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Mutational signatures and heterogeneous host
response revealed via large-scale characterization
of SARS-CoV-2 genomic diversity

Alex Graudenzi,1,2,5,7,* Davide Maspero,1,3,5 Fabrizio Angaroni,3,5 Rocco Piazza,4,6,* and Daniele Ramazzotti4,6,*
SUMMARY

To dissect themechanisms underlying the inflation of variants in the Severe Acute
Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) genome, we present a large-
scale analysis of intra-host genomic diversity, which reveals that most samples
exhibit heterogeneous genomic architectures, due to the interplay between
host-related mutational processes and transmission dynamics. The decomposi-
tion of minor variants profiles unveils three non-overlapping mutational signa-
tures related to nucleotide substitutions and likely ruled by APOlipoprotein B Ed-
iting Complex (APOBEC), Reactive Oxygen Species (ROS), and Adenosine
Deaminase Acting on RNA (ADAR), highlighting heterogeneous host responses
to SARS-CoV-2 infections. A corrected-for-signatures dN/dS analysis demon-
strates that such mutational processes are affected by purifying selection, with
important exceptions. In fact, several mutations appear to transit toward clonal-
ity, defining new clonal genotypes that increase the overall genomic diversity.
Furthermore, the phylogenomic analysis shows the presence of homoplasies
and supports the hypothesis of transmission of minor variants. This study paves
the way for the integrated analysis of intra-host genomic diversity and clinical
outcomes of SARS-CoV-2 infections.
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INTRODUCTION

The COronaVIrus Disease 2019 (COVID-19) pandemic has currently affected 216 countries and territories

worldwide withz70million people being infected, while the number of casualties has reached the impres-

sive number of z1:6 million (World Health Organization (WHO) (2020), update 15th December 2020). The

origin and the main features of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) evolution

have been investigated (Zhou et al., 2020b; Wu et al., 2020; Andersen et al., 2020; Xiao et al., 2020; Deng

et al., 2020), also due to the impressive amount of consensus viral sequences included in public databases,

such as Global Initiative on Sharing Avian Influenza Data (GISAID) (Shu andMcCauley, 2017). However, only

a few currently available data sets include raw sequencing data, which are necessary to quantify intra-host

genomic variability.

Due to the combination of high error and replication rates of viral polymerase, subpopulations of viruses

with distinct genotypes, also known as viral quasispecies (Domingo et al., 1985), usually coexist within sin-

gle hosts. Such heterogeneous mixtures are supposed to underlie most of the adaptive potential of RNA

viruses to internal and external selection phenomena, which are related, e.g., to the interaction with the

host’s immune system or to the response to antiviral agents. For instance, it was hypothesized that intra-

host heterogeneity may be correlated with prognosis and clinical outcome (Novella et al., 1995; Domingo

et al., 2012). Furthermore, even if the modes of transmission of intra-host variants in the population are still

elusive, one may hypothesize that, in certain circumstances, infections allow such variants to spread, some-

times inducing significant changes in their frequency (Lythgoe et al., 2020).

In particular, several studies on SARS-CoV-2 support the presence of intra-host genomic diversity in clinical

samples and primary isolates (Ramazzotti et al., 2021; Shen et al., 2020; Wölfel et al., 2020; Capobianchi

et al., 2020; Rose et al., 2020; Lu et al., 2020; Lythgoe et al., 2020; Seemann et al., 2020; Popa et al.,

2020), whereas similar results were obtained on Severe Acute Respiratory Syndrome CoronaVirus
iScience 24, 102116, February 19, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:alex.graudenzi@ibfm.cnr.it
mailto:rocco.piazza@unimib.it
mailto:daniele.ramazzotti@unimib.it
https://doi.org/10.1016/j.isci.2021.102116
https://doi.org/10.1016/j.isci.2021.102116
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102116&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS

iScience
Article
(SARS-CoV) (Xu et al., 2004), Middle East Respiratory Syndrome (MERS) (Park et al., 2016), Ebola virus (Ni

et al., 2016), and Hemagglutinin Type 1 and Neuraminidase Type 1 (H1N1) influenza (Poon et al., 2016).

We here present one of the the largest up-to-date studies on intra-host genomic diversity of SARS-CoV-

2, based on a large data set including 1133 high-quality samples for which raw sequencing data are

available (NCBI BioProject: PRJNA645906). The results were validated on 4 independent data sets

including a total of 953 samples (NCBI BioProject:PRJNA625551, PRJNA633948, PRJNA636748, and

PRJNA647529; see the Validation section).

Our analysis shows that z15% of the SARS-CoV-2 genome has already mutated in at least one sample,

including z1% of positions exhibiting multiple mutations. The large majority of samples shows a hetero-

geneous intra-host genomic composition, with 892 out of 1133 samples (z79%) exhibiting at least one low

frequency variant (Variant Frequency, VF >5% and %90%, named minor variants or iSNVs), 171 samples

more than 5, and 101 samples more than 10. Importantly, several variants are observed as clonal (VF >

90%) in certain samples and at a low frequency in others, demonstrating that transition to clonality might

be due not only to functional selection shifts but also to complex transmission dynamics involving bottle-

necks and founder effects (Domingo et al., 2012).

Strikingly, our analysis allowed us to identify three non-overlapping ‘‘mutational signatures’’, i.e., specific

distributions of nucleotide substitutions, in which are observed in distinct mixtures and with significantly

different intensity in three well-separated clusters of samples, suggesting the presence of host-related

mutational processes. Onemight hypothesize that such processes are related to the interaction of the virus

with the host’s immune system and might pave the way for a better understanding of the molecular mech-

anisms underlying different clinical outcomes.

In particular, the first signature is dominated by C>T:G>A substitution and it is likely related to APOlipo-

protein B Editing Complex (APOBEC) activity, the second signature is mostly characterized by G> T:C> A

substitution and it might be associated to Reactive Oxygen Species (ROS)-related processes, while a third

signature is predominantly associated to A>G:T>C substitution, which is usually imputed to Adenosine

Deaminase Acting on RNA (ADAR) activity.

A corrected-for-signatures version of the dN=dS analysis would suggest that, as expected, the three signa-

tures are affected by mild purifying selection in the population, yet with some exceptions that would sug-

gest the existence of positively selected genomic regions. Furthermore, a certain proportion of samples of

two signature-based clusters mostly associated to APOBEC and ROS appear to be hypermutated (up to

87 minor variants detected in a single host), whereas this effect is mitigated for the remaining cluster, domi-

nated by ADAR-related processes.

