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ABSTRACT
Background  Checkpoint inhibitor (CPI) immunotherapies 
have provided durable clinical responses across a range 
of solid tumor types for some patients with cancer. 
Nonetheless, response rates to CPI vary greatly between 
cancer types. Resolving intratumor transcriptomic changes 
induced by CPI may improve our understanding of the 
mechanisms of sensitivity and resistance.
Methods  We assembled a cohort of longitudinal pre-
therapy and on-therapy samples from 174 patients 
treated with CPI across six cancer types by leveraging 
transcriptomic sequencing data from five studies.
Results  Meta-analyses of published RNA markers 
revealed an on-therapy pattern of immune reinvigoration 
in patients with breast cancer, which was not discernible 
pre-therapy, providing biological insight into the impact 
of CPI on the breast cancer immune microenvironment. 
We identified 98 breast cancer-specific correlates of CPI 
response, including 13 genes which are known IO targets, 
such as toll-like receptors TLR1, TLR4, and TLR8, that 
could hold potential as combination targets for patients 
with breast cancer receiving CPI treatment. Furthermore, 
we demonstrate that a subset of response genes identified 
in breast cancer are already highly expressed pre-therapy 
in melanoma, and additionally we establish divergent RNA 
dynamics between breast cancer and melanoma following 
CPI treatment, which may suggest distinct immune 
microenvironments between the two cancer types.
Conclusions  Overall, delineating longitudinal RNA 
dynamics following CPI therapy sheds light on the 
mechanisms underlying diverging response trajectories, 
and identifies putative targets for combination therapy.

INTRODUCTION
A molecular understanding of immune 
checkpoints, and their aberrant activation 
in developing tumors, has led to the recent 
clinical development of immune checkpoint 
inhibitors (CPIs). Over the last decade, CPI 
agents have demonstrated durable responses 
across a range of cancer types and are FDA-
approved for multiple indications, including 
as a first-line therapy option for metastatic 
disease.1 However, only a minority of patients 

achieve clinical responses ranging from 
objective response rates of 45% in advanced 
melanoma cases,2 to 5% to 10% in metastatic 
triple-negative breast cancers (TNBCs).3 4

Due to variability in CPI response rates 
between patients, numerous studies have 
attempted to identify molecular predic-
tors of response. Using single timepoint 
data, collected prior to CPI treatment 
(pre-therapy), factors that have been 
linked to CPI sensitivity have been derived 
from tumor genomics and tumor micro-
environmental (TME) studies.5 Notably, 
baseline PD-L1 expression and tumor muta-
tional burden are both FDA-approved as 
predictive biomarkers to stratify patients 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Explorations of molecular dynamics following 
checkpoint inhibitor (CPI) therapy within small co-
horts have shed light on the biological activity of 
CPI-modulated immune responses such as early 
T-cell turnover and expansion. However, an un-
derstanding of the impact of CPI on transcriptomic 
changes and similarities and differences in mecha-
nisms of response to CPI between solid tumor types 
remains limited.

WHAT THIS STUDY ADDS
	⇒ This study integrates longitudinal pre-therapy and 
on-therapy transcriptomic data across solid tumor 
types to identify meaningful transcriptomic dynam-
ics on-therapy, enabling a deeper insight into the 
mechanisms of CPI response and resistance and 
how these may differ across melanoma and breast 
cancer.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Findings from this study provide a rational for further 
investigation of promising putative targets for com-
bination therapy with CPI to enhance response rates 
in breast cancer.
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for CPI therapy. Furthermore, numerous transcrip-
tomic signatures have been developed, predominantly 
within melanoma, as putative RNA-based predictors 
of CPI sensitivity including signatures of interferon-
gamma (IFNγ) signaling, cytolytic activity, and antigen 
presentation.6–13

Nevertheless, biomarkers of immune response, based 
on pre-therapy molecular profiles in discovery cohorts 
have displayed varying performance in large validation 
cohorts (n>1000 patients), particularly in a pan-cancer 
setting.14 15 These markers implicitly assume that base-
line molecular features are sufficient to encapsulate the 
dynamic impact of CPI on-therapy, including resculpting 
the cellular composition and functional states within the 
tumor microenvironment. Moreover, these factors do not 
account for the well-recognized interindividual variation 
in baseline immune status.

Paired longitudinal analyses of patients receiving CPI 
agents, with pre-therapy and on-therapy tumor biop-
sies, have the potential to address these limitations and 
decipher important factors driving an effective immune 
response. However, these analyses are complicated by the 
logistical challenges of tumor re-biopsy on treatment. To 
date, small exploratory cohorts (n≤20 patients) of this 
kind have reported a phenomenon termed T-cell “rein-
vigoration,”16 whereby early T-cell turnover and expan-
sion or persistence of high-frequency T-cell clonotypes 
are associated with CPI response,17 18 and improved 
survival outcomes.19 20 Other longitudinal CPI studies 
have demonstrated clonal replacement of T-cell clones 
on-therapy, which were not present within responding 
tumors pre-treatment.21 In addition, other studies have 
demonstrated mechanisms of CPI treatment failure, such 
as defective antigen presentation,22 23 impaired IFNγ 
signaling,22 or neoantigen loss.24 In metastatic TNBC, 
on-therapy increases in T-cell receptor (TCR) clonality 
and T-cell infiltration have been shown to be associ-
ated with response to CPI.25 Furthermore, similar shifts 
in eosinophils were enriched in patients responding to 
CPI, possibly due to their role in enhancing CD8+ T-cell 
activation.26

Despite the small numbers of patients in these longi-
tudinal studies, profiling molecular dynamics following 
CPI therapy has enabled the biological activity of CPI-
modulated immune responses to be defined. In turn, 
this has improved our understanding of the mecha-
nisms underpinning sensitivity or resistance. To build 
on this body of work, we established the CPI-Dynamics 
(“CPI∆”) multi-cancer cohort of 174 patients across six 
datasets, leveraging the power of paired longitudinal 
(pre-treatment and early on-treatment samples) to inves-
tigate transcriptomic changes during CPI therapy. The 
objectives of our approach were to better understand 
why some cancer types respond more favorably to CPI 
treatment than others, specifically melanoma compared 
with TNBC, by identifying correlates which underlie the 
biological mechanisms of response.

