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Abstract

Motivated by problems arising in the piecewise construction of physically relevant solutions
to models of shallow water fluid flows, we study the initial value problem for quasilinear
hyperbolic systems of conservation laws in 1 + 1 dimensions when the initial data are continuous
with "corners," i.e., derivative discontinuities. While it is well known that generically such
discontinuities propagate along characteristics, under which conditions the initial corner points
may fission into several ones, and which characteristics they end up following during their time
evolution, seems to be less understood; this study aims at filling this knowledge gap. To this end,
a distributional approach to moving singularities is constructed, and criteria for selecting the
corner-propagating characteristics are identified. The extreme case of initial corners occurring
with at least a one-sided infinite derivative is special. Generically, these gradient catastrophe
initial conditions for hyperbolic systems (or their parabolic limits) can be expected to evolve
instantaneously into either shock discontinuities or rarefaction waves. It is shown that when
genuine nonlinearity does not hold uniformly and fails at such singular points, solution continuity
along with their infinite derivative persist for finite times. All the results are demonstrated in
the context of explicit solutions of problems emerging from applications to fluid flows.

1 Introduction

Models of water wave propagation, both surface and internal to a density stratified fluid, often lead
to a "core" hyperbolic structure (see eg., [17, 15, 4] for a partial list), and in this context self-similar
special exact solutions provide useful information on the evolution of more general initial data [2, 3].
In order to be physically relevant, these special solutions must be spliced between constant states,
leading to discontinuous derivatives, whose evolution can in principle be tracked within the model
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thanks to general tools for hyperbolic systems. In fact, as is well known, a hyperbolic system
of partial differential equations (see e.g. [17], §5.5) admits solutions with persisting discontinuous
derivatives of some order along characteristics, e.g., first derivatives jumps in the form of corners.
However, no reference to the initial value problem under such circumstances appears to have received
much attention in the literature on the subject, to the best of our knowledge. In fact, the issue of
how such corners evolve from those possibly present at the initial time can be somewhat subtle: in
systems with more than one dependent variable, corners in the initial data may have to "fission"
or split into several ones following multiple families of characteristics. The precise way in which
splitting of corners and other singularities occur in physically relevant models is the subject of this
work.

Specifically, we consider (i) the splitting of corner points and (ii) solutions containing points
where the spatial derivative is infinite but the solution evolves continuously without smoothing or
the formation of a jump discontinuity for a quasilinear hyperbolic system of conservation laws. For
the splitting of corners, an approach using a distributional ansatz is developed, further elaborating
an idea from [3], which led to a conjecture [2] formulated in terms of Riemann invariants. This
distributional approach allows us to extend the conjecture to the more generic case, in higher
dimensions, where Riemann invariants may not exist, and further to generalize the classical approach
(as described in, e.g., [17]) to the emergence of several corners from a single point. Next, it is shown
how the failure of genuine nonlinearity (see below for a definition) is necessary and sufficient for
the sustenance of an infinite spatial derivative along a characteristic without evolution to either of
the most typical scenarios, i.e., instantaneous smoothing or shock formation. In fact, unlike these
familiar scenarios, both (i) and (ii) are cases that do not seem to have received sufficient attention
in the literature. Finally, in the second half of the paper, these results are discussed in relation to
explicit solutions of systems arising in shallow water flows. We find that the splitting of corners seen
in [2, 3] is generic, thus our examples will focus on the less common non-splitting of corners.

This paper is organized as follows. Relevant notation is introduced in section 2. In sections 3
and 4, the respective general problems of splitting of corners points and persistent infinite gradients
are addressed. Section 5 is dedicated to examples of applications arising in the study of dynamics of
shallow water fluid flows.

2 Notation

Let U(x, t) be the mapping of (a subset of) the space-time half-plane (x, t) ∈ IR × IR+ to an
n-dimensional vector in IRn, i.e., U : IR × IR+ → IRn, defined to be the solution of the quasilinear
system

∂tU + ∂x
(
F (U)

)
= 0. (2.1)

The Jacobian matrix DF with components Aij ≡ ∂Fi/∂Uj where dropping bolds and adding
subscripts indicates taking vector components, is assumed diagonalizable with real and distinct
eigenvalues λ1(U) < λ2(U) < ... < λn(U). We denote a corresponding set of right eigenvectors by
r1, r2, ..., rn. For our purposes the function F : IRn → IRn is assumed to be at least twice continuously
differentiable. Henceforth, we will not use Einstein convention of summation over repeated indices,
and sums will always be explicitly indicated.

For completeness, we recall here elements of distributional calculus and how an equation such
as (2.1) can be cast in weak form in order to define solutions with a lower degree of regularity than
the equation as stated demands, not requiring a solution be smooth, continuous or even a function at
all. The solutions thus allowed are defined as follows. If K is the space of infinitely differentiable and
compactly supported functions on a given domain Ω (test functions), in our case Ω = IR× IR+ → IRn,
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then a continuous linear functional Λ : K → IR is known as a generalized function (see, e.g., [7]),
and can be differentiated according to the rules

∂xΛ(ϕ) ≡ −Λ(∂xϕ),

and
∂tΛ(ϕ) ≡ −Λ(∂tϕ),

for all test functions ϕ ∈ K. If f is any function, measurable on Ω, a functional Λf can be defined by

Λf (ϕ) ≡
∫
Ω
f(x, t)ϕ(x, t)dxdt.

When a generalized function Λf appears in this way, we abuse notation by identifying it with f .
Assuming only that U is a generalized function and using this definition, equation 2.1 becomes∫ ∞

0

∫ ∞

−∞

(
(∂tϕ)U + (∂xϕ)

(
F (U)

))
dxdt+

∫ ∞

−∞
U(x, 0)ϕ(x, 0)dx = 0, (2.2)

for any test function ϕ, with initial condition

U(x, 0) = U0(x). (2.3)

Our usage of generalized functions will be restricted to (see below)

Jm(x) ≡ xm

m!
H(x) (2.4)

where H(x) is the Heaviside function. The identity

J ′
m(x) = ∂xJm(x) = Jm−1(x) (2.5)

is easily obtained. With these differential identities in mind, it will be possible to bypass the direct
use of (2.2) and continue to use (2.1) even when U is not continuously differentiable. Note that in
order for derivatives to be carried over to test functions, it is required that (2.1) is in conservation
form (though, for the non-conservative case, other methods can be devised to handle weak solutions,
as in reference [17]).