Finally, the analysis of the phylogenetic model, obtained from the profiles of clonal variants via the Viral

Evolution ReconStructiOn (VERSO) framework (Ramazzotti et al., 2021), allowed us to assess how many mi-

nor variants are either detected in single samples, in multiple samples of the same clade, or in multiple sam-

ples of independent clades (i.e., homoplasies). Strikingly, an approximately monotonic decrease of theme-

dian VF is observed with respect to the number of clades in which minor variants are observed: minor

variants detected in single clades exhibit the largest (median) VF, as opposed to variants shared in multiple

clades, which display a progressively lower VF.

On the one hand, this result supports the hypothesis of transmission of minor variants during infections and

of the concurrent existence of bottleneck effects (Gutierrez et al., 2012; Domingo et al., 2012). On the other

hand, the significant number of minor variants observed at a low frequency in multiple clades would sug-

gest the presence of mutational hotspots and of phantom mutations related to sequencing artifacts

(Bandelt et al., 2002).
RESULTS

Mutational landscape of SARS-CoV-2 from variant frequency profiles of 1133

samples – data set #1

We performed variant calling from Amplicon raw sequencing data of 1188 samples from the NCBI Bio-

Project: PRJNA645906 and by aligning sequences to reference genome SARS-CoV-2-ANC, which is a
2 iScience 24, 102116, February 19, 2021
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Figure 1. Mutational landscape of 1133 SARS-CoV-2 samples – data set #1 (NCBI BioProject: PRJNA645906)

(A) Scatter plot displaying the number of clonal (VF >90%) and minor (VF >5% and%90% ) variants for 1133 samples of data set#1 (node size proportional to

the number of samples).

(B) Box plots returning the distribution of the number of clonal and (C) minor variants, obtained by grouping samples according to collection date (weeks,

2020; Mann-Kendall trend test p value also shown). n returns the number of samples in each group.

(D) Bar plot returning the proportion of sites of the SARS-CoV-2 genome that are either non-mutated, mutated with a unique SNV, or mutated with multiple

SNVs.

(E) Stacked bar plots returning the proportion of SNVs detected as always clonal, mixed, or always minor.

(F) The ratio of synonymous (S), non-synonymous (NS), and non-coding (NC) mutations, for each category.

(G) Violin plots returning the distribution of VF of all SNVs (n returns the number of samples, k the number of distinct SNVs,m the number of non-zero entries

of the VF matrix).

(H) Graphical representation of an example data set.
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likely ancestral SARS-CoV-2 genome (Ramazzotti et al., 2021). The mutational profiles of 1133 high-quality

samples selected after quality check were analyzed in depth (see Methods and Figure S1).

In detail, 4677 distinct single-nucleotide variants (SNVs, identified by genome location and nucleotide sub-

stitution) were detected in the data set, for a total of 19663 non-zero entries of the VF matrix (see Methods

for further details; the VF profiles of all samples are included in Data S1; see Figure 1H for a graphical rep-

resentation of an example data set). In particular, in our analysis, we consider any SNV detected in any given

sample as ‘‘clonal’’, if its VF is >90% and as ‘‘minor’’ if its VF is >5% and %90%.

The distribution of the number of minor and clonal variants observed in each sample (Figure 1A) unveils an

approximately normal distribution of clonal variants (median = 13, mean = 13.2, and max = 24). Minor var-

iants are detected inz78:7% of the samples and show a long-tail distribution (median = 2, mean = 4.16 and

max = 87). One hundred nine samples (z9:6% of the data set) display a number of minor variantsR 10, up

to a maximum of 87.

Interestingly, we observe a statistically significant increase of genomic diversity on clonal variants with

respect to collection week (Mann-Kendall test for trend on median number of clonal variants p< 0:001, Fig-

ure 1B), due to the accumulation of clonal variants in the population, and which confirms recent findings (Li
iScience 24, 102116, February 19, 2021 3
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Figure 2. Characterization of SNVs detected on the SARS-CoV-2 genome

(A) Scatter plot returning the genome location and the VF of all SNVs detected in the data set, colored according to

category.

(B) Stacked bar plots returning the normalized substitution proportion of all SNVs detected in at least one sample of the

data set, with respect to all 12 possible nucleotide substitutions, grouped by variant type.
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et al., 2020; Shen et al., 2020; Ramazzotti et al., 2021), whereas, as expected, this phenomenon is less

evident for minor variants (Figure 1C). This aspect is further investigated in the following and hints at the

interplay involving the evolutionary dynamics within hosts and the transmission among hosts, which differ-

ently affects clonal and minor variants (Chan et al., 2013).
Evidence of transition to clonality

We further categorize each detected SNV as follows: ðiÞ ‘‘always clonal’’, if clonal in all samples in which it is

detected, ðiiÞ ‘‘always minor’’, if minor in all samples in which it is detected, ðiiiÞ ‘‘mixed’’, if observed as

clonal in at least one sample and as minor in at least another sample.

Forty thousand six hundred seventy seven SNVs were detected on 4476 distinct genome sites (z 14:9% of

the SARS-CoV-2 genome), of which 199 sites (z0:6% of the genome) display multiple nucleotide substitu-

tions (see Figure 1D). This suggests that the proportion of mutated genomic sites might be considerably

higher in the overall population, especially if considering minor variants. Overall, 25:8%, 7:8%, and 66:3%

SNVs are detected as always clonal, mixed, and always minor, respectively, and are mostly non-synony-

mous (see Figures 1E and 1F).

The analysis of the VF distribution (Figure 1G) unveils an impressive scarcity of variants showing VF in the

middle range, i.e., between 20% and 90%, for all categories. This phenomenon is likely due to transmission

bottlenecks, which tend to purify low-frequency variants in the population. Nonetheless, both mixed and

always minor variants display broad VF spectra, an aspect that is particularly relevant for the former cate-

gory. In this respect, 24:4% of all mixed variants (89 on 365) never display a VF%20%: one may hypothesize

that such variants are indeed ‘‘transiting to clonality’’ in the population because either positively selected,

as a result of the strong immunologic pressure within human hosts (Lucas et al., 2001), or because affected

by transmission phenomena involving founder effects, bottlenecks, and stochastic fluctuations (Gutierrez

et al., 2012; Domingo et al., 2012).

Conversely, one might hypothesize that most remaining mixed variants may result from random mutations

hitting positions of SNVs that are already present as clonal in the population.

Furthermore, the distribution of SNVs with respect to each region of the genome in Figure 2A demon-

strates that mutations are approximately uniformly distributed across the genome (also see Figure S2).
4 iScience 24, 102116, February 19, 2021
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Overall, this analysis provides one of the first large-scale quantifications of transition to clonality in SARS-

CoV-2 and might serve to intercept variants possibly involved in functional modifications, bottlenecks, or

founder effects.
De novo inference of SARS-CoV-2 mutational signatures

In order to investigate the existence of mutational processes related to the interaction between the host

and the SARS-CoV-2, we analyzed the distribution of nucleotide substitutions for all SNVs detected in

the data set. In Figure 2B, one can see the proportion of SNVs for each of the 12 nucleotide substitution

types (e.g., number of C>T’s) over the total number of nucleotides present in the reference genome for

each substitution type (e.g., number of C’s).