METHODS
Human clinical data
The CPI∆ cohort uses transcriptomic sequencing data 
from the following studies:
1.	 Voorwerk et al,25 the metastatic TNBC anti-PD-1 

(nivolumab) treated “breast” cohort.
2.	 Riaz et al,27 the advanced melanoma anti-PD-1 

(nivolumab) treated “melanoma (a)” and “melanoma 
(b)” cohorts.

3.	 Yang et al,28 the pan-cancer anti-PD-1 (pembrolizum-
ab) treated “pan-cancer” cohort.

4.	 Powles et al,29 the advanced urothelial anti-PD-L1 
(atezolizumab) treated “urothelial (a)” cohort.

5.	 Dijk et al,30 the advanced urothelial anti-PD-1 (nivolum-
ab) and anti-CTLA-4 (ipilimumab) treated “urothelial 
(b)” cohort.

Across all selected studies, patients provided written 
consent before enrollment into respective trials, further-
more, trial approval was obtained from each institutions 
medical-ethical committee/board, as described previ-
ously.25 27–30 Inclusion criteria for the CPI∆ cohort were 
(1) treatment with CPI (anti-PD-1/PD-L1 or anti-CTLA4); 
(2) availability of longitudinal transcriptomic data at both 
pre-therapy and on-therapy timepoints; and (3) avail-
ability of clinical outcome data (overall survival (OS), 
radiological response and/or pathological response). 
These criteria yielded a total of 174 CPI-treated patients 
with paired samples across six cancer types. The indi-
vidual cohorts comprising the CPI∆ study are henceforth 
referred to as the “breast” cohort (n=25 patients with 
TNBC), “melanoma (a)” cohort (n=23 patients with mela-
noma, CPI-naïve), “melanoma (b)” cohort (n=19 patients 
with melanoma, prior lines of CPI therapy), “pan-cancer” 
cohort (head and neck carcinoma n=3, TNBC n=3, high-
grade serous ovarian cancer n=6, melanoma n=6, rare 
solid tumors n=12), “urothelial (a)” cohort (n=64), and 
“urothelial (b)” cohort (n=13). A breakdown of sample 
numbers for each study/cancer type and treatment 
course is contained in table 1 and online supplemental 
figure 1. The majority of our cohorts included patients 
with either metastatic or advanced disease, many of 
whom had other lines of systemic therapy prior to CPI. 
The details of those previous lines of therapy are included 
where available. For the “breast” cohort, patients had 
received one to three lines of prior systemic non-CPI 
treatment (chemotherapy) with disease progression on 
the last treatment regiment; however, all patients were 
CPI naïve prior to entering the trial (online supple-
mental figure 1A). For the “melanoma (a)” and “mela-
noma (b)” cohorts, patients with unresectable stage III or 
IV melanoma who were refractory, intolerant, or refused 
standard therapy for treatment of metastatic disease were 
enrolled. For the “melanoma (a)” cohort all patients had 
not received previous lines of CPI (online supplemental 
figure 1B), whereas patients within the “melanoma (b)” 
cohort had progressed following anti-CTLA-4 treatment 
prior to entering the trial (online supplemental figure 
1C). For the “pan-cancer” cohort, patients had either 
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failed prior systemic non-CPI treatment, had no standard 
non-CPI therapy options, or were not appropriate for 
standard non-CPI options. All patients in this cohort 
were CPI naïve prior to entering the trial (online supple-
mental figure 1D). For both the “urothelial (a)” and 
“urothelial (b)” cohorts, patients who refused neoadju-
vant cisplatin-based chemotherapy or where neoadjuvant 
cisplatin-based therapy was not deemed appropriate, were 
enrolled onto the respective trials. Patients within both 
cohorts were CPI naïve prior to entering the trials (online 
supplemental figure 1E,F). Detailed treatment history 
and demographic data regarding, age, sex, and race were 
either limited or unavailable for selected cohorts and 
hence not used within our analyses.

Clinical endpoints and stratification
Across the CPI∆ cohorts, four had both OS and RECIST 
(Response Evaluation Criteria in Solid Tumors) radiolog-
ical response available; the remaining two cohorts had 
pathological complete response (pCR) data available. 
Radiological clinical responses were harmonized across 
the studies to ensure consistency in this outcome measure-
ment, with “responder” defined as complete response or 
partial response and “non-responder” as stable disease or 
progressive disease, as conducted previously.14 Further-
more, for pathological response, “responder” was defined 
as pCR or major pathological response (MPR), and 
“non-responder” as no pCR or MPR. These definitions 
of response criteria were used for the stratification of 
samples within the CPI∆ cohorts into CPI-responding and 
CPI-non-responding tumors, per cohort, throughout the 
analyses. Additional stratification was applied using OS, 
splitting tumors into groups of either favorable or poorer 
clinical outcomes by a median split of OS per cohort. 
No other filters were used here to stratify patients, as the 
last follow-up time was not available for the majority of 
cohorts.

Longitudinal bulk transcriptomic data
Preprocessed transcriptomic data were accessed for every 
patient-tumor within the CPI∆ study. All cohorts included 
transcriptomic data from tumor biopsies collected from 
two specific timepoints; pre-therapy (baseline sample 
prior to CPI treatment) and on-therapy (after at least one 
cycle of CPI, ranging from 2 to 9 weeks). Across the CPI∆ 
cohorts, longitudinal transcriptomic information was 
available in the form of either RNA sequencing (n=6) or 
NanoString (n=1) data. For the “breast” cohort, transcrip-
tomic data in the form of RNA sequencing was available 
pre-therapy only (n=44), whereas paired pre-therapy and 
on-therapy transcriptomic data were only available in the 
form of NanoString data, and hence these data were used 
for the majority of analyses. For the “breast” cohorts, a 
total of n=25 patients had NanoString data from both pre-
therapy and on-therapy timepoints available. The mela-
noma cohorts (“melanoma (a)” and “melanoma (b)”) 
had transcriptomic data available in the form of RNA 
sequencing. In total, all n=19 “melanoma (b)” patients 
had sequencing data available across both timepoints. 
Only 23/29 ‘Melanoma a’ patients had sequencing data 
available from both timepoints. For both the urothelial 
cohorts, RNA sequencing was available across both time-
points for n=64 (‘urothelial a’) and n=13 (‘urothelial 
b’) patients. For analysis, all transcriptomic data, in the 
form of transcript per million (TPM), was transformed 
using log2(TPM+1). The exception to this was the RNA 
sequencing data from the pan-cancer cohort, where data 
was already log2 transformed and batch normalized for 
n=30 patients across both pre- and on-therapy timepoints.