A common assumption known as genuine nonlinearity (see [9, 10]) is

Dλk(U) · rk ̸= 0. (2.6)

In the present work we shall consider the failure of this condition, i.e., the existence of points U
where

Dλk(U) · rk = 0, (2.7)

in multiple settings (see also e.g. [13, 14, 16, 6, 12, 11] for further applications, in particular to
the problem of shocks). We shall call the manifold of such points the NGNL (for "non-genuinely-
nonlinear") manifold.
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3 Splitting of corner points

In this section we consider how a gradient jump in an initial condition for a hyperbolic system (2.2)
will split, traveling on a subset of the characteristics emanating from the point (x, t) = (x0, 0), where
U0(x) is continuously differentiable except at x = x0:

lim
x→x−

0

(U0)x ̸= lim
x→x+

0

(U0)x , (3.1)

where from here on we will use subscripts to denote derivatives with respect to the independent
variables. In this section we assume both derivatives exist and are finite (infinite derivatives are
treated in section 4). This occurs when at least one of the components of U0 has a discontinuous
first derivative at a given point. We shall derive criteria for the presence of such a corner on a given
characteristic (assuming Lipschitz continuity of certain coefficients whose form is determined by
the flux function F ). In this context a conjecture from reference [2] is proven, namely that corners
split off their initial conditions exactly along the characteristics for which there are corners in the
corresponding Riemann invariants, when these can be found.

Let x = χk(t;x0) with χk(0;x0) = x0 be a curve on which a derivative jump moves (these will
usually but not always be characteristics; at a parabolic degeneracy for instance, as occurs at vacuum
points [2], a complete set of characteristics does not exist. See remark 3 below for further discussion
of this case), labeled by some indices {k} arranged so that

χj(t;x0)|t=0 ≤ χk(t;x0)|t=0,

when j < k. Then we define
lim

x→χk(t;x0)−
Ux(x, t) ≡ (U l

x)k(t), (3.2)

lim
x→χk(t;x0)+

Ux(x, t) ≡ (U r
x)k(t), (3.3)

and we denote derivative jump by square brackets,

[Ux]k(t) ≡ (U r
x)k(t)− (U l

x)k(t). (3.4)

Similarly, jump quantities are defined for the flux function F , namely

lim
x→χk(t;x0)−

F (U)x(x, t) ≡ (F l
x)k(t), (3.5)

lim
x→χk(t;x0)+

F (U)x(x, t) ≡ (F r
x )k(t), (3.6)

[Fx]k(t) ≡ (F r
x )k(t)− (F l

x)k(t). (3.7)

Further, we define (U l
xx)k, (U r

xx)k, (F l
xx)k, (F r

xx)k, [Uxx]k and [Fxx]k analogously. In order to isolate
the derivative jumps from the otherwise smooth evolution we write, with the above notation

U(x, t) = Ũ(x, t) +
∑
j

(
[Ux]j(t)J1(x− χj(t;x0)) + [Uxx]j(t)J2(x− χj(t;x0))

)
(3.8)

and
F (x, t) = F̃ (x, t) +

∑
j

(
[Fx]j(t)J1(x− χj(t;x0)) + [Fxx]j(t)J2(x− χj(t;x0))

)
(3.9)

where Ũ(x, t) is twice differentiable.
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We have made no explicit assumptions about the index set {j}, but it usually consists of a
subset of the n characteristic families. We will return to this below, pointing out some intriguing
exceptional cases which we leave to future work.

Using equations (3.8), (3.9) and (2.5) in (2.2), we obtain the vanishing condition

0 =
∑
j

(
(−χ′

j [Ux]j + [Fx]j)J0(x− χj) + (−χ′
j [Uxx]j + [Fxx]j + [Ux]

′
j)J1(x− χj)

)
+ ψ(x, t) (3.10)

where the zero on left hand side is the zero distribution, primes denote differentiation with respect
to time, ψ(x, t) stands for the remainder obtained by lumping together the tilded fields and the J2
terms, and is hence once continuously differentiable with respect to x. For any given index j = k
both the coefficients of the one-sided functions J0 and J1 must vanish in the limit x → χk. The
vanishing of the J0 coefficient as x→ χk(t), may be written

0 = −χ′
k[Ux]k + [DF Ux]k = (−χ′

kI +DF )[Ux]k (3.11)

for t > 0, where I denotes the n× n identity matrix, and we have used the regularity assumptions
on the flux function F (we emphasize that χ′

k factors out of jump expressions since it is the same on
both sides of x = χk). Formula (3.11) is, of course, the characteristic equation for k-th characteristic
velocity λk = χ′

k, so that [Ux]k is proportional to the corresponding eigenvector,

[Ux]k = ckrk, (3.12)

with ck the proportionality factor. However, if we take the limit as t → 0, the expansion is still
valid at t = 0, allowing us to analyze the possible splitting of any individual corner present in the
initial data and further to avoid relying on Taylor expansions (as in [17]) which do not apply to the
splitting case from initial data.

The vanishing condition for the J1 coefficient in (3.10), once again making use of the assumed
regularity of F , is then

0 = −λk[Uxx]k +
(
DF [Uxx]k + [D2F (Ux,Ux)]k

)
+ [Ux]

′
k

= (DF − λkI)[Uxx]k +D2F ([Ux]k, [Ux]k) + 2D2F ((U l
x)k, [Ux]) + [Ux]

′
k

= (DF − λkI)[Uxx]k + c2kD
2F (rk, rk) + ck

(
2D2F ((U l

x)k, rk) +Drk(DF )(U l
x)k

)
+ c′krk.