Certain substitutions present a significantly higher normalized abundance, confirming recent findings on

distinct cohorts (Simmonds, 2020; Di Giorgio et al., 2020; Popa et al., 2020). In particular, C> T substitutions

are observed inz28% of all C nucleotides in the SARS-CoV-2 genome, G>T’s inz15% of all G’s, T> C’s in

z7% of all T’s, and A>G’s in z5% of all A’s.

Although, traditionally, a 12-substitution pattern has been used in order to report mutations occurring in

single-stranded genomes, we reasoned that, owing to the intrinsically double-stranded nature of the viral

life cycle (i.e., a mutation occurring on a plus strand can be transferred on theminus strand by RdRP and vice

versa), it is sound to consider a total of 6 substitution classes (obtained by merging equivalent substitutions

in complementary strands) to investigate the possible presence of viral mutational signatures (Alexandrov

et al., 2013). Clonal variants were not considered in the next analyses to focus on SNVs likely related to host-

specific mutational processes and by excluding variants presumably transmitted during infection events.

In particular, in order to identify and characterize the mutational processes underlying the emergence of

SARS-CoV-2 variants with a statistically grounded approach, we applied a Non-negative Matrix Factoriza-

tion (NMF) approach (Brunet et al., 2004) and standard metrics to determine the optimal rank (see

Methods). In particular, we analyzed the mutational profiles of 150 samples exhibiting at least 6 always mi-

nor variants (on 1133 total samples) to ensure a sufficient sampling of the distributions.

Strikingly, 3 distinct and non-overlapping mutational signatures are found and explain 96:5% of the vari-

ance in the data (Figures 3A and S4; cophenetic correlation coefficient = 0:998, cosine similarity between

predictions and observations = 0:973, harmonic mean p value of the one-sided Mann-Whitney U test on

bootstrap re-sampling <0:01 for all signatures, see Methods). In particular, signature S#1 is predominantly

related to substitution C>T:G>A (81:2%), signature S#2 to substitution C>A:G>T (77:7%), while signature

S#3 is dominated by substitutions T>C:A>G (S#3) and T>A:A>T (23:6%).
Characterization of mutational signatures of SARS-CoV-2

Signature S#1 is related to C>T:G>A substitution, which was often associated to APOBEC i.e., a cytidine

deaminase involved in the inhibition of several viruses and retrotransposons (Sharma et al., 2015). An insur-

gence of APOBEC-relatedmutations was observed in other coronaviruses shortly after spillover (Woo et al.,

2007), and it was recently hypothesized that APOBEC-like editing processes might have a role in the

response of the host to SARS-CoV-2 (Simmonds, 2020).

As specified above, a mutational process occurring on single-stranded RNA with a given pattern, e.g., C>

T, could occur as a C>Tmutation on the plus reference strand but could similarly occur on theminus strand,

again as a C>T substitution. However, C>T events originally occurring in the minus strand would be re-

corded as G>A owing to the mapping of the mutational event as a reverse complement on the plus refer-

ence genome. Starting from these considerations and hypothesizing that the C>T:G>A substitution is

mediated by APOBEC, which operates on single-stranded RNA and is similarly active on both strands,

the analysis of the C>T/G>A ratio (or, more generally, of a plus/minus substitution ratio) should give an ac-

curate measurement of the molar ratio between the two viral strands inside the infected cells.

In our case, by comparing the proportion of substitutions of all minor variants detected in the data set, the ratio

C>T/G>A is 5.1

�
1602=5491

335=5863

�
.

iScience 24, 102116, February 19, 2021 5
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Figure 3. Mutational signatures of SARS-CoV-2

(A) The nucleotide class distribution in SARS-CoV-2-ANC reference genome (Ramazzotti et al., 2021) and for the 3 SARS-CoV-2 mutational signatures

retrieved via NMF on 6 substitution classes is shown.

(B) Heatmap returning the clustering of 150 samples withR6 always minor variants (z13%of the data set), computed via k-means on the low-rank latent NMF

matrix. The goodness of fit in terms of median cosine similarity between observations and predictions and the harmonic mean p value of the one-sided

Mann-Whitney U test on bootstrap re-sampling, are shown for all signatures, see Methods.

(C) Pie chart returning the proportion of samples in the three signature-based clusters, plus a fourth cluster SC#4 including all samples with R 1 and < 6

always minor variants and the group of samples with 0 always minor SNVs.

(D-E) Categorical normalized cumulative VF distribution of all SNVs detected in each signature-based cluster, with respect to (D) 6 substitution classes and to

(E) 96 trinucleotide contexts, as compared to the theoretical distribution in SARS-CoV-2-ANC reference genome (left).
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This result allows us to hypothesize that plus and minus viral strands of the SARS-CoV-2 genome are present in

infected cells with a molar ratio in strong favor of the plus strand and are consistent with the expected activity of

APOBEC on single-stranded RNA. Further experimental analyses will be required to confirm this hypothesis.

The second signature SC#2 is predominantly characterized by substitution C>A:G>T, whose origin is how-

ever still obscure. To gain insight into the mechanisms responsible for its onset, also in this case, we

analyzed the C>A and G>T substitution frequency, which revealed a strong disproportion in favor of the

latter: the ratio G>T/C>A is 9.5

�
804=5863

79=5491

�
. Overall, this result suggests that, in this case, the G> T sub-

stitution is the active mutational process.

In this respect,onemighthypothesize a role forROSas amutagenic agent underlying this signature, as observed,

for instance, in clonal cancer evolution (Alexandrov et al., 2020). ROSs are extremely reactive species formed by

the partial reduction of oxygen. A large number of ROS-mediated DNA modifications have already been iden-

tified; in particular, however, guanine is extremely vulnerable to ROS because of its low redox potential (David

et al., 2007). ROS activity on guanine causes its oxidation to 7,8-dihydro-8-oxo-20-deoxyguanine (oxoguanine).

Notably, ðiÞ oxoguanine can pair with adenine, ultimately causing G>T transversions, and ðiiÞ ROSs are able to

operate on single-stranded RNA; therefore, their mutational process closely resembles the C>A:G> T pattern

we see in signature SC#2. Thus, it is sound to hypothesize that the C>A:G>T substitution is generated by

ROS,whose production is triggered upon infection, in linewith several reports indicating that a strong ROSburst

is often triggered during the early phases of several viral infections (Molteni et al., 2014; Reshi et al., 2014).
6 iScience 24, 102116, February 19, 2021
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Figure 4. Characterization of signature-based clusters of SARS-CoV-2 samples

(A) Distribution of the number of clonal variants with respect to the 4 signature-based clusters described in the text.