CPI1000+ study samples
Transcriptomic data in the form of TPM were leveraged 
from the CPI1000+ study14 consisting of pre-therapy 
RNA-sequencing data across four “melanoma” CPI-naïve 
cohorts: Liu et al (n=66), an advanced melanoma anti-PD-1 

Table 1  CPIΔ cohort overview

Cohort Cancer type Pre-therapy (n)
Pre-therapy 
data type

On-therapy 
(n)

On-therapy 
data type

Paired 
longitudinal 
samples (n)

Longitudinal 
data type

Breast Metastatic TNBC 44 RNA-seq 25 NanoString 25 NanoString

Melanoma (a) Metastatic 
melanoma

29 RNA-seq 23 RNA-seq 23 RNA-seq

Melanoma (b) Metastatic 
melanoma

19 RNA-seq 19 RNA-seq 19 RNA-seq

Pan-cancer Metastatic solid 
tumors

30 RNA-seq 30 RNA-seq 30 RNA-seq

Urothelial (a) Muscle-invasive 
urothelial cancer

64 RNA-seq 64 RNA-seq 64 RNA-seq

Urothelial (b) Locoregionally 
advanced 
urothelial cancer

13 RNA-seq 13 RNA-seq 13 RNA-seq

CPI, immune checkpoint inhibitor ; RNA-seq, RNA sequencing; TNBC, triple-negative breast cancer.
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treated cohort31 ; Snyder et al (n=20), an advanced mela-
noma anti-CTLA-4 treated cohort32; Hugo et al (n=26), an 
advanced melanoma anti-PD-1 treated cohort6 ; Van Allen 
et al (n=39), an advanced melanoma anti-CTLA-4 treated 
cohort.33 One melanoma CPI-pretreated cohort referred 
to as “melanoma (c),” Liu et al (n=55), an advanced mela-
noma anti-PD-1 treated cohort.31 Two bladder cohorts: 
Snyder et al (n=21), an advanced urothelial cancer anti-
PD-L1 treated cohort34; Mariathasan et al (n=331), an 
advanced urothelial cancer anti-PD-L1 treated cohort.11 
One renal cohort, McDermott et al (n=39), a metastatic 
renal cell carcinoma anti-PD-L1 treated cohort.12 One 
lung cohort, Shim et al (n=195), an advanced non-small-
cell lung cancer (NSCLC) anti-PD-L1 treated cohort.35 
One gastric cohort, Kim et al (n=55), an advanced gastric 
cancer anti-PD-1 treated cohort.36 Unless otherwise 
stated, all data were log2(TPM+1) transformed.

Pre-therapy bulk transcriptomic data
For the purpose of comparing pre-therapy expression 
across both “melanoma (a)” and “breast” CPI∆ cohorts, 
pre-therapy RNA sequencing data for these cohorts were 
obtained from the CPI1000+ study.14 Here, data were 
processed from raw sequencing reads, and standardized 
processing/quality control procedures were executed as 
described previously.14

Derivation of published signatures
The following published transcriptomic signatures/
marker genes were tested for associations with response 
to CPI therapy, including 15 pre-therapy-derived signa-
tures/markers: CD8A,37 CD274(PD-L1),38 CXCL9,39 both 
MHC I and MHC II,31 CD8 T-cell effector referred to as 
T-Effector,12 and the CD8 T-cell effector signature from 
the POPLAR trial referred to as POPLAR,40 stroma-
EMT,4112-chemokine referred to as Chemokine,42 T-cell 
inflamed signature referred to as IFNγ,7 TGFβ pan fibro-
blast referred to as Pan-F-TBRS,11 IMPRES,8 cell prolifer-
ation,43 15 β-catenin target genes referred to as BCTGs,44 
and cytolytic score referred to as CYT.45 An addition 17 
signatures/markers derived at the on-therapy timepoint 
were evaluated including, CD8 exhaustion,46 CD27, CD69, 
CD8B, GZMA, GZMK, HAVCR2, ICOS, ENTPD1, EOMES, 
LAG3, PDCD1, CTLA4, TBX21, TIGIT, ZAP70,16 and 
CXCR6.47

TCGA analysis
The Cancer Genome Atlas (TCGA) data across two cancer 
types (breast cancer and melanoma) were acquired using 
R software (V.4.0.2). Gene expression data, Workflow 
Type: HTSeq-Counts and clinical data were downloaded 
from Genomic Data Commons Data Portal using the R/
Bioconductor package TCGAbiolinks V.2.16.4.48 Clinical 
data were used to select for CPI-naïve tumor samples and 
for patients with OS of at least 1 day, yielding 712 breast 
cancer and 67 melanoma cases. Gene expression counts 
were normalized using DESeq2 V.1.28.149 variance stabi-
lizing transformation function and data were filtered 

for genes of interest. For survival analyses, OS was esti-
mated from clinical data using “days_to_last_followup” 
and “days_to_death” and an OS event was defined from 
“vital_status” (Dead/Alive).

Sampling bias
Sampling bias analyses evaluating genes identified 
to change in expression on-therapy were conducted 
using two CPI-naïve-multi-region cohorts, including the 
TRACERx lung cohort (lung, TRACERx, n=797 regions 
from 278 patients)50 and the ADAPTeR cohort (renal, 
ADAPTeR, n=26 regions from 5 patients).18 Spatial RNA 
variation in these treatment-naïve cohorts were calcu-
lated as RNA intratumor heterogeneity (ITH) scores 
as previously performed.51 Briefly, per tumor, the SDs 
of expression values for a particular gene across tumor 
regions were calculated, generating a gene-specific, 
patient-specific measure of variance. This variance was 
then summarized across all tumors (median). Generated 
scores, per given gene, were used to compare the spatial 
variance to longitudinal variance. Longitudinal variance 
was captured between longitudinal tumor samples (SD) 
and summarized across all tumors (median), generated 
using selected CPI∆ longitudinal cohorts per analysis. 
Both RNA-ITH and longitudinal variance scores were 
then compared. This analysis was conducted separately 
using CPI∆ CPI-responding tumors and CPI∆ CPI-non-
responding tumors where appropriate.