(3.13)

Multiplying by the suitably normalized left eigenvector lk yields (cf. [17])

0 = c′k + cklk · (Drk(DF )(U l
x)k + 2D2F ((U l

x)k, rk)) + c2k lk ·D2F (rk, rk). (3.14)

For the proportionality factor ck this is a homogeneous (non-autonomous, nonlinear) ordinary
differential equation (ODE) which, if its coefficients are Lipschitz continuous, will have a unique
solution given an initial condition ck(0) = c0k. Thus, if c0k = 0 no corners can develop, and, conversely,
we see that a corner will propagate along precisely the characteristics for which

c0k = lk(U0(x0)) · [(U0)x] ̸= 0. (3.15)

For the case when Riemann invariants exist, denoted here by Rj(U), we recall that they must
satisfy the constraints (see e.g., [17]) that their differential is a left-eigenvector of DF , that is

DRj = βjlj , (3.16)
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for some proportionality factors βj . Hence, for the case when jumps are present along the k-th
characteristic and Riemann invariants exist,

[Rj
x]k = DRj · [Ux]k

= βjlj · (ckrk)
= δjkβjck. (3.17)

From this relation, a few consequences can be derived for this case of existing Riemann invariants.
First, (3.17) shows that a derivative discontinuity will propagate along the k-th characteristic when
the corresponding k-th Riemann invariant has a corner in its initial condition. Conversely, when
βk(U0(x0)) ̸= 0, i.e., U0(x0) is not a critical point for the given Riemann invariant, if the initial k-th
Riemann invariants does not have a corner then the coefficients ck must vanish, ck = 0, and hence
no corner will develop for the dependent variable U(x, t) along the corresponding characteristic.
Further, corners for the dependent variables may coexist with C1-continuity (i.e., no derivative jump)
for the corresponding Riemann invariants, provided these have critical points at the corner values of
U . An example of this will be given in section 5.3 below.

Several remarks concerning the general case are now in order:

Remark 1. Our approach above extends the one used in [17] by using distributions, which allows
simultaneous consideration of multiple characteristics, and hence the possible splitting of corners
from a single initial one.

Remark 2. The non-conservative case

Ut +A(U)Ux = 0 (3.18)

does not immediately fit in the above approach which stems from (2.2); however, an expansion
consistent with the conservative case may be obtained by taking a one sided Taylor expansion of the
entire equation and requiring the various order coefficients to vanish, as was done in [17].

Remark 3. The form of expansion in the above remark can be applied to shock formation at a
point of parabolic degeneracy. This occurs in particular for vacuum points in the Airy shallow water
system (see (5.1)) at what is known as the "physical vacuum singularity" (see [2]).1 In this case
the vanishing of the J0 coefficient in (3.10), i.e., the characteristic equation, may not be satisfiable
when the k-family has a non-trival Jordan block at U0(x0). In particular, if [Ux]k is a generalized
eigenvector then

(DF − λkI)[Ux]k ̸= 0. (3.19)

This can be remedied, however, by adding [U ]kJ0(x−χk) and [F ]kJ0(x−χk) terms to the respective
expansions (3.8) and (3.9) (terms which we assume to vanish at initial time as we still wish to
consider continuous initial conditions). Then the vanishing condition for the coefficient of J0(x− χk)
becomes

[U ]′k = (DF − λkI)[Ux]k, (3.20)

producing a jump for any t > 0, even though the initial conditions do not suffer a gradient catastrophe.

Remark 4. In the particular case of the Airy system, the formation of shocks in this way at the
vacuum only appears when the velocity is regarded as being defined at the vacuum by Rankine-
Hugoniot conditions for the conservation. These conditions happen be to compatible with the
physically correct Rankine-Hugoniot conditions for the conservation of momentum (see [2]).

1See [5] for a similar approach to the appearance of δ-shocks.
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4 Persistent infinite derivatives in continuous solutions

In this section we focus on a special case in the solutions of system (2.1), whereby a point at
which a vertical gradient occurs and persists without evolving into either a shock or a finite slope.
Specifically, we show that a persistent vertical gradient in a continuous solution may only occur at
points where genuine nonlinearity fails. Let χ(t) be a curve along which an infinite gradient persists
in a continuous solution U in a hyperbolic system. We do not assume from the outset that χ(t) is a
characteristic since infinite derivatives could be associated with shocks which do not move along
characteristics. The spatial derivative may be decomposed in terms of the right eigenvectors:

Ux =
∑
k

αk(x, t)rk(U(x, t)). (4.1)

Choosing rk to be bounded, of unit magnitude say, a vertical gradient is present exactly when

lim
x→χ(t)−

αj(x, t) = ±∞ (4.2)

for at least one index j where we have assumed without loss of generality that the blowup occurs in
the left limit x→ χ(t)−. Differentiating U along the curve x = χ(t) gives

d

dt
U(χ(t), t) =

∑
k

αk(χ(t), t){χ′(t)− λk(U(χ(t), t))}rk(U(χ(t), t)) (4.3)

and, assuming the solution has bounded variation along this curve, the derivative cannot blowup
identically so χ′(t) = λj for a unique j, i.e., χ(t) is a characteristic (if we only require a continuous
solution to exist on one side of the curve, then χ(t) could be an envelope of characteristics). Thus
we write

χ(t) = χj(t;x0) (4.4)

where x0 = χ(0) and
lim

x→χj(t;x0)−
αj(x, t) = ±∞. (4.5)

To show that a persistent vertical gradient in a continuous solution may only occur at points
where genuine nonlinearity fails, we shall proceed by contradiction. In fact, suppose that genuine
nonlinearity holds at a persistent infinite gradient of (one of) the components of the solution U , and
(λj)x is bounded along x = χ(t). The spatial derivative of λj is given by

(λj)x = Dλj ·Ux =
∑
k

αkDλj · rk (4.6)

so that the sum is dominated by the αj term going to ±∞ (note that this is not so when genuine
nonlinearity fails on x = χ(t), in which case the whole expression may still be bounded). Without
loss of generality we can assume that αj → +∞ (otherwise we may replace U(x, t) with U(−x,−t)
and work backwards in time) and, using the genuine nonlinearity assumption, choose rj so that

Dλj · rj > 0. (4.7)