(B) Distribution of the number of minor variants for the 4 signature-based clusters.
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Figure 4. Continued

(C) Violin plots returning the VF distribution with respect to signature-based clusters (n returns the number of samples, k the number of distinct SNVs,m the

number of non-zero entries of the VF matrix).

(D) (Average) proportion of substitution classes of always minor variants for all the samples included in the 4 signature-based clusters, grouped and sorted by

the number of minor SNVs (e.g., at position 10 of the x axis one can find the average proportion of substitution classes for all samples with 10 minor SNVs).

(E) Corrected-for-signatures dN=dS ratio plot, as computed by normalizing the ratio on cluster substitution distribution, on a 300-base sliding window, with

respect to signature-based clusters (see Methods). The superimposed dotted line returns the mutational density in each window (rightmost y axis).
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Finally, signature SC#3 is primarily characterized by A>G:T>C substitution, which is typically imputed to

the ADAR deaminase mutational process (Nishikura, 2010). ADAR targets adenosine nucleotides, causing

deamination of the adenine to inosine, which is structurally similar to guanine, ultimately leading to an A>G

substitution. Unlike APOBEC, ADAR targets double-stranded RNA; hence, it is active only on plus/minus

RNA dimers. In line with this mechanism and in sharp contrast with APOBEC, A>G’s and the equivalent

T>C’s show a similar prevalence: the ratio A>G/T>C is 0.81

�
384=8954

508=9595

�
. This supports the notion that

the A>G:T>C mutational process is exquisitely selective for double-stranded RNA, where it can similarly

target adenines present on both strands.
Identification of signature-based clusters

We then clustered the 150 samples with at least 6 always minor mutations (on 1133 total samples) by

applying k-means on the normalized low-rank latent NMF matrix and employing standard heuristics to

determine the optimal number of clusters (see Methods). As a result, 3 signature-based clusters (SC#1,

SC#2, and SC#3) are retrieved, including 61, 49, and 40 samples, respectively (see Figure 3B).

Remarkably, clusters SC#1 and SC#3 are characterized by distinctive signatures, S#1 (dominated by sub-

stitution C>T:G>A) and SC#3 (T>C:A>G and T>A:A>T), respectively, whereas cluster SC#2 is character-

ized by a mixtures of all three signatures. In particular, the samples of the distinct clusters display dissimilar

categorical VF distributions (see Figure 3D), pointing at the existence of different host-related mutational

processes.

Wehere recall that samples with a number of alwaysminor variants between 1 and 5 (742 samples, 65:5%) cannot

be reliably associated to signature-based clusters, due to the low number of SNVs. For this reason, such samples

were considered separately in the analysis and were labeled as cluster SC#4 from now on (Figure 3C).

Importantly, by computing the categorical VF distribution of all minor SNVs with respect to all 96 trinucle-

otide contexts (i.e., by considering flanking bases), one can notice that clusters SC#1 and SC#2 display

profiles that resemble that of the theoretical substitution distribution of the reference genome, thus sug-

gesting that, in such cases, the host-related mutational processes are likely independent from flanking ba-

ses. Conversely, SC#3 displays a distribution of T substitutions with prevalent peaks in certain contexts

and, especially, in G[T>A]G, A[T>C]G, and C[T>G]T.

We finally note that, due to the possible transmission of minor variants among hosts during infections (see

above), signature-based clusters might include both samples with host-related mutational processes and

samples with minor variants inherited from infecting hosts.
Characterization of signature-based clusters

We analyzed in depth the intra-host genomic diversity of the samples of the 4 different signature-based

clusters. As a first noteworthy result, while the distributions of the number of clonal variants are significantly

alike across clusters (Kolmogorov-Smirnov, KS test p>0:20 for 6=6 pairwise comparisons; see Figure 4A and

Data S2), clusters SC#1 and SC#2 display a similar distribution of minor variants (KS test p = 0:86) but

significantly different distributions from the remaining clusters (KS p<0:05 for all remaining pairwise com-

parisons; see Figure 4B and Data S2). The relative proportion of substitution types for the samples of each

signature-based cluster can be found in Figure 4D.

In particular, clusters SC#1 and SC#2 are characterized by a significantly higher number of minor variants

(median 16 and 18, mean 22.3 and 22.6, max 87 and 70, for SC#1 and SC#2, respectively). Accordingly,

both clusters include a certain proportion of highly mutated samples (with R10 minor variants), 44 on 61
8 iScience 24, 102116, February 19, 2021
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and 41 on 49 for SC#1 and SC#2, respectively. This result supports the existence of highly active muta-

tional processes and is consistent with the hypothesis of processes related to APOBEC and ROS.

Conversely, cluster SC displays a much lower number of minor variants (median 11, mean 13.2, max 33;

23 samples on 40 with R10 variants). This finding hints at the existence of milder spontaneous mutational

processes related to ADAR.

Interestingly, the VF distribution for all SNVs highlights a remarkable similarity among signature clusters SC#1,

SC#2, and SC#3, with the large majority of variants found either at a high or a low frequency, whereas, by con-

struction,SC#4 isdominatedby clonal variants (Figure 4C).Moreover, onlyminor differences areobserved in the

distribution of substitutions with respect to SARS-CoV-2 Open Reading Frames (ORFs) (see Figure S3).

Overall, these results reinforce the hypothesis of distinct mutational processes active in different hosts.

When clinical data would be available in combination to sequencing data, this will allow us to assess the

correlation with clinical outcomes.

Evidence of purifying selection against signature-related mutagenic processes

To investigate the evolutionary dynamics of SARS-CoV-2, we implemented a corrected-for-signatures

version of the dN=dS ratio analysis, i.e., obtained by normalizing the NS/S rate with respect to the theoret-

ical distribution of substitutions detected in each cluster, as suggested in a different context in Van den

Eynden and Larsson (2017).

Interestingly, the corrected dN=dS ratio computed on the genome coding regions (i.e., = 29133 basis) is

equal to 0.84, 0.84, and 0.87 for the three signature-based clusters, respectively, and suggests the exis-

tence of purifying selection for all signature-related mutational processes.

We refined the analysis via a 300-base sliding window approach. On the one hand, the analysis of the muta-

tional density confirms that the large majority of variants is indeed observed in purified regions of the

genome. On the other hand, however, the variation of the corrected dN=dS ratio across the genome shows

that some regions exhibit a ratio significantly larger than 1. This phenomenon, which is particularly evident

in signature-based clusters SC#1 and SC#2, hints at possible positive selection processes affecting spe-

cific genomic regions and deserves further investigations.

