, random position Yes, on all images Yes, on random images
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concrete-looking material, and a sky with procedural clouds is created. The

scene is then observed from different viewpoints by a moving perspective

camera. The camera moves in a circle around the vertical axis at the scene

center to obtain complete coverage of the object. Depending on the complexity

and size of the object, the movement can be a single circle or two circles at

different heights. To simulate realistic manual acquisition the camera position

is randomized by 5% of the acquisition points sampled on the movement

circle. A sample scene setup is visible in Figure 3.7.

Figure 3.7: Example of data generation steps for the Jeep model: (a) 3D
model. (b) Scene setup with main object, floor surface and lights. (c) Camera
animation around the object. (d) Images rendering. (e) 3D model geometry
and camera pose ground truth export.

For each of these scenes portraying different objects, eight sets of images

are acquired under different lighting, depth of field, and motion blur. For the

sets that make use of a moving sun, the sunlamp is placed at a random position

for each image; this is intended to simulate the acquisition during different

hours of the day. The sun’s position is randomized along a semicircular path

and kept consistent across different sets of the same target object. The depth

of field is applied to all images of the images sets that make use of it. Finally,

in the sets that make use of motion blur the effect is introduced randomly on

approximately 33% of the images. The different setups for each object can be
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used to evaluate the performances of reconstruction pipelines under different

light conditions and the robustness to the depth of field and motion blur.

Rendering of images uses Cycles, the Blender’s path-tracing render engine,

that simulates physics-based light interactions and allows the generation of

photo-realistic images. Samples of rendered images are visible in Figure 3.8.

Figure 3.8: Sample of rendered images of the Jeep model. (a) image from the
‘fs’ set. (b) image from the ‘fs-dof-mb’ set. (c, d) images from the ‘ms’ set.

3.5.3 The ENRICH dataset [183]

ENRICH is a new multi-purpose synthetic benchmark dataset created

to (i) complement existing close-range and aerial datasets, (ii) boost inves-

tigations and analyses in the 3D reconstruction process, and (iii) evaluate

photogrammetric and computer vision algorithms. To this end, the dataset

comprises three collections of outdoor images capturing an urban area taken

from above, a city square, and a statue. Compared to existing benchmark

datasets, ENRICH offers higher-resolution images that are rendered with dif-

ferent lighting conditions (clear blue sky, cloudy sky, sunrise, etc.) and camera

orientation (landscape and portrait). ENRICH can be exploited to benchmark

algorithms under variable and realistic conditions with data acquired at di-

verse scales, different cameras, and lighting setups. Unlike many benchmarks

and challenges, such as the Image Matching Challenge [139], images with

rotations from 0 to 180 degrees are included in the dataset to encourage

the scientific community to propose solutions that also manage rotations,

a property of local features that is fundamental in many photogrammetric

applications.

The contribution is twofold:
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• to introduce the ENRICH dataset and its characteristics, consisting

of three 2D and 3D synthetic and multi-scale outdoor datasets: an

urban area (ENRICH-Aerial), a square (ENRICH-Square), and a statue

(ENRICH-Statue). The benchmark includes, for the first time, high-

resolution rendered images, depth maps, camera parameters, absolute

orientation information, Ground Control Points (GCPs), and 3D models

as ground truth data, allowing multiple investigations in the fields of

photogrammetry and computer vision.

• to show the usefulness of the ENRICH dataset by performing several

processing tests exploring some steps of the photogrammetric 3D re-

construction pipeline. Three example analyses are addressed with the

ENRICH datasets: (i) the contribution of new deep learning-based local

features for image matching and the evaluation of different Structure

from Motion (SfM) pipelines; (ii) the influence of GCPs number and dis-

tribution in aerial mapping applications; (iii) the use of neural networks

for monocular depth estimation.

The ENRICH benchmark dataset consists of three synthetic datasets

generated from 3D scenes reproducing different scenarios, levels of detail,

resolution, scale, lighting condition, and field of view (FoV): ENRICH-Aerial,

ENRICH-Square, and ENRICH-Statue. Most of the 3D models used to

compose the scenes come from real objects, assuring realistic textures.

The ENRICH-Aerial dataset is generated from an aerial image block

of the city of Launceston, Australia [154]. The ENRICH-Square and the

ENRICH-Statue are two ground-level datasets, capturing, respectively, a

square surrounded by monumental buildings and a statue placed in its center.

A virtual camera, based on the specifications of the Nikon D750 DSLR full-

frame camera (sensor size 35.9x24mm, pixel size 5.95µm) with an image

resolution of 6, 016x4, 016px (24MP) is used to acquire images of the scenes,

and create the corresponding datasets. The virtual camera then acquires

ideal images without lens distortions (pinhole camera model).

In all the scenes, GCPs were manually inserted in flat areas and well

distributed at different heights. An overview of the acquisition setup for each
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one of the three datasets is given in Table 3.5.

Table 3.5: Summary of the acquisition setup of each dataset in the ENRICH
benchmark.

Dataset Camera Focal Length Images Orientation Lighting setup GSD

ENRICH-Aerial nadir 35mm / 5,882px 60 Landscape Uniform light 2.5cm
forward 70mm / 11,764px 60 Landscape Uniform light 1.8cm

backward 70mm / 11,764px 60 Landscape Uniform light 1.8cm
right 70mm / 11,764px 60 Landscape Uniform light 1.8cm
left 70mm / 11,764px 60 Landscape Uniform light 1.8cm

nadir 2 35mm / 5,882px 39 Landscape Uniform light 3.0cm

ENRICH-Square camera 1 35mm / 5,882px 50 Landscape & Portrait Partly cloudy 0.8cm
camera 2 50mm / 8,403px 50 Landscape Clear sky 0.5cm
camera 3 35mm / 5,882px 50 Landscape & Portrait Sunrise 0.8cm
camera 4 35mm / 5,882px 50 Landscape Clear sky 1.0cm

ENRICH-Statue camera 1 50mm / 8,403px 50 Landscape Partly cloudy 0.69mm
camera 2 35mm / 5,882px 50 Portrait Clear sky 0.64mm
camera 3 50mm / 8,403px 50 Landscape Sunrise 0.70mm
camera 4 35mm / 5,882px 50 Portrait Cloudy 0.64mm

ENRICH builds on previous knowledge to generate the new datasets

by integrating new functionalities in previously developed tools specifically

tailored for the multi-scale tasks. In particular new functionalities have been

introduced to support multiple camera paths and configurations, automatic

export of GCPs coordinates and image visibility, and depth data.

Compared to the previous synthetic dataset IVL-SYNTHSFM, created

mainly to evaluate SfM pipelines, ENRICH offers a more diverse set of scenes

acquired with a variable range of cameras and scales. This makes ENRICH a

multi-purpose dataset exploitable for different photogrammetry and computer

vision tasks, including SfM applications. Additional details on 3D scenes,

acquisition, and data available for each dataset are provided in the following

subsection.

3.5.3.1 Data generation method

Data were generated using the popular 3D modeling and rendering software

Blender [35] with the aid of the SfM Flow add-on [182]. This add-on has been

enhanced to support multi-camera configurations as well as GCPs placement

and export of their ground truth 3D position and visibility in the images.
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Figure 3.9: Orthographic view of the GCPs placement on the ENRICH-Aerial
dataset. Cross and round shapes as in Figure 3.4.

For the ENRICH-Aerial dataset, a Blender scene was created importing

the 3D mesh and textures of a 3D Lidar scan of the city of Launceston [154]. A

total of 26 GCPs of 50x50cm are positioned in the scene on flat or almost-flat

surfaces at different elevations (Figure 3.9), with a cross (see Figure 3.4a) or

a circular pattern (see Figure 3.4b). The size of each GCP is defined to have

the cross’s thickness visible in at least 4 pixels. Each GCP is guaranteed to

be visible in at least ten images. This GCPs configuration allows us to have

them uniformly distributed in the scene and visible in many images. This

allows researchers to select which GCPs to use for their experiments and still

have targets available to be used as Check Points (see Section 3.6.3).

The acquisition is performed simulating a typical oblique aerial camera with

five views (see Figure 3.10a-e): one nadir and four oblique views (forward,

backward, left, and right). The nadir camera has a focal length of 35mm,

whereas that of the oblique cameras is 70mm. The oblique cameras have an

angle of 45° w.r.t. the nadir direction. The five cameras are rigidly mounted

on a virtual flying platform at the same altitude, with the oblique ones having
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(a) Nadir (b) Forward (c) Left

(d) Backward (e) Right (f) Depth

Figure 3.10: Sample images from the ENRICH-Aerial dataset.

a 20cm padding from the nadir camera in their viewing direction. The image

acquisitions followed six parallel strips, with 10 acquisition points in each

track, providing a total of 300 images. A second acquisition, orthogonal to

the first one, is performed using only the nadir camera (nadir-2). This path

consists of three parallel strips with 13 images each, for a total of 39 images.

In both paths, the image overlap for the nadir images is 80% along the track

and 60% across it, respectively. The flying heights are approximately 150m

and 175m above the ground. These camera paths mimic real acquisition

setups that allow detailed 3D model generation [249]. The first nadir camera

has an average Ground Sample Distance (GSD) of 2.5cm, while the second

nadir camera has a GSD of 3.0cm. The GSD of the oblique cameras ranges

from 1.2 to 2.4cm (1.8cm at an average distance of 213m). The paths followed

by the cameras are visible in Figure 3.11. In the ENRICH-Aerial dataset,

the scene is illuminated only by a global environment white light since the

diffuse texture of the 3D Launceston model already incorporates shadows.

The shadows are embedded in the model due to the use of multiple images to

build it. The blending of those images, acquired at different times, produced

some artifacts in the textures. While this has no impact on the evaluation

of geometry-related tasks, it may limit the usability of ENRICH-Aerial on

62



3.5 Proposed synthetic datasets for 3D reconstruction evaluation

Figure 3.11: Camera paths on the ENRICH-Aerial dataset. In red the path
followed by the first nadir and oblique cameras, in green the path followed by
the second nadir camera.

texture-related tasks, such as image blending, shadow removal, and de-lighting.

The images were generated employing Blender’s Eevee raster render engine

that focuses on rendering speed while achieving Physically Based Rendering

of materials.

In the ENRICH-Square dataset, several 3D models were used to build the

virtual scene. It comprises 3D meshes of monumental buildings surrounding

the square, statues, and trees. The tallest building is 27m high. The meshes of

the buildings were generated using photogrammetry software such as Agisoft

Metashape by the original authors; trees and walls were instead 3D modeled.

In some cases, 3D model editing was required to solve geometry issues in the

meshes (e.g. holes on the facades due to occlusions or dark areas). The whole

square is surrounded by a hilly landscape model, providing a background for

some far portions of the scene (i.e. behind the walls). Cross pattern GCPs

of size 15x15cm are positioned on the facades of the buildings at different

heights (see Figure 3.12); a total of 54 GCPs are available, and each one is
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visible in at least 16 images. This GCPs placement guarantees that they are

uniformly distributed in the scene and visible in a large number of images.

Figure 3.12: Equirectangular projection of the ENRICH-Square scene showing
GCPs placement.

(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Depth

Figure 3.13: Sample images from the ENRICH-Square dataset.

Images are captured by four cameras (Figure 3.13a-d), each of them providing

50 images for a total of 200. Images for Camera1 are acquired following a

circular path of a 5m radius around the center of the square with the camera

looking toward the center of the circle; a first revolution provides 25 landscape

images (1m height above ground), while the second further 25 portrait images

(1.9m height above ground). The second camera follows two different circles,

looking directly toward the buildings; while all images are landscape, the
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first 25 are acquired at 3.4m height from the ground, and with a circle of

radius 2m, the last 25 following a circle of radius 6.25m at 4m height. The

third camera uses the same configuration as the first one, but the acquisition

poses slightly differ in position and orientation. The fourth camera follows

the border of the square taking pictures of its opposite side from 1.3m above

the ground. An overview of the paths followed by the cameras is visible in

Figure 3.14. These camera paths have been chosen to cover all of the facades

and provide overlap between images acquired by the same camera as well as

across different cameras. Cameras 1, 3, and 4 use a focal length of 35 mm,

whilst Camera2 has a 50mm focal length. The average GSD and depth for

the cameras are, respectively: 8mm @ 46m, 5mm @ 38m, 8mm @ 46m, and

10mm @ 61m. Different high dynamic range image (HRDI) maps were used

for lighting the scene. Camera1 images are captured in a partly cloudy sky.

Cameras 2 and 4 acquisitions use clear sky conditions. Camera3 images are

acquired at sunrise, thus with a predominant orange color and strong shadows.

Considering the availability of roughness and normals maps for different 3D

models (in addition to the diffusive color component), Blender’s Cycles path

tracing engine has been used to render photorealistic images of the scene.

(a) (b)

Figure 3.14: Camera paths on the ENRICH-Square dataset. (a) Camera 1, 2,
and 3. The path of cameras 1 and 3 change color where the camera rotates
from landscape to portrait, red to orange and cyan to blue respectively. (b)
Path of the 4th camera.

The ENRICH-Statue dataset uses the same virtual setup of ENRICH-
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Square, with an additional 2m high 3D statue of a hunter (textured mesh

generated through photogrammetry) placed at the center of the square. Cross

pattern GCPs of size 2x2cm are uniformly placed directly on the statue and

its basement (Figure 3.15). While their quantity is lower than the ones used

in the ENRICH-Square dataset, each of them appears in at least 62 images.

Figure 3.15: GCPs locations on the ENRICH-Statue dataset.

In this dataset, four cameras are used to acquire 200 pictures of the statue (50

images each). Some sample images are visible in Figure 3.16a-b. Camera1 and

Camera3 captured landscape images rotating around the statue (radius 3.75m),

looking at it slightly from the bottom (average height from ground 0.3m).

Camera2 and Camera4 rotated around the statue (radius 2.25m), looking at

it in portrait orientation from slightly above (height 1.9m). The path followed

by each camera is visible in Figure 3.17. The path and orientations of the

cameras ensure that the whole surface of the statue is covered in the image

while also providing the overlap needed for the 3D reconstruction tasks. The

average distance of the statue from the camera is 5.8m for the first and third

cameras and 3.8m for the second and fourth, thus providing a GSD on the

statue of 0.69mm, 0.70mm, 0.64mm, and 0.64mm, respectively. As in the

ENRICH-Square dataset, different HRDIs were used for lighting the scene.

The whole scene is illuminated by a partly cloudy sky for images acquired by

the first camera, and with sunrise lighting for those by the third camera. For

Camera2 and Camera4 the light is provided by a sunny sky and a cloudy sky,

respectively. Blender’s Cycles path tracing engine has been used to render

photorealistic images of the scene.
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(a) Camera 1 (b) Camera 2 (c) Depth

Figure 3.16: Sample images from the ENRICH-Statue dataset.

All the images have been rendered using an Nvidia Quadro RTX 6000

GPU. The GPU was awarded by Nvidia as part of the Academic Hardware

Grant Program 2021. For each dataset, additional depth information is

obtained directly from the Rendering Layers of Blender (Figures 3.10f, 3.13e,

3.16c).

3.6 Experimental results

The datasets proposed in Section 3.5 enable researchers to test and compare

algorithms for different photogrammetric and computer vision applications.

The next subsections present some experiments and possible usage of the

datasets for testing new algorithms and solutions in some photogrammetric

and computer-vision open research topics:

1. Evaluation of different SfM pipelines including out-of-the-box solutions

and usage of different local features algorithms (Section 3.6.1);

2. Effect of the ground control points number and spatial distribution on

3D accuracy (Section 3.6.3);

3. Monocular depth estimation for outdoor architectural scenarios (Section

3.6.4).

The proposed tasks reflect some recent interests of the research commu-

nity, focused on exploring new solutions for image orientation and 3D scene
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Figure 3.17: Camera paths on the ENRICH-Statue dataset. The paths
followed by cameras 1-3 are shown in red, green, cyan, and purple respectively.

reconstruction and quality assessment in large-scale mapping.

The first one considers the contribution of neural networks for image

matching in SfM. The SfM pipeline is very robust, but a high overlap between

images and constant lighting conditions are typically needed for the 3D scene

reconstruction. New matching algorithms based on neural networks have

been proposed to overcome these limitations and obtain robust matches

even in very challenging conditions. However, further investigations on

their behavior in different survey scenarios are still needed, considering their

different performances with multi-temporal [74, 179], wide-baseline [25, 50],

or aerial datasets [225, 243]. The experiments focus on local features, but

further SfM tasks have been recently revisited. As an example, new geometric

verification approaches have been proposed in alternatives to RANSAC [57,

328], or end-to-end deep learning-based methods which handle the entire SfM

pipeline. Section 3.6.1 offers an overview of several new deep learning-based

local features, tested in challenging conditions, like strong variations in the

viewpoint, light, scale, and rotation.

The second task deepens the effects of the GCPs configurations in aerial tri-
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angulation (AT) and image orientation, a topic not fully explored. Especially

in aerial mapping projects, the quality of the final products is highly correlated

to their quantity and distribution within the scene. Most of the available SfM

software estimates the exterior orientation parameters within a free-network

bundle adjustment, followed by a 3D similarity transformation to move from

an arbitrary to a real-world coordinate system. Investigations on the effects of

GCPs spatial distribution on the 3D accuracy have been extensively proposed

in the last years for UAV image blocks [90, 212, 296, 301] while a few studies

have focused on their influence in the airborne case [101, 217]. The influence

of several GCPs configurations in an aerial mapping project is demonstrated

in Section 3.6.3.

Finally, in the state-of-the-art, various methods for the Monocular Depth

Estimation (MDE) [9, 28, 155, 289, 312] task exists. Even in this case, the

ENRICH dataset can represent a useful dataset for testing. These algorithms

can predict a depth map starting from a single RGB image, and in the most

challenging case, no prior knowledge about the scene or camera parameters is

provided. These methods are usually trained on task-specific datasets such

as KITTI [99] (autonomous driving) or NYUv2 [268] (indoor environments).

While training on such datasets is suitable for a given application, it limits

the ability of the models to generalize the depth estimation on different scenes.

Recently, some approaches [162, 237] have improved the generalizability by

using datasets depicting various scenes, from indoor environments to aerial

views. The efficacy of MDE methods on new unseen data is investigated in

Section 3.6.4.

3.6.1 Evaluation of SfM pipelines

The SfM pipeline consists of numerous tasks (see Section 3.2.1) that can

be addressed by different algorithms. Evaluation of the most popular SfM

pipelines (Section 3.6.1.1) is performed using the IVL-SYNTHSFM dataset. In

addition, the ENRICH datasets offer the opportunity to assess the efficacy of

different local features within the SfM pipelines (Sections 3.6.1.2 and 3.6.1.3).
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In the last few years, new local features based on neural networks have

appeared in addition to traditional methods. However, their performances,

limits, and potentials for photogrammetric applications are still an open

research topic. Scenes characteristics (like texture types, illumination, scale,

and camera rotation) are critical elements in conditioning the algorithm’s

performance. For these reasons, the tests consider both deep learning-based

features and traditional ones.

The images and ground truth of the ENRICH-Statue and ENRICH-Square

datasets were used for the experiments. The two scenes represent typical

terrestrial photogrammetric surveys, both in terms of surveyed objects and the

camera network. The available images are distortion-free and can be modeled

as a pinhole camera with a known principal distance. Therefore, the evaluation

relies on the accuracy of the checkpoints and external orientation parameters,

neglecting considerations about internal orientation. The checkpoints are well-

distributed targets on the scene whose 3D coordinates have been synthetically

generated. In addition, the datasets offer images with relevant variations in

scale, illumination, angle of view, and camera rotations, which are challenging

situations for local feature extractors.

The datasets are here compared by using three different SfM pipelines:

1. COLMAP + RootSIFT [259], an open-source SfM software, available both

with a command line interface and a graphical user interface that allows

the user to customize many SfM parameters. This test uses the build-in

RootSIFT [12] as local feature, followed by brute-force matching with

near neighborhood ratio threshold set to 0.80, incremental reconstruction

(resection-intersection), and local/global bundle adjustment.

2. COLMAP + Deep learning local feature. Several deep learning-

based feature extractors have been tested, importing their keypoints

and descriptors in COLMAP. Image matching and orientation have

been performed with the default options, as in the previous method.

3. Metashape, the commercial software developed by Agisoft with its

proprietary SfM pipeline implementation as reference.
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For the comparison, 8,000 local features were extracted on images resized

to 1,500x1,000 pixels because of the high computational performance required

by the deep learning-based methods. Tiling images is the alternative approach

for dealing with full-size images, as proposed in [243].

When comparing different SfM pipelines, several metrics are possible.

Often, the bundle statistics obtained downstream the SfM pipeline are used,

[261], such as the number of correctly registered images, the number of

triangulated 3D points, the mean track length (MTL) or multiplicity, the

mean reprojection error (MRE), and the mean observations per image, which

is the mean number of correct tie points. Previous works have highlighted

how these metrics are often inconsistent with the actual accuracy of the

reconstruction evaluated in the object space [24, 242]. Therefore, the results

are also evaluated in the object space by using the root mean square error

(RMSE) computed on a few well-recognizable object points (the targets

provided by the ENRICH benchmark) and computing the RMSE on the

center of projection (COP) of the cameras. Note that currently, COLMAP

handles the bundle block adjustments in a free network. For this reason,

the ground control points have been used to compute only the Helmert

transformation and get a scaled model, and not to add constraints to the

bundle adjustment.

3.6.1.1 The IVL-SYNTHSFM dataset

In this section popular SfM pipelines are evaluated and compared through

the use of the IVL-SYNTHSFM datasets. In addition to the synthetic datasets,

a real one is also used: Ignatius (Figure 3.18f) from the “Tanks and Temples”

collection [150], whose 263 images have been acquired at a resolution of

1920x1080px. The physical height of the statue is 2.51 meters.

Among all the SfM pipelines listed in Section 3.2.1.2, here are compared

the reconstruction results of COLMAP, Theia, OpenMVG, and VisualSFM

because each one is a reference implementation. In particular, VisualSFM

and COLMAP represent two remarkable developments of the incremental
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(a) (b) (c) (d) (e) (f)

Figure 3.18: 3D models used for synthetic dataset generation and Ignatius
ground truth: (a) Statue. (b) Empire Vase. (c) Hydrant. (d) Bicycle. (e)
Jeep. (f) Ignatius.

SfM pipeline with improvements in accuracy and performance compared to

previous state-of-the-art implementations. Theia and OpenMVG are instead

two ready-to-use SfM and multi-view geometry libraries that implement

reconstruction algorithms and allow to build SfM pipelines that meet specific

needs.

Evaluation of dense 3D reconstructions is performed by pairing the chosen

SfM pipeline with CMVS/PMVS [84] as the MSV reference algorithm be-

cause it is a widely used state-of-the-art implementation and is also natively

supported by all the SfM pipelines considered. The use of a single MVS

pipeline with the same configuration parameters for all the reconstructions

allows us to evaluate and compare the dense results based on the quality

of the sparse SfM reconstruction. In such a way, no other variables affect

the reconstruction process. Here are reported the results of evaluations by

using the method described in Section 3.3. Results are reported in Tables

3.6–3.9 and some examples of the reconstructed dense point cloud are visible

in Figure 3.19.

Table 3.6: SfM cloud evaluation results. x is the average distance of the point
cloud from the ground truth and s its standard deviation. Np is the number
of reconstructed points.

COLMAP OpenMVG Theia VisualSFM

Model x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np

Statue 0.034 0.223 9k 0.057 0.267 4k 0.020 0.039 8k 0.185 0.236 6k
Empire Vase 0.005 0.152 8k 0.013 0.191 2k 0.002 0.005 8k 0.007 0.013 5k

Bicycle 0.042 0.365 5k 0.156 1.705 7k 0.027 0.086 2k 0.056 0.796 4k
Hydrant 0.206 0.300 2k – – 28 0.045 0.123 89 0.029 0.032 1k

Jeep 0.053 1.058 6k 0.057 0.686 4k 0.012 0.016 8k 0.055 0.124 5k
Ignatius 0.009 0.021 23k 0.013 0.032 12k 0.023 0.022 10k 0.054 0.124 14k
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Table 3.7: SfM camera pose evaluation results. Nc is the percentage of
used cameras. x is the mean distance from ground truth of reconstructed
camera positions and sx its standard deviation. r is the mean rotation
difference from ground truth of reconstructed camera orientations and sr its
standard deviation. n.a. means value not available.

COLMAP OpenMVG Theia VisualSFM

Model Nc x [m] sx [m] r [◦] sr [m] Nc x [m] sx [m] r [◦] sr [m] Nc x [m] sx [m] r [◦] sr [m] Nc x [m] sx [m] r [◦] sr [m]

Statue 100 0.08 0.01 0.04 0.05 100 0.27 0.03 0.47 0.22 100 1.86 0.09 0.45 0.22 100 1.45 0.91 3.55 2.88

E. Vase 100 0.01 0.01 0.51 0.05 83 0.78 1.62 32.19 64.89 100 0.13 0.07 0.91 0.35 94 0.15 0.14 4.91 5.07

Bicycle 88 0.04 0.02 0.25 0.19 94 0.60 1.09 7.00 12.53 37 0.60 0.03 1.10 0.31 47 0.27 0.14 1.32 1.03

Hydrant 82 2.63 2.09 72.28 64.98 3 – – – – 6 3.49 0.29 174.27 0.51 80 2.43 1.76 66.29 58.90

Jeep 63 0.04 0.02 0.26 0.11 92 0.24 1.32 4.80 26.33 95 0.43 0.42 1.33 5.67 83 1.02 2.79 9.68 22.84

Ignatius 100 n.a. n.a. n.a. n.a. 100 n.a. n.a. n.a. n.a. 100 n.a. n.a. n.a. n.a. 100 n.a. n.a. n.a. n.a.

Table 3.8: MVS cloud evaluation results. x is the average distance of the
point cloud from the ground truth and s its standard deviation. Np is the
number of reconstructed points.

COLMAP OpenMVG Theia VisualSFM

Model x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np

Statue 0.009 0.023 75k 0.008 0.027 86k 0.010 0.011 84k 0.065 0.049 76k

Empire Vase 0.001 0.001 390k 0.001 0.004 246k 0.002 0.002 356k 0.005 0.007 240k

Bicycle 0.013 0.012 74k 0.062 0.146 69k 0.018 0.020 46k 0.021 0.025 44k

Hydrant 0.008 0.017 42k – – – 0.080 0.147 11k 0.008 0.014 40k

Jeep 0.010 0.016 236k 0.008 0.016 471k 0.014 0.019 448k 0.048 0.056 281k

Ignatius 0.004 0.004 155k 0.003 0.004 161k 0.018 0.019 109k 0.017 0.031 76k

Table 3.9: Pipelines execution times in seconds and peak memory usage in
MB.

COLMAP OpenMVG Theia VisualSFM

SfM MVS SfM MVS SfM MVS SfM MVS

Model t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM

Statue 59 897 86 1062 43 1359 115 1300 196 1984 98 1249 86 1406 144 1452

Empire Vase 53 897 154 2101 28 628 130 1734 129 1988 134 1926 62 1226 159 2095

Bicycle 98 896 117 1356 57 1467 146 1720 63 1722 58 548 64 1226 68 641

Hydrant 19 894 55 793 16 1547 – – 17 2048 3 1249 36 997 56 1452

Jeep 38 897 121 1812 69 1550 275 3209 213 2083 280 3293 109 1406 254 3078

Ignatius 1225 1825 430 5082 401 1555 494 5926 992 2588 484 5626 1639 2381 345 4742

SfM pipelines have generated sufficient information to allow dense recon-

struction on all datasets except the Hydrant one. That dataset has a low

geometric complexity, a high level of symmetry, and an almost uniform texture;

for these reasons, SfM pipelines were not able to find enough correspondence
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between images and thus cannot generate a good reconstruction. The worst

result was obtained with the OpenMVG pipeline and was not possible to run

the MVS pipeline. COLMAP is the pipeline that achieves better results on

average; even when it does not generate the best reconstruction it achieves

good results.

COLMAP OpenMVG Theia VisualSFM

Statue

Empire Vase

Bicycle

Hydrant n.a.

Jeep

Ignatius

Figure 3.19: Example of dense point clouds using CMVS/PMVS on different
SfM reconstructions.
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Results for dataset Ignatius do not include camera pose evaluation because

no information about camera pose ground truth is included in the dataset.