In this case
lim

x→χ(t)
(λj)x(x, t) = ∞ , i.e., lim

x→χ(t)

1

(λj)x(x, t)
= 0+ (4.8)
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for all t (at least on some time interval [0, T )). Then using (4.4), we have for any ϵ > 0 and
x2 < x1 < x0 there exists δ > 0 such that the inequalities

|x1 − x0|, |x2 − x0| < δ

imply that

ϵ >
χj(t;x1)− χj(t;x2)

λj(χj(t;x1), t)− λj(χj(t;x2), t)
. (4.9)

For conciseness of notation, we replace the explicit dependence on xα, α = {1, 2}, with a superscript α
in the functions χj (and hence λj) above. Then we may rewrite (4.9) as

ϵ >
χ1
j (t)− χ2

j (t)

λ1j (t)− λ2j (t)

=
x1 − x2 +

∫ t
0 λ

1
j (τ)− λ2j (τ)dτ

λ1j (t)− λ2j (t)

=
x1 − x2

χ1
j (t)− χ2

j (t)

χ1
j (t)− χ2

j (t)

λ1j (t)− λ2j (t)
+

∫ t

0

λ1j (τ)− λ2j (τ)

λ1j (t)− λ2j (t)
dτ

=
x1 − x2

χ1
j (t)− χ2

j (t)

1

(λj)x(x∗(t), t)
+

∫ t

0

λ1j (τ)− λ2j (τ)

λ1j (t)− λ2j (t)
dτ (4.10)

for some χ2
j (t) < x∗(t) < χ1

j (t), by the mean value theorem. The integral on the right approaches a
multiple of t as t→ 0, i.e., if we fix t, it can be bounded below by b t for any 0 < b < 1 by taking
the parameter interval of t to be sufficiently small. Thus if we fix some b > 0 and correspondingly
restrict the parameter interval of t, we have

x1 − x2
χ1
j (t)− χ2

j (t)

1

(λj)x(x∗(t), t)
+

∫ t

0

λ1j (τ)− λ2j (τ)

λ1j (t)− λ2j (t)
dτ ≥

∫ t

0

λ1j (τ)− λ2j (τ)

λ1j (t)− λ2j (t)
dτ > bt (4.11)

which contradicts relation (4.10) since this is supposed to hold for any ϵ > 0. We have thus arrived
at a contradiction by assuming that an infinite gradient may persist in a continuous solution when
genuine nonlinearity holds, i.e., an infinite gradient may not persist in a continuous solution when
genuine nonlinearity holds.

4.1 Scalar conservation laws

A simplified alternative version of the previous section’s proof is available in the case of a scalar
conservation law:

ut + c(u)ux = 0 (4.12)

where c(u) = F ′(u) with initial conditions

u(x, 0) = u0(x). (4.13)

Along characteristics
x = χ(t;x0) = x0 + c(u0(x0))t (4.14)

we have
ux(x, t) =

u′0(x0)

1 + c′(u0(x0))u′0(x0)t
=

u′0(x0)

1 + c′(u(x, t))u′0(x0)t
, (4.15)
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(with prime indicating derivative with respect to the argument of u0). If we consider a singularity
where ux is infinite along the characteristic x = χ(t; 0), say, then taking the limit x→ χ(t; 0) gives

ux(x, t) → ∞. (4.16)

The corresponding limit for the initial condition implies that

u′0(x0) → ∞ (4.17)

as x0 → 0, so that the blowup in the initial data is maintained:

ux(x, t) =
u′0(x0)

1 + c′(u)u′0(x0)t
→ ∞ . (4.18)

However, the divergence of the numerator in the limit would be canceled by that in the denominator
preventing a persistent infinite gradient in spatial derivative if it were not the case that c′(u) = 0,
i.e., the failure of genuine nonlinearity in the scalar setting.

Remark 5. We note that the scalar case above can be realized in the multidimensional setting by
restricting to simple waves (see Appendix).

5 Applications

For the remainder of the paper, we illustrate the theory of singular points developed above with
three examples of quasilinear hyperbolic models of physical significance. Specifically, we first consider
the Airy shallow water system (

ut
vt

)
+

(
u 1
v u

)(
ux
vx

)
= 0. (5.1)

The second model is a two layer shallow water model in the Boussinesq limit (see e.g. [3]):(
ut
vt

)
+

(
(1− 2u)v u(1− u)
1− v2 (1− 2u)v

)(
ux
vx

)
= 0. (5.2)

The third model we consider is the dispersionless modified Korteweg-de Vries equation, that is, the
scalar law

ut + u2ux = 0 (5.3)

which illustrates the key features of infinite gradients in simple wave solutions.
This section is organized as follows. We first recall some exact, self-similar solutions for system (5.1)

which were used in [3, 2] to construct piecewise differentiable initial data for this system as well as
to illustrate the non-splitting of corners in the evolution of this class of data. These solutions can
also be used, under a non-invertible map, to construct solutions of system (5.2). Then, in section 5.2
a non-splitting corner in the Airy system is constructed. In section 5.3 an example from the two
layer system, equation (5.2), exhibits non-splitting of a corner as well as the necessity of no critical
points in the Riemann invariants for the conclusions of section 3 to hold. Then sections 5.4 and 5.5
demonstrate persistent infinite derivatives in simple wave solutions. Finally, section 5.6 contrasts the
preceding cases by illustrating a persistent infinite gradient without a simple wave solution setup,
which leads to a dynamically evolving angle with an adjacent slope.
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5.1 Exact "core" solutions for Airy’s system

For explicit examples we shall make use of the linear core solutions of the Airy system (5.1) from
reference [1]:

u(x, t) = α(t)x+ β(t) (5.4)

and
v(x, t) = γ(t)x+ δ(t) (5.5)

where

α(t) =
α0

1 + α0t
, β(t) =

β0 − γ0
α0

log(1 + α0t)

1 + α0t
, (5.6)

γ(t) =
γ0

(1 + α0t)2
, δ(t) =

δ0
1 + α0t

+
γ0(

γ0
α0

− β0)t

(1 + α0t)2
−

γ2
0

α2
0
log(1 + α0t)