Phylogenomic model of SARS-CoV-2 reveals transmission of minor variants and homoplasies

We employed VERSO (Ramazzotti et al., 2021) to reconstruct a robust phylogeny of samples from the bi-

narized VF profiles of the 28 clonal variants (VF >90%) detected in at least 3% of the data set. In Figure 5A,

one can see the output phylogenetic tree, which describes the existence of 23 clades and in which samples

with identical corrected clonal genotype are grouped in polytomies (see Figure 5B and the Methods sec-

tion for further details). The mapping between clonal genotype labels and the lineage dynamic nomencla-

ture proposed in Rambaut et al. (2020) and generated via pangolin 2.0 (O’Toole et al., 2020) is included in

Data S3, whereas the phylogenetic model returned via MrBayes (Ronquist et al., 2012) on data set #1 is

displayed in Figure S5 (see Methods).

Interestingly, SNV g.29095T>C (mapped on ORF N, synonymous) appears to be the earliest evolutionary

event from reference genome SARS-CoV-2-ANC (Ramazzotti et al., 2021). All downstream clades belong

to type B type (Forster et al., 2020; Tang et al., 2020), as determined by presence of mutations g.8782T>

C (ORF1ab, synonymous) and g.28144C>T (ORF1ab, p.84S>L). Importantly, we note that variant

g.23403A>G (S, p.614D>G), whose correlation with viral transmissibility was investigated in depth (Lokman

et al., 2020; Daniloski et al., 2020; Korber et al., 2020; Zhou et al., 2020a; Grubaugh et al., 2020; Plante et al.,

2020), is found in 18 clades, which include 1113 samples of the data set.

In addition, the model unveils the presence of a number of homoplasies, as a few clonal variants are

observed in independent clades and, especially, mutation g.11083G>T (ORF1ab, p.3606L> F), which was

investigated in a number of recent studies on SARS-CoV-2 evolution (van Dorp et al., 2020; Ramazzotti

et al., 2021), and is observed in 42 samples and 8 distinct clades. One might hypothesize that such SNVs

have spontaneously emerged in unrelated samples and were selected either due to some functional advan-

tage or alternatively to the combination of founder and stochastic effects involved in variant transmission

during infections, which might lead certain minor SNVs transiting to clonality in the population (see above).
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Figure 5. Phylogenomic model of 1133SARS-CoV-2 samples of via VERSO – data set #1 (NCBI BioProject:

PRJNA645906)

(A)The phylogenetic tree returned by VERSO (Ramazzotti et al., 2021) considering 28 clonal variants (VF > 0:90) detected in

at least 3% of the 1133 samples of the data set is displayed. Colors mark the 23 distinct clades identified by VERSO, which

are associated to corrected clonal genotypes. Genotype labels are consistent with (Ramazzotti et al., 2021), whereas in

Supplementary File S3, one can find the mapping with the lineage nomenclature proposed in Rambaut et al. (2020).

Samples with identical corrected clonal genotypes are grouped in polytomies (visualization via FigTree (Rambaut, 2009)).

The black colored sample represents the SARS-CoV-2-ANC reference genome.

(B) Heatmap returning the composition of the 23 corrected clonal genotypes returned by VERSO. Clonal SNVs are

annotated with mapping on ORFs, synonymous (S), nonsynonymous (NS) and non-coding (NC) states, and related amino

acid substitutions. Variants g.8782T>C (ORF1ab, synonymous) and g.28144C>T (ORF8, p.84S>L) are colored in blue,

variant g.23403 A>G (S, p.614 D>G) in red, homoplastic variant g.11083G>T (ORF1ab, p.3606L>F) in green.

(C) Heatmaps displaying the count of minor variants with respect to the number of clades and samples in which they are

found, grouped by signature-based cluster (e.g., at row 3 and column 5, the color represents the number of SNVs found in

3 clades and 5 samples).

(D) Violin plots returning the VF distribution of all minor variants, with respect to the number of clades in which they are

found (the first violin plot is associated to variants privately detected in single samples). n returns the number of samples, k

the number of distinct SNVs, m the number of non-zero entries of the VF matrix.

(E) Pie chart returning the proportion of minor variants privately detected in single samples, detected in multiple samples

of the same clade, and in multiple samples of independent clades.
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As extensively discussed in Ramazzotti et al., 2021, while all the clonal variants of a host aremost likely trans-

mitted during an infection, the extent of transmission of minor variants is still baffling and is highly influ-

enced by bottlenecks, founder effects, and stochasticity (Gutierrez et al., 2012; Domingo et al., 2012).

Simultaneous infections of the same host from multiple individuals harboring distinct viral lineages (also
10 iScience 24, 102116, February 19, 2021
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named superinfections) might in principle affect variant clonality, yet their occurrence is extremely rare

(Lythgoe et al., 2020).

For this reason, we quantified the number of minor variants (VF %90%)

1. privately detected in single samples and which are most likely spontaneously emerged via host-

related mutational processes;

2. found in multiple samples of the same clade, which might be either ðaÞ spontaneously emerged or

ðbÞ transferred from other hosts via infection chains; and

3. observed in multiple samples of independent clades (i.e., homoplasies) and which might be due to

ðaÞ positive selection of the variants due to some functional advantage, in a scenario of parallel/

convergent evolution, ðbÞ mutational hotspots, i.e., SVNs falling in mutation-prone sites or regions

of the viral genome, ðcÞ phantommutations due to sequencing artifacts (Bandelt et al., 2002), and ðdÞ
complex transmission dynamics involving founder effects and stochasticity, which may allow certain

minor variants to transit to clonality, eventually leading to a clonal genotype transmutation (see

above).

In our case, we observe that 87:4% of minor variants are observed as private of single samples, 2:4% in mul-

tiple samples of the same clade, and 10:2%are detected in samples belonging to distinct clades (Figure 5E).

Importantly, significantly different VF distributions are observed, and, especially, an approximately mono-

tonic decrease of the median VF is detected with respect to the number of clades in which minor variants

are found (Figure 5D). Important conclusions can be drawn from these results.

Apparently, the large majority of minor SVNs spontaneously emerges in single samples, likely due to signa-

ture-based mutational processes. Yet, the VF distribution of private minor SNVs suggests that, as ex-

pected, most of such variants are indeed purified in the population.

Accordingly, the hypothesis of transmission of minor variants during infections is supported by the signif-

icantly larger VF of (the fewer) minor variants found in multiple samples of the same clade, as this effect is

most likely due to transmission bottleneck effects (Gutierrez et al., 2012; Domingo et al., 2012).

In addition, the progressively smaller VF of minor variants observed in samples of independent clades and

which are likely more distant in the infection chain hints at the noteworthy presence of mutational hotspots

and of phantom mutations related to sequencing artifacts (Bandelt et al., 2002). In all scenarios, the pres-

ence of positively selected variant cannot be excluded but requires ad hoc investigations.

