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A B S T R A C T

The availability of high-resolution data and accurate ground truth is essential to evaluate and compare methods
and algorithms properly. Moreover, it is often difficult to acquire real data for a given application domain that
is sufficiently representative and heterogeneous in terms of scene representation, acquisition conditions, point
of view, etc. To overcome the limitations of available datasets, this paper presents a new synthetic, multi-
purpose dataset called ENRICH for testing photogrammetric and computer vision algorithms. Compared to
existing datasets, ENRICH offers higher resolution images rendered with different lighting conditions, camera
orientations, scales, and fields of view. Specifically, ENRICH is composed of three sub-datasets: ENRICH-
Aerial, ENRICH-Square, and ENRICH-Statue, each exhibiting different characteristics. We show the usefulness
of the proposed dataset on several examples of photogrammetry and computer vision-related tasks such as:
evaluation of hand-crafted and deep learning-based local features, effects of ground control points (GCPs)
configuration on the 3D accuracy, and monocular depth estimation. We make ENRICH publicly available at:
https://github.com/davidemarelli/ENRICH.
1. Introduction

Over the past two decades, the need to evaluate new computer
vision and photogrammetry algorithms has motivated the research
community toward the creation of 2D and 3D datasets for different
scenarios (e.g., indoor, outdoor, laboratory, urban, buildings) and tasks
(such as image matching, image retrieval, structure-from-motion, and
SLAM).

As a tool for scientists, a benchmark dataset is a set of data to eval-
uate or compare the performance of sensors, platforms, or processing
algorithms (Bakula et al., 2019) against a high-quality and accurate
ground truth, although the acquisition of a sufficient amount of data is
still a challenge. Barriers to their realization are related to the costs and
time for obtaining data diversity (like scale or scene), and the collection
of precise annotations and accurate and reliable ground truth.

Driven by the achievements and pending research issues in the 3D
reconstruction sector (Remondino et al., 2021; Bellavia et al., 2022a),
many scientific initiatives have been recently proposed to evaluate the
current status of available processing methods while boosting further
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investigations, both in the photogrammetric and computer vision re-
search fields. These activities have encouraged developers and users to
deliver comparative performance analyses focusing, in particular, on
image-based 3D reconstruction (Schonberger et al., 2017; Bianco et al.,
2018; Jin et al., 2021).

In recent years, advanced deep learning-based algorithms for ex-
tracting complex information and features from visual data have been
effectively applied in many domains and scenarios, such as image
analysis, remote sensing, computer vision, and geoscience research,
outperforming standard approaches or opening to new applications not
possible with classical methods. However, applying these techniques
implies the availability of a large amount of data for training the
underlying models (LeCun et al., 2015). Moreover, real data collected
and targeted for a given task are rarely complete and heterogeneous
enough (in terms of, e.g., acquisition condition, point of view, signal
distortion) to enable the design of robust and flexible algorithms and
approaches. Finally, the training set must be annotated, and this process
is frequently time-consuming and resource-intensive. Synthetic hetero-
geneous and annotated datasets have proved to be an effective and
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Table 1
Comparison of the most popular benchmark datasets with the proposed ENRICH dataset.

Name Setting Real/Synthetic Resolution Image format Videos SfM SLAM Stereo MVS Depth GCP Lighting

Middleburry stereo Indoor Real 2–6 Mpx Fixed – – – ✓ – ✓ – Varying
Middleburry MVS Lab Real 0.3 Mpx Fixed – ✓ – – ✓ – – Fixed
DTU Lab Real 2 Mpx Fixed – ✓ – – ✓ – – Varying
KITTI Streets Real 0.5 Mpx Fixed ✓ – ✓ ✓ ✓ ✓ – Fixed
Strecha Monuments Real 6 Mpx Fixed – ✓ – – ✓ – – Fixed
Tanks and Temples Indoor/Outdoor Real 8 Mpx Fixed ✓ ✓ ✓ – ✓ – – Fixed
3DOMcity Lab Real 24 Mpx Varying – ✓ – – ✓ – ✓ Fixed
ETH3D Indoor/Outdoor Real 0.4–24 Mpx Varying ✓ ✓ ✓ ✓ ✓ ✓ – Fixed
DIODE Indoor/Outdoor Real 0.8 Mpx Fixed – – – – – ✓ – Varying
IVL-SYNTHSFM-v2 Objects Synthetic 2 Mpx Varying – ✓ – – ✓ – – Varying
BlendedMVS Multi-scale Blended 3 Mpx Fixed – ✓ – – ✓ ✓ – Varying

ENRICH Multi-scale outdoor Synthetic 24 Mpx Varying – ✓ – – ✓ ✓ ✓ Varying
efficient way to overcome the current limitations of real data (Tremblay
et al., 2018; Yao et al., 2020; Nikolenko et al., 2021).

This paper introduces ENRICH, a new multi-purpose synthetic
benchmark dataset created to (i) complement existing close-range and
aerial datasets, (ii) boost investigations and analyses in the 3D recon-
struction process, and (iii) evaluate photogrammetric and computer
vision algorithms. To this end, the dataset comprises three collections
of outdoor images capturing an urban area taken from above, a city
square, and a statue. Compared to existing benchmarks datasets, EN-
RICH offers higher-resolution images that are rendered with different
lighting conditions (clear blue sky, cloudy sky, sunrise, etc.) and camera
orientation (landscape and portrait). ENRICH can be exploited to
benchmark algorithms under variable and realistic conditions with data
acquired at diverse scales, different cameras, and lighting setups.

Unlike many benchmarks and challenges, such as the Image Match-
ing Challenge (Jin et al., 2021), we have included in the dataset images
with rotations from 0 to 180 degrees to encourage the scientific commu-
nity to propose solutions that also manage rotations, a property of local
features that is fundamental in many photogrammetric applications.

The contribution of the paper is twofold:

• to introduce the ENRICH dataset and its characteristics, con-
sisting of three 2D and 3D synthetic and multi-scale outdoor
datasets: an urban area (ENRICH-Aerial), a square (ENRICH-
Square), and a statue (ENRICH-Statue). The benchmark includes,
for the first time, high-resolution rendered images, depth maps,
camera parameters, absolute orientation information, Ground
Control Points (GCPs) and 3D models as ground truth data,
allowing multiple investigations in the fields of photogrammetry
and computer vision.

• to show the usefulness of the ENRICH dataset by performing sev-
eral processing tests exploring some steps of the photogrammetric
3D reconstruction pipeline. We propose three example analyses
to be addressed with the ENRICH datasets: (i) the contribution of
new deep learning-based local features for image matching and
the evaluation of different structure-from-motion (SfM) pipelines;
(ii) the influence of GCPs number and distribution in aerial map-
ping applications; (iii) the use of neural networks for monocular
depth estimation.

The organization of the paper is as follows: Section 2 gives an
overview of the state-of-the-art of existing benchmark datasets and
the tasks covered, Section 3 describes the design and creation of the
ENRICH dataset, and Section 4 presents three application scenarios
evaluated on the ENRICH data. Finally, in Section 5 we report our
conclusions.