This real dataset includes many elements besides the main object of the

reconstruction; for this reason, the reconstructed clouds have a high number

of points that do not belong to the statue and thus must be removed. An

evaluation of system resources usage was also done and COLMAP is efficient

also in this aspect; using as many resources as possible can complete the

reconstruction in less time than the other pipelines.

The SfM reconstruction generated by pipeline Theia for the Statue dataset

shows that the obtained sparse point cloud is the best for that dataset,

but the camera poses are not accurate. These imprecisions are relative to

camera positioning and not the camera rotation estimation which is always

accurate. Further analysis shows that all the camera positions are estimated

further away from the ground truth but in the correct viewing direction; for

this reason, the camera orientation is correct. Because the position error is

constant and applies to all the cameras, it still allows the reconstruction of

an accurate point cloud.

3.6.1.2 The ENRICH-Statue dataset

The ENRICH-Statue dataset presents images both in landscape and

portrait orientation, requiring rotation invariant local features. The LF-Net

[214] deep learning approach has been chosen, an end-to-end convolutional

neural network among the few local features trained to be invariant to

rotations. Its results are compared against RootSIFT and Metashape.

In Table 3.10, the RMSE for the three pipelines are shown beside some

bundle statistics reported for completeness. All the tested methods obtained

an RMSE on the GCPs of about one-third of the GSD (0.69-0.64mm). As

expected, worse results have been achieved for the 3D coordinates of the

COPs, with an RMSE value similar to the GSD. Therefore, for this dataset,

no significant differences among the three tested methods were found, apart

from a slightly worse behavior of RootSIFT. In Figure 3.20a is reported
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Table 3.10: Bundle statistics and RMSE on GCPs and COPs for different
SfM pipelines using the ENRICH-Statue dataset.

Method
RMSE on RMSE on

MTL MRE [pix]
Total

GCPs [mm] COPs [mm] keypoints

COLMAP + RootSIFT 0.23 1.63 4.6 0.65 86,525
COLMAP + LF-Net 0.16 0.69 4.5 0.43 99,140
Metashape 0.14 0.89 3.6 0.65 77,994

the camera network and the sparse point cloud processed by the RootSIFT

implementation of COLMAP.

After the block orientation, the dense cloud was reconstructed for each

method and compared in terms of cloud-to-cloud (C2C) distance with the

point cloud extracted from the reference 3D models. Figure 3.20b shows an

example of a dense point cloud obtained with COLMAP+RootSIFT, with an

achieved average Cloud-to-Cloud distance of 1.34mm and a standard deviation

of 0.74mm. Comparable results in terms of C2C distance were obtained for

COLMAP+LF-Net and Agisoft Metashape. This first test thus shows small

differences in the performance of hand-crafted and deep learning-based local

features both in terms of RMSE on checkpoints and on the dense cloud

accuracy.

(a) (b)

Figure 3.20: Results obtained with COLMAP + RootSift. (a) Sparse cloud
and camera network. (b) Dense cloud with C2C absolute distance in millime-
ters.
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3.6.1.3 The ENRICH-Square dataset

This section further deepens the local features comparison, using the

ENRICH-Square dataset. Among the various deep learning-based methods,

other rotational invariant features were chosen beside LF-Net: KeyNet +

AffNet + HardNet [18, 192, 233] and RoRD [222]. KeyNet, AffNet, and

HardNet are respectively a deep learning-based detector, orientation estimator,

and descriptor. In the rest of the text, we will refer to this combination simply

as KeyNet. Rotation invariance is necessary to optimize the sensor calibration,

although many deep learning-based methods still neglect this aspect. ALIKE

[336] is the most recent keypoint extractor, and it has been included in the

tests, although it is not trained to be invariant to rotations.

Results are reported in Table 3.11 in terms of RMSE on the targets

distributed on the scene. In this test, RootSIFT still represents the state-of-

the-art approach, with an RMSE of an order of magnitude lower than KeyNet,

while all the other methods failed to register the entire image block due to

relevant scale variation and sensor rotation. Agisoft Metashape performed

similarly to RootSIFT. Figure 3.21 shows the camera network and a closer

view of a rectangular target (white cross on black background).

COLMAP provides further processing statistics, also reported in Table

3.11. It is worth noting the excessively high mean reprojection error (MRE)

of RoRD, equal to 1.298 pixels, and how KeyNet has the highest mean track

length (MTL), even if it extracted fewer keypoints (6,775 kpts, less than the

required 8,000).

Figures 3.22, 3.23, 3.24, and 3.25 show a few image pairs representing

interesting challenging conditions for the local features.

Table 3.11: RMSE and statistics for the comparison of deep learning-based
and hand-crafted local features with the ENRICH-Square dataset.

Local Features
RMSE [cm] MRE / ST.DEV [pix]

MTL
Mean observations

Total keypoints
MRE [pix]

on CPs on CPs per image on tie points

COLMAP + RootSIFT 0.333 0.122 / 0.015 8.47 5,436 7,989 0.306
COLMAP + KeyNetAffNetHardNet 1.523 0.515 / 0.067 9.37 4,864 6,775 0.680
COLMAP + LF-Net Failed to register all images 5.59 4,489 8,000 0.647
COLMAP + RoRD Failed to register all images 6.37 4,892 7,275 1.298
COLMAP + ALIKE Failed to register all images 6.81 4,198 8,000 0.689
Metashape 0.286 0.132 / 0.013 4.66 – 8,000 0.428
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(a) (b)

Figure 3.21: Example of the ENRICH-Square sparse reconstruction performed
with RootSIFT and COLMAP (a), and the detail of three white crosses on a
black background used to materialize the targets (b).

(a) 15_Camera3 – 40_Camera1 (b) RootSIFT – 2469 valid matches

(c) KeyNet – 1105 valid matches (d) LF-Net – 350 valid matches

(e) RoRD – 1766 valid matches (f) ALIKE – All outliers.

Figure 3.22: Tie point extraction under rotation and illumination changes.
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(a) 01_Camera3 – 28_Camera4 (b) RootSIFT – 356 valid matches

(c) KeyNet – 273 valid matches (d) LF-Net – 19 valid matches

(e) RoRD – 394 valid matches (f) ALIKE – 838 valid matches

Figure 3.23: Tie point extraction under scale and illumination changes.

(a) 24_Camera2 – 48_Camera4 (b) RootSIFT – 906 valid matches

(c) KeyNet – 610 valid matches (d) LF-Net – 18 valid matches

(e) RoRD – 65 valid matches (f) ALIKE – 91 valid matches

Figure 3.24: Tie point extraction under large scale changes.
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(a) 26_Camera4 – 14_Camera4 (b) RootSIFT – 220 valid matches

(c) KeyNet – 505 valid matches (d) LF-Net – 368 valid matches

(e) RoRD – 688 valid matches (f) ALIKE – 845 valid matches

Figure 3.25: Tie point extraction under large view changes.

Figure 3.22 shows the case of a 90 degrees rotation and lighting changes.

Except for ALIKE, all others methods handled sensor rotations properly,

showing that ALIKE is not trained for rotation invariance. Note how the

number of LF-Net valid matches is significantly lower than the other methods.

Figure 3.23 shows a significant scale variation and changes in illumination,

adequately addressed by all the methods with the LF-Net exception. In Figure

3.23e can also be noted that RoRD is the only method to find keypoints in

homogeneous sky areas. Figure 3.24 remarkably accentuates the scaling factor

with respect to Figure 3.23, demonstrating that the scale is a further critical

factor for learning-based methods, in addition to the rotation invariance

[25, 242]. Finally, Figure 3.25 reports the case of an extreme perspective

variation and shows the good performance of deep learning-based methods in

managing these situations.

This section showed how the ENRICH dataset provides a variety of

challenging conditions useful for testing new SfM algorithms, such as local

detectors and descriptors. In particular, it appears that the new deep learning-
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based local features sometimes fail to orient the whole image block or are

less accurate than classical methods such as RootSIFT, because of strong

rotations or scale variations.

3.6.2 The effects of depth of field, motion blur, and

light changes on camera registration

This section explores the impact of Depth of Field (DoF), Motion Blur

(MB), and variations of light intensity and position on the alignment of camera

pose in the SfM pipeline. Evaluation is performed using the IVL-SYNTHSFM-

v2 dataset, which provides challenging data for those effects in both cameras

and lighting.

Experiments on the IVL-SYNTHSFM dataset (see Section 3.6.1.1) showed

that the best results (in terms of both point cloud and camera alignment) are

obtained using the SfM pipeline implementation provided by COLMAP. For

this reason, COLMAP has been selected to run this experiment. The decision

is further motivated by the fact that the IVL-SYNTHSFM-v2 dataset is a

direct revision and extension of the previously used IVL-SYNTHSFM and

maintains the same single object subjects.

Tables from 3.12 to 3.16 report the results of the experiment. For each

subject and each combination of effects (set name, see Table 3.4), the statistics

of reconstruction provided by COLMAP are reported. In detail, the number of

registered images, keypoints, Mean Track Length (MTL), mean observations

per image, and Mean Reprojection Error (MRE).

Across all subjects, except the Statue, the introduction of light intensities

and position variations (ms, ms-* sets) drastically reduces the number of

registered images as well as the mean observations per image and the MTL.

The presence of a non-uniform background in the images simplifies the task of

reconstruction for all subjects and allows to correctly register all images in the

fixed light and no camera effect case (fs). However, the Hydrant remains the

most critical subject due to its size, filling of images, symmetric geometry, and

81



3.6 Experimental results

Table 3.12: Effects on the Bicycle dataset.

Set name
Total number Registered

Total keypoints MTL
Mean observations

MRE [pix]
of images images per image

fs 100 100 15,016 5.546 832.88 0.619
fs-dof 100 100 14,820 5.582 827.37 0.623
fs-mb 100 100 14,427 5.580 805.10 0.640
fs-dof-mb 100 100 14,383 5.584 803.20 0.642
ms 100 44 2,940 4.347 290.48 0.939
ms-dof 100 44 2,947 4.343 290.89 0.944
ms-mb 100 44 3,438 4.288 335.11 0.971
ms-dof-mb 100 42 2,879 4.378 300.14 0.945

Table 3.13: Effects on the Empire Vase dataset.

Set name
Total number Registered

Total keypoints MTL
Mean observations

MRE [pix]
of images images per image

fs 100 100 32,693 5.640 1,843.91 0.391
fs-dof 100 100 41,789 5.698 2,381.26 0.403
fs-mb 100 100 26,225 5.534 1,451.45 0.460
fs-dof-mb 100 100 36,566 5.460 1,996.79 0.432
ms 100 33 7,239 3.735 819.36 0.394
ms-dof 100 47 13,659 3.556 1,033.51 0.370
ms-mb 100 57 3,694 3.231 209.42 0.504
ms-dof-mb 100 40 9,609 3.589 862.35 0.381

Table 3.14: Effects on the Hydrant dataset.

Set name
Total number Registered

Total keypoints MTL
Mean observations

MRE [pix]
of images images† per image

fs 100 100 48,029 6.773 3,253.13 0.366
fs-dof ∗ 100 100 56,830 6.733 3,826.87 0.404
fs-mb 100 100 46,607 6.542 3,049.28 0.406
fs-dof-mb ∗,§ 100 100 53,707 6.467 3,473.62 0.431
ms 100 96 (17) 28,807 4.035 1,211.04 0.397
ms-dof 100 96 (27) 33,492 4.001 1,395.99 0.394
ms-mb 100 94 (40) 24,586 3.972 1,039.10 0.419
ms-dof-mb 100 96 (40) 26,999 3.876 1,090.21 0.440

† In brackets the images registered with wrong pose;

∗ Sequential matching used instead of exhaustive matching;

§ Manually fixed initial image pair.
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Table 3.15: Effects on the Jeep dataset.

Set name
Total number Registered

Total keypoints MTL
Mean observations

MRE [pix]
of images images per image

fs 100 100 26,327 4.945 1,301.98 0.417
fs-dof 100 100 25,654 4.944 1,268.49 0.430
fs-mb 100 100 25,107 4.875 1,224.14 0.443
fs-dof-mb 100 100 23,679 4.912 1,163.12 0.466
ms 100 68 5,415 3.202 255.00 0.449
ms-dof 100 92 7,112 3.285 253.99 0.482
ms-mb 100 57 3,694 3.231 209.42 0.504
ms-dof-mb 100 49 3,505 3.151 181.03 0.666

Table 3.16: Effects on the Statue dataset.

Set name
Total number Registered

Total keypoints MTL
Mean observations

MRE [pix]
of images images per image

fs 100 100 9,417 7.484 704.79 0.580
fs-dof 100 100 9,349 7.505 701.70 0.583
fs-mb 100 100 8,763 7.734 677.77 0.614
fs-dof-mb 100 100 8,826 7.680 677.89 0.614
ms 100 100 6,111 6.035 368.82 0.621
ms-dof 100 100 6,112 6.020 368.00 0.619
ms-mb 100 100 6,162 5.971 367.96 0.634
ms-dof-mb 100 100 6,066 5.987 363.20 0.634

uniform texture. On this subject, images fail to register in various cases due to

the combination of DoF, MB, and characteristics of the subject. Moreover, in

the fs-dof-mb it was necessary to perform reconstruction by using sequential

matching and fixing the initial pair of images. The fs-dof set required the

use of sequential matching instead of the exhaustive one. Furthermore, on the

ms* sets almost all images were registered but several of them were aligned

in the wrong locations and orientations leading to unusable point clouds.

Results are visible in Figure 3.26.

In a few cases, the *-dof-mb sets provide MREs that are slightly better

than the *-mb set but slightly worse than the *-dof set. This behavior is

traceable to two different reasons. In some cases, the number of images

correctly registered in the *-dof-mb is lower than in the other ones thus the

error is computed on a more robust registered images block. In other cases

the number of registered images is similar and the lower error is due to the
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(a) ms (b) ms-dof

(c) ms-mb (d) ms-dof-mb

Figure 3.26: Results of image registration on the IVL-SYNTHSFM-v2 –
Hydrant dataset.

effects of DOF that reduces the mismatch of keypoints located on background

elements thus enforcing alignment using more points belonging to the object

and leading to a robustly registered image block.

3.6.3 The effects of Ground Control Points spatial dis-

tribution on the 3D accuracy

This section examines the impact of Ground Control Points (GCPs)

number and spatial distribution within the scene on 3D accuracy, exploiting

the ENRICH-Aerial dataset.

In aerial triangulation (AT), GCPs are used to georeference data and op-

timize camera orientation by providing additional information for refining the

bundle adjustment. Their configuration (number and distribution) affects the
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reconstruction results. Most of the recent and available automatic processing

solutions for exterior orientation initially adopt a free-network approach for

the bundle adjustment and GCPs coordinates are then introduced for georef-

erencing data and refining the orientation results. This approach was followed

in the tests for the exterior orientation, while no further considerations were

made for the interior orientation being the images without distortions.

Different GCPs configurations were investigated for processing the block of

300 oblique and nadir images at the original image size (6, 016x4, 016 pixels).

In the reported experiments, a variable and increasing number of targets

(four to twelve) with different distributions were used as GCPs, while the rest

as Check Points (CPs). Both the image and spatial coordinates provided in

the dataset were employed. Tested configurations and distribution schemes

(Figure 3.27) are defined as follows:

• Configuration 1: four GCPs aligned on the shorter side of the block;

• Configuration 2: four GCPs aligned along the diagonal of the block;

• Configuration 3: four GCPs distributed on the edges of the block;

• Configurations 4 to 11: an increasing number of GCPs (from five to

twelve), distributed on the edges, and progressively adding points inside

and outside the central area of the block.

In order to assess the achieved accuracy for each configuration, the root

mean square error (RMSE) between the ground truth and the estimated 3D

coordinates after the bundle adjustment was calculated for the CPs. RMSE

of planimetric (Rx and Ry), vertical (Rz), and 3D (Rxyz) errors are reported

in Table 3.17 and visualized in Figure 3.28.

As expected, the worst results on the CPs occurred when four GCPs

were arranged along one line (Configurations 1 and 2), with a significant

improvement of metrics when the same quantity is uniformly displaced on

the edges of the block (Configuration 3). Increasing the number of GCPs

and their spread distribution within the area generates less relevant changes

in error metrics. While Configuration 4 confirms that adding a point in

85



3.6 Experimental results

Figure 3.27: Schemes of the eleven GCPs configurations, varying in the
number and distribution of ground and check points.
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Figure 3.28: RMSE residuals on Check Points (CPs) with eleven GCPs
configurations.
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Table 3.17: RMSE of the planimetric (Rx and Ry), vertical (Rz) and global
(Rx,y,z) residuals on Check Points (CPs) with the eleven Ground Control
Points (GCPs) configurations.

Rx [mm] Ry [mm] Rz [mm] Rxyz [mm]

Conf 1 (4 GCPs line) 15.085 5.849 19.073 25.011
Conf 2 (4 GCPs diagonal) 3.436 5.782 20.195 21.286
Conf 3 (4 GCPs edges) 3.812 3.372 4.012 6.481
Conf 4 (5 GCPs) 4.028 3.509 3.340 6.300
Conf 5 (6 GCPs) 3.725 3.470 3.351 6.095
Conf 6 (7 GCPs) 3.730 3.553 3.452 6.201
Conf 7 (8 GCPs) 3.592 3.606 3.494 6.174
Conf 8 (9 GCPs) 3.240 3.627 3.417 5.944
Conf 9 (10 GCPs) 2.853 3.036 3.155 5.227
Conf 10 (11 GCPs) 3.067 2.967 2.722 5.062
Conf 11 (12 GCPs) 1.931 3.075 2.641 4.490

the middle of the block increases the altimetric accuracy, a more marked

improvement is visible only in the last configuration. Furthermore, the eleven

sparse point clouds were compared with the reference mesh model provided

in the ENRICH-Aerial dataset for a more in-depth analysis and quality

assessment of the results achieved with the different GCPs configurations.

The orthogonal distance between each point and the corresponding triangle

surface for each configuration scenario returned no significant differences in

the standard deviation (for all the cases, around 0.1 meters). In contrast,

more relevant divergences are evident when comparing the average distances,

as shown in Figure 3.29. Also for this case, the worst metrics are related to

the first two configurations, with a clear improvement in the other scenarios.

Tests with the ENRICH-Aerial dataset show that 3D accuracy is more affected

by the GCPs’ spatial distribution with respect to their number. Four GCPs

distributed on the edges of the aerial block are already sufficient for a clear

improvement of the error metrics.
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Figure 3.29: Average Cloud-to-Mesh distance (mm) between the eleven sparse
point clouds computed in different GCPs configuration scenarios and the
reference mesh model provided in the ENRICH-Aerial dataset.

3.6.4 Monocular depth estimation

Monocular Depth Estimation (MDE) is the task of estimating the distance

of the surface depicted by each pixel in a single RGB image. This task is of

interest to many fields, most notably 3D scene reconstruction, autonomous

driving, and Augmented Reality. MegaDepth [162] and Dense Prediction

Transformers (DPT) [237] have been selected among the multitude of MDE

methods. MegaDepth proposes a large depth dataset built by using structure

from motion and multi-view stereo on internet photo collections, seeking

to learn to predict monocular depth with high accuracy and generalizabil-

ity. It depicts different city landmarks, including buildings, statues, and

squares. In addition to the dataset, the authors train different architectures

obtaining the best depth estimation results with the hourglass architecture

proposed by [51]. DPT proposes the use of dense vision transformers for the

prediction of monocular depth, showing an improvement of up to 28% in

relative performance when compared to a state-of-the-art fully-convolutional

network. In addition to the architecture, the authors also propose the use of

a meta-dataset to train the neural network. This dataset is composed of 10

different depth datasets, each including different scene types ranging from

indoor to outdoor and even aerial views.

All of the available images of each ENRICH dataset have been used for the
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evaluation of MegaDepth and DPT. Results of both methods are evaluated

following the procedure defined by [236]. The images of the dataset are resized

to match the input size required by each approach. The prediction is resized

to the ground truth resolution using nearest-neighbor interpolation before

the evaluation. Pixels belonging to the sky in the ground truth are used as a

mask to exclude invalid portions from the prediction as well as the ground

truth during evaluation. Since the prediction and the ground truth may differ

in scale and shift, the prediction is first aligned before measuring errors; the

alignment is performed in the inverse-depth space based on the least-squares

criterion. Here are provided evaluation results using a depth cap suitable for

each dataset as well as non-capped predictions. Such depth cap is used to

include too far pixels in the exclusion mask.

The first metric used for the evaluation is the mean absolute value of the

relative error AbsRel = (1/M)
∑M

i=1 |zi − z∗
i |/z∗

i in depth-space. M denotes

the number of valid pixels (not masked), z is the predicted relative depth, and

z∗ is the ground truth absolute depth. The second metric is the percentage of

pixels with δ = max
(

zi

z∗

i

,
z∗

i

zi

)

> θ in depth space. θ defines a threshold for the

evaluation, and a common value is θ=1.25, which considers wrong pixels only

those whose difference in depth is more than 25% of the ground truth value.

The experiments used the codes and the pre-trained models provided

by the authors. For MegaDepth and DPT, the best-generalization and the

DPT-large models are respectively used. Examples of depth predictions as

well as ground truth are visible in Figure 3.30. Tables 3.18 and 3.19 report

evaluation results on the ENRICH-Statue and ENRICH-Square respectively.

For both datasets, the predictions are evaluated with a 70m depth cap and

with uncapped depths. The two methods were tested with portrait images

either rotated or not in order to evaluate the effect of image orientation on

depth estimation. For both datasets and in all the experiment configurations,

the best results are obtained by DPT. Table 3.20 reports the results of

evaluation on the ENRICH-Aerial dataset. On this dataset, evaluation was

performed with uncapped depth ground truth. Since δ>1.25 allows an error

up to 37m for the nadir cameras and 54m for the oblique cameras at the

average depths, it is also reported the δ>1.05 value, which allows an error up
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Table 3.18: Evaluation of the depth estimation on ENRICH-Square.

Portrait as landscape Portrait as portrait

depth cap 70m no depth cap depth cap 70m no depth cap

Method AbsRel δ > 1.25 AbsRel δ > 1.25 AbsRel δ > 1.25 AbsRel δ > 1.25

MegaDepth 0.111 13.986% 0.211 16.918% 0.108 13.041% 0.208 16.290%
DPT-large 0.087 10.337% 0.135 13.369% 0.085 9.869% 0.134 12.975%

Table 3.19: Evaluation of the depth estimation on ENRICH-Statue.

Portrait as landscape Portrait as portrait

depth cap 70m no depth cap depth cap 70m no depth cap

Method AbsRel δ > 1.25 AbsRel δ > 1.25 AbsRel δ > 1.25 AbsRel δ > 1.25

MegaDepth 0.577 86.278% 1.217 86.530% 0.459 71.832% 1.227 72.055%
DPT-large 0.244 40.358% 0.287 41.635% 0.146 20.133% 0.188 21.155%

to 7m for the nadir cameras and 10m for the oblique cameras.

DPT-large achieved lower errors than MegaDepth on all three datasets.

Both methods achieve the best results on the ENRICH-Square dataset. This

is mainly related to the scene setup that resembles some of the data used

for the training of the Neural Networks. The ENRICH-Statue dataset is

challenging for both methods: while MegaDepth fails to estimate the correct

relative depth order of the elements in the scene, DPT-large has difficulties in

correctly identifying and separating the foreground statue from the background

elements. The evaluation on the ENRICH-Aerial dataset shows low errors for

the δ>1.25, but this error increases significantly when the threshold is reduced

to 1.05. Even in this case, DPT-large provides depth estimation with a lower

error, and the result of MegaDepth on the aerial view appears flat and fails to

highlight the buildings from the ground. Finally, while the depth cap of the

predictions has a limited impact on the evaluation, the correct rotation of the

Table 3.20: Evaluation of the depth estimation on ENRICH-Aerial.

Method AbsRel δ > 1.25 δ > 1.05

MegaDepth 0.039 0.060% 27.708%
DPT-large 0.017 0.001% 4.824%
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(a) MegaDepth (b) Ground truth (c) DPT-large

Figure 3.30: Example of predicted depth maps for the ENRICH-Square,
ENRICH-Statue, and ENRICH-Aerial datasets.

portrait images significantly influences the depth estimation and evaluation.

Providing the ENRICH-Statue images in the wrong orientation notably affects

the results of DPT-large.

3.6.5 Impact

Mixed Reality catalogs may require the acquisition of small to large to

wide objects. Experiments have shown how challenging synthetic datasets

can be used to boost the testing of methods and algorithms designed for

various application domains and their ability to fit a specific one. The pro-

posed datasets feature images with different formats, cameras, environmental

and acquisition conditions. Having pixel-precise ground truth information

about GCP coordinates, depth maps, and 3D models allows for an accurate

evaluation of various steps and aspects of 3D reconstruction pipelines, as

well as numerous downstream computer vision tasks. The evaluation of SfM
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pipelines showed how the scale, complexity, and texture details impact 3D

reconstruction accuracy and performance. In addition, it was possible to

evaluate the impact of a single step of the reconstruction pipeline (i.e. the

local features) on the whole reconstruction process, thus allowing us to choose

the best solution for a specific reconstruction setup. The availability of a high

number of accurate GCPs provides sufficient information to also experiment

with their quantity and placement. Synthetic GCPs allow quick simulation of

different configurations which have a considerable impact on the quality of

the 3D reconstruction. Those types of evaluations are of great importance in

the creation of an MR catalog since they find use in the creation of 3D objects

for rendering or 3D environment reconstruction and understanding. For this

reason, the availability of multi-scale data with different geometrical and

texture complexities is crucial to evaluate the performances of methods and

algorithms under various conditions and gathering insights on their strengths

and limits. Furthermore, MR catalogs may take advantage of the increasing

availability of monocular CNN-based depth estimation methods to handle

occlusion and virtual object blending with the real world. The experiment

showed that, since the prediction is a relative depth (pixel ordering, not metric

distances), correct depth cap and image orientation have a significant impact

on the depth estimation.
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4 Material Appearance Acquisition

Material appearance acquisition is the task of characterizing the optical

properties of a surface and is a topic of interest in both computer vision

and computer graphics. This topic is also relevant in the creation of Mixed

Reality catalogs since it allows to reproduce in the virtual world elements that

mimic real world-surfaces. Being able to virtually reproduce the appearance

of a surface enables providing catalogs of object materials (e.g. a textile

catalog presented in Section 5.2) as well as virtually replacing materials of

real objects.

The appearance of a surface depends on how it absorbs, reflects, and

transmits the incident light energy. These characteristics define for example

evident differences between materials such as plastic, metals, and glass. But

are also responsible for slight variations of appearance between surfaces

belonging to the same category of materials, think for example the different

colors and shininess of different plastic objects. For each material, a different

amount of light is reflected in multiple directions. The distribution of this

reflection is responsible for the human perception of different materials. The

reflectance properties may be represented using a Bidirectional Reflectance

Distribution Function (BRDF) that defines how light is reflected by a specific

surface for each possible pair of the incident and reflected light directions

using a set of parameters. Over the years, several algorithms for measuring the

material properties of real-world surfaces have been proposed. Older methods

require a large amount of data, expensive measurement devices, and long
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acquisition times while newer ones are able to produce an accurate material

representation using fewer data, cheaper devices, and shorter computation

times.

This chapter presents the concepts and methods behind the material

appearance acquisition and reviews its state of the art as well. It also presents

the design and development of a portable low cost device for the acquisition

of a planar surface’s material appearance that can be later used to provide

realistic renderings of real surfaces. This device has been successfully used

for the creation of a prototype Mixed Reality catalog for textiles (see Section

5.2). The prototype has been used to validate the device and its value in

acquiring material representations for use in an MR catalog.

The chapter is organized as follows. Section 4.1 introduces the concept of

the Bidirectional Reflectance Distribution Function. Section 4.2 reviews the

existing literature on material appearance acquisition. An in-depth review

of the Photometric Stereo approach is provided in Section 4.3. Section

4.4 presents the design and methods of the proposed material appearance

acquisition device. Section 4.5 presents the obtained results. Finally, Sections

4.6 and 4.7 illustrate the known limitations and impact of the device.

4.1 The Bidirectional Reflectance Distribu-

tion Function

The appearance of a material is defined by its physical properties, and in

particular by the way that it reflects, absorbs, and transmits light. In the case

of opaque materials, the incident light is mostly scattered by the interior in a

small volume. A variable portion of that light is absorbed by the material.