Interestingly, one can refine the analysis by focusing on distinct signature-based clusters, for instance, by

pinpointing variants likely related to mutational hotspots or phantom mutations: see, e.g., variant

g.8651A>C (ORF1ab, p.2796M>L) which is observed in 63 samples and 12 clades (Figure 5C).

Validation – data sets #2� 5

We employed 4 independent data sets (NCBI BioProjects: PRJNA625551, PRJNA633948, PRJNA636748,

and PRJNA647529; see Methods for details) to validate the presence of the discovered mutational signa-

tures. Specifically, we performed signature assignment with respect to the discovered signatures on 141,

23, 17, and 14 high-quality samples showing R6 always minor variants in each data set, respectively.

Three signature-based clusters are found for all data sets and explain more that 97% of the variance in all cases,

with highly significant p values (see Figure 6). Such clusters are related to combinations of signatures consistently

to the analysis presented in the text and display alike distributions of minor SVNs (see Figure S6).

These important results prove the generality of our findings and strongly support the hypothesis of distinct

mutational processes active in distinct groups of samples.

DISCUSSION

Standard (phylo)genomic analyses of viral consensus sequences might miss useful information to investi-

gate the elusivemechanisms of viral evolution within hosts and of transmission among hosts. In this respect,
iScience 24, 102116, February 19, 2021 11



Figure 6. Validation on data sets #2� 5 (NCBI BioProject: PRJNA636748, PRJNA633948, PRJNA647529, and PRJNA625551)

Heatmap returning the clustering of 141, 23, 17, and 14 samples of data sets#2� 5 withR6 always minor variants (of the data set), computed via k-means on

the low-rank latent NMF matrix on the three signatures discovered on data setz13% (see Methods). The goodness of fit in terms of median cosine similarity

between observations and predictions and the harmonic mean p value of the one-sided Mann-Whitney U test on bootstrap re-sampling are shown for all

signatures (see Methods).
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raw sequencing data of viral samples can be effectively employed to deliver a high-resolution picture of

intra-host heterogeneity, which might underlie different clinical outcomes and affect the efficacy of anti-

viral therapies. This aspect is vital especially during the critical phases of an outbreak, as experimental hy-

potheses are urgently needed to deliver effective prognostic, diagnostic, and therapeutic strategies for in-

fected patients.

We here presented one of the largest up-to-date quantitative analyses of intra-host genomic diversity of

SARS-CoV-2, which revealed that the large majority of samples present a complex genomic composition,

likely due to the interplay between host-related mutational processes and transmission dynamics.

In particular, we here proved the existence of mutually exclusive viral mutational signatures, i.e., nucleotide

substitution patterns, which show that different hosts respond to SARS-CoV-2 infections in different ways,

likely ruled by APOBEC, ROS, or ADAR-related processes.

The corrected-for-signatures dN=dS analysis shows that such numerous low-frequency variants tend to be

purified in the population whereas, conversely, a certain number of variants appear to consolidate. In

particular, due to the still obscure combination of bottleneck effects and selection phenomena, certain var-

iants appear to transit to clonality in the population, eventually leading to the definition of new clonal ge-

notypes. Once become clonal, mutations tend to accumulate in the population, as proven by a statistically

significant increase of genomic diversity, and might be used to reconstruct robust models of viral evolution

via standard phylogenetic approaches.

The analysis of homoplasies, i.e., minor variants shared across distinct clades and unlikely due to infection

events, demonstrates that a high number of mutations can independently emerge in multiple samples, due

to mutational hotspots often related to signatures or, possibly, to positive (functional) selection.

In addition, the relatively higher VF of minor variants shared by multiple samples of the same clades sup-

ports the hypothesis of transmission during infections.

To conclude, we advocate the release of a larger number of raw sequencing data sets, especially in com-

bination with clinical data, in order to investigate the relation among the discovered host-specific pro-

cesses and clinical outcomes.
LIMITATIONS OF THE STUDY

Reference genome

Different reference genomes have been employed for variant calling in the investigation of the origin and

evolution of SARS-CoV-2. For instance, sequence EPI_ISL_405839 was used, e.g., in Bastola et al. (2020)

and sequence EPI_ISL_402125, e.g., in Andersen et al. (2020). As detailed in the Methods section, here

we employed as reference the sequence SARS-CoV-2-ANC, which was identified in Ramazzotti et al., 2021
12 iScience 24, 102116, February 19, 2021
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as a likely ancestral SARS-CoV-2 genome. Clearly, the use of different, albeit mostly overlapping, reference

genomes can influence downstream analyses and, especially, the inference of the first evolutionary steps of

the phylogenomic model, which should be therefore considered with caution. However, in our specific

case, the employment of any of such reference genomes does not impact the identification and character-

ization of mutational signatures since the SNVs that distinguish such sequences are found as clonal in at

least one sample of the data set and, accordingly, are excluded from the analysis.

Quasispecies composition

As discussed in the Introduction section, the analysis of raw sequencing data might be used to characterize

the quasispecies architecture of single samples. To this end, a plethora of sophisticated computational

methods for the characterization of the quasispecies composition of single samples is available, e.g., (Pros-

peri and Salemi, 2012; Giallonardo et al., 2014; Töpfer et al., 2014; Barik et al., 2018), and was recently re-

viewed in Knyazev et al. (2020). In the phylogenomic analysis included in this work, we decided to restrict

the analysis on clonal variants that, by definition, are present in most of (or all) the quasispecies of a given

sample. This allows us to provide a coarse-grained picture of the main steps of SARS-CoV-2 evolution and,

at the same time, to investigate the possible transmission of minor variants, which are related to scarcely

prevalent and rare quasispecies. It would be worth investigating how the combination of more sophisti-

cated methods for quasispecies deconvolution and of our approach for mutational signatures analysis

may improve the overall comprehension of SARS-CoV-2 diversity, adaptability, and evolution.

Data set quality

It was recently noted that some currently available SARS-CoV-2 data sets might present quality issues,

especially with respect to low-frequency variants (De Maio et al., 2020). For this reason, the results of

any computational pipeline should be, in principle, validated on data sets for which the ground truth is

known. In our case and given the current shortage of SARS-CoV-2 benchmark data sets, we decided to vali-

date the discovery and characterization of the mutational signatures on 4 different data sets, generated

from independent laboratories worldwide, so to ensure the generality of the results obtained via our frame-

work (see the Validation section).