2. Related work

This section presents the most popular public datasets and bench-
mark datasets available for the photogrammetric and computer vision
research communities (Fig. 1). Table 1 summarizes their characteristics
85
compared to the ENRICH dataset. For each dataset we report the
acquisition setting, its source, image properties, covered tasks, and
lighting conditions.

• Middleburry stereo1 (Scharstein et al., 2014). The dataset con-
tains 32 + 24 stereo scenes (published in 2014 and 2021, re-
spectively) to evaluate stereo algorithms on 6 and 2-megapixel
images. Each scene is composed of a single stereo pair with
substantial exposure variations, while scenes and cameras are
static. The ground truth consists of accurate depth maps.

• Middleburry MVS2 (Seitz et al., 2006). The dataset, designed for
evaluating multi-view stereo reconstruction algorithms, consists
of undistorted images (640 × 480 pixels) of a plaster Greek temple
and a dinosaur. The ground truth is a laser-scanner model (not
released), while image orientations are provided.

• DTU Robot Image Data Sets.3 It contains two different collec-
tions of scenes, one designed to evaluate local features (Aanæs
et al., 2012), the other for multi-view-stereo (MVS) investiga-
tions (Jensen et al., 2014). Images (2 megapixels) of miniatures
were acquired, varying the illumination conditions. A structured
light scanner was mounted on the same arm, and both the camera
poses and the geometric model are provided. The trajectory of the
images follows a circular path for all objects.

• KITTI4 (Geiger et al., 2012). This benchmark dataset is used in
the context of autonomous driving. The data derive from several
devices mounted on a car: two grayscale and two color cameras,
a laser scanner, and an inertial navigation system (GPS/IMU).
The goal was to provide training and testing images for different
computer vision tasks, such as stereo matching, SLAM, 3D object
detection, and depth prediction.

• Strecha5 (Strecha et al., 2008). This benchmark dataset is de-
signed to compare the reliability of passive 3D reconstruction
methods with active stereo systems. Data consists of LiDAR and
camera acquisitions of outdoor scenes up to 6 megapixels. The
authors have provided camera poses and calibrations, and the
laser-scanner model.

• Tanks and Temples6 (Knapitsch et al., 2017). It is a benchmark
dataset for image-based 3D reconstruction algorithms. The data
consists of real outdoor scenes divided into training and test sets
derived from 4K videos (acquired with two rolling shutter and one
global-shutter camera). Laser scanner point clouds are provided
as ground truth, as well as the reconstruction and camera poses
obtained by processing the images with an ‘‘out of the box’’
approach based on COLMAP (Schonberger and Frahm, 2016).

1 https://vision.middlebury.edu/stereo/data/
2 https://vision.middlebury.edu/mview/
3 http://roboimagedata.compute.dtu.dk/
4 http://www.cvlibs.net/datasets/kitti/
5 http://cvlab.epfl.ch/data
6
 https://www.tanksandtemples.org/
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Fig. 1. Samples from the most popular benchmark datasets reported in Table 1.
• 3DOMcity7 (Özdemir et al., 2019). It is a multipurpose and high-
resolution (6016 × 4016 pixels) benchmark dataset, including
420 nadir and oblique aerial images, to assess the performance
of the image-based pipeline for 3D urban reconstruction and
3D data classification. Laser scanner point clouds and reference
measurements are provided to evaluate image orientation, dense
image matching, and point cloud classification results.

• ETH3D8 (Schops et al., 2017). This dataset is composed of multi-
sensors low and high-resolution images and videos for MVS in-
vestigations, with scenes acquired both indoor and outdoor, and
laser-scanner data as ground truth. Moreover, a benchmark is
available dedicated to the evaluation of SLAM algorithms.

• DIODE9 (Vasiljevic et al., 2019). It is a dataset specifically created
for the depth estimation task. It contains color images with ac-
curate laser-scanned depth measurements of indoor and outdoor
scenes. It also includes validity masks for the ground truth depth
scans and surfaces normal vector ground truth.

• IVL-SYTHNSFM-v210 (Marelli et al., 2020). This dataset com-
prises 4000 synthetic images, taken from 100 points of view
and portraying five 3D models. For each model, 8 scenes with
different lighting combinations, depth of field, and motion blur
are created. Data also includes information about each image’s
intrinsic and extrinsic parameters and 3D models as ground truth.

• BlendedMVS11 (Yao et al., 2020). Similarly to ENRICH, it pro-
vides synthetic sets of images consisting of about 17,000 rendered

7 https://3dom.fbk.eu/3domcity-benchmark
8 http://www.eth3d.net
9 https://diode-dataset.org/

10 https://board.unimib.it/datasets/fnxy8z8894
11 https://github.com/YoYo000/BlendedMVS
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images with a max resolution of 2048 × 1536 pixels representing
113 different scenes, both aerial and terrestrial. The peculiarity
of this dataset is that the rendered images are obtained from a
linear combination of low-pass and high-pass filters applied to
the original and rendered images to preserve the realism of lights.
This procedure implies that no new synthetic views can be gen-
erated in the dataset. BlendedMVG is a superset of BlendedMVS,
expanded with additional 389 scenes for a total of about 110,000
rendered images.

The tasks covered by the presented benchmark datasets are mainly
related to evaluating the performance of the entire SfM pipeline, focus-
ing, on multi-view stereo reconstruction algorithms (Middleburry MVS,
DTU, Strecha, KITTI, 3DOM city, Tanks and Temples, ETH3D, and IVL-
SYNTHSFM-v2). In addition, KITTI and ETH3D propose methods for
evaluating SLAM or Visual Odometry techniques. The strength of KITTI
is the long image sequences for autonomous driving applications. Tanks
and Temples use only video sequences for SfM reconstructions, while
Strecha offers, in addition to standard datasets with calibrated cameras,
also datasets with uncalibrated cameras, e.g., for reconstructions from
internet photos. DIODE and BlendedMVS are designed to train algo-
rithms for depth estimation. KITTI also allows evaluating algorithms
for object detection, while 3DOMcity deals with classification prob-
lems. IVL-SYNTHSFM-v2 and BlendedMVS are the only datasets with
accurate ground truth from synthetic models and image generation.
Middleburry stereo, DTU, DIODE, IVL-SYNTHSFM-v2, and BlendedMVS
present environments with very different lighting conditions within
the same scene to test their effects on image orientation and final 3D
reconstruction.

The ENRICH datasets we present are intended to complement ex-
isting benchmark datasets, most of which offer low-resolution images
and/or scenes of limited size. BlendedMVS also proposes multi-scale

https://3dom.fbk.eu/3domcity-benchmark
http://www.eth3d.net
https://diode-dataset.org/
https://board.unimib.it/datasets/fnxy8z8894
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Table 2
Summary of the acquisition setup of each dataset in our ENRICH benchmark.