Statistic selection
The statistic for capturing RNA expression change 
between the pre-therapy and on-therapy timepoints:

“Hedge’s g”

	﻿‍ delta =
(

mB − mA
)

/SD ∗ d ‍�

Where mA is the mean expression of a given gene at the 
pre-therapy timepoint across selected tumor samples and 
mB is the mean expression on-therapy. SD*d is the pooled 
and weighted SD across tumor samples, accounting for 
biased estimates of effect size in small sample sizes.52

Statistics and reproducibility
The statistical tests used are indicated in the accompa-
nying figure legends and are two sided, where applicable, 
unless otherwise stated. All findings were considered 
significant at a p value threshold of 0.05. Significant p 
values are indicated within the figures. Plots and graphs 
were generated with R Studio software (V.4.0.2). Ilustra-
tions were created using BioRender (https://biorender.​
com).

RESULTS
Assembling the CPI-Dynamics (“CPI∆”) cohort
To assemble the CPI∆ cohort, we leveraged molecular 
data from six longitudinal CPI studies (table  1; online 
supplemental figure 1; Methods section). The indi-
vidual cohorts comprising the CPI∆ study are henceforth 
referred to as the “breast” cohort (patients with TNBC), 
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“melanoma (a)” cohort (patients with melanoma, CPI-
naïve), “melanoma (b)” cohort (patients with melanoma, 
prior lines of CPI therapy), “pan-cancer” cohort (head 
and neck carcinoma, TNBC, high-grade serous ovarian 
cancer, melanoma, rare solid tumors), “urothelial (a)” 
cohort, and a “urothelial (b)” cohort.

To explore known biological factors associated with 
CPI sensitivity, established published transcriptomic 
signatures and marker genes of CPI response were eval-
uated. Although the majority of selected signatures 
encompassed genes associated with immune response 
and were derived across a variety of cancer types, their 
pan-cancer applicability was unknown. First, 15 signa-
tures previously derived as informative from pre-therapy 
samples were evaluated, consisting of both single- and 
multi-gene markers/signatures with several overlapping 
genes between signatures. To explore the pan-cancer 
utility of these signatures, we employed pre-therapy 
RNA sequencing data from the CPI∆ cohort in addition 
to 10 pre-therapy cohorts from the CPI1000+ dataset14 
(Methods section). Across the “CPI∆ plus CPI1000+” 
cohort (16 cohorts, n=1046 patients), each signature was 
evaluated individually and the generated effect sizes, OR 
based on RECIST response or pCR (Methods section), 
and generated SEs were combined in a meta-analysis 
across cohorts (figure 1A; Methods section).

Sixty percent (9/15) of pre-therapy derived signatures 
were significantly associated with CPI response in the pre-
therapy meta-analysis (figure  1A; online supplemental 
table 1). However, at the individual cohort-level, for the 
“breast” pre-therapy CPI∆ cohort, no significant associa-
tions were observed (figure 1A; online supplemental table 
2). Furthermore, most signatures did not validate in the 
cancer types in which they had been derived, specifically 
noted across melanoma (1/7), NSCLC (0/3), urothelial 
(1/2), and renal (0/1) derived signatures (figure  1A; 
online supplemental table 2). These data indicate that 
the majority of established signatures were not informa-
tive of CPI response in this breast cancer cohort, and that 
overall, a minority of RNA signatures are associated with 
response in more than one cohort.

Next, 17 signatures previously derived as informative 
of CPI response from on-therapy samples were evaluated 
using the on-therapy sequencing data from the CPI∆ 
cohorts. Eighty-eight percent (15/17) of on-therapy 
derived transcriptomic signatures were significantly asso-
ciated with response within the on-therapy meta-analysis 
(figure 1B; online supplemental table 3). In the “breast” 
CPI∆ cohort, contrary to pre-treatment where no signa-
tures were significantly associated with response, 50% 
(8/16) of assessable on-therapy derived signatures were 
significantly associated with response (figure 1B; online 
supplemental table 4), including markers of immune 
activation (ZAP70, p=0.046) and exhausted T-cell pheno-
types (GZMA, p=0.020) among other immune checkpoint 
genes (LAG3, p=0.01; CTLA-4, p=0.02; TIGIT, p=0.02). 
These signals of immune reinvigoration could be 
detected on-therapy in CPI-treated breast tumors, which 

was not discernible in pre-therapy signature and samples, 
suggesting that on-therapy gene expression may provide 
additional biological insight into the impact of CPI on the 
breast cancer immune microenvironment.

Dynamics of published RNA markers following CPI therapy
Since in the “breast” CPI∆ cohort, the on-therapy derived 
RNA signatures demonstrated more informative signals 
on-therapy, we next used expression data for all evaluated 
gene signatures (both pre- and on-therapy derived) to 
explore the impact of CPI on transcriptomic expression 
changes between pre- and on-therapy timepoints at both 
the cohort- and patient-level, within the “breast” CPI∆ 
cohort (n=25).

Using this approach, the CD8A marker demonstrated 
a normal distribution of expression pre-therapy, which 
became flatter on-therapy, suggesting that tumors in 
this cohort exhibited either no change, an increase, or a 
decrease in CD8A expression after CPI (figure 2A, top). 
At the patient-level, a wide diversity in RNA trajectories 
were revealed following CPI therapy for the CD8A gene, 
whereby some tumors with the lowest pre-therapy CD8A 
expression shifted to the highest on-therapy expression 
levels, and vice versa (figure 2A, bottom). When assessing 
the dynamic changes in CD8A expression on-therapy 
compared with pre-therapy, we observed a striking asso-
ciation of dynamically increasing CD8A with improved 
favorable survival which would not be possible to deter-
mine using pre-treatment CD8A expression levels only 
(figure  2A, bottom). Lastly, correlating on-therapy 
expression shifts with clinical outcomes demonstrated a 
significant enrichment (p=0.0048) for favorable survival 
outcomes (OS>median, Methods section) within tumors 
with on-therapy increases in CD8A expression (77% 
(10/13)), while 75% (9/12) of tumors with decreased 
CD8A expression had poorer survival outcomes within 
the “breast” CPI∆ cohort (figure 2A, bottom). Across the 
remaining transcriptomic signatures, similar dynamics 
were observations (figure  2B–E). Furthermore, 76% 
(19/25) of other signatures were significantly enriched 
for favorable survival outcomes within breast tumors with 
dynamic on-therapy expression increases (figure 2E).