Indels

The evolution of SARS-CoV-2 is characterized by the presence of a significant number of insertions and de-

letions (Koyama et al., 2020), which are being cataloged via COV-Glue (Singer et al., 2020). In this work, we

focused on the analysis of SNVs, as this allows us to discover and characterize statistically significant host-

related mutational signatures. Despite being beyond of the scope of the current work, it might be worth

investigating the origination, evolution, and transmission of indels as well.
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Transparent Methods

Datasets
Dataset #1. We analyzed a dataset comprising 1188 samples from NCBI BioProject with accession
number PRJNA645906. For all samples, Illumina AMPLICON sequencing high-coverage raw data are
provided; all patients were located in California, United States. Within this dataset, we considered
for our analyses, 1133 high-quality samples having coverage ≥ 20 in at least 75% of the virus genome.

Datasets #2−5 (validation). We considered 4 additional datasets for validation, NCBI BioProject
with accession numbers PRJNA625551 (United States, 272 AMPLICON samples), PRJNA633948
(Australia, 203 AMPLICON samples), PRJNA636748 (South Africa, 408 AMPLICON samples),
PRJNA647529 (Israel, 212 AMPLICON samples). We applied the same QC filters to these datasets
(coverage ≥ 20 in at least 75% of virus genome), to obtain four validation set including a total of 953
samples.

SNVs calling. For all datasets, we downloaded SRA files and converted them to FASTQ files
using SRA toolkit. Following Ramazzotti et al. (2020), we used Trimmomatic (version 0.39) to
remove positions at low quality from the RNA sequences, using the following settings: LEADING:20
TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:40.

We used bwa mem (version 0.7.17) to map reads to the reference genome SARS-CoV-2-ANC, which
was recently released in Ramazzotti et al. (2020). SARS-CoV-2-ANC is identical to EPI_ISL_405839
(Bastola et al., 2020) and EPI_ISL_402125 (Andersen et al., 2020) reference genomes on 29865
(out of 29870) genome locations (99.9%), includes the polyA tail of the latter genome (33 bases),
and has haplotype TCTCT at locations 8782, 9561, 15607, 28144 and 29095, as observed in both
the Bat-CoV-RaTG13 (sequence EPI_ISL_402131) (Zhou et al., 2020) and Pangolin-CoV (sequence
EPI_ISL_410721) (Andersen et al., 2020; Xiao et al., 2020) genomes.

We then generated sorted BAM files from bwa mem results with SAMtools (version 1.6) and
removed duplicates with Picard (version 2.22.1). Variant calling was performed generating mpileup
files with SAMtools and then using VarScan (min-var-freq parameter set to 0.01) (Koboldt et al.,
2012).

We finally verified the absence of any possible bias in the detection of minor variants due to
sequencing artifacts. As one can see in Supplementary Fig. S1, no correlation between the number of
SNVs and both total coverage and the median coverage is observed (R2 < 0.04 in both cases), which
proves the good quality of the calls.
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Signatures analysis
The analysis was performed on always minor variants (VF > 5% and ≤ 90% in all samples in which
they are detected), in order to ensure that the considered variants are not due to transmission,
but are likely emerged in the host. In such way, we could associate to each discovered signature a
mechanism causing variants in the viral genome related to the specific host.

Signatures decomposition was formulated as a Non-negative Matrix Factorization problem (NMF)
(Brunet et al., 2004). Given n samples, r possible substitution classes (e.g., C>T:G>A) and s
signatures, we can define the following objects:

• the input data matrix D, a n× r dimensional matrix, where every element di,j represents the
number of SNVs with substitution class j in the ith sample. Note that di,j ∈ R+;

• the low-rank latent NMF matrix A, a n × s dimensional matrix , where every element ai,j
represents the linear combination coefficient of signature j in sample i (also exposure of the ith

sample to signature j (Alexandrov et al., 2013)). Note that ai,j ∈ R+;

• the signature (or basis) matrix B, a s× r dimensional matrix, where every row is a categorical
distribution of all substitution classes in each signature. For this matrix we assume that every
row must sum up to 1, then bi,j ∈ {0, 1} and

∑r
i=1 bi,j = 1.

In particular, we here considered 6 substitution classes (r = 6) by merging equivalent substitution
types, namely G>T:C>A, G>C:C>G, G>A:C>T, A>T:T>A, A>G:T>C and A>C:T>G.

Problem 1 (Signature decomposition): Given the data matrix D, we aim at finding the NMF latent
matrix A and the signature matrix B, such that ||D−A ·B||2 is minimum.

To solve the stated problem, we here performed a total of 100 independent NMF runs with
standard update (Brunet et al., 2004), for solutions at ranks varying from 1 to 6, where initial
solutions were randomly initialized; for each run a total of 20 iterations were performed where
signatures and their assignments to samples were iteratively estimated by non-negative least squares
(Chen and Plemmons, 2010). The final solution was constructed as the consensus of the 100 runs
(Brunet et al., 2004).

We then employed multiple state-of-the-art approaches to assess the optimal rank (optimal number
of signatures s) for the NMF decomposition. We first assess the stability of NMF results over the
100 runs, with the idea that stable solutions are preferable to unstable ones; to this extent, we
computed the average Cophenetic correlation coefficient (Brunet et al., 2004), which showed high
stability (0.998) at rank equal to 3 (see Supplementary Fig. S3A). Furthermore, we also evaluated
the goodness of fit of NMF solutions at different ranks, with rank equals to 3 being able to explain
96.54% of variance in the data (see Supplementary Fig. S3B); finally, we report as Supplementary Fig.
S3C the average cosine similarity between observations and predictions by NMF with rank equals to
3, showing a plateau with correlation equals 0.973 (Lal et al., 2020). All of this supports 3 as the
optimal rank for our decomposition problem and the presence of 3 distinct mutational signatures in
our data.

Identification of signature-based clusters. In order to identify clusters of samples possibly
affected in different proportions by the discovered mutational signatures, we considered the low-rank
latent NMF matrix A defined above.

Specifically, we first normalizedA such that each row of the matrix sums up to 1 and then computed
the euclidean distance among each pair of samples. We next performed Principal Component Analysis
(PCA) on the distance matrix to estimate the optimal number of clusters present in our data. In
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detail, the analysis of the eigenvalues of the distance matrix shows that 3 components explain > 99%
of the variance, followed by a plateau. Accordingly, we performed k-means clustering with k = 3 on
the normalized A matrix to discover the signature-based clusters.

Assessment of signatures significance. We assessed the statistical significance of samples
exposure to signatures by bootstrap. Namely, for each sample we performed 1000 bootstrap re-
sampling from their observed variants cumulative distributions and assigned signatures to each
bootstrap dataset in order to obtain 1000 independent assignments for each sample. Then, for each
signature we computed a p-value by Mann-Whitney U test to verify the hypothesis that such signature
was contributing to more than 5% variants (one-sided test). A p-value assessing the significance of
each signature was computed as the harmonic mean of the Mann-Whitney U test p-values (Wilson,
2019).