In this category we find wood, stone, plastic, ceramic, and fabrics. The

scattering reflects the light back to the environment and makes the material

appear with its diffusive color (the prominent color of the material). Some

opaque materials may have a broader scattering where the light travels inside

a larger volume of such materials, those are translucent materials. Other
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kinds of materials present different properties, such as metals where all the

light is reflected (usually with high specularity) and not absorbed, transparent

materials where most of the light is refracted through the material without

scattering, and layered materials where a reflective surface is covered by a

top clear coat.

The appearance of materials can be modeled by a function. In the case

of opaque materials, this function is called the Bidirectional Reflectance

Distribution Function (BRDF) [206]. The BRDF models the amount of light

energy reflected from any incoming direction into any outgoing direction

for any given wavelength at a specific point p of a surface. It is thus a 4D

function that maps any pair of directions over the upper unit hemisphere to

a non-negative real number:

fr(ωi, ωo) : Ω+ × Ω+ −→ R+ (4.1)

where fr is the BRDF, Ω+ is the solid angle representing the upper unit

hemisphere, and ωi and ωo are unit-length vectors representing the directions

of incoming and reflected light respectively. The concept of BRDF was first

introduced by Nicodemus [297] in the field of radiometry as:

fr(ωi, ωo) =
dL(ωo)

dE(ωi)
(4.2)

where L(ωo) is the radiance along the reflected light direction, E(ωi) is the

irradiance incoming along the incident direction. The radiance is thus the

amount of light energy that bounces off the surface along the direction ωo. In

general, we define radiance as the light energy traveling along a ray through

space. The irradiance is instead defined as the density of light energy arriving

at the surface from all directions.

The notation used in this document is geometrically illustrated in Figure

4.1. In addition to the already mentioned variables, n is the normal at a

specific point P on the surface, t is the tangent vector perpendicular to the

normal, h is the half-vector.

In computer graphics the BRDF is used to compute the amount of radiance

that is reflected for any pair of incoming and outgoing directions as in Equation
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Figure 4.1: Geometry of the BRDF notation.

4.3, where cos θi is used to convert the incident radiance into the incident

irradiance.

L(ωo) = fr(ωi, ωo)L(ωi) cos θi (4.3)

In the field of radiometry colors are represented by wavelength. In com-

puter graphics, instead of the wavelength, colors are usually represented by

tristimulus signals (e.g. the RGB color space).

It should be noted that materials and their BRDFs can be classified into

Isotropic and Anisotropic. Isotropic materials are the ones whose reflection

is independent of the orientation of the surface, and thus the reflectance

properties are invariant to rotations of the surface around n. Anisotropic

materials present instead of reflection changes w.r.t. the rotation around n.

This category includes brushed metals, slate, satin, wood, and hair.

It is also important to note that the BRDF can characterize only the

appearance of opaque materials. For example, transparent and translucent

materials require more general scattering functions and material models.

Those materials are usually described by a Bidirectional Scattering Distri-

bution Function (BSDF) or a variation of it. The BSDF is composed of two

other functions: the BRDF which describes the reflectance of the material,

and the BTDF (Bidirectional Transmittance Function), which describes its

transmittance properties of it. This chapter considers only the BRDF and

the materials that it can represent.
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4.1.1 BRDF models

Observing the differences between real-world materials is easy to observe

how broad the appearance of materials is and ranges from the shininess of

polished surfaces to the matt appearance of other surfaces. These materials

present a different kind of scattering such as mirror, glossy, diffuse, and

Lambertian. Each of these types of scattering can be characterized by the

BRDF and several parametric models for this characterization exists.

In computer graphics BRDF models try to represent the characteristics of

the materials using a limited set of parameters. The parameters are selected

to model salient characteristics of a material’s appearance. These BRDF

models are either Phenomenological or Physically-based. In any case, the

models try to be as precise as possible in the reproduction of the material

properties while being also concise and inexpensive to evaluate.

4.1.1.1 Phenomenological models

Phenomenological models are based on reflectance data, which is ap-

proximated by analytical formulas to reproduce characteristics of real-world

materials. Here are briefly described some of the most important phenomeno-

logical models.

The most simple phenomenological model is the Mirror scattering. A

mirror-link surface can be represented trough the following computational

model:

L(ωo) =











ρL(−ωi), if ωo = ωi − 2(ωi · n)n and ωi · n > 0

0, otherwise
(4.4)

This represents the ideal mirror where all the light is reflected along the mirror

direction of ωi. Since in the reality, some energy is absorbed by the surface a

constant ρ defines the reflectivity of the surface as a number between 0 and 1.
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Another early BRDF model is the Lambertian model based on Lambert’s

Law [153]. When illuminated, Lambertian surfaces present the same outgoing

radiance in every reflected direction. The outgoing radiance also varies linearly

with the irradiance. The BRDF is thus constant and defined as:

fr(ωi, ωo) =
kd

π
(4.5)

where kd is the parameter representing the albedo (or base color) of the

material. In the real world Lambertian surfaces do not exist, however this

model can be used to represent materials that present an high level of

subsurface scattering, thus an approximation of matte surfaces.

Non-Lambertian surfaces have been modeled using the Phong model [228].

It is a method based on the cosine law that approximates the reflectance

properties of slightly rough materials. This model captures the specular

reflections and is defined as:

fr(ωi, ωo) = ks(ωo · ωi)
n (4.6)

where ks is a specular constant that defines the magnitude and color of the

reflection, and n is a scalar that controls the shape of the specular highlight.

Typically the Phong model is used together with the Lambertian BRDF to

model the specular and diffusive components respectively. The main limitation

of this model is that it does not take into consideration energy conservation.

To solve the problem of energy conservation a variation of the model known

as the Blinn-Phong reflection model [36] has been proposed:

fr(ωi, ωo) = ks(n · h)n (4.7)

Instead of the ωi reflection vector it uses the halfway vector h and the normal

direction n. While being inexpensive to compute, the Phong and Blinn-Phong

models lack visual fidelity. The Blinn-Phong has been used as the standard-

de-facto shading model in many render engines until they were able to use

more plausible physically-based models.
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The Ward model [311] was designed to fit measured isotropic (Equation

4.8) and anisotropic (Equation 4.9) BRDFs. It can represent a wide variety

of materials combining diffuse and specular reflections, the latter is modeled

through Gaussian distributions.

fr(ωi, ωo) =
kd

π
+

ks√
cos θi cos θo

· e
− tan2

(

θh
α2

)

4πα2
(4.8)

fr(ωi, ωo) =
kd

π
+

ks√
cos θi cos θo

· e
− tan2 θh

(

cos
2 φh

α2
x

+
sin

2 φh

α2
y

)

4παxαy

(4.9)

In the above equations θi, θo, θh are respectively the angles between vectors ωi,

ωo, h and the normal direction n. φh is the azimuth angle of the half vector

projected into the surface plane. α is the standard deviation of the surface

slope. Instead, anisotropic materials use αx, αy to control the Gaussian lobe

in the principal directions of the anisotropy. In both cases, the normalization

factors (4πα2, 4παxαy) ensure that the distribution will integrate easily and

predictably over the hemisphere.

The Lafortune [152] model is an empirical model based on Phong and

designed to represent surface reflectance as a combination of cosine lobes.

The function is defined as:

fr(ωi, ωo) =
N
∑

j=1

kj
s[Cj

xωixωox + Cj
yωiyωoy + Cj

zωizωoz]nj (4.10)

where N is the number of lobes, where Cj
x, Cj

y , Cj
z control the magnitude and

direction of the jth cosine lobe. The main intuition behind this formulation

is that the reflection lobes of real materials are not centered on the mirror

reflection. Using this model its parameters can be adjusted to represent a

wide variety of materials using a large enough number of lobes.
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4.1.1.2 Physically-based models

This section describes the most relevant physically-based models. Those

models are designed to follow the laws of physics and optics considering

any surface as rough at the micro-scale. At this fine scale, the surface can

be described as made up of microfacets, each of which acts as a perfect

mirror reflector. Different materials present thus different distribution of

these microfacets in terms of their size and orientation.

The concept of microfacets was first adopted by the Torrance-Sparrow

[288] and later extended by the Cook-Torrance [60] model. According to the

microfacet formulation, the incident light along ωi at a point P when looking

at micro-scale can be the subject of three different events as shown in Figure

4.2. It can be reflected into the environment by a microfacet, can be blocked

by a close microfacet before arriving at P (shadowing), or can be blocked by

a microfacet after being reflected from the facet at P (masking).

Figure 4.2: Cook-Torrance BRDF microfacets.

It thus considers that the amount of light reflected along ωo is related to the

orientation of the microfacets, their reflectance, and the amount of shadowed

or masked rays. The Cook-Torrance BRDF uses Lambertian reflections for

the diffusive component of the material and models the specular component

as follows:

fr(ωi, ωo) =
FDG

4(n · ωi)(n · ωo)
(4.11)

where F is the Fresnel term that describes the light scattering of individual

microfacets, D defines the microfacets’ distribution, and G is the geometry
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attenuation term that accounts for both shadowing and masking.

The Fresnel terms represent the reflection of a single microfacet as:

F =
(g − c)2

2(g + c)2

(

1 +
(c(g + c) − 1)2

(c(g − c) + 1)2

)

(4.12)

where c = ωo · h and g = η2 + c2 − 1 given η the index of refraction. A

common appoximation of the Fresnel effect is provided by the Schlick’s fresnel

term [257]:

F =
(η − 1)2

(η + 1)2
+

(

1 − (η − 1)2

(η + 1)2

)

(1 − ωo · h) (4.13)

The statistical distribution of the microfacets D that controls the shape of

the specular highlight is usually defined as a Gaussian as proposed by Blinn

[36] or a Beckmann distribution [21]. Finally the geometry attenuation term

G is defined as:

G = min

(

1,
2(n · h)(n · ωo)

ωo · h
,
2(n · h)(n · ωi)

ωo · h

)

(4.14)

The Oren-Nayar [216] BRDF improved the use of microfacets for rough

materials. The proposal is modeled by microfacets arranged in symmetrical

V-cavities that act as Lambertian reflectors (instead of the Fresnel reflectors

used in Cook-Torrance). This model still accounts for masking, shadowing,

and inter-reflections. However, it is not suitable for glossy surfaces. The

model is also heavy to compute but the authors proposed a simplification

that doesn’t consider inter-reflections:

fr(ωi, ωo) =
kd

4π
(A + B max(0, cos(φr − φi)) sin α tan β)

A = 1 − 0.5
σ2

σ2 + 0.33

B = 0.45
σ2

σ2 + 0.09

(4.15)

where σ is the surface roughness, α = max(θo, θi) and β = min(θo, θi).
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The microfacets theory introduced by Cook-Torrance has been later further

extended by Walter et al. [306]. In their work, a new microfacet distribution

D function better fits measured data of real materials. Rough surfaces and

transmission are also better represented. The new D function is named GGX

and is defined as:

D =
α2

gχ+(h · n)

π cos4 θh(α2
g + tan2 θh)

(4.16)

where α2
g is a width parameter, χ+ is the positive characteristic function

(which equals one if its argument is greater than 0 and zero otherwise).

This distribution presents stronger tails than the Beckmann and Phong

distributions and thus tends to have more shadowing. In addition to the

distribution, a new bidirectional shadowing and masking term is derived from

D and approximated as the product of two monodirectional shadowing terms

G1:

G1(ω, h) = χ+

(

ω · h

ω · n

)

2

1 +
√

1 + α2
g tan2 θω

G ≈ G1(ωi, h)G1(ωo, h)

(4.17)

The GGX distribution is nowadays commonly used in many render engines.

However, it fails to capture the highlights of extremely polished surfaces.

4.1.2 The Spatially Varying BRDF

The BRDF is meant to provide information about how light is scattered

by the material at a single point on the surface. However, it can be used to

represent the material properties of uniform surfaces. In the real world most

objects are not made of uniform materials and light is not scattered in the

same way across the surface. To solve this problem the Spatially Varying

Bidirectional Reflectance Distribution Function (SVBRDF) [297] models the

reflectance by adding a dependency on the surface position, making it a six-
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dimensional function defined as in Equation 4.18. u and v defines a coordinate

vector (u, v) that encode the position on a parameterized 2D space.

fr(u, v, ωi, ωo) : [0, 1] × [0, 1] × Ω+ × Ω+ −→ R+ (4.18)

Using this formulation makes clear that the SVBRDF is the representation

of the unique four-dimensional BRDF at each position of the surface.

Although adding a spatial dimension enables the modeling of real-life

surfaces, it still has the same limitations as the BRDF in terms of the kinds

of material that it can represent. The SVBRDF is thus suitable for opaque

materials that are also non-light emitters and static.

4.1.3 Texture maps

The standard approach for storing the SVBRDF parameters of a material

is to use one or more images (texture maps). The process of applying the 2D

texture maps onto a 3D object’s surface is called texture mapping. Instead,

the process of unrolling the 3D surface over the 2D image space is known as

UV unwrap where (u, v) defines the texture 2D coordinate space varying in

the range [0, 1]. It is thus necessary to also store the corresponding mapping

between the 3D surface point and the 2D texture image. In the most simple

case, a single texture map can be used to encode the diffusive RGB albedo of

a BRDF. However, the concept of texture maps is easily usable to represent

any other property of the material, such as surface orientations (normal map),

surface roughness, surface smoothness, glossiness, metalness, displacement,

and ambient occlusion. Texture maps are dependent on the material model

used to store and render the surface. Those textures can be generated by

means of automated approaches (derived by acquired data or procedurally

generated) as well as created by 3D artists. The manual generation of the

textures representing a material requires identifying the key characteristics

of such material, and those have to be correctly encoded into the necessary

texture maps. Finally, in the case of a 3D object, texture mapping should be
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provided as well.

Commonly used texture maps are a diffusive albedo map, a normal map,

a roughness map, and a specular albedo map. The diffusive albedo map is

usually defined as an sRGB image where each pixel represents the diffusive

component of the surface as an RGB color value. It should be noted that

while the colors are gamma encoded, no assumption or correction is usually

performed on the illuminant since this map encodes the color as diffused by

the surface when lit by an ideal uniform emitter light. The normal map is

again a three-channel image but its content is no longer color information

but is instead the normal direction vector to the surface for each pixel. The

values contained in this map may be positive or negative directions on the

three axes (XYZ) and thus the 0 value is centered in the range represented

by the image format (e.g. 128 for 8-bit images). Due to the surfaces being

mainly flat, these maps assume a periwinkle-like color when viewed as images.

It has to be noted that two main encoding conventions exist. The OpenGL

and the DirectX formats whose difference is the opposite orientation of the

green (or Y) channel. The roughness map is instead a one-channel texture

in which the value of each pixel defines how rough a surface is at its micro-

geometry level (range from 0=smooth to 1=rough). While this roughness

is a linear value its effect on the surfaces is not perceived as linear by the

human eye. To solve this problem render engines use the so-called perceptual

roughness which maps to the linear roughness as σ = perceptualRoughness2

and provides a more linear perception to the users. In some cases instead

of a roughness texture map a smoothness map is used and is defined as the

reverse of the roughness (0=rough, 1=smooth). The specular map instead

provides information regarding the specularity of the surface and thus helps

in defining the specular highlights. It can be a one-channel texture (which

defines the intensity of the highlight) or a three-channel texture (which defines

the intensity and color of the highlights). Dark pixels signify that the light

is mostly scattered while bright pixels mark pixels that present specular

highlights (less scattering).
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4.1.4 Rendering

The process of synthesis of an image starting from a 3D scene is known

as rendering. Render engines are computer software that takes as input the

computer representation of the 3D geometry of a scene (which may consist of

a single object or a full environment), the material appearance parameters of

such geometry, the illumination sources, and a virtual camera. The engine

then computes the image depicting the scene according to the virtual setup.

Existing rendering engines that produce RGB images as output can be

categorized as raster or global-illumination renderers. The goal of rasterization

is to compute the mapping from the scene’s geometry to image pixels. Various

strategies can be used to assign a color to each pixel. Typically raster-based

engines consider only local lighting (light that is transported directly from

a source, reflected by a single surface, and directed into the camera). The

radiance of each pixel can be thus obtained by approximating the rendering

equation as:

Lo(x, ωo) = Le(x, ωo) +
N
∑

j=1

Lj
i fr(x, ωi

j, ωo)(n · ωi
j) (4.19)

where x is a point over the surface, Lo is the radiance from point x along the

direction ωo, Le is the radiance emitted by the material, N is the number

of light sources, Lj
i is the radiance emitted by the jth light source, ωi

j is the

unit-vector pointing towards such light, and fr is the BRDF of the material

at point x. This formulation allows the raster algorithms to render images

at real-time frame rates, thus making them appropriate for applications like

video games and virtual reality. However, this comes at the cost of missing

light effects (e.g., global illumination, multiple reflections) but modern raster

engines are using techniques to approximate these affects keeping the real-time

performances.

Global-illumination render engines aims to accurately simulate the way

light is transported through the scene before reaching the virtual camera.

They compute the radiance that travels along rays that intersect each pixel

over the image. Due to the reciprocal nature of light, tracking the light
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paths from the sources is equivalent to tracing them from the camera into the

scene. This allows for simulating of the way the light is reflected, absorbed,

transmitted, and refracted by the surfaces before reaching the light sources.

The radiance received by each pixel can be thus computed by solving the

rendering equation [140]:

Lo(x, ωo) = Le(x, ωo) +
∫

Ω+

Li(x, ωi)fr(x, ωi, ωo) cos θidωi (4.20)

where Li is the incident radiance at point x along the ωi direction. The

integration is done over the space of incoming light directions, Ω+ since we

consider only opaque surfaces. Common algorithms for global illumination

rendering are RayTracing, PathTracing, and Radiosity. One advantage of

global illumination over rasterization is that indirect (global) lighting is

automatically taken into account thanks to the algorithmic design thus

providing soft shadows, reflections, ambient occlusion, and more out-of-the-

box. Since the Equation 4.20 has to be evaluated for many rays for each

pixel in the image the final computational cost is greater than the raster-

based algorithms, thus making them non-suitable for real-time applications.

However, thanks to the hardware acceleration support introduced in recent

graphics cards newer engines are able to combine rasterization and global

illumination algorithms. Rasterization is used to build the base color of the

scene and ray-tracing or path-tracing is used to superimpose additional effects

such as shadows, translucency, and ambient occlusion.

It is to be noted that sometimes global-illumination renderers are referred

to as Physically-Based Rendering (PBR) engines. While this is true in the

sense that they simulate physics to obtain the final image, this does not

prevent rasterization to be a PBR engine. The concept of PBR means that

the rendering procedure is based on the physics of light transport. Thus

the PBR concept is more related to the material/shading model than the

technique used to obtain the 2D image from the 3D scene.
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4.2 Related work

The existing literature covers the task of material appearance acquisition

for both devices and methods. Nowadays, traditional approaches such as the

gonioreflectometer are being integrated with newer deep learning techniques.

This section describes the most relevant approaches and devices for material

appearance acquisition, organizing them by the ability to recover the BRDF

or the SVBRDF.

4.2.1 BRDF acquisition

A traditional device for measuring the BRDF of a material is the go-

nioreflectometer (see Figure 4.3). Originally four-axis gonioreflectometers

[287, 297] allowed to capture the BRDF of a uniform material by using a

point-light source and a photosensor placeable at various locations over the

upper hemisphere of a planar material sample. By covering all of the possible

positions for the light source and the photo-detector the device is able to

sample the BRDF of the surface with accurate and dense measures at cost of

extremely long acquisition times. Acquisition times can be reduced in the

Figure 4.3: Example of a conventional gonioreflectometer. The BRDF of a
material is measured using a movable photosensor and light-source. Figure
reproduced from [311].
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case of isotropic materials which only require 3 degrees of freedom for the

acquisition since the reflectance is independent of rotation about the normal.

The acquisition time was shortened by Ward [311] by using a hemispherical

one-way mirror. In this way is possible to fix the camera position to simulta-

neously capture the reflectance in multiple outgoing positions. This makes

it necessary to only move the light position. In 2014 Filip et al. [78] used a

gonioreflectometer and defined data processing to acquire dense anisotropic

BRDF. In 2018 Dupuy and Jakob [69] designed a goniophotometer that

makes use of various light sources and photo-sensors to acquire the BRDF of

isotropic and anisotropic materials. Gonioreflectometers can be constructed

and calibrated to achieve high-quality measurements thus they are considered

“gold standard” measurement devices for BRDF.

In addition to gonioreflectometers, other methods have been designed,

such as image-based and catadioptric measurement systems.

Image-based BRDF measurement systems make use of pictures of an

object taken using general-purpose equipment. The photographs capture light

reflectance at various surface orientations. Marschner et al. [184] present an

image-based solution for the acquisition of isotropic BRDF of a broad range

of homogeneous materials. Later, Ngan et al. [203] presented a setup capable

of acquiring anisotropic BRDF using two precise motors to rotate the sample

and the light source. Naik et al. [201] exploited space-time images acquired

by a time-of-flight camera to acquire reflectance of the sample making use of

3-bounce scattering and two known Lambertian materials.

Catadioptric optical systems make use of reflected and refracted light.

The acquisition setups usually do not present moving parts making the device

more robust. Relevant examples of such acquisition setups are Mukaigawa et

al. [199], and Ghosh et al. [104]. Both measurement setups do not involve

moving parts and use a projector as the light source, a mirror, a camera, and

a beam splitter to acquire anisotropic BRDFs.
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4.2.2 SVBRDF/BTF acquisition

Setups for SVBRDF or BTF acquisition can be categorized in (hemi-

)spherical gantry, Photometric Stereo, LCD light source, flashlight and other

based on the hardware used for acquisition.

Spherical and hemispherical gantries include the work of Rump et al. [248].

They used a hemispherical gantry with 151 cameras and used the cameras’

flashes as light sources. Each camera acquires pictures for each flash (total of

151x151 = 22,801 pictures). The images are then processed to build the BTF

of the subject. Ghosh et al. [103] proposed three different setups to estimate

SVBRDFs of isotropic and anisotropic materials, using up to 9 polarised

second-order spherical gradient illumination patterns.

Photometric Stereo is a technique that uses a similar (but simplified)

hardware setup of the hemispherical gantries. This method is in-depth

reviewed later in a separate Section 4.3 since it is the one used for the

development of the device proposed in this chapter.

In the category of LCD light source systems, Francken et al. [82] and

Aittala et al. [6] proposed similar systems based on the use of LCD display

and an SLR camera. While Francken et al. recovery process is limited to the

normal map, Aittala et al. are able to provide SVBRDFs of isotropic surfaces

through Bayesian inference. Similarly, Wang et al. [307] use a camera and an

LCD screen as an area light source to measure specular and diffuse albedos,

two surface roughness parameters, and a 1D power spectrum over frequencies

for visible surface bumps. Riviere et al. [244] propose a mobile reflectometry

solution using a mobile device’s LCD panel as the illumination source in a

dimly lit room. Diffuse and specular components are separated by taking two

pictures of the same sample with a differently-orientated linear polariser in

front of the camera. Albedo, normals, and specular roughness are estimated

using the same lighting patterns described in [103].

The last category of flash illumination setups include the work of Aittala

et al. [7]. A single mobile device is used with its onboard flashlight is used

to acquire a flash+no-flash image pair of textured material. A multi-stage

reconstruction pipeline allows capturing of the full anisotropic SVBRDF of

109



4.2 Related work

surfaces with repetitive patterns. This allows us to assume that multiple

points on the surface share the same reflectance properties. The input images

are registered through a homography and the image is divided into sub-tiles

roughly matching the size of the repeating texture pattern. A master tile

is used to compute initial geometric and photometric data of the repeating

pattern. Then, this data is augmented by transferring high-frequency detail

from similarly lit tiles.

In recent years deep-learning based methods emerged to solve the task of

material appearance acquisition, these systems usually employ flashlight setup

or exploit global lighting. In 2018 Deschaintre et al. [64] proposed the use

of a deep encoder-decoder convolutional neural network to recover per-pixel

normal, diffuse albedo, specular albedo, and specular roughness from a single

flash-lit picture of a flat surface. They also introduce the rendering loss to

support the training process and evaluate the quality of the recovered SVBRDF

by comparing its appearance with the ground truth by rendering both under

the same lighting configuration. This takes advantage of an in-network render

engine that supports inverse-rendering and backpropagation. Similarly, Li et

al. [161, 326] used encoder-decoder neural networks to estimate the SVBRDF

from a single picture of a planar surface without needing specular highlights

generated by the flashlight. Li et al. [163] use a cascade of encoder-decoder

networks to estimate the shape and material appearance from a single image.

Gao et al. [87] proposed a deep inverse rendering framework that uses [64]

and an arbitrary number of images to bootstrap the SVBRDF estimation

that is then refined by a subsequent network so as to reintroduce fine details

lost in the estimation. Deshaintre et al. [65] proposed to use multiple copies

of a single image SVBRDF estimation neural network to work with multiple

images, the output of each copy of the network is then processed through max

pooling and a few convolutional layers to produce the final texture maps.

One of the main challenges and limitations of using deep learning for this task

is the necessity of a large amount of training data. While various datasets of

BRDF are available [69, 77, 186], SVBRDF ones are not available in a large

number of samples which is crucial for supervised training of deep-learning

models. Manually generating such data is a complex and time-consuming task.
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To solve this problem [64] used data augmentation over a set of procedural

SVBRDFs that were sampled and rendered under multiple lighting directions.

A different approach proposed by Li et al. [161, 326] used a small training

set with known ground truth and a process of self-augmentation to generate

additional data for training. Deshaintre et al. [65] further extended their

previous approach using an online renderer for data augmentation during

training.

4.3 Photometric Stereo

One of the techniques that can be used to recover a surface’s properties is

Photometric Stereo (PS). It is a method for recovering local surface shape

and albedo from a set of images captured with the same viewpoint but under

different illumination directions.

Woodham [315] was the first to introduce PS in 1980 proposing an efficient

method that exploits the intensity of the acquired pixels. In fact, the intensity

of each pixel in an image depends on the orientation of the corresponding

surface patch (its normal), the reflectance of the material from which the

surface is made of, and the direction and spectrum of the lighting. Although

the reflectance properties are intrinsic to a surface, its relief produces shades

that depend on the direction of the incident illumination. Changes in the

illumination direction directly translate to changes in the appearance of a 3D

surface. Photometric Stereo exploits this knowledge by using three identical

light sources with different placements. In the ideal case of Photometric

Stereo, the light sources are point lights, placed at infinite distance from the

surface to be acquired, that provide uniform illumination on the whole surface.

Using this illumination setup allows to assume that the light source direction

is well-defined and constant across the surface for each of them. In the case

of uniform Lambertian surfaces, the normal directions N can be recovered by

inverting the linear equation I = L · N , where I is a vector of m observed

intensities and L is a matrix (3 × m) of known incident light directions. The
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linear formula can be extended to consider spatially varying albedo by taking

into account the albedo reflectivity value ρ in the equation I = ρ(L · N).

In the case of three source lights (m = 3) the equation can be inverted as

L−1I = ρN . Since N represents directional vectors they are known to have

unit length, thus ρ is the length of the vector ρN and N can be obtained by

normalizing the direction of ρN . Please note that this formulation is suitable

for grayscale images and exactly three light sources, the more generic case

of RGB images and more than three light sources are described in detail in

Section 4.4.3.2.

After the initial paper of Woodham [315], several works have been pre-

sented in the literature to exploit, extend, and adapt the concept of Photo-

metric Stereo for specific applications. Most of the works take advantage

of the Photometric Stereo technique to recover the 3D surface variations by

using the estimated normal map to create a depth map.

In 2003 Barsky et al. [19] and later Plata et al. [230] proposed the

extension of the Photometric Stereo approach to use four light sources instead

of three and introduced the use of color images (Color Photometric Stereo).

Previous works mainly targeted the problem of surface orientation recovery

using grayscale images and were not interested in the recovery of color albedo

maps. Plata et al. instead used an RGB camera, a single light source, and a

turntable to acquire RGB images and recover both the surface orientations and

the RGB albedo. Xie et al. [321] propose to use a PS setup with near point-

light sources to acquire normal maps of 3D objects with a strong difference

in surface orientations. The use of near point-lighting generates a nonlinear

problem as the local surface normals are coupled with their distance from the

camera as well as from the light sources. They propose a local/global mesh

deformation approach to determine both, the position and the orientation

of a facet simultaneously, where each facet is corresponding to a pixel in the

image. Logothetis et al. [174] use a semi-calibrated near-field Photometric

Stereo approach to perform the 3D reconstruction. They relax the point light

source assumption by requiring only known positions and not intensities, light

attenuation maps are explicitly computed. The method can jointly estimate

depth, light source brightness, (scaled) albedo, light attenuation maps, and

112



4.3 Photometric Stereo

reflectance coefficients. Liu et al. [167] present a near-light photometric

stereo algorithm with circularly-placed point light sources and a perspective

camera. In their work they model the acquired scene as a 3D triangulated

mesh whose vertices correspond to the observed pixels. They use a two-stage

process to first solve photometric stereo using the differential images captured

by changing the light source position in a small amount along a circular

path, and later refine the vertex positions using the original image formation

model applied to the raw captured images. Their algorithm is sensitive to

errors in calibration thus they propose an accurate light source positions

estimation approach that uses a flat panel display. Li et al. [159] present a

method to capture both 3D shape and spatially varying reflectance of isotropic

materials using a multi-view photometric stereo. They combine the Structure

from Motion technique to obtain precise 3D reconstruction and capture the

SVBRDF by simultaneously inferring a set of basis BRDFs and their mixing

weights at each surface point.