Dataset Camera Focal Length Images Orientation Lighting setup GSD

ENRICH-Aerial Nadir 35 mm/5882 px 60 Landscape Uniform light 2.5 cm
Forward 70 mm/11,764 px 60 Landscape Uniform light 1.8 cm
Backward 70 mm/11,764 px 60 Landscape Uniform light 1.8 cm
Right 70 mm/11,764 px 60 Landscape Uniform light 1.8 cm
Left 70 mm/11,764 px 60 Landscape Uniform light 1.8 cm
Nadir 2 35 mm/5,882 px 39 Landscape Uniform light 3.0 cm

ENRICH-Square Camera 1 35 mm/5882 px 50 Landscape & Portrait Partly cloudy 0.8 cm
Camera 2 50 mm/8403 px 50 Landscape Clear sky 0.5 cm
Camera 3 35 mm/5882 px 50 Landscape & Portrait Sunrise 0.8 cm
Camera 4 35 mm/5882 px 50 Landscape Clear sky 1.0 cm

ENRICH-Statue Camera 1 50 mm/8403 px 50 Landscape Partly cloudy 0.69 mm
Camera 2 35 mm/5882 px 50 Portrait Clear sky 0.64 mm
Camera 3 50 mm/8403 px 50 Landscape Sunrise 0.70 mm
Camera 4 35 mm/5882 px 50 Portrait Cloudy 0.64 mm
datasets, but with quite low-resolution images and only upright. EN-
RICH datasets jointly present high-resolution and multi-scale images,
the inclusion of camera rotations, and accurate ground truth of poses
and 3D models. Accuracy is ensured by synthetic image generation,
while the use of 3D reality-based surveys and 3D synthetic models
guarantees texture realism.

3. The ENRICH dataset

The ENRICH benchmark dataset consists of three synthetic datasets
generated from 3D scenes reproducing different scenarios, levels of
detail, resolution, scale, lighting conditions, and fields of view (FoV):
ENRICH-Aerial, ENRICH-Square, and ENRICH-Statue. The 3D models
used to compose the scenes come from real objects, assuring realistic
textures. In the case of the ENRICH-Square scene, the trees in were
included to add more details. Attention have been paid to ensure
realistic geometry and texture.

The ENRICH-Aerial dataset is generated from an aerial image block
of the city of Launceston, Australia (Launceston City Council, 2017).
The ENRICH-Square and the ENRICH-Statue are two ground-level
datasets, capturing, respectively, a square surrounded by monumental
buildings and a statue placed in its center. A virtual camera, based on
the specifications of the Nikon D750 DSLR full-frame camera (sensor
size 35.9 × 24 mm, pixel size 5.95 μm) with an image resolution of
6016 × 4016 px (24 MP) is used to acquire images of the scenes, and
create the corresponding datasets. The virtual camera then acquires
ideal images without lens distortions (pinhole camera model).

In all the scenes, GCPs were manually inserted on flat areas and well
distributed at different heights. An overview of the acquisition setup for
each one of the three datasets is given in Table 2.

To create these datasets, we leverage our previous experiences in
generating synthetic datasets using computer graphics methods and
tools. In Bianco et al. (2018), we developed a Blender plug-in to
generate a dataset of different objects acquired with a virtual camera
under different lighting and pose conditions (Marelli et al., 2022). The
created dataset (Marelli et al., 2020) was used to evaluate several
structure-from-motion pipelines with pixel-precise ground truths. Here
we applied our previous knowledge to generate the new datasets by
integrating new functionalities in our previously developed tools specif-
ically tailored for the multi-scale tasks. In particular new functionalities
have been introduced to support multiple camera paths and configura-
tions, automatic export of GCP coordinates and image visibility, and
depth data.

Compared to our previous synthetic dataset, IVL-SYNTHSFM, cre-
ated mainly to evaluate SfM pipelines, ENRICH offers a more di-
verse set of scenes, acquired with a variable range of cameras and
scales. This makes ENRICH a multi-purpose dataset, exploitable for
different photogrammetry and computer vision tasks, including SfM
applications.

Additional details on 3D scenes, acquisition, and data available for
each dataset are provided in the following sections.
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Fig. 2. Orthographic view of the GCP placement on the ENRICH-Aerial dataset. Cross
and round shapes as in Fig. 3.

3.1. Data generation method

Data were generated using the popular 3D modeling and rendering
software Blender (Blender Online Community, 2018) with the aid of the
SfM Flow add-on (Marelli et al., 2022). This add-on has been extended
to support multi-camera configurations as well as GCP placement and
export of their ground truth 3D position and visibility in the images.

For the ENRICH-Aerial dataset, a Blender scene was created im-
porting the 3D mesh and textures of a 3D LIDAR scan of the city
of Launceston (Launceston City Council, 2017). The original scene is
composed of different tiles at different LOD. Each tile is about 200 m×
200 m square. The capture pixel size is 2–3 cm and 5 cm GSD. The
spatial accuracy is 0.05 m (absolute accuracy in XYZ).12 A total of 26
GCPs of 50 cm × 50 cm square are positioned in the scene on flat or
almost-flat surfaces at different elevations (Fig. 2), with a cross (see
Fig. 3a) or a circular pattern (see Fig. 3b). The size of each GCP is
defined to have the cross’s thickness visible in at least 4 pixels. Each
GCP is guaranteed to be visible in at least ten images. We chose to use
this GCPs configuration in order to have them distributed uniformly in
the scene and visible in many images. This allows researchers to select
which GCPs to use for their experiments and still have targets available
to be used as Check Points (see Section 4.2).

The acquisition is performed simulating a typical oblique aerial
camera with five views (see Fig. 4a–e): one nadir and four oblique
views (forward, backward, left, and right). The nadir camera has a focal
length of 35 mm, whereas that of the oblique cameras is 70 mm. The
oblique cameras have an angle of 45◦ w.r.t. the nadir direction. The

12 https://github.com/stuarta0/launceston-3d

https://github.com/stuarta0/launceston-3d
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Fig. 3. Ground Control Point patterns.

five cameras are rigidly mounted on a virtual flying platform at the
same altitude, with the oblique ones having a 20 cm padding from
the nadir camera in their viewing direction. The image acquisitions
followed six parallel strips, with 10 acquisition points in each track,
providing a total of 300 images. A second acquisition, orthogonal to
the first one, is performed using only the nadir camera (nadir-2). This
path consist of three parallel strips with 13 images each, for a total
of 39 images. In both paths the image overlap for the nadir images is
80% along the track and 60% across it, respectively. The flying heights
are approximately 150 m and 175 m above the ground. These camera
paths mimic real acquisition setups that allow detailed 3D model
generation (Rupnik et al., 2015). The images taken by the first nadir
camera have an average Ground Sample Distance (GSD) of 2.5 cm,
while for the second nadir camera they have a GSD of 3.0 cm. The GSD
of the images of the oblique cameras ranges from 1.2 to 2.4 cm (1.8 cm
at an average distance of 213 m). The paths followed by the cameras are
visible in Fig. 5. In the ENRICH-Aerial dataset, the scene is illuminated
only by a global environment white light since the diffuse texture of the
3D Launceston model already incorporates shadows. The shadows are
embedded in the model due to the use of multiple images to build it.
Blending of those images, acquired at different times, produced some
artifacts in the textures. While this has no impact on the evaluation
of geometry-related tasks, it may limit the usability of ENRICH-Aerial
on texture-related tasks, such as image blending, shadow removal, and
de-lighting. The images were generated employing the Blender’s Eevee
raster render engine (Blender Online Community, 2021) that focuses
on rendering speed while achieving Physically Based Rendering of
materials.