Corrected-for-signatures dN/dS analysis
In order to quantify the selection pressure in coding regions of SARS-CoV-2, we employed dN/dS
analysis, which assesses and compares non-synonymous to synonymous substitution rates. In its
standard version, this analysis assumes uniform nucleotide substitution probabilities across the
genome; however, this hypothesis might not hold if different mutational processes are active with
biases over a subset of substitutions (e.g., non-uniform distribution might be observed across signature-
based clusters). If this bias is not taken in account, it may lead to erroneous estimation of the dN/dS
ratio (Van den Eynden and Larsson, 2017).

For this reason, since we discovered the existence of different host-related mutational processes
(i.e., the mutational signatures) that are strongly biased toward specific substitutions, we developed a
corrected-for-signatures dN/dS ratio analysis, as proposed in a different context in Van den Eynden
and Larsson (2017). Specifically, given the ith sliding window of the coding region comprising l bases
and considering the f th signature-based cluster, the corrected dN/dS ratio (for signature-cluster f
and sliding window i) is given by:

corrected
dN

dS

i,f

=
N i,f

obs/S
i,f
obs∑l

k=1

∑
c Pf,cNk,c/

∑l
k=1

∑
c Pf,cSk,c

c ∈ {G>T:C>A, . . . , A>C:T>G} (6 substitution classes)

(1)

where, N i,f
obs and Si,f

obs are the numbers of non-synonymous and synonymous substitutions detected
in the window i in at least one sample of signature-based cluster f , Pf,c is the probability of
substitution class c in signature-based cluster f (computed with respect to the categorical normalized
cumulative VF distribution of all substitution classes in that cluster), and Nk,c (Sk,c) is equal to 1 if
class c identifies an admissible non-synonymous (synonymous) substitution in the kth position of the
window i, 0 otherwise.

Phylogenetic model from clonal variant profiles via VERSO
VERSO is a 2-step computational framework for the characterization of viral evolution from raw
sequencing data introduced in Ramazzotti et al. (2020). In particular, VERSO STEP #1 is a
probabilistic noise-tolerant approach that processes binarized clonal variant profiles to deliver a
robust phylogenetic model also in condition of sampling limitations and sequencing issues (for further
details please refer to the related article).
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In this work, we followed the guidelines proposed in Ramazzotti et al. (2020) and applied VERSO
STEP #1 to the binarized mutational profiles of clonal mutations to reconstruct a phylogenetic
model of the SARS-CoV-2 samples included in our dataset, and to investigate the possible presence
of homoplasies of minor variants. In our analysis, we considered only clonal variants (VF > 90%)
detected in at least 3% of the samples of the dataset (m̃ = 28 clonal variants on n = 1133 samples).
The method was executed with 1 million MCMC iterations and returns 23 distinct clades associated
to corrected clonal genotypes returned by the method. The stratification of samples in clades was
employed in the analysis of homoplasies of minor variants.

We note that several widely used alternative approaches for phylogeny reconstruction from
consensus sequences are available, among which, e.g., IQ-TREE (Nguyen et al., 2015), the algorithm
included in the Nextstrain-Augur pipeline (Hadfield et al., 2018), BEAST 2 (Bouckaert et al., 2019)
and MrBayes (Ronquist et al., 2012). In Supplementary Fig. S5 the phylogenetic model returned via
MrBayes (Ronquist et al., 2012) on Dataset #1 is displayed (the method was executed with 10 million
MCMC iterations and default parameters), showing consistent results with our analysis, as proven by
the Adjusted Rand Index (ARI) (Santos and Embrechts, 2009) between sample partitionings (ARI =
0.76).
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Figure S1: Quality check – Dataset #1 PRJNA645906. Related to Figure 1. (A) Scatter-plot
returning for each sample of the cohort the number of minor SNVs (variant frequency VF ≤ 90%) and
the median coverage. R2 coefficient is shown in the upper-right corner. (B) Scatter-plot returning for
each sample of the cohort the number of minor SNVs and the total coverage.
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Figure S2: Distribution of SNVs detected on SARS-CoV-2 genome – Dataset #1
PRJNA645906. Related to Figure 2 Box-plots returning the VF distribution of all SNVs de-
tected in all samples, colored according synonymous, non-synonymous and non-coding state and
grouped according to SNV category.
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Figure S3: Distribution of substitution types on SARS-CoV-2 ORFs – Dataset #1
PRJNA645906. Related to Figure 2. Barplots displaying the categorical distribution of all SNVs
detected in all signature-based clusters, with respect SARS-CoV-2 ORFs (normalized by reference
allele count in each ORF).
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Figure S4: Signature analysis: Cophenetic correlation coefficient, dispersion coefficient,
explained variance, goodness of fit – Dataset #1 PRJNA645906. Related to Figure 3. (A)
Explained variance, (B) average Cophenetic correlation coefficient with respect to Non-negative
Matrix Factorization (NMF) rank, in the range 1− 6. 1000 NMF restarts comprising 20 iterations
were performed. A sharp drop is observed between 3 and 4, suggesting that the optimal rank (i.e.,
the number of signatures) is 3, (C) goodness of fit, measured as average Cosine correlation coefficient
among observed profiles and predicted ones, with respect to NMF rank in the range 1− 6 (Lal et al.,
2020). A plateau is observed at rank 3. .
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Figure S5: Phylogenomic model of 1133 SARS-CoV-2 samples returned by MrBayes –
Dataset #1 PRJNA645906. Related to Figure 5. (A) The phylogenetic tree returned by MrBayes
(Ronquist et al., 2012) considering 28 clonal variants (VF > 0.90) detected in at least 3% of the 1133
samples of the dataset is displayed. Colors mark the 25 clades identified by MrBayes (visualization
via FigTree (Rambaut, 2009)). The black colored sample represents the SARS-CoV-2-ANC reference
genome. (B) Heatmap returning the fraction of samples of any clade in which a specific clonal variant
is observed. Clonal SNVs are annotated with mapping on ORFs, synonymous (S), nonsynonymous
(NS) and non-coding (NC) states, and related amino acid substitutions. Variants g.8782T>C (ORF1ab,
synonymous) and g.28144C>T (ORF8, p.84S>L) are colored in blue, whereas variant g.23403 A>G
(S, p.614 D>G) is colored in red. The results are consistent with those obtained by VERSO STEP #1
(Figure 5 of the main text), as proven by the Adjusted Rand Index (ARI) (Santos and Embrechts,
2009) between sample partitionings (ARI = 0.76)
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Figure S6: Categorical substitution type distribution – Validation datasets #2, 3, 4, 5
(PRJNA: 636748, 633948, 647529, 625551). Related to Figure 6. Categorical normalized
cumulative distribution of all SNVs detected in each signature-based cluster of the validation datasets,
with respect to 6 substitution classes.
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