Multispectral imaging has also been used to solve the Photometric Stereo

problem. Most notably, Guo et al. [109] and Zhou et al. [337] propose

multispectral approaches that can recover 3D shape and albedo. Guo et al.

use a monochromatic camera and assume uniform chromaticity but spatially

varying albedo. Instead, Zhou et al. do not impose any prior about the

surface characteristics but use a more complex hardware setup with an array

of cameras arranged on concentric circles where each ring captures a specific

spectrum.

All the works mentioned above use complex hardware setups that require

expensive specialized hardware, such as industrial devices or laboratory

prototypes. However, a few portable PS-based devices have been proposed in

the literature. Gorpas et al. [106] proposed a miniature photometric stereo

system, targeting the three-dimensional structural reconstruction of various

fabric types. Their goal is the development of a robotic system that can

navigate in unstructured environments, identify and remove textiles from piles

or containers, and finally untangle and spread the textiles for some industrial

process or folding. It is composed of a low-cost off-the-shelf camera, operating

in macro mode, and eight light-emitting diodes. The device is a cylinder of
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about 30mm in diameter and height. It is able to acquire a textile patch of

size 10x10mm with a resolution of 400x400 pixels. Only grayscale images

are used to acquire 3D geometry and albedo maps. Kampouris et al. [141]

built a small portable device to acquire a patch of size 10x10mm of textiles to

capture the microstructure of the fabrics. Their system uses an RGB camera

and four LED light sources to acquire a normal map and grayscale albedo

of the textiles. They used this recovered information to tackle the problem

of textile classification using both handcrafted and deep-learning features

using normal maps and albedo instead of plain images. Finally, Schmitt et al.

[258] propose a handled device for the joint estimation of the pose, geometry,

and SVBRDF. While the device is portable, it uses complex hardware design

and software pipeline. The device uses a Kinect-like active depth sensor, a

global shutter RGB camera, and 12 point-light sources (high-power LEDs)

surrounding the camera in two circles (with radii 10 cm and 25 cm). They

estimate the pose using Structure from Motion, and create a volumetric

representation of the object by fusing acquired depth maps. Normals and

albedo are initialized assuming Lambertian reflectance. Specular BRDF

parameters are initialized as a uniform mix of base materials and later refined

by optimizing (gradient-based optimization) their combination minimizing

the photometric error.

Another topic of interest for the Photometric Stereo technique is the

definition of the light configuration to be used for the acquisition setup.

Spence and Chantler [273] derived and experimentally verified the optimal

illumination setup for three-image PS of smooth and rough surface textures.

They defined an overall figure of merit considering image-based rendering

(i.e. relighting) of Lambertian surfaces. Then, the metric was optimized

with respect to the illumination angles to find the optimal setup. As also

experimentally verified the optimal separation between the tilt angles of

successive illumination vectors was found to be 120°, and the optimal slant

angle was found to be 90° for smooth surface textures and 55° for rough surface

textures. Later, Drbohlav and Chantler [67] extended the previous work to

more than three light sources. They showed that the optimal configuration

for the slant angle is still with the light sources spaced equally in tilt by
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360/n degrees (where n is the number of lights). Instead, for the slant angle

multiple optimal configurations can be used, including configurations with

n − 1 lights with a constant slant plus one vertical light.

4.4 The proposed SVBRDF acquisition device

This section describes the proposed SVBRDF acquisition device to solve

the problem of material appearance acquisition. Due to the high variety of real-

world materials, the scope of the device is restricted, and some assumptions

are made before describing the hardware and the software pipeline for the

acquisition.

4.4.1 Scope and design choices

The goal of the proposed device is to be able to acquire the SVBRDF of

a patch of a surface. Some constraints of the surface and its material are

applied.

The device must be portable and usable by people who are not experts

in the field. Aiming for widespread use of the device its cost should also be

limited.

The materials acquired must be of a planar surface with micro surface

height variations in the order of a few millimeters. While building a device

for capturing the SVBRDF of generic materials and shapes is possible, it

complicates the design of the hardware and makes it difficult to build a

portable device. In addition to this, huge variations in the micro surface also

need 3D geometry to be considered.

Some restriction on the kind of materials also applies. Only some kinds of

opaque materials are taken into consideration. Transparent, translucent, as

well as highly specular materials (e.g., mirrors, metals) are excluded.

The patch to be taken into consideration is of size 5x5cm; this allows

115



4.4 The proposed SVBRDF acquisition device

to include meaningful variations of the characteristics of the material while

keeping the device size limited thus making it a portable device. This size

allows also the reproduction of the materials on displays (e.g. smartphones)

matching the screen size to the real size of the acquired material patch.

Among all of the techniques used for material appearance acquisitions,

Photometric Stereo has been selected for different reasons. It allows for

building a device that is compact and made of cheap consumer components.

It is also a static device with no parts in movement that may be damaged

during the transport of the device. For example, a gonioreflectometer-like or

gantry setting have high hardware costs and are not suitable for a mobile

device. LCD-based devices are often cheaper but they are still not suitable for

building ready-to-use portable devices. Statistical-based methods heavily relay

on dense pattern repetition to provide accurate acquisitions and this may not

be true in the acquisition of a small patch of the surface. Deep learning-based

methods are interesting since they can provide material’s BRDF using RGB

pictures and do not require specialized hardware, however huge computational

capabilities are required for both training and inference. They also need a

huge amount of data for the training process and such data is not easily

collectible nor publicly available in large quantities. Furthermore, like many

of the other techniques, Photometric Stereo requires some calibrations but

since the device is self-contained those may be performed at production and

are not required to be performed by the user.

The developed device uses the SVBRDF extension of the following BRDF.

The Cook-Torrance BRDF is used as the base reflectance representation but

a few changes are applied. First, Shlick’s approximation of the Fresnel term

is adopted. Both the microfacet distribution and the shadowing and masking

terms of the Cook-Torrance model are replaced with the GGX formulation

proposed by Walter et al. [306]. Refer to Section 4.1.1.2 for a description

of the BRDF components used. This BRDF has been selected among the

others since it fits the classes of materials that the device aims to acquire; it is

also a common formulation of the BRDF adopted by many rendering engines.

By providing the material appearance in the same format it is possible to

render it in the engines without the need for conversion between different
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representations or the definition of new shaders in the engines.

4.4.2 Hardware

The design of a new device is a challenge that comprises not only methods

and software but also the necessary hardware. For the Photometric Stereo

approach, some essential components are needed: a digital camera, a variable

number of light sources, and a setup that allows acquisition without the inter-

ference of external light sources. Possible approaches to build the hardware

required are: use consumer-ready devices, build a new device completely from

scratch, or integrate consumer electronic components into a usable device.

While using consumer-grade devices is a possibility, to the best of our

knowledge no cheap commercial photometric stereo setup exists. As shown

for example by Google for the task of depth estimation1, it is possible to 3D

print support for multiple smartphones and uses some software to synchronize

acquisitions. This solution requires the use of multiple smartphones making

the cost of the device too high and their placement not easy limiting also the

portability of the whole assembly.

On the opposite, designing a fully new hardware allows an extreme level

of personalization making it possible to fulfill all of the system requirements

except the cheapness. This solution would allow us to choose the best suitable

electronic components and design a case to hold the hardware in place. Sadly,

it requires also designing and producing the Printed Circuit Board (PCB)

which is a complex task that requires expertise and it is not economic.

The solution adopted for the design and development of the hardware

device is in-between the aforementioned possibilities. The device builds on

the most suitable cheap electronics available on the consumer market and

uses a custom case to house all of the components. Following this reasoning,

the device uses the Raspberry Pi Camera Module V2, SK6812 LEDs, and the

Raspberry Pi Zero W. The complete bill of material and the price of each

1https://ai.googleblog.com/2018/11/learning-to-predict-depth-on-pixel-

3.html
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component is reported in Table 4.1.

Table 4.1: Bill of material.

Component Price [€]

Raspberry Pi Zero W 10.61
Raspberry Pi Camera Module V2 28.37
LED ring 8x SK6812 CW 1.52
LED ring 16x SK6812 CW 3.04
Camera cable 4.98
LEDs connector 0.32
LEDs flat cable 0.96
SD card 8GB 5.03
3D printed case 26.00

Total: 80.83

Digital camera module — Among all the available camera modules

the Raspberry Pi Camera Module V2 2 has been selected. It is a camera

sensor module that comes in the format of a small (25x24mm) breakout

board mounted with a Sony IMX219 [272] CMOS image sensor. This mobile

format sensor (3.68x2.76mm, pixel size 1.12µm) provides 8MP resolution color

images (3280x2464px) and is equipped with a small adjustable lens with a

focal length of 3.04mm (62.2° horizontal Field of View). The choice of this

specific module has been based on three different factors. First, the camera

satisfies the image acquisition requirements; it can acquire an area of size

82x61mm with a spatial resolution of 40px/mm when placed 68mm over the

target surface. Second, the camera module is provided with libraries that

allow the acquisition of images using a pre-built camera pipeline as well as

RAW-10 images. The possibility of acquiring RAW images is essential to

build a custom camera pipeline for the device. Finally, the module is cheap

(market price of $25) and is easily interfaceable with the Raspberry Pi Single

Board Computers (SBCs) as well as third-party SBCs thanks to its Camera

Serial Interface (CSI).

2https://www.raspberrypi.com/documentation/accessories/camera.html
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Light sources — For the device to work correctly it is essential to be

able to illuminate the surface with different light source placements. While

several light source types are available on the market, the Light Emitting

Diode (LED) is known for its efficiency and the large number of variations

(shape, power, wavelength) that are produced. The most important factors

for the choice of LEDs are the wavelength of the emitted light, ease of wiring,

mechanical assembly, power consumption, and emission.

The selected light sources are thus pre-built rings mounting SK6812 RGBW

LEDs [266]. The SK6812 LED is a 5050 LED chip (5x5mm) that comes in

a few different variations, the most suitable for this application is the RGB

+ Cold White. The cold white variation has been chosen since it provides a

white color temperature of approximately 6500K which is equal to the CIE

standard illuminant D65 which resembles the daylight illuminant. The white

channel emits 6±1 lumens and the light beam angle is 120°. This LED also

offers some advantages compared to other ones in terms of light control and

wiring. The wiring diagram consists of a 5V power supply to be provided to

each LED and a single wire control bus that daisy chains the LEDs. Since the

LEDs are already provided and assembled on PCB rings, it is only necessary

to wire the power supply and the control bus to the first LED of each ring.

Furthermore, cheap pre-assembled LED rings are available in diameters from

32mm (8 LEDs) up to 112mm (32 LEDs). Two rings have been used in

the device, with 8 and 16 LEDs respectively for a total of 24 light sources.

The choice has been based on mechanical constraints, the rings should not

interfere with the camera field of view, and each LED must provide enough

energy to each point in the area portrayed by the camera. Moreover, the use

of a high number of light sources helps handling noise and shadows in the

acquired images. Exact LEDs placement is described later in this section.

Controller board — The last electronic component needed is a controller

board that is in charge of controlling the image acquisition process. Two

different approaches can be employed. The first one is to use this controller

board only for the acquisition and delegate the processing to software running

on a computer. The second approach involves using the controller not only
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for acquisition but also for processing the images. The second case requires

more computational capabilities. Since a computer is in any case needed

to recover the texture maps, the device employs the first solution to also

keep the hardware of the device limited in size, power consumption, and cost.

Based on this reasoning and the hardware already selected for the camera

module and the light sources, the Raspberry Pi Zero W 3 is the designated

SBC to control the images acquisition process. It features a 1GHz single-core

CPU, 512MB of RAM, a CSI camera interface, a wireless network adapter,

and a General-Purpose Input/Output (GPIO) interface for controlling the

LEDs. Power for the device is provided through the Raspberry micro-USB

power port. Since the power consumption of the LEDs does not exceed the

recommended maximum of 1A for the 5V rail an external voltage regulator is

not needed. A single GPIO pin is used to drive all of the LEDs, refer to the

SK6812 datasheet [266] for details about the control protocol. Communication

and data transfer between the device and the computer employs a Wi-Fi

connection.

Device case — Finally, a 3D-printed plastic case was designed to keep the

hardware in place and block the light coming from external sources providing

thus a dark room for the material appearance acquisition. Figure 4.4 shows

Computer-Aided Design (CAD) sketches and the final device. Since the case

was 3D printed using PLA which is highly specular, the inner surface of

the device has been tinted using a black matte paint to limit the effects of

reflections on the walls of the case in the acquired images.

The exact placement of the camera and LED rings has been determined to

guarantee the acquisition of a usable material patch of size 5x5cm where

enough light is received by each point of the surface for each LED. The camera

is thus placed 68mm above the surface. The two LED rings are instead placed

as follows: the smaller one, which has a radius of 13mm (center of the ring to

center of the LED), is located 45mm above the surface generating a 75°angle

with the surface. The larger one (33mm radius) is instead positioned 40mm

above the surface producing an incident light angle of 51°. Both rings are

3https://www.raspberrypi.com/products/raspberry-pi-zero-w/
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(a) (b) (c)

(d) (e)

Figure 4.4: CAD drawings of the device (a-c) and the assembled device (d-e).

aligned to have their center corresponding to the main view axis of the camera.

4.4.3 Software

The software for the material appearance acquisition is composed of two

main modules: a firmware that runs on the Raspberry Pi Zero for the LED

control and image acquisition and an elaboration pipeline that runs on a

personal computer.

4.4.3.1 Onboard firmware

Due to the limited computational power and RAM, the goal of the onboard

firmware is to coordinate the image acquisition process and transfer the data

to the personal computer where the processing takes place. The onboard

firmware accepts commands from the main elaboration pipeline and mainly
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controls the device’s LEDs and camera. This software runs on the Raspberry

Pi Zero, and the commands and data are exchanged through an HTTP API.

Main functionalities are individual LED control, preview image acquisition,

RAW image acquisition, and device power cycle management. Regarding

the LED control it is possible to set the color and brightness of each LED

independently. The preview image endpoint uses the built-in camera pipeline

to rapidly acquire images whose quality and chromaticity fidelity is not

important since those are used only for checking the alignment of the device

over the patch of material to be acquired. Using the integrated pipeline it

is possible to take advantage of the GPU-accelerated camera pipeline. The

RAW image acquisition endpoint allows the acquisition of a single image

RAW data stream specifying camera parameters such as shutter speed and

analog gain. Given that the specified parameters may be tuned to the camera

firmware, the actual parameters are returned in addition to the RAW data

stream. The software uses Python and a set of libraries. The HTTP API is

implemented using the Flask framework. The Raspberry Camera module is

controlled through a customized version of the Picamera library4. The LEDs

are driven using the Adafruit CircuitPython NeoPixel library5. The image

transmission uses binary streams, while supplementary data is transferred

using JavaScript Object Notation (JSON) documents.

4.4.3.2 Main software and processing pipeline

The software pipeline is composed of 3 main blocks: the camera pipeline,

the preprocessing, and the photometric stereo processing. The camera pipeline

takes as input the RAW Bayer pattern data from the camera sensor and

converts this information into an RGB image. A total of 24 images are

acquired for each sample, one image for each LED. The preprocessing applies

a series of operations (see Figure 4.5) to ensure consistency between the

acquired images: led shading correction and global brightness adjustment

4https://github.com/waveform80/picamera
5https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel
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are the most important. Finally, Photometric Stereo estimates the material

appearance from the images and produces the normal map, albedo map, and

roughness map.

Figure 4.5: Main software pipeline.

In more detail, the camera pipeline applies the steps of black level ad-

justment, lens shading correction, demosaicing, color correction, and lens

undistortion. Some of these steps require calibration, details about it can

be found in Section 4.4.4. Black level adjustment is performed according to

the camera sensor datasheet by subtracting value 64 from the RAW pixel

values. Lens shading correction is applied using a pixel-wise multiplicative

calibrated correction matrix. The demosaicing step uses the weighted aver-

age demosaicing approach to convert the RAW image into an RGB image.

Color correction is then applied to account for the sensor’s non-linearity

(a · RGB2 + b · RGB + c), RGB correction (M · RGB, where M is a 3x3 linear

color correction matrix), and gamma correction (RGBγ). Next, the lens radial

distortion is corrected. Finally, the image is cropped to a square matching the

5x5 centimeter patch of the acquired tile (approximately 2048x2048 pixels).

The camera pipeline is used to acquire 24 images, using the same camera

acquisition setup but a different LED for each of them.

Some image pre-processing is then applied to ensure consistency between
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the 24 images. Led shading correction takes into account the non-uniform

light energy across the surface. Because the distance from the LED differs for

each point on the surface and the emission lobe of the LED is not a perfect

hemisphere, the portion of the surface more distant is usually less illuminated

than the part directly under the light source. This step corrects the image to

present the same brightness across the whole surface. The correction is done

using a multiplicative matrix, similar to the lens shading correction. Then the

global brightness of the remaining 23 images is adjusted to match the average

global brightness of the first one. This takes into account tolerances in the

power emitted by the different LEDs. The last pre-processing step creates

the grayscale copies of the RGB images that will be used in the PS pipeline.

After pre-processing PS is applied to recover the albedo and normal maps.

The equation of PS (see Section 4.3) assumes that the incoming light has

the same incident direction for each point on the surface. This is usually

true if the light source is a point light placed far from the surface. In this

device, light sources are LEDs placed close to the acquired surface and can

be approximated to quasi-point light sources. Because of this, the incident

light direction is different for each point. To account for this, the shading

function of the PS equation is rewritten as in Equation 4.21.

I(x, y) = ρ(x, y)LiL(x, y) · N(x, y) (4.21)

The term L(x, y) now uses a different incident light direction vector for

each pixel in the image. Thanks to the LED shading correction and global

brightness adjustment steps, it can be assumed that the incident light intensity

is equal for each pixel and for each LED, thus considering Li = 1. Equation

4.21 can be rewritten for each pixel as Equation 4.22.

I = ρL · N = ρNT L

I = GT L = LT G, where G = ρN
(4.22)

Considering all of the 24 equations (one per image) it is possible to solve
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the system of Equations 4.23 for G and obtain a vector for each pixel that

encodes the normal direction N and the grayscale albedo ρ (see Equation

4.24).























I1 = LT
1 G

...

I24 = LT
24G

(4.23)

N =
G

||G|| , ρ = ||G|| (4.24)

To obtain the color albedo the Equation 4.25 is minimized for each RGB

channel separately. This is done by computing the value of Equation 4.26.

Q(ρ) =
24
∑

i=1

(

Ii − ρLT
i N

)2
(4.25)

dQ(ρ)

dρ
= −2

24
∑

i=1

(

Ii − ρLT
i N

)

LT
i N

dQ(ρ)

dρ
= 0 ⇒ ρ =

∑24
i=1

(

IiL
T
i N

)

∑24
i=1 (LT

i N)

(4.26)

After obtaining the normal and albedo maps it is possible to recover the

roughness map. According to Malzbender et al. [180] the variance of the

normal map can be used as an indicator of the surface roughness. Following

their intuition, here is defined a pipeline that can provide an estimation of

the roughness map from the normal map recovered through the PS.

The steps of the pipelines are visible in Figure 4.6. The first operation is

the slope exaggeration (Equation 4.27), followed by normal amplification

(Equation 4.28) that considers a window around each pixel of the image.

Those two steps are meant to boost the variability of the normal directions

in preparation for the variance computation. The variance is later computed

through Equation 4.29 which considers a window around each pixel.

125



4.4 The proposed SVBRDF acquisition device

Figure 4.6: Roughness estimation pipeline.

n∗ =
ns = (nx, ny, nz/s)T

||ns||
, s = 1.5 (4.27)

n∗ = n + k

(

n − na =
∑m

j=1 nj

||na||

)

, m = 23x23px, k = 2.5 (4.28)

σ2 =

m
∑

j=1
((njx − nx)2 + (njy − ny)2 + (njz − nz)2)

m
, m = 23x23px (4.29)

The linear roughness value is then computed using Equation 4.30 to better

fill the 0-1 range.

r = σ2k2, k2 = 150 (4.30)

Finally, rendering engines usually accept as input the perceptual roughness

instead of the linear one. The scope of perceptual roughness is purely to

present the roughness values equally split between gloss and rough surfaces.

The linear version of the roughness uses the majority of its range for surfaces

that are perceptually perceived as rough. The perceptual roughness gives

instead a more linear perception of the roughness variation and is computed

as the square root of the linear roughness (rp =
√

r).

The software pipeline is embedded into a graphical user interface through

which the user can control the device, the calibration steps, and the material
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appearance acquisition. This cross-platform desktop application is imple-

mented in Python using Tkinter, and a set of libraries for processing such

as NumPy, OpenCV, and PyTorch. Figure 4.7 shows the main screen of the

application. The execution time for material acquisition is 6m00s on average

on an Intel Core i7 6700k processor. In detail, image acquisition and data

transfer from the device to the PC takes 2m35s, and pipeline execution the

remaining 3m25s.

Figure 4.7: User interface of the main processing pipeline.

4.4.4 Device calibration

A few calibration procedures are required to build the calibration data

used for some of the main pipeline steps.

Lens shading correction calibration — is the process that estimates

a set of parameters to correct the vignette shading introduced in the image

by the lens. The correction factors have been computed by using a RAW
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Bayer picture of a completely white tablet’s screen. To acquire such an

image a translucent white paper sheet has been placed right above the screen

since the GSD of the camera is low enough to distinguish the color filters

of the LCD screen. Figure 4.8 shows an example of a RAW image before

and after lens shading correction. The channels of the acquired RAW image

are separated based on the rgGb Bayer pattern. For each channel the center

64x64px window is used to define the desired average brightness level avgch,

average blur is then used to clear noise. The correction factors are computed

as avgch/imagech.

(a) (b)

Figure 4.8: RAW image before (a) and after lens shading correction (b).

Color correction calibration — this calibration estimates the parame-

ters a, b, c, M, γ used to correct the camera’s sensor non-linearity, RGB color,

and gamma encoding. The parameters are optimized using the Nelder-Mead

Simplex [202] method over color data acquired from an X-Rite ColorChecker

Classic Mini. Due to the size of the color checker, each square has been

acquired separately but using the same camera parameters.

Lens undistortion calibration — due to the shallow depth of field and

mechanical mount of the camera the lens radial distortion parameters must

be manually calibrated. Parameters for the Brown distortion model [41] have

been manually estimated using a black-and-white checker board pattern.

LED shading correction calibration — similar to lens shading correc-

tion, this is the process that estimates the correction of the shading introduced

in the image by the LEDs. One of the core assumptions of PS is that the
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energy that lights up the material is equal for each point on the surface.

When using light sources close to the surface this is not true, and light fall-off

can be observed across the images. To compensate for the light shading a

correction matrix has been computed for each of the 24 LEDs by acquiring

an image of a uniform white paper sheet. The acquired image is then cleared

of noise using average blur. Correction factors are then computed for each

RGB channel separately.

Incident light direction calibration — given that the light sources are

not point light placed at infinity, but quasi-point light placed near the surface

to be acquired, the incident light direction depends on the LED placement

and it also varies along the surface. To provide the correct light direction

vector for each pixel acquired by the camera a physical calibration target with

71 mirror-like spheres has been designed (see Figure 4.9). The spheres are

placed following a hexagonal pattern to allow later interpolation. The target

structure has been printed with a resin-based 3D printer with resolution XY

of 47µm and Z (layer height) of 10µm.

(a) (b)

Figure 4.9: Incident light direction calibration target. (a) CAD drawing, in
orange the camera field of view. (b) 3D printed target.

The calibration pipeline executes the steps visible in Figure 4.10. An image

is acquired using all the LEDs to detect the sphere positions and contours.
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Figure 4.10: Incident light direction calibration pipeline.

The spheres’ centers are also used to determine the Delaunay tessellation

later used for interpolation of the light directions, the boundary of the usable

region-of-interest, and the length in pixels of the diagonals of the calibration

target. Knowing the real length of the target’s diagonals and the camera’s

intrinsic parameters is now possible to compute the exact height of the camera

from the surface.

An image for each LED is acquired and then processed through various steps.

Firstly, the reflections are detected over the spheres by finding the brightest

spots. Then the light direction is computed using the following equation

L = 2(N · R)N − R, where N is the normal direction at the brightest spot on

the sphere, and R is the vector of the direction reaching the camera through

the focal plane. The 71 known light direction vectors are then used to build

the full incident light vector map by using barycentric interpolation.

Albedo correction calibration — this calibration uses the Finlayson

2015 color correction method [79] to estimate the color correction to be

applied to the estimated color albedo map. Estimation of the correction

parameters is done using a GretagMacbeth ColorChecker DC color chart.

This chart consists of 237 squares of paint, the 8 glossy patches are excluded

and repeated patches are considered only once. Since the chart exceeds the

acquisition size of the device, the tiles have been acquired and their albedo

has been estimated in groups of 4 (2 by 2 patches) to speed up the process.

130



4.5 Experimental results

The same camera parameters were used for all of the acquisitions.

4.5 Experimental results

This section evaluates the obtained SVBRDF texture maps, and includes

some examples of acquired materials as well. Quantitative evaluation of the

normals map accuracy, as well as the albedo map in terms of color accuracy

and color uniformity on rough surfaces are performed. A qualitative evaluation

of the roughness map has also been performed.

A common approach to evaluate Photometric Stereo (PS) based methods is

to use synthetic images for which the ground truth of the SVBRDF maps is

known. This approach works well for the evaluation of the modifications to the

PS pipeline but, in our case, this is not enough. In fact, in addition to PS it is

necessary to evaluate the hardware assembly and its calibration, as well as the

camera pipeline and the pre/post-processing steps. A procedure is therefore

defined for the evaluation of the device as a whole, enabling evaluation of the

various aspects involved in the material appearance acquisition.

4.5.1 Albedo map evaluation

The estimated albedo map of the material is evaluated in terms of both

color accuracy and color uniformity. The first evaluates the ability of the

device to provide perceptually correct albedo maps, the latter the capacity to

produce correct albedo maps for uniform materials but with varied normal

directions.

Color Accuracy This paragraph reports the evaluation of the color accu-

racy of the estimated albedo map using the GretagMacbeth ColorChecker

DC color chart. This chart consists of 237 squares of paint, of which the 8

glossy patches were excluded and repeated patches are considered only once.

Since the chart exceeds the acquisition size of the device, the tiles have been
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acquired and their albedo has been estimated in groups of 4 (2 by 2 patches)

to speed up the process. The same camera parameters were used for all of

the acquisitions.

As pointed out by Barron and Malik [17] the estimation and evaluation of

the albedo map presents the challenge of collimating the absolute brightness

of the estimation with the one of the ground truth. The difference in global

brightness is due to the acquisition setup and can be easily dealt with when

performing later re-renderings; for this reason the evaluation should not

consider mere differences in global brightness. In that work, they defined a

scale-invariant MSE metric to evaluate the albedo. The scale invariance is

enforced using a scalar α which is optimized to minimize the error, thus taking

into account the ambiguity in the absolute brightness of the scene or absolute

intensity of the albedo. While their proposal works for grayscale albedo,

extending this concept to color albedo is not a trivial process. Following

their reasoning, a scale-invariant version of the ∆E∗
00 metric is proposed. The

∆E∗
00 [265] has been defined by the International Commission on Illumination

(CIE) as a way to measure the perceived visual difference between two colors

in the CIELAB color space.