For the other CPI∆ cohorts, significant enrichments for 
favorable survival outcomes within tumors with expres-
sion increases were observed within the “melanoma (a)” 
for 13% of signatures (4/32) and the “urothelial (b)” 
cohort for (6%) of signatures (2/32) (online supple-
mental figure 2A,B). No other significant differences 
were observed (online supplemental figure 2C–E). Taken 
together these results highlight the importance of delin-
eating changes which occur on-CPI as they may hold 
key biological information about the impact of CPI on 
the tumor microenvironment. Furthermore, these data 
emphasize the need to move beyond established gene 
signatures and examine RNA dynamics across all genes, 
which may aid in deciphering patterns of response or 
resistance to CPI in breast cancer.
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Figure 1  Meta-analysis of RNA signatures associated with CPI response. (A) Pre-therapy meta-analysis. Pre-therapy-derived 
signatures are shown as rows and individual cohorts within the “CPI∆ plus CPI1000+” cohorts as columns; studies in which 
each cohort was included are indicated (∆=CPI∆; +=CPI1000+; bottom of the heatmap). (B) On-therapy meta-analysis. Here 
on-therapy-derived signatures are shown as rows and individual cohorts within the CPI∆ cohort as columns. The heatmaps 
indicates the effect size of each signature in each cohort, measured using the log2 odds ratio (OR) for response versus non-
response (RECIST criteria), derived from logistic regression. Red represents an association with response, blue an association 
with non-response, and significance indicated with an asterisk. Both cohort size (bottom of the heatmap) and drug received (top 
of the heatmap) are indicated. Signatures are split into the cancer type in which they were derived (left of heatmaps; melanoma, 
non-small-cell lung cancer (NSCLC), urothelial; renal; NCTS (non-cancer-type-specific)). The forest plots on the right display the 
overall effect size and significance (p values) of each signature in the meta-analysis across all studies, based on the effect sizes 
and SEs from each individual cohort. A random-effects model was used for the meta-analysis to account for different cancer 
types .
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Figure 2  Dynamics of RNA signatures pre-therapy and on-therapy. (A–D) Longitudinal expression of (a) CD8A, (b) GZMA, 
(c) EOMES, (d) CYT marker genes within the “breast” CPI∆ cohort. Top density plots display pre-therapy (gray curve) and on-
therapy (black curve) expression across the breast cancer cohort with longitudinal data available (n=25). Bottom residual plot 
demonstrates pre-therapy expression (log2(TPM+1)) plotted along the diagonal line (x-axis) and on-therapy (y-axis) expression 
which is joined to paired patient-level pre-therapy expression with a vertical line. Red indicates cohort stratification into patient-
tumors with high overall survival (OS; >median (OS)) and dark blue indicates patient-tumors with low OS (OS<median (OS)). 
(E) Summary plot of all available signatures (n=25) within the breast cancer cohort. Signatures are depicted on the x-axis and 
number of patient tumors which either increase (top arrow) or decrease (bottom arrow) in expression for each signature on the 
y-axis. Bars in red (OS high) and dark blue (OS low) depict patient-tumor stratification based on OS. Significance was tested 
using a Fisher’s exact test and displayed. CPI, checkpoint inhibitor.
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RNA dynamics induced by CPI in breast cancer
Previous work has focused on delineating response 
signals by comparing responding and non-responding 
breast tumors using static pre-therapy or on-therapy 
timepoints separately. In light of the dynamic expression 
changes observed on-therapy, we next explored transcrip-
tional changes associated with CPI treatment across the 
778 immune-related genes from the immune NanoString 
panel, to achieve further insight into the biological mech-
anisms underpinning response in breast cancer. Here, 
we sought to quantify RNA dynamics from bulk pre-
therapy and on-therapy transcriptomic data by applying 
the hedges’ g statistic (Methods section) and identifying 
genes that either increase (“positive delta”), decrease 
(“negative delta”) or do not change (“neutral delta”) in 
expression on-therapy within individual CPI response 
groups (CPI-responding tumors and CPI-non-responding 
tumors; Methods).

To delineate expression modules with shared or 
diverging longitudinal patterns following CPI treatment, 
genes displaying dynamic expression shifts on-therapy 
were compared between the CPI response groups 
(figure 3A, diagram left; Methods section), yielding four 
classifications of genes (figure 3A, diagram right; online 
supplemental table 5). Two groups of genes were char-
acterized by either positive or negative dynamic shifts in 
expression in CPI-responding tumors: “Response Pos” 
with n=135 genes and “Response Neg” with n=7 genes 
from the “breast” CPI∆ cohort (figure 3A, diagram right; 
online supplemental table 5). In addition to two groups 
of genes with either positive or negative dynamic shifts 
in expression in CPI-non-responding tumors only; “Resis-
tance Pos” with n=7 genes and “Resistance Neg” with n=6 
genes from the “breast” CPI∆ cohort (figure 3A, diagram 
right; online supplemental table 5). Classification of 
genes was conducted across all CPI∆ cohorts, subsetted to 
778 immune genes within the immune NanoString panel. 
Within the breast cancer cohort 79% of genes (107/135) 
identified within the “Response Pos” group (figure 3B), 
86% of genes (6/7) within the “Response Neg” and 
“Resistance Pos” (figure 3C; online supplemental figure 
3A and tables 6 and 7), and 83% of genes (5/6) within 
the “Resistance Neg” group demonstrated dynamic 
expression shifts on-therapy in the “breast” CPI∆ cohort 
only (online supplemental figure 3B and tables 6 and 7).

Next, to address the limitation of single-region biop-
sies, which may lead to some identified genes within the 
“breast” CPI∆ cohort being confounded by tumor sampling 
bias, longitudinal RNA variation following CPI therapy 
was compared with spatial RNA variation in treatment-
naïve tumors (multi-region samples; table  2) for each 
gene across CPI-responding and CPI-non-responding 
tumors (RECIST radiological response) within the CPI∆ 
“breast” cohort (Methods section). Ninety-eight percent 
(105/107) of the “Response Pos” genes, 83% (5/6) of the 
“Response Neg” genes, 50% (3/6) of the “Resistance Pos” 
genes, and 20% (1/5) of the “Resistance Neg” genes were 
not confounded by sampling bias, whereby spatial RNA 

variation underlying tumor sampling bias was surpassed 
by the changes in RNA expression during CPI therapy 
within the “breast” CPI∆ cohort (figure 3D).

CPI dynamics and clinical outcomes in breast cancer
After filtering out genes which were confounded by 
sampling bias (figure  3D), we explored whether the 
expression changes on-CPI of the remaining 114 genes 
were associated with clinical outcomes. Patient-level deltas 
(on-therapy – pre-therapy) expression change values were 
calculated for each individual gene, and both RECIST 
radiological response and OS clinical endpoints were 
evaluated within the “breast” CPI∆ cohort. Data were also 
leveraged from CPI-naïve-tumors from the TCGA breast 
cancer datasets, and OS was evaluated to distinguish CPI 
response signals from the prognostic signals.