(1 + α0t)2
. (5.7)

The formulae for the characteristics χj(t;x0) may be found by solving the equations

u(χj(t;x0), t) + 2(−1)j
√
v(χj(t;x0), t) = Rj0 = α0x0 + β0 + 2(−1)j

√
γ0x0 + δ0, (5.8)

which yields

χj(t;x0) = (1 + α0t)x0 + t
(
α0x0 + β0 + 2(−1)j

√
γ0x0 + δ0

)
+

2

α2
0

(
γ0 + (−1)jα0

√
γ0x0 + δ0

)
(1−

√
1 + α0t) +

γ0
α2
0

log (1 + α0t), (5.9)

with corresponding characteristic speeds

λj(u, v) = u+ (−1)j
√
v . (5.10)

Such a solution may be spliced with a constant state via a simple wave (see [2]), i.e., the initial
conditions are modified to be constant for x > 0 (or x < 0):

u0(x) =

{
β0 + α0x, x < 0
β0, x ≥ 0

, v0(x) =

{
δ0 + γ0x, x < 0
δ0, x ≥ 0

. (5.11)

In this way, examples may be constructed satisfying physical boundary conditions at ±∞ by placing
the core between two constant states within the hyperbolic region. Since we are only concerned
with the evolution of singularities with a definite position, we will only require that solutions
under consideration are in the hyperbolic region in the part of the space-time half plane where
these singularities occur. Because the Riemann invariants Rj are constant on the corresponding
characteristics, the region of the x− t plane, covered simultaneously by characteristics x = χj(t;x0)
for both j = 1, 2 with x0 ≤ 0, will coincide with the linear core solution (u, v) in (5.4) and (5.5).
Similarly, for the region of the x− t plane covered by characteristics of both families emanating from
the constant region, the solution will be constant. The right boundary curve of the left (linear core)
region will be the characteristic of the first family emanating from x0 = 0,

x = b1(t) = t
(
β0 − 2

√
δ0

)
+

2

α2
0

(
γ0 − α0

√
δ0

)
(1−

√
1 + α0t)+

γ0
α2
0

log (1 + α0t) ≡ χ1(t; 0) . (5.12)

Further, the left boundary of the constant region will be the characteristic of the second family
corresponding to x0 = 0, which coincides with the one determined by the constant background state,

x = b2(t) = λ2(u0(0), v0(0))t = λ2(β0, δ0)t ≡ χ2(t; 0). (5.13)
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x

2b (t)

t

1b (t)

Figure 1: Sketch of the characteristic diagram with the linear core solution, the simple wave solution
and the constant state. Dotted curves denote characteristics of the first family j = 1 and solid curves
denote characteristics of the second family j = 2. The linear core solution’s domain is to the left
of the characteristic curve x = b1(t), for x < b1(t), and the constant background solution is to the
right of characteristic line x = b2(t), for x > b2(t), with the simple wave solution’s domain wedged
in between, i.e., b1(t) ≤ x ≤ b2(t).

The simple wave solution in the wedge middle region can then be constructed by enforcing the
constancy of the Riemann invariants on characteristics,

R1(x, t) = R1(0, 0) (5.14)

for b1(t) < x < b2(t), and

R2
(
b1(t0) + (t− t0)λ2(b1(t0), t0), t

)
= R2(b1(t0), t0). (5.15)

Here, for convenience, we have written Rj and λj , j = 1, 2 in terms of their dependence on (x, t)
directly rather than through their expressions in terms of (u, v). Then the identities

u =
1

2
(R1 +R2), v =

1

16
(R1 −R2)2 (5.16)

can be used to recover the solution in the simple wave region since R1 is constant and R2(χ1(t0; 0), t0)
is given explicitly in terms of the linear core solution. We note that u and v are also constant on the
characteristics x = b1(t0) + (t− t0)λ2(b1(t0), t0) since they are determined uniquely by the Riemann
invariants (this holds even in the two layer case under the mapping (5.17), provided that a particular
quadrant is chosen). A schematic of the characteristics in the x− t plane is shown in figure 1.

In order to provide explicit solutions to system (5.2), we make use of a map [15, 4] relating it to
system (5.1), allowing for the construction of explicit solutions with the type of singularities we have
considered in the previous sections. This map is given by

û = (1− 2u)v, v̂ = (1− v2)(u− u2) (5.17)

sending solutions (u, v) of system (5.2) to solutions (u, v) = (û, v̂) of system (5.1). The map (5.17)
is many-to-one with 1 → 4 inverses (see [3]) given by

uij =
1

2

(
1 + (sgn û)j+1(−1)i

√
Q− (−1)j

√
Q2 − û2

)
(5.18)

11



1,1

1,2

2,1

2,2u

v

Figure 2: The i, j quadrant is the image of the curved triangle in figure 3 under (uij , vij) with v and
u plotted on the horizontal and vertical axes respectively. The dotted lines are the critical curves of
the map (u, v) → (û, v̂).

- 1.0 - 0.5 0.5 1.0

0.05

0.15

0.25

û

v̂

Figure 3: The image Ω̂ of the hyperbolic region Ω under the map (u, v) → (û, v̂), with û and v̂
plotted on the horizontal and vertical axes respectively. The image of the critical curves (5.21) are
the dashed boundary of the region.

and
vij = −(sgn û)j(−1)i

√
Q+ (−1)j

√
Q2 − û2 (5.19)

where j = 1, 2 and

Q =
û2 − 4v̂ + 1

2
(5.20)

(here and afterwards we adorn the dependent variables with hats when they are obtained through
the map (5.17), but not otherwise). Figure 2 shows the images of the four branches while figure 3
shows the image Ω̂ of the hyperbolic region Ω of the two layer system (5.2) under the map (5.17)
along with the critical curves

u =
1

2
± v

2
. (5.21)

Note that these are level curves of the Riemann invariants

Rj(û, v̂) = û+ 2(−1)j
√
v̂ , (5.22)

with j = 1, 2, since

Q2 − û2 =
1

4
(1− 2û2 + û4 − 8v̂ − 8û2v̂ + 16v̂2)