Delta E is a metric for understanding how the human eye perceives color

differences. The presented modification uses a scalar α multiplied by the

lightness to account for different global brightness between the estimated

albedo values and the reference ones. The complete metric is reported in

Equation 4.31. Since the albedo texture encodes only the base color of the

surface with no information about light temperature or intensity, evaluation

is performed against the ground truth colors of the ColorChecker as acquired

under an ideal E illuminant which is an equal energy generator that provides

a constant SPD in the visible spectrum.
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Albedo color evaluation is performed using the si-∆E∗
00 following the leave-

one-out cross-validation procedure on the acquired color chart data. The

obtained average si-∆E∗
00 is equal to 2.89, which indicates a perception error

that is limited but still observable by the human eye. When estimating the

correction parameters using all the available patches simultaneously the error

is about 2.85. Previous to the albedo color correction the average si-∆E∗
00 is

equal to 3.62. Figure 4.11 shows the comparison between the desired ground

truth albedo colors and the obtained albedo after correction. It is noticeable

that the larger errors are equally distributed among the different shades.
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Figure 4.11: DC ColorChecker comparison between ground truth and esti-
mated albedo.

Color uniformity The color uniformity evaluation aims to test the ability of

the device to correctly estimate the albedo as the normal direction varies. This

evaluation uses the same 3D-printed target used for normal map evaluation.

To perform this evaluation in the ideal conditions the tool used for evaluation

should present a Lambertian surface. Since Lambertian surfaces cannot

be easily created in the real world, the target uses a uniform matte gray

painting which approximates the characteristics of a Lambertian surface (see

Section 4.5.2 for more details about the evaluation tool). The evaluation of

color uniformity of the albedo uses the ∆C∗
00 metric. This metric is based

on the ∆E∗
00 but does not consider the lightness channel in the evaluation.

Furthermore, since it was not possible to characterize the reflectance properties

of the painting used and this evaluation aims to only measure the uniformity

of the albedo, not its colorimetric accuracy (which is instead evaluated in the

previous paragraph); the evaluation is carried out against the average color

of the acquired albedo map. The evaluation presents a ∆C∗
00 = 1.89 which

indicates that the device can correctly acquire the albedo of a material with

a limited error even with changes in the normal directions.
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4.5.2 Normal map evaluation

To evaluate the quality of the computed normal map of the surface a

physical target with known normal direction variations was designed. This

target was acquired using the device and its estimated normal map has been

compared to the ground truth. The target for the evaluation is a square of

size 30x30x2mm and presents four different shapes with a height variation of

0.25mm (see Figure 4.12). In detail, following the clockwise rotation from

the top left, we have: a torus to stress the normal map at high slant angles,

a flattened hemisphere to test the normal estimation at lower slant angles,

a truncated cone to test constant normal angles at different height, and a

grid pattern to simulate the variations of a textile. The first three shapes

are also useful to test the variations of the normals for all of the possible

rotations around the vertical axis. Finally, the four shapes are placed on an

area lowered by 0.25mm to have their highest portion at the same height

as the edges. The evaluation tool has been printed with the resin-based 3D

printer already used for incident light direction calibration target. The 3D

printed tool was painted with a light grey matt coat using an airbrush. The

final result is visible in Figure 4.12b.

(a) (b)

Figure 4.12: Normal map evaluation target. (a) CAD drawing. (b) 3D printed
target.

The SVBRDF of the target is acquired by executing the software pipeline

for a generic surface’s material. Then, the obtained normal map is evaluated

following the pipeline defined in Figure 4.13. First, the location of the target
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Figure 4.13: Normal map evaluation pipeline and heatmap.

is detected by creating a mask using thresholding, flood fill, erode, and dilate

operations. Edges of the target are then detected using the Canny edge

detector and a square is fitted on the edges using the algorithm defined in

[281]. Once target detection is completed, an affine 2D transformation is

estimated and applied to account for the rotation around the vertical axis of

the target with respect to the camera. The corrected image is then cropped

to contain only pixels belonging to the target. Since the content of the image

are 3D vectors, the same rotation correction applied in the image space is

also applied to the vectors w.r.t. the vertical axis Z. Finally, the angular error

in degrees, defined in Equation 4.32, is computed against the ground truth

normal map (ngt) of the target.

AngularError = arccos (ngt
⊺ · n) (4.32)

The result of the normal map evaluation shows a mean angular error of

9.5°, the median of 7.42° (min=0.0°, max=96.98°, 1st quartile=7.27°, 3rd

quartile=10.40°).

By taking a closer look at the error heatmap in Figure 4.13 it is clear that

the error is higher around the edges of the torus and the grid pattern where

the slant is greater.
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4.5.3 Roughness map evaluation

To the best of our knowledge, no method for quantitative evaluation of the

quality of roughness texture maps of the real surface has been defined in the

literature. Existing evaluation methods are thought to quantize the roughness

of real surfaces for mechanical analysis purposes. While this is useful for

some tasks, it is not sufficient to evaluate a roughness map since it encodes

different information. Metrics such as Ra [130] measure physical properties

such as the arithmetical mean roughness value of the profile deviations from

the mean line of the roughness as a single real number for the whole surface.

Instead, the roughness texture map describes the micro-facet distribution of

each pixel separately.

The main limitation of the current process of roughness map estimation is

that it uses various experimentally found values (i.e. window size and scaling

factors). While fixed values are providing acceptable results adjustments

to those values may be needed for some kinds of materials. In general, the

pipeline tends to provide too glossy roughness but the problem is partly

mitigated by the presence of the normal map. This is partly due to the map

being derived for each pixel using information from an area around it. Since

the roughness map encodes information that regards sub-pixel micro-surface

geometry, additional spatial resolution could be used to improve the roughness

estimation. Examples of roughness textures generated by the method are

visible in Figure 4.14.

Figure 4.14: Samples of acquired roughness maps.
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4.5.4 Visual results

In Figure 4.15 are provided some examples of the textures acquired by

the proposed device as well as re-renderings where samples are illuminated

by a single strong point light. As visible in the figure, the device can capture

the fine details of the three texture maps (albedo, normals, roughness). Best

results are achieved on the acquisition of surfaces that present limited specular

reflections such as the samples of textile, cardboard, stone, and cork. Enough

details are still captured in the plastic and wood samples which present a

reflective surface. However, the printed metal sample presents some artifacts

in the texture maps. In particular, it is visible how the specular reflections

generated by each LED generate a normal map that represents the flat surface

as a hemisphere (normals closer to the edges are slightly pointing in the

direction of the edge). Being the roughness map generated from the normals

it highlights the presence of noise in the acquisition and it makes visible the

artifacts generated by the LEDs of the device. It is also visible in the re-

rendering that the not correct roughness does not induce specular reflections

on the metal sample.

It is also worth noting that the device can correctly acquire and generate

texture maps for surfaces that present strong height and normal direction

variations. This is mostly visible in the cork and stone samples, with the first

one having height variations of about 1mm and the latter of about 4mm.

4.6 Known limitations

The proposed SVBRDF capture device presents some known limitations

and open problems. The device is not suitable for the acquisition of dark-

shaded surfaces. Materials with predominant dark blue or black albedo are

known to be the most critical. This is due to the hardware lighting and camera

setup, on such surfaces the signal-to-noise ratio (SNR) is not sufficient to

clear the noise and estimate correct normal directions using the photometric
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(a) (b) (c) (d) (e)

textile

cardboard

stone

cork

wood

plastic

metal

Figure 4.15: Samples of acquired maps and re-renderings. (a) albedo texture
map. (b) normal texture map. (c) roughness texture map. (d,e) material
re-renderings illuminated by the same point-light in two different positions.

stereo. This results in noisy normal maps and thus noisy albedo and roughness

maps. A similar problem with the SNR is observable on some acquisitions

in the corners of the estimated maps. This is partly due to the nonconstant
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illumination provided by the LEDs across the surface patch and mainly due

to the strong shading effect of the small lens equipped by the Raspberry Pi

Camera module. This causes the processing steps of lens shading correction

and light shading correction to heavily boost the noise together with the

useful signal in the corners.

An interesting future development of the device could be the support of

the acquisition of translucent, transparent, metallic, and glossy materials.

This will allow us to cover a broader range of materials and also take into

account combined surfaces, such as mixed opaque/glossy surfaces, printed

paper, and coarse woven fabrics. Additional research could be done to improve

the process of estimation of the roughness map. The main known limitation is

that the map is derived for each pixel using information from a window around

it. Since the roughness map encodes information that regards sub-pixel micro-

surface geometry, the additional spatial resolution could be used to have more

insights into the micro-surface geometry and improve the estimation.

Since no method for quantitative evaluation of the quality of roughness

maps of real surfaces exists, defining one could be useful for the community.

Providing a mapping between physical roughness metrics and the roughness

texture map could be useful to enable the evaluation.

4.7 Impact

This chapter has demonstrated the feasibility of building a low cost

portable device for material appearance acquisition of various surfaces. Thanks

to the Photometric Stereo technique it has been possible to design and

develop a compact device able to acquire the material properties of a limited

surface patch. New hardware design, software pipeline, calibration, and

evaluation procedures have been defined. The device is based on consumer-

grade electronics making its overall cost close to 80€. Quantitative and

qualitative evaluations on acquired texture maps validated the ability of the

system to build a correct spatially varying representation of materials with
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Lambertian-like reflectivity. In addition, visual results showed the capacity

of the device to acquire material representations of surfaces that present

non-Lambertian reflectivities such as wood and some kind of plastics.
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5 Rendering and Interaction

In the creation of a Mixed Reality (MR) catalog, the last important

component is represented by both the visualization (rendering) of the catalog

and the interaction with it by the user. This is the component in charge of

the final experience that is perceived by the user. In an MR catalog, the

rendering may happen in different ways due to the different levels of blending

between the real and the virtual world. Similarly, the interaction may be

performed using hand, visual, or voice controls.

This chapter covers these aspects by presenting a generic Mixed Reality

catalog framework suitable for the creation of various MR catalogs. The

framework is validated through three different case studies (Section 5.1). The

first case study is about the creation of an MR catalog of textiles (Section

5.2); in such a case, the elements to be shown are single objects (i.e. the

textiles), in particular, their appearance. The proposed catalog prototype

uses real-time light simulation to enable experiencing the textile’s appearance

under different lighting conditions through a smartphone. The second use case

is the virtual try-on, specifically the eyeglasses virtual try-on (Section 5.3).

Despite the catalog still being about single objects (i.e. the eyeglasses), the

proposed system involves 3D reconstruction and other techniques to provide

a full-3D virtual try-on experience solving problems of existing applications.

Finally, the feasibility of integrating the 3D virtual try-on technology into

smart mirrors, which are new means of interaction that are gaining attention,

is investigated through a prototype (Section 5.4).
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5.1 The Mixed Reality catalog framework

With the development of advanced technologies in the last few years,

Augmented Reality (AR) and Virtual Reality (VR) have emerged as key

technologies in different interactive application domains. For example, they

are utilized in the gaming industry [49], for human-computer interaction

[10, 116], and in the manufacturing industry [38, 252].

The development of such applications has been made possible by advances

in AR and VR technologies. The first time that AR technology reached

the broader public was in 2016 when Niantic launched Pokémon GO, an

AR-enhanced game available both to iOS and Android users. Later, the use

of AR was democratized even more, after popular smartphone apps such as

Snapchat, Instagram, and Facebook developed their new AR filters and, more

recently, after Google launched AR objects on Google search and introduced

a set of functions for face detection, 3D reconstruction, and augmented reality

in the ARCore SDK [3].

Recently, AR and VR have been increasingly employed in applications

designed for physical and online retail stores [37, 134]. In the retail scenario,

AR and VR are technologies that a consumer interacts with and directly

experiences while in the physical store, or while navigating the virtual online

store. These technologies enhance the users’ experience during the purchase

by allowing them to interactively browse, study, or try the products before

buying them [142]. This is especially true for online shopping, where the users

cannot directly interact with the products they are interested in. According

to Statista, “online shopping is one of the most popular online activities

worldwide, and e-commerce sales in 2019 amounted to USD 3.53 trillion and

are projected to grow to USD 6.54 trillion in 2022” [276]. Similar trends

can be found in other countries as well. According to research by Gartner,

“46 percent of retailers plan to deploy either AR or VR solutions to meet

customer service experience requirements” [93].

Appealing to users with novel and engaging advanced AR and VR appli-

cations is thus a key factor in a market that is growing to such an extent.

Examples of such applications are MR catalogs, virtual try-on systems, and

143



5.1 The Mixed Reality catalog framework

smart mirrors [147, 169, 221, 293]. Smart mirrors are devices designed to

interact with users in a different ways. They are often based on the Internet

of Things (IoT) concept and allow users to interact with applications using

touch or voice controls and to display feedback and various information [33].

Although smart mirrors are general-purpose devices with a wide range of

applications, here, we are more interested in MR catalog systems that are

instead specifically designed to effectively improve product visualization and

pre-purchase information for the retailers and to enhance the entertainment

value of the shopping experience for the end-users. These include the MR

catalog of products and the virtual try-on that are presented in detail in the

following subsections.

A MR catalog allows a user to check the appearance and characteristics of a

product. This kind of catalog can be used to provide an immersive experience

along with additional details about the product the user is interested in.

The design of a MR catalog system has several challenges; for example,

how to present to the user the product and how he can interact with such

presentation.

Regardless of the modality chosen, advanced processing software modules

to support the user experience are required. Depending on the type of catalog,

it may be necessary to recognize the presence of the user (e.g., using face

detection or people detection algorithms), the real or virtual elements in a

3D scene may be detected, the pose of objects has to be taken into account

(i.e., pose recognition), and occlusions may occur and should be dealt with

(i.e., occlusion detection). Finally, the rendering of the virtual items in the

real-world scene should be as seamless and plausible as possible.

There are many methods to computationally address the above-mentioned

challenges. In recent years, computer vision has taken great leaps thanks to

advances in artificial intelligence and machine learning. In particular, deep

learning and artificial neural networks have served to boost the development

of robust and fast computer vision-based algorithms, which are effectively

and efficiently exploited in many application domains [231, 240].

This section describes a framework for the design of a generic MR catalog

that is later adapted for two different use cases: a virtual catalog of textiles,
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and eyeglasses Virtual Try-On. Different MR catalogs may require different

processing modules to achieve various levels of blending between the real and

virtual world as well as different types of interaction. However, the main

structure of a MR catalog system is easily customizable to achieve the desired

result. The framework described here is a generic solution that can be used as

a blueprint to build other, extended and specialized, MR catalog applications.

5.1.1 Related works

The focus of this work are generic catalog of products and the virtual

try-on technology. Therefore, the first part of this section, reviews the existing

MR catalogs presenting single products. The second part reviews virtual

try-on solutions, discussing their strengths and weaknesses.

MR catalogs of single products are usually available as mobile appli-

cations, and have the objective to allow a potential customer to visualize a

virtual model of the product realistically. This can be achieved by placing

the object in a real scene and/or by simulating the light interaction of a real

environment. The development of such applications has been made possible

by advances in AR and VR technologies. In addition to MR product configu-

rators presented in Section 2.2, here some popular MR catalog solutions for

single products are briefly reviewed:

• Safilo VirtualEyes [251]—this is an application that can photo-realistically

render, in Augmented Reality, a vast selection of glasses on any surface.

The application exploits Safilo’s 3D eyeglasses models, which have been

optimized through the analysis of the ambient light in order to achieve

a realistic effect.

• Ikea Place [129]—is an application developed for iOS using the ARKit

that allows to virtually place furnishings in a real space. It includes

true to scale 3D models of the products sold by Ikea, allows to place

and rotate the models, and also allows to share pictures of the result.
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Virtual try-on solutions are usually available as mobile or web applica-

tions, and have the objective to allow a potential customer to virtually try

on himself some products sold by a store or manufacturer, giving him an

experience similar to the one he would have in a physical store. It is mainly

used to provide a virtual-wear experience of clothes and accessories. In the

last few years, there has been a large increase in demand for the development

of virtual try-on applications by commercial companies. The need for virtual

try-on applications has further increased in the last couple of years due to

the pandemic, which made it impossible for customers to participate in a

physical try-on in stores. The following briefly reviews the arguably most

popular virtual try-on solutions:

• Ditto’s virtual try-on [66]—this is a 3D eyeglasses and sunglasses try-on

application that pays particular attention to the actual sizes. It uses a

library of glasses and fits them to the estimated user’s face size. The

application can also recommend the best-looking glasses for the user.

For the try-on process, the user is asked to follow specific instructions.

He has to record a short video while rotating the face horizontally. A

credit card-sized object placed on his forehead is exploited to estimate

the face size. The try-on result is shown by rendering the glasses on

multiple video frames with a different face orientation.

• XL Tech Apps’s Glassify [322]—this is a virtual try-on application that

works with a single frontal face image. The application requires the

user’s intervention in several steps: first, the user chooses the shape

that best fits his face; then, the software fits the eyeglasses on his face;

finally, the user manually adjusts the position and scale of the glasses

over the picture. This application works correctly only with frontal

face images, and only the forepart of different glasses models can be

rendered over the input image.

• Perfect Corp’s YouCam Makeup [226]—it is a virtual try-on application

mainly conceived for makeup but can also be used to virtually change

hair color, hairstyle, and accessories (e.g., jewelry and glasses). The
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framework also includes a virtual beauty advisor, as well as tools for

face detection, face tracking, and augmented reality. Some of the try-

on features work in real time on the live camera video stream. The

application presents some limitations in the glasses try-on: it renders

only the front frame without the temples and frequently fails to properly

fit the glasses when the face is not in a perfect frontal position.

• Perfect Corp’s Makeup AR [227]—it is a set of virtual try-on appli-

cations. Similarly to YouCam Makeup it includes VTO for makeup,

hairstyle, hair color, lipsticks, eyeglasses, jewelry, nail polish, and more.

The company makes these virtual try-on applications available as web-

site plugins that are currently used by several sellers including MAC

Cosmetics and Deborah Milano.

• MemoMi’s Memory Mirror [190]—this is an application that works

differently from the previous ones. It is mainly conceived to be used

in physical stores, and it requires the user to wear real eyeglasses in

front of a magic mirror used to record a video of the user while trying

different accessories or makeup. Each tested element can be reviewed by

replaying the video, and comparison with other products is possible by

displaying two videos side by side. The main limitation of this solution

is the need for specific hardware and real glasses; this makes it not

suitable for try-on outside of stores.

• Jeeliz [135]—this is an application for real-time web-based glasses vir-

tual try-on. The application is available as a JavaScript widget, thus

permitting integration with glasses virtual try-on in a website or a

mobile web application. The application renders the 3D model of the

glasses in real time on the live camera video stream. The user sees his

face as in a mirror, but with glasses. There are some limitations: the

tracking of the face is slow, and the glasses positioning has some delays;

it uses only the front frame and the very first part of the temples, which

very often penetrate the user’s face.

• Luxottica’s Virtual Mirror [177]—this solution provides eyewear try-
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on in real time on a camera video feed. The user has to stand still,

in a frontal position, looking downwards, for face detection and the

3D glasses model positioning on the face. The rendering follows the

movements of the head and gives a digital reflection on the lens and

frame for increased realism. The main limitation is that the fit of the

glasses to the user’s face is not automatic and can only be manually

adjusted using a dedicated button.

• Voir [304]—provides a mobile application for makeup virtual try-on.

This application is available for Apple iOS only and was initially con-

ceived to work as interactive VTO stations in retail stores. Now the

application provides makeup filters and also includes an AI driven

makeup suggestion engine that guides the user in the process of choos-

ing makeup products.

• Hapticmedia’s Virtual Try-on [119]—they developed a watch VTO

solution for Baume & Mercier. It allows the user to check the appearance

of the watch on his wrist and integrates with their product configurator

allowing the user to customize the watch.

• FXMirror [86]—is a magic mirror for clothes virtual try-on. It uses

dedicated hardware to provide the try-on experience which can be per-

formed on a virtual avatar or on a live video feed of the user. Interaction

is performed through gestures or a tablet. Integration with a mobile

application is provided to transfer the try-on session and complete cus-

tomization and purchase. While the virtual avatar can be customized, it

keeps a digital-appearance and does not resemble the real world. When

the users uses himself as the avatar for the try-on the main limitation

is the delay between the movements and the software fitting the clothes

on the body.

The vast majority of the above solutions are available as standalone applica-

tions and frameworks integrable with existing services and platforms. Most

of these applications offer integration with social services to allow the user to

share their virtual try-on sessions and with store platforms to allow the user
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to buy the products. The key features of the virtual try-on systems reviewed

above are summarized in Table 5.1 for ease of comparison.

Table 5.1: Comparison of the main features of virtual try-on applications.

Applications Input Output 3D models Size fitting Markerless

Ditto [66] video images ✓ ✓ —

Glassify [322] image image — — ✓

YouCam [226] image image — — ✓

MakeUp AR [227] video/image video/image — — ✓

Jeeliz [135] video/image video/image ✓ — ✓

Memory Mirror [190] video video — — —

Virtual Mirror [177] video video ✓ — ✓

Voir [304] video/image video/image — — ✓

Hapticmedia [119] video video ✓ — ✓

FXMirror [86] video video/3D ✓ ✓ ✓

5.1.2 Workflow of a generic Mixed Reality catalog sys-

tem

Figure 5.1 illustrates the workflow of a generic MR catalog system. It shows

the essential components and modules of the system and their interactions.

The described components and modules are intended to be generic. Different

applications can require specific modules or sub-modules to operate. Some of

the modules may not be required in specific use cases.

A generic virtual MR catalog system can be composed of a set of front-end

modules responsible for the management of the user interaction with the

system, and a set of back-end modules that implement the system logic and

operational activities. Moreover, the modules and activities can be further

categorized with respect to their usage. We have offline activities usually

performed either at the system’s initialization or periodically to update the

system. We also have real-time activities performed while the system is

running and the user interacts with it. The following describes the role of the

components and modules depicted in Figure 5.1.
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Figure 5.1: Workflow of a generic MR catalog system.

In the back-end, offline group of modules, we can find all the administrative

activities usually involved in the creation of all the data required for the

virtualization of the items to be displayed to the user. These activities

comprise the collection of the metadata of the items (e.g., attributes, prices,

descriptions) and the generation of the corresponding virtual models. These

models can be of different types, but a 3D model is usually required if the

items are shown in different poses. The 3D models can be directly generated

from CAD files if they are available, can be created from scratch by a

graphical designer, or can be acquired using 3D reconstruction techniques

such as structure from motion-like approaches. If 3D reconstruction is used,

the methods for synthetic data creation and pipeline evaluation defined in

Chapter 3 can be used. Furthermore, if the object needs to provide an accurate

material representation along with the geometry the solution proposed in

Chapter 4 may be also used. These activities are periodically performed to

add and/or remove items from the collection. All the generated data and

information is stored in the system (e.g., in a database) and made available

to the other modules that operate at run-time.

Concerning the front-end modules that operate at run-time, we have a user
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input module that usually continuously acquires data from the environment

and streams them to the back-end modules to be processed. Depending on the

back-end processing, the module can capture RGB images (i.e., visible light)

or RGBD images (visible light + depth information). The latter requires

additional specialized hardware to extract depth information from the scene.

In a complete virtual scenario (e.g. the virtual catalog of textiles presented in

Section 5.2) 3D position and/or orientation of the user or device used may be

sufficient. Usually, RGB images are sufficient for the majority of applications,

as modern computer vision techniques coupled with advanced machine learning

methods can extrapolate additional information from them. In some contexts

(e.g., AR tourists guides, virtual tours, etc.) 3D reconstruction or depth

estimation may be useful to provide insights into the scene geometry and deal

with virtual object placement and occlusions. In these scenarios, the methods

defined in Chapter 3 can be used to select the most suitable approach.

The front-end modules are also responsible for the management of the

user experience with the system. To this end, the system has modules that

encapsulate the user interface logic. For example, the user can interact with

the system with a touch or touchless device to choose the items he is interested

in, browse the catalog, and display the information associated with the shown

items. Once the user has made his choice, the system can display it worn

by the user in the virtual scene. The user can interact with it differently

depending on the technology used for rendering. For example, the rendered

scene can be static (e.g., a single photo), dynamic (e.g., a video stream), or

interactive (e.g., a 3D scene). Each of these presentation modalities requires

specific modules to operate. These modules also depend on the hardware

used for presentation: this includes desktop computers, mobile devices, and

head-mounted displays.

Between the offline, back-end modules and the run-time, front-end modules,

we have the operational core of the system composed of the run-time back-end

modules. These modules are usually organized in a pipeline. The framework

indicates three main modules, but in actual applications, some modules

can be merged or separated into further sub-modules. Regardless of this,

a generic MR catalog application needs to identify the presence of some
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elements to start the process of creating the virtual scene (e.g., plane or object

localization for object presentation, and user localization for virtual try-on).

This can be accomplished using advanced computer vision techniques. For

example, if we are interested in placing a virtual object in a real scene, robust

plane detection [92, 124, 168] and object detection [102, 295] algorithms

have been developed. In contrast, in the case of virtual try-on, we may

be interested in the face of the user (e.g., for virtual makeup or eyeglasses

try-on), robust face detection and recognition approaches are present in the

literature [137, 302, 332]. Otherwise, if we are interested in the full body

(e.g., for clothing try-on), human body detection can be accomplished using

techniques borrowed from the human action and pose recognition research

fields [22, 170, 204]. Some of those algorithms are readily available in open-

source software libraries, either exploiting standard feature-based methods or

deep Learning-based ones. Examples of these libraries are OpenCV [215] and

DLib [149]. Once localization is complete, the tracking module is activated.

The role of the tracking module is to follow the movements of the detected

elements in the scene over time. This is necessary to ensure temporal coherence

in the display of the virtual scene. In fact, while the user moves in the real

world, the virtual elements should be positioned and superimposed coherently

in the scene. Tracking of objects and planar regions may be achieved by

detection and matching to a reference or by frame-by-frame tracking aiming

to minimize camera displacement between consecutive frames [223, 295]. In

the case of virtual try-on, the tracking module can provide information about

the user’s pose in the form of facial keypoints [279] in the case of the face, or

skeleton points [189] in the case of the body. This information is then passed

to the scene mixer module for the generation of the virtual scene.

The scene mixer module collects information from several other modules

and uses it to create the final virtual scene rendered and displayed to the user.

In order to generate the virtual scene, it is necessary to blend the real one

acquired by the camera. The transformed item’s 3D model is superimposed

onto the real scene with the user in order to create the virtual scene. The

composite output of the scene mixer module can either be a static image,

a recorded video sequence, or a dynamic virtual scene. In the latter case,
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the system can provide a live video stream augmented with the virtual item

superimposed onto the user in real-time. To this end, all the back-end

processing needs to be executed as quickly as possible to cope with the user’s

movements. Alternatively, the system can generate a completely virtual scene

allowing the user to inspect it freely and see it from different points of view

without restrictions. This approach lessens the requirement for the fast-paced

and real-time processing of the back-end modules.

Other challenges in the design of a robust scene mixer module are related

to the realness of the virtual scene; for example, the virtual items should be

rendered at the correct size. Occlusions may occur and must be dealt with.

Moreover, the real and virtual parts of the scene must blend seamlessly as

much as possible. Finally, the user must not be constrained in the interaction

with the system.

5.2 The textiles virtual catalog use case

This section discusses the use case of a virtual catalog of textiles. This

virtual catalog should be able to show the user different textiles on the screen

of a smartphone and allow the user to interact with it by changing the light’s

intensity, color, and direction.

5.2.1 Workflow

This section describes the virtual catalog designed for textiles. The

solution is designed to provide the user with an intuitive way to check the

appearance of textiles under different lighting conditions while also being

user-friendly, and easy to use. To achieve this, a mobile application that uses

a render engine to simulate light conditions is provided. These solutions build

upon the SVBRDF maps estimated by the device described in Section 4.4. By

using the acquired material and a 3D rendering, the user has a plausible idea
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of how the textiles will look under a given light condition. Figure 5.2 shows

the workflow of the virtual catalog solution. The front-end of the system

is a mobile application, while its back-end is implemented as a cloud-based

web-service. The following subsections provide further details about the

various components.

Figure 5.2: Workflow of the virtual catalog of textiles system.

5.2.1.1 Simulating the light interaction

The core functionality on which the virtual catalog builds is the ability to

show plausible images of textiles under different light conditions. Simulation

of different light power, color, and incident direction on a surface can be

achieved using a render engine. In a render engine it is possible to set up a

virtual 3D scene with the textile, a camera, and a light source as shown in

Figure 5.3a. In the real world, we usually check the appearance of a textile

changing its orientation w.r.t. a light source being it artificial or natural

sunlight. Moreover, to replicate the behavior the user is used to, we should

think of the screen of the device used to show the catalog as the fabric itself.