Using these last filtering steps, 90/114 genes were 
significantly associated with favorable clinical outcomes 
(clinical outcome being OS) in patients with breast 
cancer treated with CPI (figure  3E, left; online supple-
mental table 8). Genes comprising this group included 
those expressed on macrophages (C1QA and C1QB), 
T-cells (CD3G), myeloid cell expressed genes (FCGR1A), 
chemokine receptors and ligands (CCR5, CXCL10, 
CXCL11, XCL2), IFNγ -induced genes associated with 
immune infiltration (GBP1 and GBP4), crucial regulators 
of T-cell and NK-cell proliferation and differentiation 
(IL21R), genes involved in antigen processing (PSMB9 
and B2M), and genes expressed by NK cells and other 
cytotoxic immune cells such as KLRK1 (NKG2D). Further-
more, 13/90 identified genes were also known IO targets 
(CD38, CD7, CD80, CD27, SLAMF7, TIGIT, CD274, ICOS, 
TNFRSF9, JAK2, TLR1, TLR1, and TLR8).

Crucially, 8/114 genes were identified as significantly 
associated with CPI response (RECIST radiological 
response; figure  3E, right; online supplemental table 
8). These eight genes included, FCGR3A, the low-
affinity Fc gamma receptor associated with cytotoxic 
lymphocytes and critical for antibody-dependent cyto-
toxicity, REN, an aspartic protease that is part of the 
renin−angiotensin−aldosterone system, NRAS, an onco-
gene associated with poor clinical outcomes in breast 
cancer, PIK3R2, a lipid kinase associated with tumor 
progression, CCL3 a chemokine ligand which mediates 
macrophage chemotaxis and enhancing differentiation 
of T cells into effector T cells, COL4A5, a collagen type 
4 alpha 5 chain associated with response to chemo-
therapy in breast cancer, AQP9, an aquaporin family 
member, and H2AX, a variant histone (figure 3E, right; 
online supplemental table 8). The remaining 16/114 
genes were either not associated with clinical outcomes 
in patients with breast cancer treated with CPI or asso-
ciated with clinical outcomes in CPI-naïve patients 
with breast cancer. Together these results suggest that 
genes identified to be associated with clinical outcomes 
(RECIST radiological response and OS) may play roles 
in response to CPI in breast cancer.
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Figure 3  CPI induced gene expression dynamics in breast cancer. (A) Left diagram depicting RNA dynamics (∆+ “increase,” 
∆− “decrease,” ∆ neutral expression change on-therapy) observed across tumors stratified into CPI-responding-tumors 
(RECIST Responder(R)/OS high (>median OS)) and CPI-non-responding-tumors (RECIST non-responder (NR)/OS low 
(<median OS)) within the “breast” CPI∆ cohort, with number of genes highlighted in red. Diagram on the right demonstrates 
the classification of genes into four categories, “Response Pos” (∆+ in CPI-responding-tumors), “Response Neg” (∆− in CPI-
responding-tumors), “Resistance Pos” (∆+ in CPI-non-responding-tumors), and “Resistance Neg” (∆− in CPI-non-responding-
tumors) genes, with total genes displayed. The illustrations were created using BioRender (https://biorender.com). (B, C) Upset 
plots of genes comprising the (B) “Response Pos” and (C) “Response Neg” categories across six of the CPI∆ cohorts, 
subsetted for 778 genes within the “breast” CPI∆ immune NanoString panel. For each upset plot, the left bar plots indicate 
the number of genes identified in each gene category per CPI∆ cohort, including “breast” (pink), “melanoma (a)” (light blue), 
“melanoma (b)” (dark blue), “urothelial (a)” (orange), “urothelial (b)” (yellow). The top bar plot indicates the total number of 
genes which are unique to each cohort and the number of shared genes between cohorts, with interactions highlighted in the 
bottom dot plot. (D) Proportion plots depicting gene identified to “increase” or “decrease” in expression on-therapy across gene 
categories (“Response Pos,” purple; “Response Neg,” blue; “Resistance Pos,” green; “Resistance Neg,” yellow) in the “breast” 
CPI∆ cohort only. Y axis indicates the number of genes identified per gene category at F1 (filter one), followed by the number 
of genes identified per gene category to not be confounded by sampling bias F2 (filter 2; Methods section) within the “breast” 
CPI∆ cohort. Analysis was conducted on 778 genes comprising the immune NanoString panel. (E) Scatter plot left, depicting 
the overall effect size (OR; x-axis) and significance (p value; y-axis) of identified genes (each point) identified within one of 
the four gene categories (“Response Pos,” circle; “Response Neg,” triangle; “Resistance Pos,” square; “Resistance Neg,” 
cross) and not confounded by sampling bias (results from figure 3D). Associations with clinical outcomes were assessed using 
RECIST radiological response across the “breast” CPI∆ cohort. Gray indicates genes with no association with CPI response, 
in red a significant association with CPI response, and in blue associated with clinical outcomes in CPI-naïve tumors within the 
TCGA dataset. Scatter plot right, depicting the hazard ratio (HR; x-axis) and significance (p value; y-axis) of identified genes. 
Associations with clinical outcomes were assessed using OS across the “breast” CPI∆ cohort. CPI, checkpoint inhibitor; OS, 
overall survival; RECIST, Response Evaluation Criteria in Solid Tumors.
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Gene-level explorations of differing mechanisms of CPI 
dynamics between breast cancer versus melanoma
To evaluate differences in biological mechanisms of 
CPI response between breast cancer and melanoma, we 
compared pre-therapy expression of the crucial genes 
identified to be associated with CPI-response (RECIST/
OS) in breast cancer (n=98 genes) across both breast 
and CPI-naïve melanoma tumors (“melanoma (a)” 
CPI∆ cohort). To objectively compare gene expression 
data between these two cohorts and limit any variability 
which may arise due to varied data processing, here pre-
therapy RNA sequencing data from these two cohorts 
were leveraged from the CPI1000+ study, whereby data 
were processed through the same pipeline (Methods 
section). In melanoma, 16 genes identified to increase 
in expression in CPI-responding breast tumors after 
treatment were expressed significantly higher within 
the melanoma tumors compared with breast tumors 
pre-therapy (figure  4A). Furthermore, 4/16 genes are 
known IO targets (TLR8, TLR4, TLR1, JAK). Likewise, 
two genes, COL4A5 and PRK3R2, which were identified to 
decrease in expression in CPI-responding breast tumors 
after treatment, presented significantly lower expression 
in melanoma compared with breast tumors pre-therapy 
(figure 4B). These results suggest that patients with mela-
noma potentially respond better to CPI due to crucial 
genes already either being highly or lowly expressed 
pre-therapy and suggest that RNA dynamics following 
CPI treatment may differ between breast and melanoma 
tumors, which may partially inform the difference in 
response rates to CPI.