=
1

4
((R1)2 − 1)((R2)2 − 1). (5.23)
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5.2 Example 1: non-splitting corner in the Airy system

We use the linear core construction to present a solution which has a corner that does not split,
corresponding to the lack of a jump in one of the Riemann invariants. We take initial conditions for
which the linear core solutions (5.11) is set by

α0 = γ0 = δ0 = 1 , and β0 = 0 . (5.24)

Thus,

u0(x) =

{
x, x < 0
0, x ≥ 0

, v0(x) =

{
1 + x, x < 0
1, x ≥ 0

. (5.25)

The corresponding initial Riemann invariants are

Rj
0(x) =

{
x+ 2(−1)j

√
1 + x, x < 0

2(−1)j , x ≥ 0
. (5.26)

The derivative jumps of the Riemann invariants for the initial corner at x0 = 0 are given by

[Rj
0x] = −1− (−1)j , (5.27)

from which we may predict that the corner will not split given that only one of the Riemann
invariants has a nonzero derivative jump. With the choice of initial conditions (5.24) the linear core
solution is given by

u(x, t) =
x− log(1 + t)

1 + t
, v(x, t) =

x− log(1 + t) + 2t+ 1

(1 + t)2
, (5.28)

and the leftmost characteristic (5.12) bounding the core solution is given by

x = b1(t) = −2t+ log(1 + t). (5.29)

Having computed the basic elements explicitly, we turn to show that no corner will propagate
along x = b1(t). To achieve this we must take the spatial derivatives on the right side, i.e., in the
simple wave region where u and v are defined implicitly via the method of characteristics, and
compare to the spatial derivatives defined by the linear core solution. The left derivatives are

ulx(b1(t0), t0) = α(t0) =
1

1 + t0
(5.30)

and
vlx(b1(t0), t0) = γ(t0) =

1

(1 + t0)2
. (5.31)

Then the right spatial derivative of u is

urx(b1(t0), t0) = lim
t→t0

u(x(t0, t), t)− u(b1(t), t)

x(t0, t)− b1(t)
= lim

t→t0

u(b1(t0), t0)− u(b1(t), t)

x(t0, t)− b1(t)
, (5.32)

where x(t0, t) = b1(t0) + (t− t0)λ2(b1(t0), t0), and

urx =

d

dt0
u(b1(t0), t0)

∂x

∂t0
(t0, t0)

=

d

dt0
u(b1(t0), t0)

λ1(b1(t0), t0)− λ2(b1(t0), t0)
. (5.33)
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Figure 4: (a) and (b): Airy’s system initial conditions (5.25), for which only one Riemann invariant
has a corner; (c) and (d): the evolution of u and v, respectively, of these corner initial conditions at
t = 0.5. The dash curve is the simple wave that connects the background state to the linear core
self-similar solution (5.28) with C1 continuity at its splicing point, showing that no corner emerges
there, while the corner persists between the simple wave and the constant background solution.

Identical manipulations yield

vrx =

d

dt0
v(b1(t0), t0)

λ1(b1(t0), t0)− λ2(b1(t0), t0)
. (5.34)

Thus we compute

d

dt0
u(b1(t0), t0) = − 2t0

(1 + t0)2
,

d

dt0
v(b1(t0), t0) = − 2t0

(1 + t0)3
, (5.35)

and
λ1(b1(t0), t0)− λ2(b1(t0), t0) = − 2t0

1 + t0
. (5.36)

Plugging these into the formulae (5.33) and (5.34) for the right (simple-wave-side) derivatives yields
the same results as those for the left (linear-core-side) derivatives (5.30) and (5.31), so there is no
jump along this characteristic. The initial condition in the top row of figure 4 evolves into the
bottom row illustrating the non-splitting of the corner. In contrast, a generic case of both Riemann
invariant possessing corners can simply be obtained by choosing a different initial slope α0 ̸= 1. The
case α0 = 1.6 yields the initial conditions and their evolution depicted in figure 5.

5.3 Example 2: non-splitting corner and singular Riemann invariant

In this section we consider a linear core solution2 of the Airy system (5.1) which is tangent to the
boundary of the domain of (uij , vij) and the images thereunder. That this property is maintained

2Since we are only concerned with local behavior at small time, we shall not, in this example, be concerned with
splicing the linear core to a constant solution, with shock formation at large time, or with ellipticity away from points
of interest.
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Figure 5: Same as figure 4 but with Airy’s system initial conditions u0 (a) and v0 (b) for which
both Riemann invariants have corners. Evolution of u (c) and v (d) at time t = 0.5: the splitting of
corners at both ends of the simple wave connecting the linear core with the constant background
can be clearly seen.

by evolution follows from the fact that this curve is a level surface of a Riemann invariant. An
elementary computation shows that tangency can be achieved by setting

β0 = û0, γ0 =
α0

2
(û0 − 1), δ0 = v̂0 (5.37)

where (û0, v̂0) = (û(0, 0), v̂(0, 0)) is the initial point of tangency and α0 is a free parameter. For the
present example we take β0 = 0.3 and α0 = 1. The dependent variables in the (û, v̂) domain at time
t = 0 and t = 0.5 are shown in figure 6.

Next, we consider the solutions to (5.2) in the 1, 1 quadrant by mapping the linear core solution:

u(x, t) = u11(û(x, t), v̂(x, t)), v(x, t) = v11(û(x, t), v̂(x, t)), (5.38)

(a)
- 1.0 - 0.5 0.5 1.0

0.10

0.20

û

v̂

(b)
- 1.0 - 0.5 0.5 1.0

0.05

0.15

0.25 v̂

û

Figure 6: Linear core solutions tangent to the critical portion of the boundary of Ω̂ (see figure 3).
Time t = 0 (a) and time t = 0.5 (b). The point of tangency slides to the right along the critical
curve (dash, defined by (5.21)) during the evolution.
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Figure 7: Pre-image of linear core solutions depicted in figure 6 in the (1, 1) quadrant, (a) at time
t = 0 and (b) at time t = 0.5.
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Figure 8: Total pre-image of linear core solutions in figure 6 in all quadrants, (a) at time t = 0 and
(b) at time t = 0.5.