Thus, by rotating the fabric (i.e. the device) the user should be able to change
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(a) (b) (c)

Figure 5.3: Scene setup for light interaction simulation. (a) ideal condition
with view direction and incident light direction perpendicular to the sample;
(b) real-world condition viewpoint and the sample are rotate while the light
source remain fixed; (c) virtual setup that replicates the real-world, sample
and viewpoint remain fixed while the incident light direction is rotate.

the angle of incident light rays (Figure 5.3b). This behavior can be achieved

thanks to the gyroscope sensor available onboard modern smartphones and

tablets. In the 3D virtual scene it makes more sense to change the position and

orientation of the light source instead of moving the mesh used for rendering

and the camera. Using a sunlight type of light source that provides uniform

illumination across the whole scene it is not necessary to change its position

but only the orientation of the light rays. This results in the setup shown

in Figure 5.3c where the light is rotated at the same angle as the surface in

Figure 5.3b but in the opposite direction.

Finally, the rendering of the textiles uses the Cook-Torrance-based BRDF

shader model defined in Section 4.4.1. It thus uses the albedo, normal, and

roughness maps provided by the acquisition device. Since the device does not

generate the specular map, the value of 0.5 which provides a balance between

different kinds of textiles is used for rendering.
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5.2.1.2 User interface

The user interface for the virtual catalog of textiles has been built as a

mobile application for smartphones and tablets. The application is in charge

of textile rendering and user interaction. It also interfaces with the back-end

to obtain the list of textiles along with their metadata and material data

needed for rendering.

The key feature of the virtual catalog is the ability to show textiles in

real-time under different light conditions; this has been achieved using the

Unity [298] game engine. While this application is not a videogame, Unity

presents features that make possible to handle real-time rendering, data

loading, and user interaction on a mobile device in a single framework. It

also makes easy to deploy the application on different mobile platforms (i.e.

Android, iOS). As visible in Figure 5.4 the application presents a tile of the

textile as the main content. A bottom bar with sub-panels allows the user to

(from left to right): reset the textile position, customize the light’s intensity

and temperature, and change the textile by choosing between previews of

available textiles. Using a color picker for the light color was also investigated

in the preliminary designs of the application. While it allows more freedom

in the choice of the illuminant, it is also difficult for the user to make slight

changes to it. On the opposite, the color temperature is a familiar concept to

users and allows them to adjust the illuminant color covering the majority of

real-world scenarios. By default, the temperature is set to a D65 to mimic

the daylight illuminant.

The application supports touch navigation, in particular, it is possible

to resize the textile by using a pinch and translating it by using a single-

finger swipe. Although navigation, textile selection, light intensity, and color

make use of touch-screen interaction, the incident light direction is instead

computed in real-time and adjusted based on the procedure described in

Section 5.2.1.1. By changing the rotation of the device the user can adjust

the position of the sunlight providing light to the virtual scene and thus the

final rendering of the textile. To achieve this behavior the application uses

gyroscope data to rotate the sunlight in the 3D scene. By default the light
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(a) (b) (c) (d)

Figure 5.4: Screen captures of the virtual catalog of textiles. (a) Textile with
perpendicular lighting; (b) textile with almost tangent lighting; (c) light setup
panel; (d) textiles list panel.

direction is vertical above the textile disregarding the device rotation. This

initial positioning acts as a 0° rotation position to account for later changes

in the device rotation. A 3D arrow pointer in the lower-right corner of the

screen shows the current incident light direction. The user can force a new 0

position by touching such an arrow.

The 3D scene in unity is composed of 3 main assets (see Figure 5.5): the

camera, the plane used for textile rendering, and the sunlight.

By default the size of the tile on the screen is set to match the real size of

the acquisition. Since the tile acquired is 5x5cm this dimension is used for

Figure 5.5: Virtual scene setup for light interaction simulation and rendering.
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rendering on each device taking this into account for the screen size difference

between devices. Finally, the rendering of the textiles uses the BRDF shader

with the albedo, normal, and roughness maps. Textiles metadata and texture

maps are loaded on the first startup from the remote web-service and a local

cache copy is kept to speed up subsequent runs.

5.2.2 User evaluation

This section reports the results of the evaluation of the proposed prototype

by users in terms of their experience and observations about the developed

application. A standard usability test [207] with a panel of users has been

used to evaluate the user experience. A total of 15 subjects of different age

(25–85), expertise, and educational background were selected.

The experiment was conducted using a 5.5 inches Android smartphone

where the user interacts with a touch interface and by rotating the device.

The same room with controlled light has been used for all the participants.

Before starting the usability test, the application and its scope were briefly

described to the users. They were then observed using the application to

perform a session by consulting different textiles and their appearance changes

under different light orientations, intensities, and temperatures. The actual

textile for each of the samples available in the app was also provided to them

to allow direct comparison between the real and the virtual. No time limit was

imposed. At the end of the test session, each user evaluated his experience by

filling in a questionnaire. The questionnaire is based on the standard System

Usability Scale (SUS) questionnaire developed by John Brooke [39]. In order

to gain more insights into the application, users were asked to rate (from 1 to

5): the quality of the rendered textiles, the usefulness of the light interaction

simulation, the usefulness of the light intensity control, the usefulness of the

light temperature control, and their interest in using this application if made

publicly available. In addition users ranked various textiles according to the

fidelity of the rendering w.r.t. the real textile, the same rank for multiple

textiles was not allowed. The previews of samples used are visible in Figure
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5.6. Furthermore, users were asked to explain their rationale behind the

ordering chosen for the textiles. Finally, some free comments from the users

were also collected.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5.6: Previews of textile samples used for evaluation of the virtual
catalog of textiles. (a) Green nylon; (b) Blue jeans; (c) Green cotton; (d)
Beige nylon; (e) Printed nylon; (f) Sparkling cotton; (g) White jute; (h)
Brown alcantara; (i) Yellow damask cotton.

Results of the SUS questionnaire are summarized in Table 5.2. The users

evaluated the application very positively. It was considered easy and simple

to use, without having previous knowledge or experience. By applying the

standard procedure [39], the application obtained an overall SUS score of 78

out of 100, which is considered above average. The average score is set to

68 from a study on 500 systems, as described in [255]. Table 5.3 shows the

scores of the five additional questions specific to the textiles application. The

quality of rendered textiles was highly appreciated, with a score of 4.0 out

of 5. The users found useful the main feature of the application, rating its

ability to simulate light interactions with a score of 4.6. Interestingly, the

controls for light temperature and intensity are perceived of slightly different

usefulness, making the temperature control more important. Finally, the

application was found to be engaging and the majority of users would use

this kind of application if made publicly available. Moreover, some users

linked their interest in the application to the possibility of using it to display
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a catalog of clothes.

Table 5.2: System Usability Scale (SUS) results.

Strongly Strongly Avg. SUS

Statement Disagree Agree Score

1 2 3 4 5

1 I think that I would like to use

this application frequently.

0 1 3 6 5 4.0 2.6

2 I found this application unnec-

essarily complex.

8 4 2 1 0 1.7 3.7

3 I thought this application was

easy to use.

0 1 1 4 9 4.4 3.9

4 I think that I would need as-

sistance to be able to use this

application.

8 4 2 1 0 1.7 3.9

5 I found the various functions

in this application were well

integrated.

0 0 1 8 6 4.3 3.3

6 I thought there was too much

inconsistency in this applica-

tion.

12 3 0 0 0 1.2 3.9

7 I would imagine that most peo-

ple would learn to use this ap-

plication very quickly.

0 0 1 6 8 4.5 3.8

8 I found this application very

cumbersome or awkward to

use.

10 4 1 0 0 1.4 3.6

9 I felt very confident using this

application.

0 1 1 5 8 4.3 3.5

10 I needed to learn a lot of things

before I could get going with

this application.

11 4 0 0 0 1.3 4.0

In general, the opinions of the users are positive. The majority of them

appreciated the features of the application. The users also commented on

the usefulness of light interaction simulation on the textiles and how this
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Table 5.3: Application-specific question results.

Question Average Rating (Range 1–5)

Quality of rendered textiles 4.0
Usefulness of light interaction simulation 4.6
Usefulness of light temperature control 4.5
Usefulness of light intensity control 4.4
Would use the application 4.2

helps in providing a more complete look and feel on a display in contrast

to static pictures. Finally, the light controls (intensity and temperature)

were appreciated. However, some users found the light intensity control less

necessary than the temperature one. The ranking of the different textiles

(Figure 5.7) shows how there is a clear opinion about which are perceived as

the worse textiles and the best ones. However, there is no strong preference for

textiles that place in the mid-field. In detail, the least-ranked textile samples

are brown Alcantara (7.3) and sparkling cotton (8.2). Their bad placement is

due to missing or poor specular reflections. The best samples are the green

nylon and the yellow damask cotton (2.6) closely followed by the beige nylon

(3.0). The two nylon samples (green and beige) present the same texture and

material, nevertheless, the green one was consistently evaluated slightly better

than the beige sample. The other samples rank close together with ranks

Figure 5.7: User ranking of the in-app textiles with respect to the real samples.
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of 5.0 for the white jute, printed nylon 5.1, blue jeans 5.5, and green cotton

5.7. The jute sample was judged by some users to provide a plastic-looking

feel. The majority of the users noticed and lamented the absence of specular

reflections on the sparkling threads in the cyan textile. Interestingly, the

majority of the users did not notice the drift in the color that exists in the

corners of some samples, especially the darker ones. Furthermore, it is a

common opinion that was easier to rank samples that provide coarse weaving

and strong changes with respect to the changes in light direction. These

include the damask cotton, the first two nylon samples, the jeans, and the

jute.

Users also pointed out some problems with the application. The main

concern was the presence of reflections on the screen of the smartphone when

placed under a strong light source. In this scenario, the reflexes have a huge

impact on the usefulness of the application since they prevent the correct

perception of the rendered textile. To solve this problem one user suggested

changing the way he interacts with the application to change the incident

light direction. Instead of rotating the device, he would have preferred to

keep the position and rotation of the device fixed and interact by moving

his face in front of it. This may be explored as another way of interaction

by tracking the pose of the face in the video feed of the frontal camera of

the device. Some users instead lamented the missing possibility of manually

choosing the direction of the light and suggested implementing such a feature

by adding a videogame-like control on-screen. While the application wasn’t

perceived as unnecessarily complex, it is a common opinion that a tutorial

on the features of the application at the first startup would speed up the

process of learning how to use them. Furthermore, less-experienced users in

photography and rendering suggested adding an explanation about the color

temperature adjustment feature. Finally, a user suggested providing a larger

sample of textiles on the screen and scaling it down to fit the whole space

available. This is in direct contrast with other users who commented about

the real-life size matching considering it crucial for the application in order

to provide a precise visualization of its texture and weaving.
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5.2.3 Known limitations and future work

The mobile application for the virtual catalog of textiles has been proven

to be useful to allow people to remotely check the appearance of textiles

without having the real fabric in their hands. However, some limitations exist

and are discussed here below.

The size of the rendered tile is limited to the size of the acquired material

patch. Future work could improve this by using a device that is able to

acquire a larger patch of textiles. Since some textiles present a repetitive

texture or pattern it will also be possible to define some strategy to take

advantage of such characteristics to provide a seamless render of the textile,

similar to the approach of tileable textures.

The light interaction simulation through rendering does not take into

consideration external lighting. In real-world conditions, the device’s screen

sometimes presents strong reflections, and is thus difficult to show real-world

resembling textiles in such conditions. This becomes obvious when the device

is placed under direct sunlight. Another situation that makes the rendering

not useful is when the user tries to check the textile at very low slant angles, in

this case, the line of sight is almost parallel to the screen, and brightness and

reflections have major influences on the usability. Following the suggestion of

some users, it may also be useful to implement a manual control for the light

source direction to solve these problems.

Brightness is also a crucial factor in the final result in other situations.

Two different values of brightness play a key role: rendering brightness and

screen brightness. While for the rendering one, the user can adjust the power

of the illuminant in the virtual scene, the brightness of the real world is

not taken into account. Many modern mobile devices are equipped with

light sensors that may be used to automatically adjust the brightness of the

rendering to match the real-world. Similarly, a picture taken from the device’s

camera may be used to estimate the light temperature in the environment

and automatically match it in the application.

Furthermore, the application does not currently take into consideration

loose weave textiles or fabrics that present transparencies in general. Thanks
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to the general availability of a camera module that faces the opposite side

of the screen on mobile devices, future development of the application may

include support for transparency by superimposing the rendering to a live

video stream from the camera.

5.3 The eyeglasses Virtual Try-On use case

This section discusses the use case of an eyeglasses virtual try-on catalog.

This catalog should be able to virtually show the user how he or another

person will appear while wearing a specific model of eyeglasses or sunglasses.

The proposed virtual try-on process builds on a 3D face model reconstructed

from a single input image. For this reason the section presents first the 3D

face reconstruction methods available in the literature. Then, a comparison

of the approaches is presented. After, the proposed virtual try-on solution

is presented. Finally, the user experience and known limitations of the

application are discussed.

The methods and techniques defined in Chapter 3 find here a possible

use in defining the best reconstruction pipeline to generate 3D models of

eyeglasses and sunglasses. Furthermore, the device for material appearance

acquisition proposed in Chapter 4 can be used to provide textures for rendering

such glasses. Nevertheless, the method for evaluation of 3D reconstructions

defined in Section 3.3 can be used for evaluation and comparison of deep

learning-based face reconstruction methods.

5.3.1 3D face reconstruction

Three-dimensional face reconstruction, as well as 3D reconstruction in

general, is a long-standing problem, usually requiring specific hardware [1]

or multiple images [32, 229, 245]. While the SfM-based 3D reconstruction

techniques (see Chapter 3) and Photometric Stereo (see Chapter 4) may be
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employed for face reconstruction of both geometry and materials, in the case

of a virtual try-on application the hardware required and processing times

have a great impact on the usability of the system and experience provided to

the user. Since the intent is to provide the user with an easy-to-use application

for virtual try-on, the system tries to simplify the face acquisition and 3D

face reconstruction processes as much as possible. Therefore, the focus is

on 3D face reconstruction methods that only need a single image as input,

with particular emphasis on AI-based approaches, which are able to learn

from data both the best reconstruction parameters and more robust prior

information. The most common existing methods for 3D face reconstruction

from a single image can be grouped into two main categories: 3D Morphable

Model (3DMM) fitting-based and shape regression-based.

The use of 3D Morphable Models (3DMM), introduced by Blanz et al.

[34], represents a common solution to the 3D face reconstruction problem

from a single view. Within this category, Huber et al. [127] searched for the

correspondence of local features on the images and landmarks on the 3DMM.

These correspondences are then used to regress the 3DMM deformation

coefficients that generate a 3D face mesh similar to the one in the image.

More recent methods belonging to this category, such as that of Tuan et

al. [294], use Convolutional Neural Networks (CNNs) to learn to regress the

3DMM coefficients. The main advantage of the solutions exploiting 3DMM

is the availability of the complete face 3D model under any circumstance

since even the parts that are occluded in the input image are reconstructed

using the 3DMM’s geometry. On the other hand, the main limitation of

these 3DMM-based solutions is that the reconstruction is often too similar to

the original 3DMM model. This means that the characteristic facial traits

normally defined by small details of the facial geometry are not usually well

reconstructed. A recent approach based on 3DMM models, proposed by

Ranjan et al. [238], claims to be able to obtain better results than previous

works, especially for the reconstruction of facial expressions. To this end,

they exploit the FLAME [160] 3D face base model representation. To cope

with the lack of details in the reconstructed face, Extreme3D [290] introduced

a bump map to model wrinkles on the Basel Face Model (BFM) [224]. The
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bump map applies geometric deformations on the reconstructed 3D face,

and a symmetry constraint is used to cope with occlusions. The Ganfit

method proposed by Gecer et al. [94], and its fast extension [95], use a

different approach and generate a realistic face shape and texture by means

of Generative Adversarial Networks (GANs). The method can reconstruct

very accurate models but is not available for general use. In order to better

fit the generic 3DMM model to the actual face, researchers have tried to

integrate different properties and constraints into their training pipelines. For

example, using deep networks, Deep3DFace [63] regresses several coefficients

that are used to model and fit the face: the identity of the user, expression,

texture, pose, and lighting. Coupled with photometric and perceptual losses,

they are able to better fit the actual user’s face. RingNet [253] is also a

deep network that regresses model parameters. Specifically, it regresses the

shape, pose, and expression of the FLAME model. Differently from the

previous methods, RingNet exploits multiple images of the same person and

an image of a different person during training to enforce shape consistency.

Zhu et al. [339] proposed a Fine-Grained Reconstruction Network (FGNet)

that can concentrate on shape modification by warping the network input

and output to the UV space, achieving a final reconstruction that includes

fine-grained geometry. Lin et al. [165] proposed to refine the initial texture

generated by a 3DMM-based method with facial details from the input image.

To this end, they use graph convolutional networks to reconstruct the detailed

colors for the mesh vertices. The space of the parameters that need to be

regressed for a 3DMM model is high-dimensional, i.e. 230 values. Guo et

al. [110] propose instead to use a small subset to speed up the fitting process.

Moreover, a meta-joint optimization is introduced during the training phase

to improve the overall fitting accuracy. The final method is able to perform

face reconstruction faster than in real-time using a MobileNet as a light

backbone. The reconstructed 3D face can be used in VR applications—for

example, to animate virtual avatars. However, most of the approaches are not

able to reconstruct faces that can be animated in an accurate way. DECA

[76] has been specifically designed to regress accurate 3D face shape and

animatable details that are specific to an individual and that can change
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according to the subject’s expressions. The method is based on the FLAME

face model. Another approach that has been designed with animation in mind

is INORig [15]. The approach is built on an end-to-end trainable network

that first parameterizes the face rig as a compact latent code with a neural

decoder, and then estimates the latent code as well as per-image parameters

via a learnable optimization.

The methods in the second category, i.e., shape regression-based methods,

were developed to obtain a more accurate reconstruction than the 3DMM-

based ones. Among the methods in this category, Jackson et al. [133] propose

to straightforwardly map the input image pixels to a full 3D face structure

in a voxel space via volumetric CNN regression. The main advantage of

this approach is that the output face shape is not restricted to a face model

space, therefore permitting applicability to the reconstruction of other objects

(e.g., [319]). A similar idea is exploited by Feng et al. [75], who directly

regress the face mesh from the input image without making use of a voxel

space: the advantage of this method, called PRNet, is that it is lightweight

and fast to execute, and it also usually leads to a precise and detailed

reconstruction. Guo et al. [111] proposed the use of different CNNs to

reconstruct the coarse-scale geometry and the fine detail. Recently, Wang et

al. [309] proposed a framework that solves the problem of face reconstruction

in three steps: face region segmentation, coarse-scale reconstruction, and

detail recovery. Finally, Wang et al. [310] propose a novel unsupervised

3D face reconstruction architecture by leveraging the multi-view geometry

constraints to train accurate face pose and depth maps. Once trained, the

approach is able to perform reconstruction from a single image as well.

5.3.2 Comparing the 3D face reconstruction approaches

The core of a virtual try-on application for glasses is undoubtedly the

3D face reconstruction module. In the literature, several approaches differ

in their underlying architecture, complexity, and performance. This section

compares different 3D face reconstruction approaches that can be potentially
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used in the virtual try-on application. This comparison can be used by

developers and practitioners to select the most suitable approach for their

specific task, depending on the operational and environmental constraints of

the final application.

Among the possible approaches, only those that have made their code

publicly available are considered: DECA [76], 3DDFAV2 [110], 3DSFMFace

[310], Extreme3D [290], RingNet [253], Deep3DFace [63], INORig [15], and

PRNet [75].

3D face reconstruction approaches are here compared with respect to

different criteria: (i) underlying architecture and characteristics; (ii) compu-

tational costs (in terms of time and memory consumption); (iii) quantitative

evaluation of the reconstruction error against a ground truth; (iv) qualitative

evaluation of the goodness of the reconstructed face texture. These criteria

capture different aspects of the reconstruction phase. To the best of our

knowledge, no standard quantitative evaluation exists to assess the texture,

so a subjective assessment with a panel of users has been carried out. Both

the geometry and the texture are important for an assessment of the fidelity

of the reconstruction and thus the user’s acceptance of the try-on application.

Comparison of the architectures Table 5.4 summarizes the characteris-

tics of the 3D face reconstruction methods. All the methods rely upon Neural

Networks to perform feature extraction or parameter regression. The most

common backbone used is the Residual Network, which has been successfully

exploited in different application domains and is one of the most efficient

and robust networks. All the methods need a face detector to locate the

facial region and extract facial landmarks to be used for pose estimation and

normalization. Any face detector could be used, but most methods already

include one. Three of them do not include a face detector but assume that the

input images have either a set of facial landmarks associated (Deep3DFace),

or that the face has been already located and cropped (RingNet) or segmented

(3DSFMFace). For these methods, images are provided in the intended format.

All the methods, except Extreme3D, provide both geometry and texture as

output. INORig is the only one that requires multiple images of the subject
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as input. All the methods are implemented in Python and are based either

on TensorFlow or PyTorch frameworks.

Table 5.4: Main characteristics of 3D face reconstruction methods in the
state-of-the-art. SR: Shape Regression, MM: Morphable Model, S: single
image, M: multiple images, G: geometry, T: texture, BM: BumpMap, BFM:
Basel Face Model, DRN: Dilated Residual Network. TF: TensorFlow, PT:
PyTorch.

Method Year Category Input
Face Network

Output F.work
Detection Backbone

PRNet [75] 2018 SR S DLib U-Net G + T TF

Extreme3D [290] 2018 MM/BFM S DLib ResNet G + BM PT

Deep3DFace [63] 2019 MM/BFM S/M External * ResNet G + T TF

RingNet [253] 2019 MM/FLAME S External † ResNet G + T TF

DECA [76] 2021 MM/FLAME S FaceNet o ResNet G + T PT

3DDFAV2 [110] 2021 MM/BFM S FaceBoxes x MobileNetv3 G + T PT

3DSFMFace [310] 2021 SR S/M External ‡ ResNet G + T § PT

INORig [15] 2021 MM/BFM M S3FD + DRN G + T PT

* The method requires 5 facial landmarks along with the source image;
† The method uses loosely cropped face image as input;
o The method uses a fast version of MTCNN [320] for face detection;
x The method uses FaceBoxes face detector [333];
‡ The method requires that the face is segmented from the background;
§ The method outputs a colored point cloud;
+ The method uses the Single Shot Scale-Invariant Face Detector [334].

Computational costs For each method, have been measured the time and

memory required to perform the facial reconstruction, as well as the geometry

error. Table 5.5 summarizes the results. The execution times reported in the

papers describing and comparing the different methods are usually relative

only to the 3D face reconstruction step and do not include the preprocessing

and postprocessing steps. When building an application such as the virtual

try-on, it is important to consider all the steps involved in the reconstruction

process to evaluate the overall run-time. The source codes of the 3D face

reconstruction methods were modified to perform a consistent evaluation

across them. Each pipeline was initialized once and then used to process

iteratively 101 loosely cropped face images from the FFHQ dataset [143]. The

execution time for each sample includes all the steps from image loading to
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Table 5.5: Evaluation results of 3D face reconstruction methods in the state-of-
the-art. All the timings are computed on 101 images, discarding the execution
times of the first one in order to simulate a hot start condition for the system.
Hardware used: Intel Core i7 7700 CPU and NVIDIA Quadro RTX 6000
GPU.

Method
Time Min Time Max Time Median Time Mean Time Std Memory GPU Memory
(Seconds) (Seconds) (Seconds) (Seconds) (Seconds) (MB) (MB)

PRNet [75] 0.736 0.808 0.751 0.749 0.010 2361 1161
Extreme3D * [290] 15.564 15.840 15.604 15.598 0.031 1968 1925
Deep3DFace † [63] 0.582 0.627 0.592 0.591 0.009 2867 1235
RingNet [253] 0.741 0.826 0.789 0.789 0.016 3108 23,035 o

DECA [76] 0.850 1.361 0.893 0.883 0.055 3022 18,227 +

3DDFAV2 x [110] 0.740 0.798 0.770 0.769 0.009 3290 4683
3DSFMFace ‡ [310] 0.349 0.636 0.438 0.435 0.053 3260 1379
INORig § [15] 2.901 3.228 3.049 3.037 0.081 4253 21,691 +

* CuDNN disabled due to incompatibilities with the GPU;
† Added face detector and 5-point descriptor from DLIB as a preprocessing step;
o The method seems to allocate all the available memory on the GPU even if the behavior is explicitly disabled;
x Method modified to reconstruct only one face even if more are detected in the input image, “–onnx” flag not used;
‡ Face segmentation done manually and not included in the run-times;
§ For each image, the reconstruction is performed on the pair input image and its horizontal flip;
+ The peak memory usage is a short spike.

the creation of the 3D model representation (i.e., obj or ply files). Since the

frameworks require some time for caching and loading of data on the first

run, the evaluation discards the execution time of the first image to simulate

a hot start of the system. The times of Table 5.5 are therefore relative to

the execution of 100 face reconstructions on a machine with an Intel Core

i7 7700 CPU and an NVIDIA Quadro RTX 6000 GPU. Some changes to

the source codes were needed due to the differences in the input data and

setup required by the methods. For the Extreme3D, the cuDNN back-end

was disabled due to incompatibilities with the GPU. Deep3DFace needs five

face landmarks as input in addition to the image; those were automatically

computed in an additional preprocessing using the DLib library as suggested

by the authors. Moreover, 3DDFAV2 reconstructs all the faces detected in the

input picture by design; it was thus forced to work only on the first detection.

The authors of 3DDFAV2 stated that using the ONNX Runtime [213] library

it is possible to obtain a noticeable increase in the inference speed. Since

this optimization library is potentially usable by the other implementations,

the test uses the plain (non-onnxRuntime) version of their method for a fair

comparison. INORig requires at least two images of the same person; the

evaluation uses the input image and its horizontal flip, as done by the authors.
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The majority of the methods can provide face reconstruction in less than

one second on average. The only exceptions are INORig and Extreme3D;

the former works on two images, while the latter performs part of the com-

putation on the CPU, slowing down the process. The fastest method is

3DSFMFace, although its output is a point cloud and not a 3D mesh, as with

the other methods. It also requires a segmented face over the input image,

and the reported time does not include the time necessary to perform such

segmentation since it was manually conducted.

System RAM usage and GPU dedicated RAM usage is also evaluated.

Table 5.5 reports the peak memory allocated for both CPU and GPU by

each method during the reconstruction of a single 3D face. System memory

allocation varies between 2GB and 4GB, depending on the pipeline. On the

GPU memory side, the amount of memory used varies between 1.1GB for

PRNet and 4.6GB for 3DDFAV2. While most of the implementations have a

constant GPU memory usage, DECA and INORig present some short spikes of

allocation that bring the peak memory usage to 18GB and 21GB, respectively.

The implementation of RingNet seems to allocate all the available GPU

memory, even if this behavior is explicitly disabled in the TensorFlow library.

Reconstruction errors Reconstructed 3D geometries were evaluated on

the UMB-DB dataset [59] to assess the geometrical error of different face

reconstruction methods on the same input data. This dataset contains RGB

images and the corresponding 3D ground truth geometry acquired using a

Minolta Vivid VI-900 laser depth scanner. Reconstructions of 15 subjects

were performed for each method starting from a single neutral expression

input image without occlusions. Since the methods use different coordinate

reference systems, a first coarse alignment matches the reconstruction to

the ground truth geometry using the seven face landmarks annotated in the

UMD-DB. This rigid alignment only allows the rotation, translation, and

scale of the reconstructed geometry. Considering that the completeness of the

reconstructed geometry varies between the methods, all the reconstructions

were cropped to the same area of the face. Given that INORig is the method

whose reconstruction includes the smallest portion of the face, it was decided
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to crop out the parts that were not reconstructed by INORig—for instance,

the ears (reconstructed by Extreme3D, PRNet, DECA, and RingNet) and the

cranium (provided by DECA and RingNet). Another rigid alignment step

was performed through the Iterative Closest Point (ICP) algorithm to register

the cropped 3D reconstruction to the ground truth. Finally, the geometry

was evaluated using the absolute distance between each vertex of the 3D

reconstruction and its closest point on the ground truth mesh. These steps

of alignment and distance evaluation follow the same procedure defined in

Section 3.3.2 where the mesh vertices are used instead of a point cloud.