In the ENRICH-Square dataset, several 3D models from different
sources were used to build the virtual scene (for more details see
the readme file and the source links accompanying the dataset). It
comprises 3D meshes of monumental buildings surrounding the square,
statues, and trees. The tallest building is 27 m high. The meshes of
the buildings were generated using photogrammetry software such as
Agisoft Metashape by the original authors; trees and walls were instead
subsequently added to provide a more detailed and cohesive scene.
Please refer to the readme file included in the dataset for a complete list
of models and methods used to create them. In some cases, 3D model
editing was required to solve geometry issues in the meshes (e.g. holes
on the facades due to occlusions or dark areas). The whole square is
surrounded by a hilly landscape model, providing a background for
some far portions of the scene (i.e., behind the walls). Cross pattern
GCPs of size 15 cm × 15 cm square are positioned on the facades of
the buildings at different heights (see Fig. 6); a total of 54 GCPs are
available, and each one is visible in at least 16 images. This GCP
placement guarantees that they are uniformly distributed in the scene
and visible in a large amount of images.

Images are captured by four cameras (Fig. 7a–d), each of them
providing 50 images for a total of 200. Images for Camera1 are acquired
following a circular path of 5 m radius around the center of the square
with the camera watching through the center of the circle; a first revo-
lution provides 25 landscape images (1 m height above ground), while
the second further 25 portrait images (1.9 m height above ground). The
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second camera follows two different circles, looking directly toward the
buildings; while all images are landscape, the first 25 are acquired at
3.4 m height from the ground, and with a circle of radius 2 m, the last
25 follow a circle of radius 6.25 m at 4 m height. The third camera uses
the same configuration as the first one, but the acquisition poses slightly
differ in position and orientation. The fourth camera follows the border
of the square taking pictures of its opposite side from 1.3 m above the
ground. An overview of the paths followed by the cameras is visible in
Fig. 8. These camera paths have been chosen to cover all of the facades
and provide overlap between images acquired by the same camera as
well as across different cameras. Cameras 1, 3, and 4 use a focal length
of 35 mm, whilst Camera2 has a 50 mm focal length. The average GSD
and depth for the cameras are, respectively: 8 mm @ 46 m, 5 mm @
38 m, 8 mm @ 46 m, 10 mm @ 61 m. Different high dynamic range
image (HRDI) maps were used for lighting the scene. Camera1 images
are captured in a partly cloudy sky. Cameras 2 and 4 acquisitions use
clear sky conditions. Camera3 images are acquired at sunrise, thus
with a predominant orange color and strong shadows. Considering the
availability of roughness and normals maps for different 3D models (in
addition to the diffusive color component), we used Blender’s Cycles
path tracing engine to render photorealistic images of the scene.

The ENRICH-Statue dataset is based on a 3D model of a hunter
created via Photogrammetry from 1016 photos and de-lighted with
Agisoft Delighter. 4k albedo map, normal map, roughness map, con-
cavity map, ambient occlusion map are also provided for texturing.
The dataset uses the same virtual setup of ENRICH-Square, with an
additional 2 m high 3D statue of a hunter placed at the center of the
square. Cross pattern GCPs of size 2 cm × 2 cm square are uniformly
placed directly on the statue and its basement (Fig. 9). While their
number is lower than the ones used in the ENRICH-Square dataset,
each of them appears in at least 62 images. In this dataset, four
cameras are used to acquire 200 pictures of the statue (50 images
each). Some sample images are visible in Fig. 10a–b. Camera1 and
Camera3 captured landscape images rotating around the statue (radius
3.75 m), looking at it slightly from the bottom (average height from
ground 0.3 m). Camera2 and Camera4 rotated around the statue (radius
2.25 m), looking at it in portrait orientation from slightly above (height
1.9 m). The path followed by each camera is visible in Fig. 11. The path
and orientations of the cameras ensure that the whole surface of the
statue is covered in the images while also providing the overlap needed
for the 3D reconstruction tasks. The average distance of the statue from
the camera is 5.8 m for the first and third cameras, and 3.8 m for the
second and fourth, thus providing a GSD on the statue of 0.69 mm,
0.70 mm, 0.64 mm, and 0.64 mm, respectively. As in the ENRICH-
Square dataset, different HRDIs were used for lighting the scene. The
whole scene is illuminated by a partly cloudy sky for images acquired
by the first camera, and with sunrise lighting for those by the third
camera. For Camera2 and Camera4 the light is provided by a sunny
sky and a cloudy sky, respectively. Along with the RGB images, depth
information is also generated for each picture taken. We used Blender’s
Cycles path tracing engine to render photorealistic images of the scene.

All the images have been rendered using an Nvidia Quadro RTX
6000 GPU. For each dataset, an additional depth information is ob-
tained directly from the Rendering Layers of Blender (Figs. 4f, 7e,
10c).

3.2. Data description

Each ENRICH dataset includes rendered RGB images, depth files,
the 3D model, and a set of text files.

The RGB images are available as JPEG files, named using the format
<frame number>_<camera name>.jpg. The image files contain EXIF
metadata regarding the camera model, its resolution, focal length, and
camera pose.

The depth information corresponding to each RGB image is included
as an OpenEXR file and a preview PNG file. The OpenEXR files provide



ISPRS Journal of Photogrammetry and Remote Sensing 198 (2023) 84–98D. Marelli et al.
Fig. 4. Sample images from the ENRICH-Aerial dataset.
Fig. 5. Camera paths on the ENRICH-Aerial dataset. In red the path followed by the
first nadir and oblique cameras, in green the path followed by the second nadir camera.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the ground truth metric distance (absolute depth) from the camera
of each pixel in the image. Pixels depicting the sky use 10B as an
infinity value. The PNG file provides a colored preview image of the
depth using a different color at steps of 25 cm of distance from the
camera position. The ENRICH-Aerial dataset uses a linear color map
to show the depth variation. The ENRICH-Square and ENRICH-Statue
datasets use a logarithmic color map to highlight the most relevant
depth variations within a limited range of distances from the camera.

Black pixels are at infinity. Figs. 4f, 7e, and 10c show some examples
of depth color images and their relative color mapping with respect to
the distance from the camera in meters.

For each dataset, we provide two WavefrontOBJ files containing the
3D geometry of the scene. The first file contains only the geometry in
the form of a 3D mesh of the whole scene (including the GCPs). The
second one also includes material definitions and the related texture
images in addition to the mesh.
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Finally, some auxiliary text files supply information about the cam-
era position in the 3D scene, GCPs, and their corresponding image co-
ordinates. This information is provided in Comma and Tab-Separated-
Values (CSV and TSV) files.

The cameras.csv/.tsv file describes the pose of the cameras
using the following fields:

1. label: string, the filename of the image the entry refers to,
including the extension.

2. position_x,y,z: three float numbers representing the global
position of the camera.

3. omega, phi, kappa: Omega, Phi, Kappa angles defining the
rotation of the camera. Three floats, representing angles in radi-
ans.