Next, exploring differences in RNA dynamics between 
pre-therapy and on-therapy timepoints between breast 
tumors and melanoma, the same approach used in the 
“breast” CPI∆ cohort was applied to the melanoma CPI-
naïve (“melanoma (a)”) CPI∆ cohort, evaluating the 778 
genes from the immune NanoString panel. Of the genes 
identified to only change in expression within the mela-
noma cohort (genes from the “Response Pos,” “Response 
Neg,” “Resistance Pos,” and “Resistance Neg” categories) 
a total of 64/95 genes were not confounded by sampling 
bias (figure  4C). Twenty-two percent of these genes 
(14/64) were associated with either response or non-
response to CPI therapy, including seven genes which 
decreased in expression on-therapy in CPI-responding 
tumors and were significantly associated with non-
response (figure 4D). These seven genes included PMS2, 
an essential gene in DNA mismatch repair, and SOX10, 
a melanocyte-inducing transcription factor, BAMBI, a 

TGFβ pseudo-receptor, two genes involved in cancer 
metabolism, SLC16A, a solute carrier family member that 
plays a role in the transport of lactate and pyruvate, and 
LDHA, a lactate dehydrogenase which converts pyruvate 
to lactate, and SNCA, which codes for alpha-synuclein, 
that has been associated with enhancing cell survival in 
melanoma (figure 4D).

Furthermore, three genes increased in expression in 
CPI-non-responding melanoma tumors and were asso-
ciated with non-response, including RAD51, involved in 
homologous recombination and DNA repair, and has 
been linked to immune dysregulation, MAGEA1, the 
melanoma-associated antigen 1, and BLM, a helicase 
family member which plays a role in cellular metabolic 
processes (figure  4D). Lastly, three genes increased in 
expression on-CPI in CPI-responding melanoma tumors 
and were significantly associated with response to CPI in 
melanoma, including RORC, coding for a DNA-binding 
transcription factor (figure  4D). These genes were not 
observed to significantly change in expression on-therapy 
in breast tumors. Taken together, these results demon-
strate varied response patterns between CPI-treated 
melanoma and breast tumors, which warrant further 
investigation as potential targets for combination therapy 
for patients with breast cancer.

DISCUSSION
CPIs have been shown to be effective in treating several 
types of cancer, including melanoma. Nonetheless, 
response rates in many other cancer types, most notably 
breast cancer which remains one of the most prevalent 
cancer worldwide, are far inferior. This differential effi-
cacy could reflect different mechanisms of response to 
treatment within breast cancer and the complexities of 
the immune system’s response to the disease. Here, we 
explored the transcriptomic response of cancers to CPI 
treatment through the analysis of our CPI∆ cohort. Our 
analysis of both pre- and on-therapy-derived published 
signatures demonstrated that most cancer-type-derived 
signatures did not inform clinical outcomes in the cancer 
type they were derived from. This lack of reliability high-
lights the potential differences in signals of response 
across tumor types. In the breast cancer cohort, unlike 
pre-therapy signatures, 50% of on-therapy signatures 
were associated with response. On-therapy signals within 
the breast cancer cohort were consistent with signals 
of immune reinvigoration of T-cell exhausted pheno-
types on-therapy, as suggested by genes such as CTLA-4, 
HAVCR2 (TIM-3), and GZMA, which have been shown to 
increase in expression following anti-PD-1 in melanoma.16

By exploring transcriptomic changes on CPI in the 
“breast” CPI∆ cohorts, we identified key breast cancer-
specific correlates of CPI response. We identified eight 
genes which change in expression on-therapy and may 
define CPI response within breast cancer, including 
FCGR3A, an Fc gamma receptor, for which high expression 
on NK cells has been functionally shown to cause higher 

Table 2  Treatment-naïve multi-region datasets

Cohort
Cancer 
type

Patients 
(n)

Regions 
(n) Data type

TRACERx 
Lung

NSCLC 278 797 RNA-seq

ADAPTeR Renal 7 26 RNA-seq
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Figure 4  Differential mechanisms of CPI dynamics breast cancer versus melanoma. (A) Box plots comparing pre-therapy 
expression (y-axis) of genes identified to increase in expression on-therapy (Response Pos genes) and be associated with 
clinically favorable response to CPI in breast cancer (figure 2E, right), within the “melanoma (a)” and “breast” CPI∆ cohort (x-
axis). This analysis used RNA sequencing data processed from FASTq to TPM matrix through a standardized pipeline allowing 
for comparison across both cohorts. Significance was tested using a Wilcoxon test and displayed. (B) Box plots comparing 
pre-therapy expression (y-axis) of genes identified to decrease in expression on-therapy (Response Neg genes) and observed to 
be associated with no response to CPI breast cancer (figure 2D, right), within the “melanoma (a)” and “breast” CPI∆ cohort (x-
axis). Data used here were RNA sequencing across both cohorts processed from FASTq to TPM matrix through a standardized 
pipeline allowing for comparison. Significance was tested using a Wilcoxon test and displayed. (C) Proportion plots depicting 
gene identified to “increase” or “decrease” in expression across gene categories (“Response Pos,” purple; “Response Neg,” 
blue; “Resistance Pos,” green; “Resistance Neg,” yellow) on-therapy across the “melanoma (a)” CPI∆ cohort only. Y axis 
indicates the number of genes identified per gene category at F1 (filter one), followed by the number of genes identified per 
gene category to not be confounded by sampling bias F2 (filter 2; Methods section) within the “melanoma (a)” CPI∆ cohort. 
This analysis was conducted on 778 genes comprising the immune NanoString panel. (D) Scatter plot depicting the overall 
effect size (OR; x-axis) and significance (p value; y-axis) of identified genes (each point) identified within one of the four gene 
categories (“Response Pos,” circle; “Response Neg,” triangle; “Resistance Pos,” square; “Resistance Neg,” cross) and not 
confounded by sampling bias (results from figure 3D). Associations with clinical outcomes were assessed using RECIST 
radiological response across the “Melanoma (a)” cohort. Gray symbols indicates genes with no association with CPI response, 
in red a significant associations with CPI response, and in blue associated with clinical outcomes in CPI-naïve tumors within the 
TCGA dataset. CPI, checkpoint inhibitor; RECIST, Response Evaluation Criteria in Solid Tumors.
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anti-PD-L1 antibody-dependent cellular cytotoxicity lysis 
of tumor cells.53 Also, CCL3, a chemokine ligand, over-
expression of which in colorectal cancer mouse models 
led to the rapid regression of tumors, increased prolifer-
ation, and functionality of tumor-infiltrating T cells and 
accelerated tumor-regression on CPI (anti-PD-1).54 These 
genes may play roles in response to CPI in breast cancer 
and are putative targets for combination therapy, which 
in turn could aid in the delivery of immuno-oncology and 
enhancing CPI efficacy within breast cancer.