Table 5.6 reports the results of the evaluation. Since DECA does not

provide a texture for the detailed 3D model, it was decided to evaluate the

coarse one, which includes the texture image. 3DSFMFace was not evaluated

due to the limited usefulness of the point cloud recovered for a virtual try-on

application. As can be seen, all the values are similar and well within a

reasonable tolerance for a try-on application. For completeness, the same

table also reports the reconstruction performance of the methods on the

NoW dataset as per the NoW challenge benchmark [187]. See [253] for

further details. Extreme3D and 3DSFMFace have not been evaluated on the

benchmark. Figure 5.8 shows some examples of 3D face reconstructions.

Table 5.6: Geometry evaluation results of 3D face reconstruction methods in
the state-of-the-art.

Method
Median Mean Std NoW Median † NoW Mean † NoW Std †

(mm) (mm) (mm) (mm) (mm) (mm)

PRNet [75] 1.50 1.58 0.45 1.50 1.98 1.88
Extreme3D [290] 1.83 1.93 0.24 - - -
Deep3DFace [63] 1.35 1.50 0.45 1.11 1.41 1.21
RingNet [253] 1.46 1.43 0.16 1.21 1.53 1.31
DECA * [76] 1.30 1.46 0.34 1.09 1.38 1.18
3DDFAV2 [110] 1.66 1.65 0.41 1.23 1.57 1.39
INORig [15] 1.51 1.51 0.24 - 1.33 o 0.28 o

† Values from NoW Challenge [187];
* Evaluation of the coarse 3D model;
o Values from the INORig paper [15], not reported on the challenge website.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5.8: Examples of 3D face reconstruction results on images from the
UMB-DB dataset [59]. For DECA, the figure shows the coarse mesh that,
opposed to the detailed one, provides a texture. (a) Input image; (b) ground
truth; (c) 3DDFAv2 [110]; (d) DECA [76]; (e) Deep3DFace [63]; (f) Extreme3D
[290]; (g) INORig [15]; (h) PRNet [75]; (i) RingNet [253].

Texture quality As stated before, the application needs both the geometry

and the appearance (i.e. the face texture) to be reasonably accurate. To this

end, a subset of 10 face images was selected from the FFHQ dataset [143]

as a test set. The images were processed with each method using the code,

model, and parameters provided by their respective authors. The output of

each method was then evaluated in a comparative way. Given an input 2D

image, the different 3D outputs were assessed by a panel of subjects that

compared the results against the original image and selected the best 3D

output with respect to the fidelity of the reconstructed texture and potential

appeal within a try-on application.
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Table 5.4 shows that Extreme3D does not output a texture, so it was

excluded from the subjective evaluation. Moreover, 3DSFMFace was excluded

because it outputs a 3D point cloud and not a mesh. For the assessment of

the six methods, a simple web application was developed to show the 3D

models reconstructed by the methods with their texture applied. The users

were chosen among researchers and postgraduate students of the University of

Milano-Bicocca. All the users had normal or corrected-to-normal vision and

were knowledgeable about virtual try-on applications and 3D modeling. The

users were asked to rank the results from one (the best) to six (the worst). Ties

were allowed. The responses were collected and average rankings are provided

for each method. In total, 11 users participated in the experiment. Figure

5.9 shows some of the texture results judged in the subjective experiment. In

the web application, the users were able to scale and rotate the models to

inspect them more thoroughly.

The average rank of each method is as follows: PRNet: 1.93, 3DDFAv2:

2.95, RingNet: 3.07, DECA: 3.59, Deep3DFace: 4.63, and INORig: 4.85.

Figure 5.10 shows how many times a method was ranked at a given position.

Overall, PRNet was judged to provide the best texture on the samples.

RingNet and 3DDFAv2 have similar ranks. Next is DECA, which has been

voted mostly in the fourth position. Finally, Deep3DFace and INORig

gave similarly poor results. It was surprising that PRNet was judged the

best against more recent methods such as DECA or INORig. This can

be explained in that the reconstruction methods are mostly designed with

geometry reconstruction as the main goal. The visual texture is usually not

considered as a main focus and is used only for visualization. From the

experiment, it emerged that one of the problems of existing methods based

on 3DMMs is that they tend to create gaps in the mouth when the person

is smiling. Since there is no texture for the inner mouth, this creates an

uncomfortable hole in the texture. Postprocessing is required to cope with

this issue. PRNet, being based on a shape regression technique, has no such

problem: the mesh is closed, and the texture is complete. This can be seen

in the third row of Figure 5.9.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.9: Some samples used in the texture quality experiment. (a) Input
image; (b) 3DDFAv2 [110]; (c) DECA [76]; (d) Deep3DFace [63]; (e) INORig
[15]; (f) PRNet [75]; (g) RingNet [253].
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Figure 5.10: User ranking of the 3D face reconstruction methods in the
texture quality experiment.

5.3.3 Workflow

The currently available virtual try-on applications for face accessories

present some limitations. For example, many applications show the results of

the virtual scene in a static 2D image; this greatly limits interactivity. Other

applications require some kind of physical marker to be acquired along with

the user’s face for size estimation. This can be cumbersome in the case of

mobile applications. Moreover, the use of a video stream as output limits the

degrees of freedom with which the user can see himself with the accessories.

This section describes the proposed virtual try-on solution for eyewear.

To overcome limitations in existing try-on applications, the proposed solution

leverages artificial intelligence methods, specifically CNNs, for the robust

detection and tracking of the face of the user. The solution is designed to be

more user-friendly, interactive, and easy to use than existing applications. To

achieve this, the application creates a complete 3D virtual scene, with the

3D-reconstructed head and face of the user wearing the selected eyeglasses.

The reconstruction is performed using a single 2D image of the user’s face.

After the 3D reconstruction, the face size and the fitting parameters for

the eyeglasses model are automatically computed, leveraging information
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from the user’s face and without any external physical marker. The result is

displayed using a 3D rendering framework that also allows the user to rotate

the reconstruction and test different glasses models. By using the full 3D

results, the user has a realistic idea of how the eyeglasses will look on himself

and can freely pose the virtual head, viewing the glasses model from any point

of view. Figure 5.11 shows an overview of the workflow of the try-on solution.

The back-end of the system is implemented in the cloud, while its front-end

is implemented as a web-based application. In the proposed workflow, the

localization module is split into the face detection and 3D reconstruction

sub-modules. There is no tracking module since a 3D representation of the

user’s face is reconstructed. Face size estimation, face keypoint detection,

and fitting parameter estimation are supporting modules used to blend the

chosen eyeglasses and the user’s reconstructed face with the correct sizes and

proportions for a realistic and faithful rendering.

The following subsections provide further details on each component.
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Figure 5.11: Workflow of the 3D eyeglasses virtual try-on system.
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5.3.3.1 Face detection and 3D reconstruction from a single image

Section 5.3.1 surveyed several approaches in the state-of-the-art for 3D

face reconstruction from a single image. In theory, any of the mentioned

approaches can be exploited to build a virtual try-on application. However,

we must take into account that in a real application scenario the approach

used must be computationally efficient, and it should reconstruct not only

a reasonable 3D geometry of the face, but also an accurate replica of the

facial details via a texture to be applied on the 3D model. Without all these

constraints, the try-on application would not be appealing to the final users,

both in terms of usability and fidelity.

Implementation of the 3D face reconstruction The creation of the

virtual scene starts with the user’s face detection in a captured photo. To

reduce the computational burden, the detection must be executed with a fast

and lightweight algorithm. Among the possible algorithms in the state-of-the-

art, it was selected the CNN-based face detector in the DLib software library

[149]. The detector is very robust and accurate; it takes as input an RGB

image and produces as output a bounding box of the area of the face. In the

case of multiple detections, only the largest located face is used to run the

reconstruction and the subsequent try-on process, thus avoiding unintentional

runs of the try-on over faces that may be present in the background of the

input picture. Although face detection and reconstruction can work with low

resolution images, the face is acquired at least with a resolution of 1000x1000

pixels in order to have sufficient information in the area of the eyes.

Based on the results in Section 5.3.2, the PRNet [75] method was selected

for the 3D face reconstruction phase. This method allows us to not enforce any

particular restriction on the face pose or occlusions because the reconstruction

process can work on almost every image depicting a human face. The input

of the 3D face reconstruction module is the area of the face detected by the

face detection module. The area is first resized to a 256x256 pixel RGB image

and used as the input of the CNN. The output of the network is a vertex

map, a 256x256 matrix where each element is a vertex of the reconstructed
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face. The face mesh is generated from the 65k vertices in the regressed vertex

map. Its texture image is generated by remapping the input image to the

reconstructed mesh using the regressed vertices map. The resolution of the

texture map is 512x512 pixels. This resolution is deemed of sufficient quality

for the application.

If occlusions are present in the input image, the corresponding portions

will be missing in the generated texture image. This is a limitation of the

single image 3D face reconstruction approach. The face mesh is always

complete, regardless of the initial face pose, but the face parts not visible

to the camera are not textured correctly. This problem could be partially

solved by using multiple face acquisitions from different points of view, and

then using Structure From Motion approaches [32] so that the 3D face can

then be reconstructed. However, this solution could annoy the user since

it requires many images in order to have a faithful reconstruction. For this

reason, a very fast and realistic 3D face reconstruction using a single image

with acceptable coverage of the face texture is preferable. To ensure this, if

the detected face has a very skewed pose, the user is asked to take another

shot in a more frontal position. Furthermore, to keep dimensions consistent

between reconstructions, the vertex map is rotated according to the detected

face pose to obtain the front view and is scaled in a cube of size 1x1x1 units

in 3D world space, centered in the origin of a canonical right-handed global

coordinate reference system. The 3D face model will be scaled to its final

true size according to the parameters estimated by the fitting parameter

estimation module, as described in Section 5.3.3.2.

In addition to the reconstructed 3D face, the 3D reconstruction module

outputs other information needed to estimate the true size of the face: the 68

landmarks defined by the Multi-PIE landmark scheme [108] used for locating

the eye regions, and the face keypoints recovered from the vertex map, used for

determining the fitting parameters for the eyeglass frame. This information

is sent to the face size estimation module.

The average time required by the 3D reconstruction module is in the order

of 0.62 s, of which 0.06 s is for face detection, 0.01 s is for mesh reconstruction,

and the remaining time is for texture generation.
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5.3.3.2 Face size estimation

Building a virtual try-on application requires that the wearable item(s)

must be of the correct size when placed on the virtual model. With respect to

the eyeglass application, this means that the glasses frame size must match the

face size. Existing try-on applications often lack a proper face size estimation,

and this cannot provide the user with a realistic try-on experience in terms

of size fitting. To cope with this problem, some commercial applications

estimate the face size using markers whose sizes are known, such as a credit

card, placed on the forehead [66]. The use of markers is a common approach

but it requires the user to inconveniently perform additional acquisitions and

to have the proper marker at hand. Another problem with this approach is

that the marker must be clearly visible, forcing the user to perform actions

to deal with acquisition errors. This can negatively influence the overall

experience, annoying the user.

To deal with the above-mentioned issues, is here proposed a markerless

approach for estimating the face size. The proposed approach exploits facial

features without requiring additional items to be acquired. Specifically, the

diameter of the iris is used as a reference to determine the actual face size.

By measuring the iris diameter in pixels, and knowing its average diameter in

millimeters, we can estimate the actual face size. The iris diameter is related

to the cornea diameter and, according to Rüfer et al. [247], the average

white-to-white horizontal diameter is 11.71 ± 0.42 mm.

The complete flow of the face size estimation process is summarized in

Figure 5.12, and Appendix C shows the algorithm. First, the eye location is

identified using the landmarks provided by the 3D face reconstruction module.

Then, it crops the eye regions, extracts the red channel, and applies a gamma

correction to enhance the visibility of the iris and pupil. Inspired by Kerrigan

et al. [146], the processed eye crop were fed into a DRN-D-22 network [329] to

generate a segmentation map of the iris. Ideally, near-infrared images should

be used, but would require the adoption of additional hardware. Through

experimentation, it was found that gray-level images can be successfully used.

Finally, the Hough Circle Transform fits a circle on the iris in the segmentation
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Figure 5.12: Face size estimation workflow.

map and finds its radius in pixels. The size in millimeters of each pixel is

finally computed as 11.71/2r, where r is the estimated iris radius in pixels.

This procedure is applied to both eyes, and the final iris size estimation is

the average of the two values. If the calculation fails for one eye, the single

value obtained is used. In the unfortunate event that the estimation fails for

both eyes, the subsequent step of glasses fitting estimates the parameters to

best fit the glasses on the user’s face without using the size information; in

this case, the user is notified of such failure.

It is then possible to align the 3D reconstruction on the input image

and compute the face size using the distance between the ear keypoints as

the number of pixels between them multiplied by the size of each pixel in

millimeters determined from the iris size. The whole face size estimation

procedure requires 0.13 s on average.

5.3.3.3 Fitting parameter estimation

Once the face size is estimated, we need to define the geometric transfor-

mation required to correctly place the glasses on the face. This is done by a

fitting procedure that generates the transformation parameters required for

rendering the face with the selected glasses frame. Since the glasses frames

have different geometries, we need to perform the fitting for each selected one

with respect to the current face geometry.

The parameters are estimated by finding the transformation that aligns
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the glasses frame on the reconstructed face when viewed from a frontal pose.

The alignment is performed by using some of the facial landmarks extracted

from the reconstructed 3D face (facial keypoints) and keypoints extracted

from the glasses model (eyeglasses keypoints). For this reason, all the available

glasses models in the database are assumed to be already annotated with

these keypoints, along with all the other relevant information. Specifically,

available information must include the brand name, model name, preview

image, width, and keypoints. The required eyeglasses keypoints are shown

in Figure 5.13a. They correspond to the bridge location (Gn) and both the

temples’ far end-points, where the glasses lean on the ears (Gl and Gr). The

corresponding facial keypoints, extracted from the reconstructed 3D face,

are shown in Figure 5.13b. At the end of the fitting procedure, the two sets

of keypoints geometrically overlap and the glasses are fitted to the face, as

shown in Figure 5.13c.

Figure 5.13: Example of keypoints for glasses fitting. Nose keypoints in blue,
left ear keypoints in green, right ear keypoints in red. (a) Eyeglasses keypoints
sample. (b) Example of facial keypoints. (c) Eyeglasses fitting result.

The fitting process requires several stages. First, it is necessary to determine

the glasses’ position. This is done by using Equation (5.1), which computes

the translation transformation that aligns the glasses bridge keypoint Gn with

the face nose keypoint Fn, which is used as a reference point:

t = Fn − Gn (5.1)

Then, the glasses’ temples are laid on the ears. This is done by computing

the projection of the keypoints on the 2D plane defined by the Z and Y axes,
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as shown in Figure 5.14 and Equation (5.2):

ĝnl =
Gl − Gn

|Gl − Gn|

f̂nl =
Fl − Fn

|Fl − Fn|

α = arctan2(|ĝnl × f̂nl|, ĝnl · f̂nl) = arctan2(sin α, cos α)

(5.2)

Figure 5.14: Eyeglasses pitch angle between ear and temple keypoints.

The direction from the nose keypoint (Fn) to the glasses left keypoint (Gl)

is computed. It is then normalized to a unit vector, obtaining the unit

directional vector that we indicate as ĝnl. Similarly, the unit vector f̂nl is

defined to represent the direction from the nose keypoint (Fn) to the left ear

keypoint (Fl). It is then computed the angle α between the two unit vectors

using the 2-argument arctangent, where the first argument is the norm of the

cross product between ĝnl and f̂nl, and the second argument is the dot product

between them. With ĝnl and f̂nl being unitary vectors, the first argument

corresponds to the sine of the angle α between them, and the second one to

the cosine of α. In a similar way, a second angle β is computed using the

direction from the nose keypoint to the glasses right keypoint (ĝnr), and the

direction from the nose keypoint to the right ear keypoint ( ˆfnr). Finally, the

rotation transformation around the X-axis needed to lean the glasses on the

ears is built using the mean rotation angle between α and β.

The process of scaling the glasses frame to match the face size, takes

into account the face size estimation described in Section 5.3.3.2, and the

difference between the mesh and face coordinate systems. In case of problems

in the face size estimation, the scale is determined as the mean X-axis scale

factor that best fits the temples on the ears. Figure 5.15 shows the difference
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(a) (b)

Figure 5.15: Examples of eyeglasses fitting using keypoints and face size. (a)
The glasses are scaled to match the keypoints of the face. (b) The glasses are
scaled according to the estimated face size and the real glasses sizes.

between the proposed fitting solution and a simple approach based on keypoint

correspondence. The keypoint correspondence approach does not take into

account face and eyeglasses dimensions. The glasses are simply scaled to

make the keypoints match the face ones (Figure 5.15a). Instead, with the

new approach, the glasses are slightly thicker on the face with respect to the

keypoint fitting approach (Figure 5.15b).

The overall fitting parameter estimation requires around 0.4 milliseconds

for each eyeglasses model in the library. The 3D face mesh, the eyeglass

model, and the fitting parameters are passed to the scene mixer module in

order to render the final virtual 3D scene. Some virtual try-on results with

different face pictures and eyeglasses models are visible in Figure 5.16, where

the input images are taken from the FFHQ dataset [143], which provides

high-quality images of human faces.

5.3.3.4 User interface

The virtual try-on user interface is provided as a web application. The

web application is responsible for image acquisition and user interaction. It

also interacts with the back-end modules, specifically the face reconstruction

and fitting parameter estimation modules, accessed as web services. The
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(a) (b) (c) (d) (e) (f)

Figure 5.16: Examples of virtual try-on results on images from the FFHQ
dataset [143]. Glasses models from https://www.cadnav.com. (a) Input; (b)
Front view; (c) Side view; (d) Input; (e) Front view; (f) Side view.

use of a web-based front-end allows us to deploy the try-on application on

different devices with minimum system requirements, provided that modern

web browsers are available. The user uploads a picture or snapshot of his

face using the web browser, along with the choice of the desired glasses frame.

The image is received by the server, and processed by the designed processing

pipeline. The result is returned to the browser, allowing the user to see the

glasses from different points of view.

The web application has been implemented using a set of open-source
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(a) (b)

Figure 5.17: Screen captures of the virtual try-on web application user
interface. (a) Image upload interface; (b) virtual try-on interface.

tools and frameworks. Specifically, it uses Vue.js1 as the core JavaScript

framework, Dropzone.js2 as the image upload handler, and babylon.js3 as an

advanced 3D rendering framework to manage Physically-Based Rendering

(PBR) Materials and lens transparency. The 3D models of the face, as well

as those of the glasses, are exchanged using the Wavefront OBJ file format

accompanied by the material definition file MTL and the texture images.

While the 3D face model is automatically loaded shortly after the try-on

back-end completes the processing, the 3D glasses models are dynamically

loaded based on the user’s selection. Since the web application must still be

usable on low-end devices and slow internet connections, the 3D models of the

glasses have been optimized to reduce the size of the files to be transferred, in

order to keep loading times below one second in most cases. For the glasses

models, in addition to the geometry and the materials, the application also

loads a JSON file containing the translation, rotation, and scale parameters

to render them correctly on the 3D face.

Figure 5.17 shows the user interface, which is composed of two main

pages; the first is for face image upload or acquisition, and the second one is

1https://vuejs.org/
2https://www.dropzonejs.com/
3https://www.babylonjs.com/
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to display the 3D virtual try-on. The displayed acquisition interface is for

desktop/mobile devices. If the application is installed in physical stores, a

continuous video acquisition can be implemented, as described in the previous

sections. The majority of the screen area is used to render the 3D face and

glasses. The list of glasses available for try-on is displayed at the bottom of

the screen, and a few controls for the rendering and some predefined camera

positions are available in the right sidebar. If the user’s device has a screen

with a limited size (e.g., a smartphone), the sidebar starts in a collapsed state

to leave sufficient space for the try-on rendering. The face can be rotated by

dragging, and the zoom level can be adjusted by using pinching or scrolling,

depending on whether the device supports touch controls or not.

5.3.4 User evaluation

A standard usability test [207] with a panel of users has been used to

evaluate the user experience. A total of 16 subjects of different age, expertise,

and educational background were selected.

The experiment was conducted using a 10-inch tablet where the user

interacts with a touch interface and a desktop PC where the user interacts

with the mouse. The participants were randomly split between these two

interaction modalities. Before starting the usability test, the application

scope was briefly described to the users. They were then observed using

the application to perform a virtual try-on session by taking a picture of

themselves. No time limit was imposed. At the end of the test session, each

user judged his experience by filling in a questionnaire. The questionnaire

was the standard System Usability Scale (SUS) questionnaire developed by

John Brooke [39]. In order to gain more insights into the application, users

were asked to rate (from 1 to 5): the precision of glasses fitting, the realism

of the 3D view, the usefulness of such a 3D view, and their interest in using

this application if made publicly available. Finally, some free comments from

the users were also collected.

Results of the SUS questionnaire are summarized in Table 5.7. As can be
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seen, the users rated the system very positively. The try-on was considered

easy and very simple to use. No previous knowledge or experience was

necessary to approach it. By applying the standard procedure [39], the

application obtained an overall SUS score of approximately 90 out of 100,

which is considered above average. The average score is set to 68 from a study

on 500 systems, as described in [255]. Table 5.8 shows the scores of the four

additional questions specific to the try-on application. The virtual try-on

application with the 3D visualization of the face and glasses received very

high appreciation, with scores of 4.9 out of 5. The users found this type of

application enjoyable and useful and were more than happy to try more. The

technology was found to be engaging, although the overall visual quality of

the rendering should be improved. This is demonstrated by the slightly lower

score for fitting precision and realism, with a score of 3.8 and 3.7, respectively.

In general, the opinions of the users were quite positive. The majority

of them appreciated the ease of use of the application. The users also

commented on the usefulness of the 3D visualization and lamented the lack of

this visualization in other online try-on systems. Finally, the automatic fitting

of the glasses frame was appreciated. However, some users suggested to allow

a manual resize and position of the frame. This could be interesting for a

vendor that personalizes glasses frames or even produces custom eyeglasses to

meet the user’s preferences. Many users requested the possibility to integrate

the application with social media in order to share their selection.

Users also pointed out some problems with the application. The main

concern was the lack of hair and neck in the face model. These are limitations

of the actual 3D reconstruction model used that are common to many other

reconstruction approaches. One way to cope with the hair problem is to use

more recent 3D reconstruction approaches, such as the one proposed by Xu et

al. [323], which tries to also reconstruct the hair. However, these approaches

are quite limited, and the hair is not fully reconstructed. Missing chunks of

hair may annoy the user more than having no hair. Another way to cope

with the hair is to employ a dedicated CNN [338]. This could potentially

solve the problem at the cost of adding computational complexity and time.

Another common opinion is that the 3D face mesh needs improvements in
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Table 5.7: System Usability Scale (SUS) results.

Strongly Strongly Avg. SUS

Statement Disagree Agree Score

1 2 3 4 5

1 I think that I would like to use
this application frequently.

0 0 8 6 2 3.6 2.6

2 I found this application unnec-
essarily complex.

11 5 0 0 0 1.3 3.7

3 I thought this application was
easy to use.

0 0 0 1 15 4.9 3.9

4 I think that I would need as-
sistance to be able to use this
application.

15 1 0 0 0 1.1 3.9

5 I found the various functions
in this application were well
integrated.

0 0 3 6 7 4.3 3.3

6 I thought there was too much
inconsistency in this applica-
tion.

15 1 0 0 0 1.1 3.9

7 I would imagine that most peo-
ple would learn to use this ap-
plication very quickly.

0 0 1 2 13 4.8 3.8

8 I found this application very
cumbersome or awkward to
use.

11 4 1 0 0 1.4 3.6

9 I felt very confident using this
application.

0 0 0 8 8 4.5 3.5

10 I needed to learn a lot of things
before I could get going with
this application.

16 0 0 0 0 1.0 4.0

Table 5.8: Application-specific question results.

Feature Average Rating (Range 1–5)

Glasses fitting precision 3.8
Realism of the 3D view 3.7
Usefulness of the 3D view 4.9
Favorable to virtual try-on 4.8
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both geometry and texture. As before, it is also possible to use more recent 3D

reconstruction approaches and super-resolution techniques to cope with these

issues. Finally, some users suggested that adding highlights and reflections on

the lenses would make the 3D model more realistic and appealing. This can

be obtained by adjusting the properties of the materials and incorporating

shaders in the rendering engine used to display the models.

5.3.5 Known limitations

The proposed application uses a customized version of the MR catalog

framework to overcome the identified limitations of existing virtual try-

on applications for face accessories: first, the eyeglasses virtual try-on is

performed in the 3D space using a 3D model of the user’s face, reconstructed

from a single input picture, allowing the user to interact with the application

in a deferred mode and giving the possibility of observing the results from

different points of view. Second, the glasses fitting takes into account the

actual size of the glasses frames and the actual size of the face of the user,

providing a realistic size fitting. The user’s face size is estimated with a

markerless approach that exploits the iris diameter, thus removing additional

acquisition steps as required by other applications.

The results of a usability study of the eyewear virtual try-on system shows

that the application is engaging and easy to use; the users appreciated the full

3D try-on and expressed willingness to use the proposed application if made

publicly available. Future works can overcome some limitations observed

in the usability study, such as the global quality of the rendering, which

should be improved by providing better and complete 3D face reconstruction,

and enhanced textures. Another possible extension is that of designing a

processing pipeline capable of handling the possible presence of occlusions and

self-occlusions in the input picture: while the face geometry reconstruction is

possible even in the case of occlusions or self-occlusions, the texture will present

missing parts. Restoration techniques such as [30, 58] can be used to recover

the missing portions, or the application may ask the user to provide a non-
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occluded face picture. Finally, the application can take advantage of better

integration with online stores and social media services. Providing the try-on

experience through a mobile application will also improve the integration

with user devices: in this case, the new front-end mobile application can use

the existing back-end web service.

5.4 Experimenting Mixed Reality catalogs on

Smart Mirrors

This section discusses a proposal for the fruition of Mixed Reality catalogs

on smart mirrors. A prototype smart mirror design is proposed which includes

the ability to provide the eyeglasses virtual try-on experience presented in

Section 5.3.

As previously explained the virtual try-on technology allows a user to

virtually check the appearance of some product on himself. This process is

usually carried out using mobile devices or desktop computers but, thanks to

recent developments in the field, smart mirrors are emerging as a new way

to provide the virtual try-on experience. The main concept is to add smart

features to an object that everyone owns. The idea of a Smart Mirror is not

something new and the very first concept of this novel idea can be dated

back in the late 1990s and early 2000s science-fiction movies. Even though it

started as a “Do It Yourself” (DIY) project around 2013-2014, the first known

smart mirror was built by Michael Teeuw back in 2014 using a Raspberry

Pi 2 (MagicMirror4). The original project has moved forward with version

2 of the Magic Mirror (MagicMirror2 5). On the same year as MagicMirror

was released, Toshiba presented their own concept of “smart mirror” at CES

[178]. Those mirrors, using a reflective screen, were able to display general

information such as weather, news, and email but also personal data like

calories consumption, heart rate, steps, etc. obtained from connected devices.

4http://michaelteeuw.nl/tagged/magicmirror
5https://magicmirror.builders/
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With time the concept of Smart Mirror evolved and nowadays it’s really easy

to create a smart mirror with those basic features whereas more specialized

types of smart mirrors started to emerge. Based on the field of use, smart

mirrors can be classified into: general purpose, medical, fashion, and hotel.

General purpose smart mirrors are those built exclusively for everyday

use. These mirrors are usually able to display general information such as

news, weather, time, calendar, reminder, and alarms. The latest mirrors

introduced more complex features (e.g., email reader, media player, browser,

etc.) and security features (e.g., facial and voice recognition).

Medical smart mirrors are an advanced version of the general purpose

mirrors. They are in fact capable of displaying general information, but also

medical features such as facial expression detection, emotion detection, skin

problem detection, body pose detection, posture detection, etc. Furthermore,

they can include related tips and tricks to help the user to solve the discovered

problem.

Fashion smart mirrors commonly include virtual try-on technology. The

goal of these mirrors is to enable customers to try on products such as clothes,

shoes, cosmetics, or jewelry using integrated cameras and AR.

Hotel smart mirrors comprise specific features for the hotel in which they

are currently installed. These features usually allow the user to access room

amenities, such as changing room temperature or humidity, control room

devices (e.g., TV or lighting), pay for additional services, and book and receive

notifications from the hotel staff. These mirrors are not sold to the general

public, and not many hotels are currently adopting this technology.