4. yaw, pitch, roll: rotation of the camera using Yaw, Pitch,
Roll angles. Three floats, representing angles in radians.

5. rotation_w,x,y,z: four floats, representing the camera ro-
tation as an Hamilton’s quaternion.

6. lookat_x,y,z: three floats, representing the camera look-at
direction vector.

The values are defined according to a global coordinate reference
system, having X growing right/east, Y growing forward/north, and
Z growing upward/zenith. Omega, Phi, Kappa are counterclockwise
(CCW) local rotations along the X, Y, Z axis, applied in the following
order 𝑅 = 𝑅𝑥 ⋅ 𝑅𝑦 ⋅ 𝑅𝑧. Pitch and Roll are CCW local rotations,
respectively, along the X and 𝑌 -axis, Yaw is a clockwise (CW) local
rotation along the Z axis. The order of application is 𝑅 = 𝑅𝑧 ⋅𝑅𝑥 ⋅𝑅𝑦. In
any case, the provided parameters define the world-space rotation and
translation. Thus, a camera with a 0 translation and a 0◦ rotation along
all axes is placed at the origin and aligned to the global coordinate
system (looking along the -Z axis with its up direction aligned with
+Y and right direction aligned to +X). To map the 3D world from
the camera-space is possible to use the equation 𝑋𝑐𝑎𝑚 = 𝑅𝑇 (𝑋 − 𝑋0),
where 𝑅 is the rotation matrix of the camera, 𝑋 is a 3D point in world
coordinates, 𝑋0 is the camera translation in world coordinates.

The gcp.csv/.tsv file describes the position of the GCPs in the
scene. The reported fields are:
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Fig. 6. Equirectangular projection of the ENRICH-Square scene showing GCPs placement.

Fig. 7. Sample images from the ENRICH-Square dataset.

Fig. 8. Camera paths on the ENRICH-Square dataset. (a) Camera 1, 2, and 3. The path of cameras 1 and 3 change color where the camera rotates from landscape to portrait, red
to orange and cyan to blue respectively. (b) Path of the 4th camera. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 9. Ground Control Point (GCP) locations on the ENRICH-Statue dataset.
Fig. 10. Sample images from the ENRICH-Statue dataset.
Fig. 11. Camera paths on the ENRICH-Statue dataset. The paths followed by cameras
1–4 are shown in red, green, cyan, and purple respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

1. gcp_name: string, unique identifier of the GCP.
2. x_east, y_north, z_altitude: three floats, representing

the global coordinates of the center of the GCP in the scene.
3. type: string, defines the shape of the GCP either cross or round.

The gcp_images_list.csv/.tsv file reports the 2D coordi-
nates of each GCP for each image in which is visible. The reported fields
are:

1. image_name: string, the filename of the image that portrays
the GCP.

2. gcp_name: string, unique identifier of the GCP.
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3. image_u,v: two floats, 𝑢 and 𝑣 image coordinate of the center
of the GCP in the images (0,0 is the top left corner of the top left
pixel in the image, 𝑢 grows right and 𝑣 grows downwards).

4. Experiments

The ENRICH datasets enable researchers to test and compare algo-
rithms for different photogrammetric and computer vision applications.
The proposed and analyzed tasks reflect some recent interests of the
research community, focused on exploring new solutions for image ori-
entation, 3D scene reconstruction and quality assessment in large-scale
mapping:

1. Evaluation of different local features, including both hand-
crafted and learning-based methods, for the estimation of cam-
era poses (Section 4.1): the SfM pipeline is normally very robust,
but a high overlap between images and constant lighting con-
ditions are typically needed. New matching algorithms based
on neural networks have been proposed to overcome these
limitations and obtain robust matches even in very challenging
conditions. However, further investigations on their behavior in
different survey scenarios are still needed, considering their dif-
ferent performances with multi-temporal (Maiwald et al., 2021;
Farella et al., 2022), wide-baseline (Bellavia et al., 2022b; Chen
and Heipke, 2022), or aerial datasets (Remondino et al., 2022;
Peppa et al., 2022). Our experiments focus on local features, but
further SfM tasks have been recently revisited. As an example,
new geometric verification approaches have been proposed in
alternatives to RANSAC (Chum et al., 2005; Yi et al., 2018), or
end-to-end deep learning-based methods which handle the entire
SfM pipeline.

2. Analyses on the effect of the number and spatial distribution
of Ground Control Points (GCPs) on 3D accuracy (Section 4.2):
we investigate how GCP configurations can influence aerial
triangulation (AT) and image orientation results, a topic not
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fully explored. Especially in aerial mapping projects, the quality
of the final products is highly correlated to GCPs number and
distribution within the scene. Most of the available SfM tools es-
timate the exterior orientation parameters within a free-network
bundle adjustment, followed by a 3D similarity transformation
to move from an arbitrary to a real-world coordinate system.
Investigations on the effects of GCPs spatial distribution on the
3D accuracy have been extensively proposed in the last years
for UAV image blocks (Villanueva and Blanco, 2019; Garcia
and Oliveira, 2020; Oniga et al., 2020; Ulvi, 2021) while a
few studies have focused on their influence in the airborne
case (Ostrowski and Bakuła, 2016; Gerke et al., 2016).

3. Monocular depth estimation for outdoor architectural scenar-
ios (Section 4.3): the literature presents various methods for
Monocular Depth Estimation (MDE) (Amiri et al., 2019; Tosi
et al., 2019; Lee et al., 2019; Bhat et al., 2021; Welponer
et al., 2022) for the prediction of depth maps from a single
RGB image, without prior knowledge about the scene or camera
parameters. The ENRICH dataset can represent an useful dataset
for training and testing MDE algorithms. These methods are
usually trained on task-specific datasets such as KITTI (Geiger
et al., 2012) (autonomous driving) or NYUv2 (Silberman et al.,
2012) (indoor environments). While training on such datasets is
suitable for a given application, it limits the ability of the models
to generalize the depth estimation on different scenes. Recently,
some approaches (Li and Snavely, 2018; Ranftl et al., 2021) have
improved generalization capabilities by using datasets depicting
various scenes, from indoor environments to aerial views.

4.1. Evaluation of SfM pipelines

The SfM pipeline consists of numerous tasks (e.g. extraction of local
features, image matching, and image orientation) that can be addressed
by different algorithms. The ENRICH datasets offer the opportunity to
assess their accuracy downstream of the reconstruction process instead
of evaluating each task separately (Jin et al., 2021).

In this work, we investigate the efficacy of different local features
within the SfM pipelines. In the last few years, new local features based
on neural networks have appeared in addition to traditional methods.
However, their performances, limits, and potentials for photogrammet-
ric applications is still an open research topic. For example scenes
characteristics (like texture types, illumination, scale, and camera rota-
tion) are critical elements in conditioning the algorithm’s performance.
In our tests we consider and compare both deep learning-based features
and traditional ones.