This solution is shown in the space of dependent variables at times t = 0 and t = 0.5 in figure 7 and
the total pre-image of the linear core solution is shown in figure 8. The spatial dependence of u and
v at fixed time are shown in figure 9.

We see that a single corner propagates in the solution (u, v), however the linear core solution is
smooth by construction and the mapping from the system (5.1) to its Riemann invariants is also
smooth in the hyperbolic region. Thus there are no corners in the initial Riemann invariants despite
the fact that a single corner is achieved in the solution (u(x, t), v(x, t)). This is a consequence of the
fact that the boundaries of the quadrants (i.e., the NGNL curves, see below), are each vanishing loci
for the gradients of the corresponding Riemann invariants.
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Figure 9: Snapshots of the solutions to system (5.2), which are depicted in the hodograph space
by figure 7 at different times: initial condition (a) u(x, 0) and (b) v(x, 0); time evolution to
t = 0.5 (c) u(x, 0.5) and (d) v(x, 0.5).
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5.4 Example 3: Infinite gradient in a scalar conservation law

We provide an example of an infinite gradient which is not constant on either side, in the scalar case
of section 4.1. Since simple waves are, by definition, solutions to a scalar law, the present example
qualitatively illustrates the general situation where two simple waves of the same family are glued
together at the NGNL point where the orientation of the curve reverses. This type of solution will
eventually lead to shock formation at large enough time, but we may track the evolution prior to that
while the infinite derivative is maintained, for a finite time interval, at a single point of a continuous
solution profile.

We consider the simplest possible scalar law with the NGNL property: the cubic flux conservation
law (5.3). With initial conditions u(x, 0) = u0(x), the solution is given according to the method of
characteristics:

u
(
x0 + t u20(x0), t

)
= u0(x0). (5.39)

With the choice of initial condition

u0(x0) = (sgnx0)
√
|x0|, (5.40)

we have
x = x0(1 + (sgnx0)t) (5.41)

which is single valued, having sgnx0 = sgnx when t < 1. Thus we may solve

x0 =
x

1 + (sgnx)t
(5.42)

yielding

u(x, t) = (sgnx)

√
|x|

1 + (sgnx)t
. (5.43)

The evolution of the solution before shock time is shown in figure 10 (a,b). The same process may
also be applied to the initial condition

u0(x0) =
√

|x0|, (5.44)

yielding the evolution

u(x, t) =

√
|x|

1 + (sgnx)t
. (5.45)

shown in figure 10 (c,d).

5.5 Example 4: Infinite gradient in a centered simple wave

For the two layer system (5.2), the rarefaction curves (see Appendix for the setting) may be expressed
explicitly. We take a centered simple wave solution in the 1, 1 quadrant:

u(x, t) =


ul, x/t ≤ λ2(ul, vl)
u11

(
−1

3(
2x
t + 1

2),
1
36(

2x
t − 1))

)
, λ2(ul, vl) < x/t < λ2(ur, vr)

ur, x/t ≥ λ2(ur, vr)
(5.46)

and

v(x, t) =


vl, x/t ≤ λ2(ul, vl)
v11

(
−1

3(
2x
t + 1

2),
1
36(

2x
t − 1)

)
, λ2(ul, vl) < x/t < λ2(ur, vr)

vr, x/t ≥ λ2(ur, vr)
(5.47)
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Figure 10: Snapshots of the evolution under the scalar law (5.3) of the two initial conditions (5.40)
(top row), and (5.44) (bottom row). (a,c) time t = 0 and (b,d) time t = 0.8.

(with λ2 defined in (5.10)), and we set

ul = 0.15, vl = 0.268466, ur = 0.25, vr = 0.5. (5.48)

The initial conditions for this solution, approached in the limit t → 0+, are the step functions
depicted in figure 11. As time evolves, as shown by the snapshots in this figure, the wave becomes
less and less steep, except at the right state where the infinite gradient occurs. This is an NGNL
point as can be seen in figure 12 where the simple-wave segment is shown in the hodograph space
(u, v) of dependent variables.

5.6 Example 5: propagation of an infinite gradient spliced with a non-constant
angle

In the previous infinite gradient examples the point in the space of dependent variables where an
infinite gradient occurs remains constant in the evolution and, correspondingly, moves at a constant
characteristic speed in the space-time half plane. This happens generically since the evolution along
a characteristic for the hyperbolic system (2.1) occurs normally to the corresponding left eigenvector:

lk ·
d

dt
U(χk(t;x0), t) = lk · (λkI −DF (U))Ux = 0, (5.49)

whereas the NGNL manifold need not be normal to the left eigenvector. In the 2 × 2 case, non-
constant evolution of the angle opposite the vertical tangent may occur on the NGNL curve only if
the latter is a level set of a Riemann invariant. One particular instance where this is the case is
the Boussinesq two layer system (5.2). We illustrate an explicit solution with an evolving infinite
gradient point for this case. To accomplish this we consider the evolution obtained by connecting
the linear core solution (5.11) with initial parameters

α0 =
1

3
, β0 = −1

3
, γ0 =

1

3
, δ0 =

1

9
(5.50)

on the left of the origin with the constant state (û, v̂) = (β(t), δ(t)) on the right. Then a simple
wave region will emerge between the rightmost characteristic b1(t) of the linear core and the leftmost
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Figure 11: Initial conditions (a),(b) for the Riemann problem-like setup (5.46),(5.47): Snapshots of
the evolution of the centered simple wave at time t = 10 (middle row) and time t = 22 bottom row.
(c) u(x, 10) (d) v(x, 10); (e) u(x, 22) (f) v(x, 22).
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Figure 12: The simple wave segment (5.46),(5.47) shown in the hodograph (u, v)-plane.
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Figure 13: The solution in the (û, v̂) space (a) at time t = 0 and (b) at time t = 0.5.
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Figure 14: The solution to the two layer system, obtained from the 1, 1 branch of the mapping (5.17)
applied to the solution in figure 13 (a) at time t = 0 and (b) at time t = 0.5.
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Figure 15: Snapshots of the solution from initial conditions obtained by the choice (5.50) and
depicted in the 1, 1 quadrant in figure 14: initial condition (a) u(x, 0) and (b) and v(x, 0). Evolution
of these initial conditions to time t = 0.5, (c) u(x, 0.5) and (d) v(x, 0.5).

characteristic b2(t) of the constant state. This simple wave coincides with the critical curve of the
map (5.17) (see figure 13(b)). The infinite gradient propagates along x = b1(t), with dependent
variables evolving along the NGNL curve, as shown in figure 15. We note that, unlike previous
examples, the angle formed between the lines tangent to either component of the solution u(x, ·),
v(x, ·) at the infinite gradient point is different from either π/2 (infinite gradient at the boundary of
a constant state), π (front-like) or 0 (cusp), in contrast to our previous examples. This is apparent
in figure 15 with the exact angle at a given time computable by the same method as in section 5.2.