5.4.1 Related work

The popularity of smart mirrors has rapidly increased and many articles

on the subject are featured in the literature. Most of the existing work

describes the design of a general type of smart mirror that includes only

simple basic functions such as news, weather, alarms, time, etc. However,

there are works involving smart mirrors developed for medical or fashion
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purposes. This section briefly reviews the state-of-the-art smart mirrors both

in the research/prototype stage and commercial ones. Considering the field

of application of this thesis more relevance is given to fashion-related smart

mirrors.

Smart Mirror prototypes Several general-purpose smart mirrors are

presented in the literature. The majority of them are equipped with an RGB

camera used for interaction. They usually activate when they recognize a user

in front of them [31, 62, 194, 283]. Several smart mirrors are equipped not

only with visual input but also with audio input. Most of these mirrors use

voice control algorithms to access the mirror functions [14, 144, 327], while

others exploit the combination of audio-video recognition to obtain more

robust security protocols [89, 138].

In the medical field, smart mirrors can improve both clinical and at-home

healthcare. Several proposals rely on the analysis of the face and facial

expressions for the daily personal check-ups [11, 29, 122, 305]. Some mirrors

complement the diagnosis with alternative medicine treatments such as music

therapy [131, 330] and color therapy [324].

Some smart fashion mirrors include recommendation systems. For example,

in [264] to suggest the ideal outfit based on the user’s mood or in [205] the

makeup that best suits the user’s face. The use of Augmented Reality (AR)

and Virtual Reality (VR) in smart mirrors to improve the customer experience

is increasingly widespread. In fact, both AR and VR can help make retail

stores more interactive and the online experience more real [169, 250, 308].

Commercial Smart Mirrors This paragraph is dedicated to commercial

smart mirrors that are developed outside the research laboratory and the

DIY community. The smart mirror is still a growing market and companies

are still developing their own product. However, we can find some smart

mirror products on the market. There are few general-purpose commercial

smart mirrors. Ekko [118] offers basic features such as general information

and a personalized profile and can be controlled with hand gestures. Griffin

Technology [61] developed the Connected Mirror, a smart mirror showing
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general information (time and weather, phone notifications), and updates

from other Griffin devices. Toshiba [178] created a mirror that can help

the user prepare recipes and act as a personal fitness monitor through a

connection with the smartphone. Chakra Groups [48] released a smart mirror

offering health-related features (e.g., tracking for weight, calories, sleep, and

exercise) by connecting to Apple Health or Fitbit.

As part of the smart mirror for the fashion category, Memories [190]

uses a Multi-Layer AR and AI engine. It allows a realistic and personalized

augmented reality experience to try on clothes with colors and patterns of

user’s choice. Instead, Hi-mirror Plus [46] was an intelligent makeup mirror

that could detect and analyze the condition of the user’s skin and offer advice

to hide imperfections.

Anna smart mirror [5] was developed for hotels and, through the recogni-

tion of hand gestures, allows booking transport, viewing general information,

integration, and management of social web via a web app. Philips [117]

produced a smart mirror/TV that can be installed in hotels and helps the

customer pay their bills or pay-per-view movies. In 2017, Panasonic [220] un-

veiled Digital Concierge, a smart mirror powered with IBM Watson advanced

functionalities.

More recently, CareOS [44] presented Themis, a small smart mirror that

can track the user’s condition by collecting data from different sensors such

as a high-quality RGB camera, an IR temperature sensor, and a UV light for

skin analysis.

5.4.2 The proposed Smart Mirror

The proposed smart mirror provides the user with an interactive interface

that can comfortably be used in a home or store environment. The mirror

can provide the eyeglasses virtual try-on experience. The following sections

describe how the mirror interacts with external stimuli and what technologies

(hardware and software) are used to develop the prototype.
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5.4.2.1 Functional requirements

The smart mirror is normally in standby mode until a subject standing in

front of it acquires the active user role and triggers the mirror. The presence

of an active user activates the visual interface and allows him to access and

interact with all the built-in functionalities. If there are multiple subjects in

front of the mirror, the subject whose detected face has the highest resolution

is selected (usually the user closest to the mirror). Through visual and audio

stimuli, the user can interact with the mirror and have access to the eyeglasses

virtual try-on. The audio is the main stimuli for the interaction with the

Alexa-based services; voice commands are used to initialize and terminate

the virtual try-on session.

Visual Interaction When the mirror is in standby mode, the face detection

module is executed in the background. It consists of two steps: localization

of the face in the current frame, and alignment of the cropped face region.

For both steps the implementations are based on the algorithms provided

by the Dlib library [149]. The face detector is built using a sliding window

detection scheme based on the Histogram of Oriented Gradients (HOG) as a

descriptor combined with a linear SVM as a classifier. An image pyramid is

used to detect faces at different resolutions. For the success of the subsequent

modules, faces should be detected in a frontal or near-frontal pose. For

this reason a HOG-based face detector is preferred to a deep learning-based

one. The first, in fact, although less robust, is sufficiently accurate and very

efficient. Regions corresponding to detected faces are cropped to obtain facial

images.

In addition to face detection, hand palm detection is used in the phase of

virtual try-on to rotate the 3D virtual face. By moving his hand in front of

the mirror the user should be able to see the 3D model from different angles.

This detection is performed using Mediapipe’s palm detection model.

Audio Interaction The audio interaction is mainly intended to complement

and support the visual one. Audio interaction is incorporated into the mirror
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through Amazon’s Alexa Virtual Assistant. The Alexa virtual assistant

module extends the interactive capabilities of the mirror thus allowing us

to make the mirror smarter. Thanks to Amazon’s Alexa it’s possible to

achieve a grade of artificial intelligence that can boost and facilitate the

user’s interaction with the mirror. In particular, the system is able to start a

conversation if certain conditions are met, and answer specific questions or

requests thanks to customized skills. A custom skill coordinates the eyeglasses

virtual try-on process.

Display Information The display monitor is the principal tool for showing

information and mirror status. During the standby mode, only time is

displayed. Once a face is detected in front of the mirror and an active user is

elected, guidance on the try-on process is provided to the user. During the

try-on the 3D face model of the user is shown and he can interact with the

system to change the eyeglasses and control the 3D model rotation.

5.4.2.2 Technology

This subsection discusses the hardware and software technologies used in

the building of the smart mirror system.

Hardware As illustrated in Figure 5.18, the smart mirror consists of five

main hardware components:

• Display monitor: 27 Inch LCD monitor is used as display set.

• Micro-controller: Raspberry Pi 3B, one of the most popular single-board

computer, for the role of the client.

• Camera and Microphone: 720P WebCam and Micro Microphone are

employed to fulfill the visual- and audio-based functionalities.

• Mirror: A two-way surface with one reflecting surface is chosen.
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• Frame: A solid wood frame box is built to cover internal components,

and place the display monitor.

Solid wood

Mirror

Display monitor

Camera

Raspberry Pi

Microphone

Behind

Figure 5.18: Hardware components of the proposed smart mirror.

The microcontroller is connected to the Internet for data fetching and browsing.

It is also linked to a serverless scalable service, Amazon Web Service (AWS)

Lambda, to host and run the code for the Alexa Skill Service and to an external

server to offload the heavy computing and data storage. Micro-controller is

Raspberry Pi 3 model B, a single-board based on Linux Operating System.

The board has a 64bit CPU at 1.2GHz, 1GB of RAM at 900Mhz, WIFI,

and Bluetooth. Raspbian Stretch is the installed operating system. The

board offers many I/O ports including a 3.5mm Audio Jack, 4 USB ports,

GPIO, LAN, and HDMI. The LCD monitor is connected to the board through

the HDMI port. USB ports are instead used to link both the camera and

microphone.

By using this hardware and offloading heavy computations, the resulting

power consumption of the mirror depends only on the Raspberry and the

display monitor. When the mirror is in the idle state, the power consumption

is approximately 23W. This consumption is split between 15–20W for the

display monitor (that is always on) and 2.6–2.8W for the Raspberry (including

connected devices). In the working state, the power consumption increases to

about 25W. The consumption of the Raspberry rises to 4.7–4.8W, while that

of the display monitor remains unchanged.
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Software The smart mirror software is written in Python 3.8, and it is

deployed in a Docker container. OpenCV and Pyaudio are exploited to

capture the video frames and the audio signal, respectively. The client-server

architectural model is implemented in Flask and then deployed using Waitress

as Web Server Gateway Interface. Amazon Voice Service (AVS) is a cloud-

based service that allows the integration of Alexa’s features into the smart

mirror. The interaction between Alexa and the Raspberry is handled by the

avs library6. The library has been modified to send the audio signal to the

internal audio interaction module and not just to Alexa. MagicMirror2, one

of the most popular open-source DIY smart mirror projects, is used as a

starting point for providing the smart mirror with basic utilities. The main

software components in the proposed system are the following:

• The Visual-Audio Manager is responsible for the visual/audio inputs

and outputs, including the interaction with Alexa, recording of audio

and capturing of visual frames.

• The Graphical User Interface Manager controls the information

displayed in the mirror, including the virtual try-on.

• The Data Processing Manager handles and computes results from

the given visual input.

The relationships between the three software components are shown in Figure

5.19. The Data Processing Manager receives the raw data (i.e., the video

frames) from the Visual-Audio Manager and returns it the computed data (i.e.,

the virtual try-on result). The Data Processing Manager also interacts with the

Database for storing and retrieving data. Finally, the Visual-Audio Manager

sends the updates to the Graphic User Interface Manager for displaying

information.

The Visual-Audio Manager coordinates the interaction with the user

and the other software components. It can be considered the core module of

the whole system. Figure 5.20 graphically shows its parts and interactions.

The main component of the Visual-Audio Manager is the Coordinator. It is

6https://pypi.org/project/avs/
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Figure 5.19: A simple diagram showing the relationship between each software
component.

Figure 5.20: The software components and their interactions.

in charge of handling the input-output streams for both the visual and audio

signals. In the input data flow, the Coordinator acts as an intermediary for

the Data Processing Manager. It receives the video frames acquired with the

Webcam, and the audio signal recorded through the Microphone. It then

forwards the Visual raw data to the Data Processing Manager which returns

the processed data. The Coordinator is also in charge of avoiding overloads

and conflicts. This problem can arise due to (i) the availability of only one

camera and one microphone, (ii) the presence of asynchronous services (i.e.

Alexa Voice Service). Whenever a feature requires one of these devices, the

Coordinator changes status to “locked” and blocks access to the resources
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until the devices’ proprietary function unlocks it. Finally, the Coordinator

manages determines which screen (or page) has to be displayed from the

Graphical User Interface Manager. The input audio stream is intercepted

by the avs library. The avs library involves several components, namely the

Voice-engine, the Alexa Voice Service (AVS), and the Alexa skill. Since each

Alexa skill is related to the pronunciation of a specific keyphrase, the Voice-

engine can exploit the voice acquired with the microphone for user commands

or a pre-recorded audio file for automatic commands. The user’s voice is

used to initialize a conversation with Alexa through keyword detection. This

method involves external libraries: Snowboy and Hotword Detection. Thanks

to these two libraries it is possible to train a model with a specific keyword

for activating Alexa every time the user says that keyword. The audio file,

on the other hand, is used to automatically initialize the conversation when a

certain system condition occurs. An example of a condition is the detection of

the user by the system. Alexa Voice Service acts as an intermediary between

the Voice-engine and Alexa Skill. In fact, Alexa Voice Service processes the

input audio stream eliminating the silence portions at the beginning and end

of the recorded speech, and subsequently receives and plays the response from

Alexa Skill. The received audio message is saved as a temporary file and

then eliminated by the operating system. Alexa Voice Service also sends a

Response status to the Coordinator to manage the change in the status of

resources. Finally, Alexa Skill receives the processed audio signal and returns

the response. If the key phrase is included in the Alexa Skill list, it will be

processed; an exception is thrown otherwise. In the proposed system, Alexa

is used to begin, end, and coordinate the eyeglasses virtual try-on sessions.

The Data Processing Manager contains most of the smart functions

of the mirror and specifically all those relating to the virtual try-on process.

These functions are the most computationally expensive. For the visual data,

given the video frames, the face detection pipeline is first executed and then

the virtual try-on pipeline presented in Section 5.3.3 is executed upon user’s

request to start a try-on session. The virtual try-on pipeline is embedded

in the data processing manager: it is the same used for the web application,
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(a) (b) (c) (d)

Figure 5.21: Pages that the user can view. (a) Standby. (b) User detected.
(c) Try-on session, image acquisition. (d) Try-on session, 3D rendering.

but a few changes are here needed for the user interaction. While the main

interaction is done by voice, the rotation of the virtual face model requires

visual interaction. Hand detection is performed to rotate the 3D model based

on the left-right position of the hand in the frames acquired by the camera.

The Graphical User Interface Manager handles the GUI of the smart

mirror. Figure 5.21 shows the relevant screens (or pages) displayed to the

user during interaction:

• Standby. It is displayed when no user is detected in front of the mirror.

Whenever this page is active, a simple clock is shown, displaying the

current date and time.

• User detected. It is shown when a user is standing in front of the

mirror. In this page the user can see his face and a message with

instructions about how to start the eyeglasses virtual try-on session.

• Virtual try-on. It is shown when the person in front of the mirror

asks for an eyeglasses virtual try-on session. Two pages are used, in

the first one the user is guided to acquire a face picture, in the second

one the result of virtual try-on is presented. In this last screen he can

change the glasses via voice control and rotate the face moving his hand

horizontally in front of the mirror.
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5.4.3 Known limitations

This subsection discusses the obtained results and the known limitations of

the prototype. This experimental prototype highlighted some issues with both

the hardware and the software. Hardware improvement is under investigation

to increase the resolution and image quality even with poor lightning. The

quality of the frames acquired has a great impact on the quality of the

virtual try-on. While the current camera is sufficient to correctly identify

the presence of a user and detect hand gestures, the quality and resolution

of the face picture have a negative impact on the quality of the 3D model

and texture used for the virtual try-on. Also, some problems with the audio

interaction have been tracked back to the quality of the microphone which will

be replaced with a more performing one. It also appears that the combination

of voice and gesture interaction with the mirror is not always intuitive. Better

audio and text messages along with an improved interaction workflow could

be studied to mitigate such issue. Moreover, a usability study may guide

further development and highlight other issues. In addition, it would also be

relevant to study the feasibility of superimposing directly the 3D eyeglasses

models on the user’s face reflected in the mirror. This requires to correctly

align the glasses and also to handle occluded portions that should not be

rendered. Finally, one of the limitations of the proposed prototype is that

it is a proof of concept experimented in a laboratory environment. A future

development could be the deployment of the proposed prototype in a real

space environment in order to increase the technology-readiness level of the

system.
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6 Conclusion

This thesis presented a computational framework for Mixed Reality cata-

logs, several aspects and fields involved in the creation of the aforementioned

catalogs are taken into account.

3D geometry reconstruction represents a key factor in the creation of a

MR catalog, as it allows to provide integration of 3D objects (being them 3D

reconstructed or modeled) with environments (which can be themselves real

or 3D reconstructed). SfM Flow, a software toolkit for tackling the problem

of selecting the most suitable 3D reconstruction method is proposed. It allows

for the creation of synthetic data with pixel-precise ground truth that can

be used to simulate and stress 3D reconstruction for specific needs. SfM

Flow includes tools for the setup of a 3D virtual scene, the generation of the

images, the execution of reconstruction pipelines, and the evaluation of the

obtained results in terms of camera poses and geometry accuracy. Moreover,

the tools included in SfM Flow can render images with a combination of

different lighting and camera effects to simulate critical conditions, stress the

reconstruction pipelines, and assess their performances. Blender was chosen as

the modeling and rendering software based on its popularity and its extension

capabilities; this allowed us to provide an easy-to-use toolkit that encourages

its usage and the integration of other functionalities. SfM Flow has been

used to create three 3D benchmarking datasets with different characteristics

aiming to validate the value of the data, the evaluation procedure, the

ability to stress the pipelines, and the quality of the results obtained by
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different 3D reconstruction algorithms. IVL-SYNTHSFM and his revision

IVL-SYNTHSFM-v2 focus on single-object geometry reconstruction. The

ENRICH dataset comprises three sets of data featuring images with different

formats, cameras, and environmental and acquisition conditions. Besides the

rendered images, the datasets also include GCP coordinates, depth maps, and

3D models as pixel-precise ground truth. The datasets provide challenging

data to boost several research activities in photogrammetry and computer

vision fields. The variety of data provided is suitable for testing methods and

algorithms designed for different application domains, such as remote sensing,

photogrammetry, and computer vision. The experiments show that it can be

effectively used in several challenging tasks. The experimental results show

that it is possible to generate synthetic datasets from which SfM reconstruction

can successfully run obtaining satisfactory results. The use of the SfM Flow

add-on greatly simplified the data generation and evaluation procedures, also

reducing the amount of time and resources usually needed for the evaluation

of 3D reconstruction methods under specific conditions. It also allowed

taking the pipelines to their limits highlighting critical conditions that can

negatively affect the reconstruction process. According to experiments about

vanilla SfM pipelines, among the tested incremental SfM implementations,

COLMAP showed the best average results. Further work can be done to

evaluate other aspects of the pipeline such as reconstructed object coverage

to identify missing parts. The evaluation method can also be extended to

include the subsequent mesh reconstruction and texture extraction phases. A

uniqueness of ENRICH is the availability of multi-scale data, from aerial to

terrestrial, enabling the evaluation and comparison of methods and algorithms

under various conditions and gathering insights on their strengths and limits.

While the datasets proved themselves useful for the evaluation, they can be

further extended to include monocular and stereo video sequences, semantic

segmentation information, and camera distortions to support the development

and evaluation of video-based real-time 3D reconstruction methods, as well

as better scene understanding.

The material appearance acquisition of real-world surfaces allows giving

virtual elements a realistic look when rendered in a mixed reality context. In
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this thesis it is also proposed a device for the acquisition of material represen-

tations that can be used to provide a realistic feel of different materials in an

MR catalog. This ability also complements the 3D geometry reconstruction.

The proposed device has been successfully designed and built to use cheap

consumer-grade components. The device built on the photometric stereo

technique that was originally presented to recover surface directions for 3D

geometry reconstruction has been successfully extended to allow material

appearance acquisition of a wide range of materials presenting limited specular

reflections. Quantitative and visual evaluations have been performed to assess

the quality of the material texture maps recovered. It has been proved that

the device can acquire surfaces such as textiles, wood, stones, cork, and plastic

and still be able to acquire with the presence of some artifacts highly reflective

materials such as metals. Enhancements can be applied to both the hardware

and the software of the device. A more performing LED setup could be used

to provide stronger lighting on the surface allowing better acquisition of dark

materials. A camera with a higher resolution can be used to acquire more

micro-detail of the surface in order to have better insights into the surface’s

roughness. This would also make possible to find a mapping between the

actual physical roughness and the roughness values used by material models

used for rendering. Finally, the software pipeline could be reviewed to require

fewer calibration steps and to integrate concepts of the SfM pipeline to allow

the acquisition of larger surfaces.

Rendering and interaction is the most important component of a MR

catalog for what concerns how the catalog is perceived and experienced by the

final user. In this document different solutions for providing such experience

are analyzed, a generic framework was defined and it has been tested with

different use case scenarios.

A prototype mobile application for a virtual catalog of textiles has been

developed. It allows the final user to see textiles under different lighting

conditions. The application is based on the previously defined blueprint

design for MR catalogs and uses the proposed device for the acquisition of

materials to build the material representation of different textiles. The light

intensity and temperature can be changed and the interaction also takes into
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account the device orientation to simulate real-time light interactions. The

prototype has been evaluated by a pool of users. They appreciated its ability

to simulate light interactions with the textiles and found it more useful than

static pictures of textiles. In addition, they highlighted some limitations.

The missing or wrong specular reflections on some samples were the main

reason for their bad evaluation. Further work can be done to provide a

better simulation of light interaction and a more accurate appearance of the

samples. It would also be interesting to integrate the application to work in

an augmented textile store. By adding markers on the different textiles a user

would be able to see the real fabric and discover how it would appear under

different lighting conditions prior to making the purchase. Another possibility

is to use such technology to display a catalog of clothes as suggested by some

users during the app evaluation.

In addition, the virtual try-on technology has also been investigated to provide

a prototype eyewear virtual try-on based on the generic AR catalog framework.

After a critical analysis of existing eyewear virtual try-on applications that

aimed to identify their limitations, this thesis introduced the workflow of

the virtual try-on system and described the main modules used to provide

the try-on experience. Since 3D face reconstruction is a key component of

the proposed try-on application, an extensive analysis of the state-of-the-

art methods was conducted in order to evaluate their design, complexity,

geometry reconstruction errors, and reconstructed texture quality. After such

an evaluation, PRNet was selected as the method for 3D face reconstruction

in the proposed virtual try-on. The application uses a customized version

of the generic AR catalog blueprint to overcome the identified limitations of

existing virtual try-on applications for face accessories: first, the eyeglasses

virtual try-on is performed in the 3D space using a 3D model of the user’s

face, reconstructed from a single input picture, allowing the user to interact

with the application in a deferred mode and giving the possibility of observing

the results from different points of view. Second, the glasses fitting takes into

account the actual size of the glasses frames and the actual size of the face of

the user, providing a realistic size fitting. The user’s face size is estimated

with a markerless approach that exploits the iris diameter, thus removing
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additional acquisition steps as required by other applications. It was also

performed a usability study of the proposed eyewear virtual try-on application.

The results show that the application is engaging and easy to use; the users

appreciated the full 3D try-on and expressed willingness to use the proposed

application if made publicly available. Future works can overcome some

limitations observed in the usability study, such as the global quality of the

rendering, which should be improved by providing better and complete 3D

face reconstruction, and enhanced textures. Another possible extension is that

of designing a processing pipeline capable of handling the possible presence

of occlusions and self-occlusions in the input picture: while the face geometry

reconstruction is possible even in the case of occlusions or self-occlusions, the

texture will present missing parts. Restoration techniques such as [30, 58]

can be used to recover the missing portions, or the application may ask

the user to provide a non-occluded face picture. Finally, the application

can take advantage of better integration with online stores and social media

services. Providing the try-on experience through a mobile application will

also improve the integration with user devices: in this case, the new front-end

mobile application can use the existing back-end web service.

Finally, in this thesis it is also proposed the design of a prototype of a smart

mirror that is capable of providing an eyeglasses virtual try-on experience.

The mirror exploits deep learning techniques to implement the relevant tasks

associated with user localization, interaction, and the virtual try-on process.

The result has been achieved by including an external server in the design

and separating the workload between the onboard device and the server. This

led to the possibility of including many features which normally require a lot

of computational power while decreasing the computation time at the same

time. Also, the interaction with Amazon Alexa is another strength of this

prototype. First having a virtual assistant that allows a dialogue really close

to the natural language definitely improves the interaction with the mirror,

especially for those users that are not used to technology such as elders.

Second, exploiting this service further reduces the computational workload

since every skill resides on the Amazon Web Service. Additional improvements

can be done to solve problems such as image quality (especially in poor lighting
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conditions). A more performing pair of microphone and speaker could also be

used to improve the overall quality of the vocal interaction. It would also be

of great usefulness to perform a usability study of the prototype. The current

proof-of-concept could be further developed and strengthened with respect to

interaction with users; this would allow us to validate it in an actual store

environment instead of a laboratory environment.
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A SfM Flow: software architecture

SfM Flow is an add-on for the 3D modeling and rendering software Blender,

and thus its architecture is mainly constrained by the coding style of Blender.

SfM Flow is structured as a python module in which the main components

are split into sub-modules. An “operators” sub-module implements the

main functionalities as Blender’s operators, and the “ui” sub-module groups

the user interface elements, panels, and menus. The “utils” sub-module

contains the shared code used across multiple add-on functionalities. The

“prefs” sub-module handles user preferences and add-on properties. The

“reconstruction” sub-module handles data structures of 3D reconstructions.

Finally, an asset folder contains the textures used by the add-on during the

initialization step to create the concrete-looking ground of the scene. This

folder includes a template flags file used by the Theia [282] 3D reconstruction

library and a camera sensor size database used by OpenMVG [197]. The

modules organization of the add-on is schematized in Figure A.1.

Some parts of SfM Flow can be easily modified to introduce support

for specific use cases. The scene setup and initialization logic are imple-

mented in the “SFM_OT_init_scene” operator that can be modified to

add support for additional setups. The “SFM_OT_animate_camera” and

“SFM_OT_animate_sun” classes respectively define the animations for the

camera and the sunlight lamp; these can be also extended to provide additional

animation types. These classes are defined in the “operators” sub-module.

SfM Flow currently supports the N-View Match (NVM) and Bundle (.out)
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SfM Flow

Operators Prefs

Reconstruction Ui

Utils

Components Menus

Panels

Components

Figure A.1: Simplified modules diagram of SfM Flow.

3D reconstruction exchange formats; other formats can be supported by

extending the “ReconstructionBase” class. SfM Flow automatically discovers

and loads implementations located in the same directory of the base class

which is located in the reconstruction sub-module. SfM Flow supports token

substitution for the custom pipeline commands and the Theia flags template

file; both can be extended to support additional tokens in the “replace_tokens”

function defined beside the “SFMFLOW_OT_run_pipelines” operator.
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B SfM Flow: illustrative example

Here below are described the steps for a simple use case: a single object is

the subject of the dataset, and COLMAP is used to perform the reconstruction.

1. Create a new project and place an object in the scene. Add a camera

to acquire the images that will compose the dataset. An example of the

initial setup is shown in Figure B.1a.

2. Initialize the scene by adding a ground surface and a lighting setup

through the "Initialize current scene" operator (Figure B.1b).

3. Animate the camera to acquire images from different points of view.

Figure B.1c it is shown the case of circular animation around the center

of the scene. If necessary, also animate the Sun lamp movement.

4. Render the images using the provided operator. EXIF metadata are

added to images if supported by the chosen export file format.

5. Run a 3D reconstruction, select COLMAP from the drop-down list, and

start it using the "Run 3D reconstruction" operator.

6. Once the reconstruction is ready, import the N-View Match file (NVM)

(Figure B.1d) and manually scale and align the reconstructed point

cloud to the object(s) in the 3D scene.
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Figure B.1: Illustrative example of the software usage: a) Initial scene; b)
3D scene initialization; c) Camera and sun animation setup; d) Import 3D
reconstruction result; e) Filter reconstructed point cloud; f) 3D reconstruction
fine alignment.
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7. Filter the reconstructed point cloud using the filter functionality (Figure

B.1e) to discard points whose distance is beyond a threshold. Discarded

points are shown in blue by default.

8. Use the "Align selected reconstruction" to perform fine registration of

the point cloud to the virtual scene. This functionality is visible in

Figure B.1f. If the registration process is not satisfying, repeat it with a

better manual registration/filtering or use different parameters for fine

alignment.

9. Evaluate the reconstructed point cloud using the "Evaluate selected

reconstruction" operator. Reconstruction evaluation follows the method

defined in [32]; results will be written in file sfmflow_evaluation.txt.

Evaluation dialog and sample results are visible in Figure B.2.

Figure B.2: 3D reconstruction evaluation.

The functionalities of SfM Flow are further explained in Section 3.4.1.
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C Face size estimation algorithm

Algorithm 1 Face size estimation algorithm.
Input: the face image, the keypoints detected on the face, and the estimated

distance for the ears in pixels.

Output: the estimated face size as the ear-to-ear distance in millimeters.
1: function FaceSizeEstimation(input_img, kpts, ear2ear_pixels)

2: eye_kpts← fetch_eyes_kpts(kpts) ▷ left, right eyes

3: padding ← 10

4: px2mm← 0

5: detection_count← 0

6: for eye_kpts in eyes_kpts do

7: eye_img ← crop_image(input_image, eye_kpts, padding)

8: eye_img ← gamma_correction(eye_img)

9: eye_img ← eye_img[:, :, 0] ▷ use red channel only

10: mask ← drn_d_22_process(eye_img) ▷ predicts the iris segmentation mask

11: iris← detect_hough_circle(mask) ▷ fits a circle over the segmentation mask

12: mm← 11.71/(2 ∗ iris.radius) ▷ size of a pixel in millimeters

13: if mm is not ’nan’ then ▷ estimation successful

14: px2mm← px2mm + mm

15: detection_count← detection_count + 1

16: end if

17: end for

18: if detection_count > 0 then

19: px2mm← px2mm/detection_count ▷ average size of a pixel in millimeters

20: else

21: raise Exception(’Face size estimation failed!’)

22: end if

23: return ear2ear_pixels ∗ px2mm ▷ ear to ear distance in millimeters

24: end function
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and do something constructive.”
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