The images and ground truth of the ENRICH-Statue and ENRICH-
Square datasets were used for the experiments. The two scenes repre-
sent typical terrestrial photogrammetric surveys, both in terms of sur-
veyed objects and camera network. The available images are distortion-
free and can be modeled as a pinhole camera with a known principal
distance. Therefore, the evaluation relies on the accuracy of check
points and external orientation parameters, neglecting considerations
about the interior orientation. The check points are well-distributed
targets on the scene whose 3D coordinates have been synthetically gen-
erated. In addition, the datasets offer images with relevant variations
in scale, illumination, angle of view, and camera rotations, which are
challenging situations for local features extractors.

For both datasets, we compared three different SfM pipelines:

1. RootSIFT + COLMAP (Schonberger and Frahm, 2016), an
open-source SfM software, available both with a command line
interface and a graphical user interface that allows the user
to customize many SfM parameters. In this test, we used the
build-in RootSIFT (Arandjelović and Zisserman, 2012) as local
feature, followed by brute-force matching with near neighbor-
hood ratio threshold set to 0.80, incremental reconstruction
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(resection–intersection), and local/global bundle adjustment.
2. Deep learning local feature + COLMAP. Several deep
learning-based feature extractors have been tested, importing
their keypoints and descriptors in COLMAP. Image matching and
orientation have been performed with the default options, as in
the previous method.

3. Metashape, the commercial software developed by Agisoft
with its proprietary SfM pipeline implementation as reference.

For the comparison, 8000 local features were extracted on images
resized to 1500 × 1000 pixels because of the high computational perfor-
mance required by the deep learning-based methods. Tiling images is
the alternative approach for dealing with full-size images, as proposed
in Remondino et al. (2022).

When comparing different SfM pipelines, several metrics are possi-
ble. Often, the bundle statistics obtained downstream the SfM pipeline
are used, (Schonberger et al., 2017), such as the number of correctly
registered images, the number of triangulated 3D points, the mean
track length (MTL) or multiplicity, the mean reprojection error (MRE),
and the mean observations per image, which is the mean number of
correct tie points. Previous works have highlighted how these metrics
are often inconsistent with the actual accuracy of the reconstruction
evaluated in the object space (Remondino et al., 2021; Bellavia et al.,
2022a). Therefore, we evaluated the results in the object space, using
the following metrics:

• root mean square error (RMSE) computed on a few well-
recognizable object points (the targets provided by the ENRICH
benchmark - check points, CPs),

• RMSE on the Centers of Projection (COP) of the cameras.

Another possible metric could be the RMSE on the camera angles. Note
that currently COLMAP can perform only a bundle block adjustments
in free network. For this reason, all targets have been used to compute
only a Helmert transformation to get a scaled 3D result and not as con-
straints in the bundle adjustment solution. Therefore, in Sections 4.1.1
and 4.1.2 all the targets are used as CPs, and none as GCPs.

4.1.1. The ENRICH-Statue dataset
The ENRICH-Statue dataset presents images both in landscape and

portrait orientation, requiring rotation invariant local features. As a
deep learning approach, we chose LF-Net (Ono et al., 2018), an end-to-
end convolutional neural network among the few local features trained
to be invariant to rotations. Its results are compared against RootSIFT
and Metashape.

In Table 3, the RMSE for the three pipelines are shown beside
some bundle statistics reported for completeness. All the tested methods
delivered a RMSE on the CPs of about one-third of the GSD (0.64–
0.69 mm). As expected, worse results have been achieved for the
3D coordinates of the COPs, with a RMSE value similar to the GSD.
Therefore, for this dataset, no significant differences among the three
tested methods were found, apart from a slightly worse behavior of
RootSIFT. In Fig. 12a is reported the camera network and the sparse
point cloud processed by the RootSIFT implementation of COLMAP.

After the block orientation, the dense cloud was reconstructed for
each method and compared in terms of cloud-to-cloud (C2C) dis-
tance with the point cloud extracted from the reference 3D models.
Fig. 12b shows an example of a dense point cloud obtained with Root-
SIFT + COLMAP, with an achieved average Cloud-to-Cloud distance of
1.34 mm and a standard deviation of 0.74 mm. Comparable results in
terms of C2C distance were obtained for LF-Net + COLMAP and Agisoft
Metashape. This first test thus shows small differences in the perfor-
mance of hand-crafted and deep learning-based local features both in

terms of RMSE on check points and on the dense cloud accuracy.
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Table 3
Bundle statistics and RMSE on CPs and COPs for different SfM pipelines using the ENRICH-Statue dataset.

Method RMSE on RMSE on MTL MRE on Total
CPs [mm] COPs [mm] tie points [pix] keypoints

RootSIFT + COLMAP 0.23 1.63 4.6 0.65 86,525
LF-Net + COLMAP 0.16 0.69 4.5 0.43 99,140
Metashape 0.14 0.89 3.6 0.65 77,994
Fig. 12. Results obtained with RootSift + COLMAP. (a) Sparse cloud and camera
network. (b) Dense cloud with C2C absolute distance in millimeters.

Fig. 13. Example of the ENRICH-Square sparse reconstruction performed with RootSIFT
+ COLMAP (a), and the detail of three white crosses on a black background used to
materialize the targets (b).

Fig. 14. Tie points extraction under rotation and illumination changes.

4.1.2. The ENRICH-Square dataset
In this section, we further deepen the local features comparison,

using the ENRICH-Square dataset. Among the various deep learning-
based methods, other rotational invariant features were chosen beside
LF-Net: KeyNet + AffNet + HardNet (Barroso-Laguna et al., 2019;
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Fig. 15. Tie points extraction under scale and illumination changes.

Mishkin et al., 2018; Pultar, 2020) and RoRD (Parihar et al., 2021).
KeyNet, AffNet, and HardNet are respectively a deep learning-based
detector, orientation estimator, and descriptor. In the rest of the paper
we will refer to this combination simply as KeyNet. Rotation invariance
is necessary to optimize the sensor calibration, although many deep
learning-based methods still neglect this aspect. ALIKE (Zhao et al.,
2022) is the most recent keypoint extractor, and it has been included
in our tests, although it is not trained to be invariant to rotations.

Results are reported in Table 4 in terms of RMSE on CPs and COPs.
In this test, RootSIFT still represents the state-of-the-art approach, with
an RMSE of an order of magnitude lower than KeyNet, while all the
other methods failed to register the entire image block due to rele-
vant scale variation and sensor rotation. Agisoft Metashape performed
similarly to RootSIFT. Fig. 13 shows the camera network and a closer
view of a rectangular target (white cross on black background). As in
Section 4.1.1, the accuracy on COPs is an order of magnitude larger
than accuracy on CPs, and it does not seem to have the same sensitivity
as that on CPs.

COLMAP provides further processing statistics, also reported in
Table 4. It is worth noting the excessively high mean reprojection error
(MRE) of RoRD, equal to 1.298 pixels, and how KeyNet has the highest
mean track length (MTL), even if it extracted fewer keypoints (6775
kpts per image, less than the required 8000).

Figs. 14, 15, 16, and 17 show a few image pairs representing
interesting challenging conditions for the local features.