6 Discussion and conclusions

We have described how initial discontinuities in derivatives evolve over time in hyperbolic systems,
focusing on conditions by which an initial discontinuity can fission into multiple ones in the subsequent
evolution. We have then considered the special case of a discontinuity occurring with an infinite
derivative, and shown that such singularity may persist in a continuous solution without evolving in
either a shock or relaxing to a finite corner if and only if genuine nonlinearity fails where the infinite
derivative point lies in the hodograph plane.
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The former development proves a conjecture from [2], about how corner splitting or fissioning
by moving along characteristics can be obtained when their corresponding (multiple) Riemann
invariants have initial derivative jumps. More precisely, splitting is obtained under this assumption
except when (i) the corner point is also a critical point for the Riemann invariant, and (ii) quantities
arising from differentiating the eigenvectors are not Lipschitz continuous. In both exceptional cases
a corner in the initial Riemann invariant is sufficient for corner propagation. A counterexample to
the necessity of condition (i) is provided in § 5.3: a corner which propagates along a characteristic
despite the Riemann invariant of the corresponding family having no first derivative jump. Case (ii),
on the other hand, is more pathological and further analysis would be required to fully address it.
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Appendix: Hyperbolic systems of conservation laws

In this appendix we briefly review some established results and constructions for hyperbolic systems
of conservation laws in a single space dimension. Given that discontinuities often form at some finite
time for solutions of (2.2) even with continuously differentiable initial data, it is natural to consider
initial conditions that are already discontinuous. Reference [8] in fact uses an iterative approximation
of initial conditions by step functions to prove existence of solutions with initial data having small
total variation. The hyperbolic system (2.1) (or more precisely (2.2)) is solved in reference [10] for
initial data U0 as the simple step function

U0(x) =

{
U l, x < 0
U r, x > 0

(A1)

with the distance between U l and U r sufficiently small, under the assumption (2.6) of genuine
nonlinearity. The building blocks of the solution are k-waves: curves Wk(ξk;U

l) in the space of
dependent variables which, for ξk ≥ λk(U

l), are integral curves of rk, where the scaling of the rk is
chosen such that

Dλk(U) · rk = 1. (A2)

Thus we have that
d

dξk
Wk(ξk;U

l) = rk(Wk(ξk;U
l)), (A3)

with ξk = λk(Wk(ξk;U
l)). For ξk < λk(U

l) these curves are defined implicitly by the constraints

F (Wk(ξk;U
l))− F (U l) = σk(ξk)(Wk(ξk;U

l)−U l), (A4)
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known as the Rankine-Hugoniot conditions, with

σk(λk(U
l)) = λk(U

l). (A5)

Genuine nonlinearity (equation (2.6)) ensures, among other things, that Wk(ξk;U
l) for ξk > λk(U

l)
is well defined. In [10] the condition

λk(Wk(ξk;U
l)) < σk(ξk) < λk(U

l) (A6)

for ξk < λk(U
l), is formulated, which ensures that the ξk < λk(U

l) construction is unique (and
physically relevant). It can be shown that Wk is then twice continuously differentiable in ξk,
even at ξk = λk(U

l). A solution to the hyperbolic system (2.2) with initial data (A1) having
U r = Wk(ξk;U

l) is furnished, for ξk > λk(U
l):

U(x, t) =


U l, x/t ≤ λk(U

l)
Wk(x/t;U

l), λk(U
l) < x/t < λk(U

r)
U r, x/t ≥ λk(U

r)
(A7)

or for ξk < λk(U
l), discontinuous solutions to (2.2), called shocks, can be constructed:

U(x, t) =

{
U l, x/t < σk(ξk)
U r, x/t > σk(ξk)

. (A8)

It can be checked that equation (A4) ensures that U solves system (2.2). A unique solution to
(2.2)-(A1) can then be constructed for any U r that can be reached by gluing together consecutive
Wk curves, k = 1, 2, 3, ..., n:

U r = Wk(ξk;Wk−1(ξk−1; (...(W1(ξ1;U
l))...))) (A9)

provided that
λk−1(U

r
k−1) < σk(ξk) < λk+1(U

r
k ) (A10)

where
U r

j = Wj(ξj ;U
r
j−1) and U r

0 = U l (A11)

whenever ξk < 0. Equations (A10) and (A6) are known as the Lax Entropy Conditions. The set
of U r reachable in this fashion is shown in [10] to have U l as an interior point and the solution is
unique for a sufficiently small neighborhood of U l.

A centered simple wave solution Wk(ξk(ζ);U
l), with genuine nonlinearity failing for the k-th

family, has an infinite gradient. In fact, we may parametrize the simple wave curve by ζ for which
the tangent

d

dζ
Wk(ξk(ζ);U

l) = r̃k (A12)

has unit length, |r̃k|2 = 1. Then the centered simple wave solution (A7) has spatial derivative

d

dx
Wk(x/t;U

l) =
dξk
dx

dζ

dξ

d

dζ
Wk

=
dξk
dx

dζ

dξ
r̃k

=
dξk
dx

1

Dλk(r̃k)
r̃k (A13)

and since Dλk(r̃k) → 0 as x/t→ λk(U
l), the spatial derivative blows up, d

dxWk(x/t;U
l) → ±∞.
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