In parallel, we also identified 90 genes in breast cancer 
associated with favorable clinical outcomes in patients 
with breast cancer treated with CPI including CCL5, 
XCL1, XCL2, KLRK1, and GZMB, associated with the 
presence of functional cytotoxic NK cells.55–58 Of these 
genes, KLRK1 (NKG2D) has been reported not only to 
enhance the cytotoxicity of NK cells, aiding in the elimi-
nation of tumor cells, but also facilitate the activation of 
breast-resident vδ1 cells57 59–62 and has been associated 
with good prognosis in breast cancers.58 Together these 
results suggest the presence of functional cytotoxic NK 
cell phenotypes and other cytotoxic immune cells within 
the breast cancer TME may play a critical role in response 
to CPI in breast cancer.

We identified 18 genes which significantly increase in 
expression on-CPI in breast cancer responders but were 
already highly expressed in melanoma pre-therapy. These 
18 genes included B2M, a component in MHC-I antigen 
processing and presentation,63 and 3 Toll-like receptor 
genes (TLR1, TLR4, and TLR8), which have been 
suggested as potential IO targets.64 Importantly, multiple 
TLR agonists have been investigated in combination with 
CPI to enhance efficacy across various cancer types.65–68 
Furthermore, of the genes identified to decrease in 
expression on-CPI in breast cancer, PIK3R2 was already 
lowly expressed in melanoma tumors pre-therapy and 
has been associated with repressed cell proliferation, 
invasion, epithelial–mesenchymal transition, and cell 
apoptosis in melanoma cells,69 which could hold poten-
tial applicability in breast cancer. These genes warrant 
further investigation and may be potential targets for 
combination therapy in IO refectory cancers like TNBC, 
particularly genes such as TLR8, TLR4, and TLR1, which 
are known IO targets.

We also identified 14 genes associated with either 
CPI response or non-response within the melanoma 
CPI∆ cohort, which did demonstrate significant expres-
sion changes on-CPI within the breast cancer cohort, 
including SOX10, SLC16A, SNCA, BAMBI, and RAD51. Of 
the genes identified to decrease in expression in mela-
noma responding tumors, SOX10 has been shown to 
hinder immunogenicity in melanoma cell lines through 
the IRF4–IRF1 axis and regulate PD-L1 expression.70 
Furthermore, suppression of SOX10 has demonstrated 
increased efficacy to combination therapy including 
anti-PD-1 in melanoma.70 SLC16A, has been associated 
with lower OS across cancer types,71 72 and in breast 
cancer SLC16A has been associated with more aggressive 

phenotypes.73 Knockout of SNCA in melanoma cells has 
been associated with higher rates of apoptosis in xeno-
grafts,74 suggesting that lower expression observed in 
melanoma tumors treated with CPI may aid in cancer 
cell elimination, whereas knockout of BAMBI, has been 
associated with growth inhibition in TNBC cell lines.75 
Of the genes identified to increase in expression in CPI-
non-responding tumors, RAD51, has been associated with 
poor survival in breast cancer and other cancer types, as 
well as with increased genomic instability and immune 
dysregulation.76 These results highlight key genes associ-
ated with response to CPI in melanoma, which warrant 
further study to investigate their biological effect on 
immune response in the context of CPI, in addition to 
providing additional targets for combination therapy, 
which may prove to also be beneficial in the treatment of 
breast cancer.

Our study is not without limitations. The biggest chal-
lenge faced in longitudinal CPI response analyses is 
the difficulty in obtaining paired data from CPI-treated 
patients, resulting in small cohorts for such analyses, in 
addition to varied timing of biopsies on-treatment across 
cohorts, which may influence the biological composition 
of the TME following CPI therapy. Despite this, our study 
is the largest meta-analysis of its kind and provides valu-
able insights into the biology of CPI-mediated immune 
response. A further complication in leveraging data from 
multiple studies is the lack of standardized reporting of 
covariates such as patient demographics and detailed 
treatment histories. However, our study aimed to miti-
gate this limitation where possible by selecting cohorts 
with metastatic and advanced disease only, in addition 
to restricting more detailed comparisons exclusively 
between cohorts of patients reported as CPI-naïve prior to 
entering the trials. We explored data from various cohorts 
with RNA sequencing and NanoString data which were 
not unified in a single pipeline, which could potentially 
affect the comparability of the data. Nevertheless, the 
aforementioned limitation was addressed where possible 
by leveraging RNA sequencing data processed through a 
unified pipeline when conducting head-to-head compar-
isons of gene expression of identified genes. Further-
more, our meta-analyses still provide important insights 
into the biology of CPI-mediated immune response and 
contributes to an advancement of the field. However, the 
use of transcriptomic data generated from different plat-
forms may lead to limitations in conclusions that could 
be drawn, as analyses were limited to 778 genes from the 
NanoString panel for comparison between cohorts as 
opposed to genome-wide, which may restrict our analysis. 
Although much of our data were obtained from a single 
sampled biopsy, which could introduce sampling bias, 
this limitation was mitigated by validating our findings 
in orthogonal multi-regional datasets to ensure that the 
intra-sample longitudinal variability was larger than the 
spatial treatment-naïve variability. However, we acknowl-
edge the limitations introduced by the lack of concor-
dant cancer type and stage-matched multi-region datasets 
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used. Nonetheless, our study creates a wealth of oppor-
tunities for further research to validate and expand on 
these findings, aiming to improve personalized treatment 
options for patients with cancer .
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