Fig. 14 shows the case of a 90 degrees rotation and lighting changes.
Except for ALIKE, all others methods handled sensor rotations properly,
showing that ALIKE is not trained for rotation invariance. Note how the
number of LF-Net valid matches is significantly lower than the other
methods. Fig. 15 shows a significant scale variation and changes in
illumination, adequately addressed by all the methods with the LF-
Net exception. In Fig. 15e can also be noted that RoRD is the only
method to find keypoints in homogeneous sky areas. Fig. 16 remarkably
accentuates the scaling factor with respect to Fig. 15, demonstrating
that the scale is a further critical factor for learning-based methods, in
addition to the rotation invariance (Remondino et al., 2021; Bellavia
et al., 2022b). Finally, Fig. 17 reports the case of an extreme perspective
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Table 4
RMSE and statistics for the comparison of deep learning-based and hand-crafted local features with the
ENRICH-Square dataset.

Method RMSE on RMSE on MTL MRE on Total
CPs [cm] COPs [cm] tie points [pix] keypoints

RootSIFT + COLMAP 0.333 2.597 8.47 0.306 1,597,879
KeyNet + COLMAP 1.523 2.891 9.37 0.680 1,354,898
LF-Net + COLMAP Failed to register all images 5.59 0.647 1,600,000
RoRD + COLMAP Failed to register all images 6.37 1.298 1,454,954
ALIKE + COLMAP Failed to register all images 6.81 0.689 1,600,000
Metashape 0.286 1.982 4.66 0.428 1,600,000
Fig. 16. Tie points extraction under large scale changes.

variation and shows the good performance of deep learning-based
methods in managing these situations.

This section showed how the ENRICH dataset provides a variety of
challenging conditions useful for testing new SfM algorithms, such as
local detectors and descriptors. In particular, it was shown that the
new deep learning-based local features sometimes fail to orient the
whole image block or are less accurate than classical methods such as
RootSIFT, because of strong rotations or scale variations.

4.2. The effects of Ground Control Points spatial distribution on the 3D
accuracy

This section examines the impact of Ground Control Points (GCPs)
number and spatial distribution within the scene on 3D accuracy,
exploiting the ENRICH-Aerial dataset.

In aerial triangulation (AT), GCPs are used to georeference data
and optimize camera orientation by providing additional information
for refining the bundle adjustment. Their configuration (number and
distribution) affects the reconstruction results. Most of the recent and
available automatic processing solutions for exterior orientation ini-
tially adopt a free-network approach for the bundle adjustment, and
GCP coordinates are then introduced for georeferencing data and re-
fining the orientation results. This approach was followed in our tests
for the exterior orientation, while no further considerations were made
for the interior orientation, the images being without distortion.

Different GCPs configurations were investigated for processing the
block of 300 oblique and nadir images at the original image size (6016×
4016 pixels). In our experiments, a variable and increasing number of
targets (four to twelve) with different distributions were used as GCPs,
while the rest as Check Points (CPs). Both the image and spatial coor-
dinates provided in the dataset were employed. Tested configurations
and distribution schemes (Fig. 18) are defined as follows:
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Fig. 17. Tie points extraction under large view changes.

Fig. 18. Schemes of the eleven GCPs configurations, varying in the number and
distribution of ground and check points.

• Configuration 1: four GCPs aligned on the shorter side of the
block;

• Configuration 2: four GCPs aligned along the diagonal of the
block;

• Configuration 3: four GCPs distributed on the edges of the block;
• Configurations 4 to 11: an increasing number of GCPs (from five

to twelve), distributed on the edges, and progressively adding
points inside and outside the central area of the block.

In order to assess the achieved accuracy for each configuration,
the root mean square error (RMSE) between the ground truth and the
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Table 5
RMSE of the planimetric (Rx and Ry), vertical (Rz) and global (Rx,y,z) residuals on Check Points
(CPs) with the eleven Ground Control Points (GCPs) configurations.

Rx [mm] Ry [mm] Rz [mm] Rxyz [mm]

Conf 1 (4 GCPs line) 15.085 5.849 19.073 25.011
Conf 2 (4 GCPs diagonal) 3.436 5.782 20.195 21.286
Conf 3 (4 GCPs edges) 3.812 3.372 4.012 6.481
Conf 4 (5 GCPs) 4.028 3.509 3.340 6.300
Conf 5 (6 GCPs) 3.725 3.470 3.351 6.095
Conf 6 (7 GCPs) 3.730 3.553 3.452 6.201
Conf 7 (8 GCPs) 3.592 3.606 3.494 6.174
Conf 8 (9 GCPs) 3.240 3.627 3.417 5.944
Conf 9 (10 GCPs) 2.853 3.036 3.155 5.227
Conf 10 (11 GCPs) 3.067 2.967 2.722 5.062
Conf 11 (12 GCPs) 1.931 3.075 2.641 4.490
Fig. 19. RMSE residuals on Check Points (CPs) with eleven GCPs configurations.
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stimated 3D coordinates after the bundle adjustment was calculated
or the CPs. RMSE of planimetric (Rx and Ry), vertical (Rz), and 3D
Rxyz) errors are reported in Table 5 and visualized in Fig. 19.

As expected, the worst results on the CPs occurred when four
CPs were arranged along one line (Configurations 1 and 2), with a

ignificant improvement of metrics when the same number is uniformly
isplaced on the edges of the block (Configuration 3). Increasing the
umber of GCPs and their spread distribution within the area gen-
rates less relevant changes in error metrics. While Configuration 4
onfirms that adding a point in the middle of the block increases the
ltimetric accuracy, a more marked improvement is visible only in the
ast configuration. Furthermore, the eleven sparse point clouds were
ompared with the reference mesh model provided in the ENRICH-
erial dataset for a more in-depth analysis and quality assessment of the
esults achieved with the different GCPs configurations. The orthogonal
istance between each point and the corresponding triangle surface
or each configuration scenario returned no significant differences in
he standard deviation (for all the cases, around 0.1 m). In contrast,
ore relevant divergences are evident when comparing the average
istances, as shown in Fig. 20. Also for this case, the worst metrics
re related to the first two configurations, with a clear improvement in
he other scenarios. Tests with the ENRICH-Aerial dataset show that 3D
ccuracy is more affected by the GCPs spatial distribution with respect
o their number. Four GCPs distributed on the edges of the aerial block
re already sufficient for a clear improvement of the error metrics.

.3. Monocular depth estimation

Monocular Depth Estimation (MDE) is the task of estimating the dis-
ance of the surface depicted by each pixel in a single RGB image. This
ask is of interest for many fields, most notably 3D scene reconstruction,
utonomous driving, and Augmented Reality. Among the multitude of
DE methods, we selected MegaDepth (Li and Snavely, 2018) and
ense Prediction Transformers (DPT) (Ranftl et al., 2021). MegaDepth
roposes a large depth dataset built by using structure-from-motion
nd multi-view stereo on internet photo collections, seeking to learn
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o predict monocular depth with high accuracy and generalizability. d
It depicts different city landmarks, including buildings, statues, and
squares. In addition to the dataset, the authors train different archi-
tectures obtaining the best depth estimation results with the hourglass
architecture proposed by Chen et al. (2016). DPT proposes the use
of dense vision transformers for the prediction of monocular depth,
showing an improvement of up to 28% in relative performance when
compared to a state-of-the-art fully-convolutional network. In addition
to the architecture, the authors also propose the use of a meta-dataset to
train the neural network. This dataset is composed of 10 different depth
datasets, each including different scene types ranging from indoor to
outdoor and even aerial views.

We evaluate MegaDepth and DPT on the three ENRICH datasets,
we used all of the available images of each dataset. We follow the
procedure defined by Ranftl et al. (2020) to evaluate the results of both
methods. The images of the dataset are resized to match the input size
required by each approach. The prediction is resized to the ground truth
resolution using nearest-neighbor interpolation before the evaluation.
Pixels belonging to the sky in the ground truth are used as a mask to
exclude invalid portions from the prediction as well as the ground truth
during evaluation. Since the prediction and the ground truth may differ
in scale and shift, we align the predictions before measuring errors. We
perform this alignment in the inverse-depth space based on the least-
squares criterion as in Ranftl et al. (2020). Scale 𝑠 and shift 𝑡 factors
re determined as (𝑠, 𝑡) = argmin𝑠,𝑡

∑𝑁
𝑖=1(𝑠𝑑𝑖 + 𝑡 − 𝑑∗𝑖 ), where 𝑁 denotes

he number of pixels, 𝑑 is the predicted relative inverse-depth, and 𝑑∗

s the ground truth inverse-depth. We provide evaluation results using
depth cap suitable for each dataset as well as non-capped predictions.
uch depth cap is used to include over far pixels in the exclusion mask.

The first metric used for the evaluation is the mean absolute value
f the relative error 𝐴𝑏𝑠𝑅𝑒𝑙 = (1∕𝑀)

∑𝑀
𝑖=1 |𝑧𝑖 − 𝑧∗𝑖 |∕𝑧

∗
𝑖 in depth space.

denotes the number of valid pixels (not masked), 𝑧 is the aligned
redicted relative depth, and 𝑧∗ is the ground truth absolute depth. The
econd metric is the percentage of pixels with 𝛿 = 𝑚𝑎𝑥

(

𝑧𝑖
𝑧∗𝑖
,
𝑧∗𝑖
𝑧𝑖

)

> 𝜃

n depth space. 𝜃 defines a threshold for the evaluation and a com-
on value is 𝜃=1.25, which considers wrong pixels only those whose

ifference in depth is more than 25% of the ground truth value.
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Fig. 20. Average Cloud-to-Mesh distance (mm) between the eleven sparse point clouds computed in different GCPs configuration scenarios and the reference mesh model provided
in the ENRICH-Aerial dataset.
Fig. 21. Example of predicted depth maps for the ENRICH-Square, ENRICH-Statue, and ENRICH-Aerial datasets.
For the experiments, we used the codes and the pre-trained models
provided by the authors. For MegaDepth and DPT, we used the best-
generalization and the DPT-large models respectively. Examples of
depth predictions as well as ground truth are visible in Fig. 21. Tables 6
and 7 report evaluation results on the ENRICH-Statue and ENRICH-
Square respectively. For both datasets, we evaluate the predictions with
a 70 m depth cap and with uncapped depths. To evaluate the effect
of image orientation on depth estimation, we tested the two methods
with portrait images either rotated or not. For both datasets and in all
the experiment configurations, the best results are obtained by DPT.
Table 8 reports the results of evaluation on the ENRICH-Aerial dataset.
On this dataset, we performed the evaluation with uncapped depth
ground truth. Since 𝛿>1.25 allows an error up to 37 m for the nadir
cameras and 54 m for the oblique cameras at the average depths, we
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also report the 𝛿>1.05 value, which allows an error up to 7 m for the
nadir cameras and 10 m for the oblique cameras.

DPT-large achieved lower errors than MegaDepth on all three
datasets. Both methods achieve the best results on the ENRICH-Square
dataset. This is mainly related to the scene setup that resembles some
of the data used for the training of the Neural Networks. The ENRICH-
Statue dataset is challenging for both methods: while MegaDepth fails
to estimate the correct relative depth order of the elements in the scene,
DPT-large has difficulties in correctly identifying and separating the
foreground statue from the background elements. The evaluation on
the ENRICH-Aerial dataset shows low errors for the 𝛿>1.25, but this
error increase significantly when the threshold is reduced to 1.05. Even
in this case, DPT-large provides depth estimation with a lower error,
and the result of MegaDepth on the aerial view appears flat and fails
to highlight the buildings from the ground. Finally, while the depth
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Table 6
Evaluation of the depth estimation on ENRICH-Square.

Method Portrait as landscape Portrait as portrait

Depth cap 70 m No depth cap Depth cap 70 m No depth cap

AbsRel 𝛿 > 1.25 AbsRel 𝛿 > 1.25 AbsRel 𝛿 > 1.25 AbsRel 𝛿 > 1.25

MegaDepth 0.111 13.986% 0.211 16.918% 0.108 13.041% 0.208 16.290%
DPT-large 0.087 10.337% 0.135 13.369% 0.085 9.869% 0.134 12.975%
Table 7
Evaluation of the depth estimation on ENRICH-Statue.

Method Portrait as landscape Portrait as portrait

Depth cap 70 m No depth cap Depth cap 70 m No depth cap

AbsRel 𝛿 > 1.25 AbsRel 𝛿 > 1.25 AbsRel 𝛿 > 1.25 AbsRel 𝛿 > 1.25

MegaDepth 0.577 86.278% 1.217 86.530% 0.459 71.832% 1.227 72.055%
DPT-large 0.244 40.358% 0.287 41.635% 0.146 20.133% 0.188 21.155%
Table 8
Evaluation of the depth estimation on ENRICH-Aerial.

Method AbsRel 𝛿 > 1.25 𝛿 > 1.05

MegaDepth 0.039 0.060% 27.708%
DPT-large 0.017 0.001% 4.824%

cap of the predictions has a limited impact on the evaluation, the
correct rotation of the portrait images significantly influences the depth
estimation and evaluation. Providing the ENRICH-Statue images in the
wrong orientation notably affects the results of DPT-large.

5. Conclusions

In this work we presented the ENRICH dataset, a multi-purpose
set of synthetic images realized to complement existing terrestrial and
aerial datasets. It provides challenging data to boost several research
activities in photogrammetry and computer vision fields. ENRICH com-
prises three sets of data featuring images with different formats, cam-
eras, environmental and acquisition conditions. Besides the rendered
images, ENRICH includes also GCP coordinates, depth maps, and 3D
models as pixel-precise ground truth.

The variety of data provided by ENRICH is suitable for testing
methods and algorithms designed for different application domains,
such as remote sensing, photogrammetry, and computer vision. Our
experiments show that it can be effectively used in several challenging
tasks, including SfM, MVS, MDE, etc. One uniqueness of ENRICH is the
availability of multi-scale data, from aerial to terrestrial, enabling the
evaluation and comparison of methods and algorithms under various
conditions and gathering insights on their strengths and limits.

We plan to extend ENRICH further to include monocular and stereo
video sequences for the two terrestrial scenes, semantic segmentation
information, and camera distortions to allow the development and
benchmarking of, for example, SLAM and 3D classification methods.
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