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Abstract
Catalytic enantioselective Strecker reactions on an achiral substrate using sub-stoichiometric amounts of a chiral catalyst rep-
resent an evolving key strategy for the effective synthesis of α-amino nitriles. We herein disclosed the set-up of a flow-based 
methodology for enantioselective Strecker, employing ethyl cyanoformate as a relatively safe cyanide source, a cinchona-
based catalyst, and methanol as additive. A thorough exploration of key parameters allowed the identification of the most 
efficient reagent mixing mode, the optimum solvent for the flow synthesis, minimum catalyst loading, additive, temperature, 
and residence time. The newly developed method allows straightforward reaction channeling towards the fast and complete 
formation of the α-amino nitrile products, thus reducing the yield drop due to indolenine degradation during long-lasting 
batch-wise reactions. Moreover, we herein provide preliminary hints for sustainability, by proposing a simple procedure for 
catalyst recycling, thus opening the way for further optimization of the proposed methodology.
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Introduction

The condensation of aldehydes with ammonia and hydrogen 
cyanide to provide α-amino nitriles followed by hydrolysis 
of the nitrile groups is the first-born method for the de novo 
synthesis of α-amino acids[1].

This reaction, known as the “Strecker synthesis” repre-
sents a powerful tool in the preparation of both biogenic 
and non-natural α-amino acids and related structural tem-
plates, such as hydantoins[2]. Its multicomponent, i.e., 

three-component nature implies the possibility of a rapid, 
modular, and diversity-oriented assembly of complex 
α-amino acid derivatives whose preparation would other-
wise be challenging, if not impossible by other methods. 
Moreover, the simplicity of the reaction protocol as well 
as the likely availability of starting materials under prebi-
otic conditions strongly suggest the involvement of Strecker 
amino acid synthesis within chemical origin of life theo-
ries[3, 4]. Accordingly, α-amino nitriles are regarded as 
conceivable prebiotic precursors to nicotinic acids, and 
nucleic acids[5–8].α-Amino nitrile containing compounds 
have a profound impact on bio-chemical sciences, owing 
to their unique capacity of generating molecular diversity 
for diverse application, ranging from the total synthesis of 
complex alkaloids to the preparation of N-heterocycles and 
α-amino nitrile containing drugs[5]. Moreover, in peptide 
research, sterically hindered and α,α-disubstituted amino 
acids, derived from suitably functionalized α-amino nitriles, 
have been extensively applied to induce restricted confor-
mations, resulting in well-defined peptide/pseudopeptide 
secondary structures[3, 9].

The cyanomethylene amino substructure is embedded in 
structurally diverse naturally occurring alkaloids, such as the 
tetrahydroisoquinoline anti-tumor antibiotic saframycin A (1)
[10–12], phthalascidin 650 (2)[13, 14], and girgensohnine (3) 
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[15] (Fig. 1). A cyclic α-amino nitrile substructure, namely 
a pyrrolidine-2-carbonitrile skeleton is also included in 
the dipeptidyl peptidase-4 (DPP-4) inhibitor class of anti-
hyperglycemic drugs anagliptin (4), vildagliptin (5) and 
saxagliptin (6) (Fig. 1)[16, 17].

The Strecker synthesis, as well as its modified version 
involving the direct hydrocyanation of imines, remain rel-
evant synthetic tools for the preparation of several drugs, 
such as anti-platelet agent clopidogrel (7, Plavix) [18], 
opioid analgesic drugs (e.g., carfentanil (8)) [19–21], the 
anti HCV drug boceprevir (9) [22] or the anti-HIV agent 
DPC 083 (10) (Fig. 2) [23]. Compounds derived from 
Strecker-type protocols are also key intermediates in the 
synthesis of pharmaceutically relevant indole alkaloids 
like reserpine (11) [24], hirsutine (12) [25] or eburnamo-
nine (13) [26] (Fig. 2).

Prompted by the escalating demand for enantioenriched 
α-amino acids and derivatives for a range of applications, 
many researchers at both academic and industrial level, 
have found a huge interest in the development of enanti-
oselective Strecker reaction protocols. [27–29].

In this context, catalytic enantioselective Strecker 
reactions on an achiral substrate using sub-stoichiomet-
ric amounts of a chiral catalyst represent a key evolving 
strategy, with respect to the elder chiral auxiliary-assisted 
Strecker protocols and became the method-of-choice in the 
synthesis of chiral nonracemic amino nitriles [30].

The first example of a catalytic asymmetric Strecker 
reaction appeared in 1996 [1]; since then, several catalytic 
options based on hydrogen bonding activation, Lewis base 
activation, and Lewis acid-Lewis base bifunctional activa-
tion have been developed, mainly aiming at transforming 
acyclic (E)-aldimines [31–38] and ketimines [39–42] into 
optically active α-amino nitriles.

In stark contrast, much less attention has been paid to 
cyclic (Z)-aldimines in catalytic asymmetric Strecker reac-
tions. In 2000, Jacobsen and coworkers disclosed the asym-
metric hydrocyanation of 3,4-dihydroisoquinoline in the 
presence of a chiral 1,2-trans-diaminocyclohexane-based 
urea/Schiff base as the catalyst (Scheme 1(a)) [43]. Later on, 
asymmetric cyanation of 3,4-dihydroisoquinoline deriva-
tives was reported in the presence of trimethylsilyl or acetyl 

Fig. 1   Representative biologically active α-amino nitrile-containing natural products (1–3) and synthetic drugs (4–6)
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cyanides [44, 45]. Tian and co-workers were the first to 
develop a chiral thiourea-catalyzed asymmetric cyanation of 
cyclic (Z)-aldimines, namely 3H-indoles, employing ethyl 
cyanoformate as an alternative cyanide source (Scheme 1(b)) 
[46]. Although the reaction proceeded smoothly and provided 
2-cyanoindolines with high enantioselectivity, it required 
long reaction times of around 48–72 h at 10 °C [46].

As a multicomponent reaction, the Strecker synthesis 
already incorporates many requirements for green chemistry. 
Paradoxically, despite its extensive applications both in aca-
demia and industry, the use of highly toxic cyanides sources 
and toxic solvents, go against green chemistry principles, 
and poses serious risks to human health and the environ-
ment. In order to address these essential concerns, many 
research efforts have been devoted towards more sustainable 
Strecker variants [3].

A plethora of alternative methodologies have been pro-
posed lately, ranging from the use of organic solvents and 

alternative cyanide sources [47], to the use of Lewis acid 
catalysts [48–50], guanidine HCl [51], ionic liquids [52, 53], 
catalyst-free [54] and Strecker protocols employing elevated 
pressures [55]. Despite these developments, the reaction still 
suffers from significant drawbacks including protracted reac-
tion times, an excess of the cyanide source and variable yields, 
which preclude the use of Strecker protocols on a production 
scale. In addition, a major shortcoming of the multi-component 
Strecker reaction is the competing cyanohydrin formation [56].

In recent years the use of continuous flow reactors has 
captured the attention of the modern-day synthetic chemists, 
with increasing uptake of the technologies as the systems 
have become commercially available, de facto affordable and 
widely applicable thanks to extensive developmental work 
including in-line analysis tools. With respect to conventional 
batch-wise protocols, continuous flow may enable several 
advantages in terms of process reproducibility and scalabil-
ity, handling of toxic/hazardous chemicals.

Fig. 2   Selected drugs and natural products prepared by Strecker-type reactions (7–10) or Strecker intermediates (11–13)

Scheme 1   Exemplificative catalytic asymmetric Strecker reactions on cyclic (Z)-aldimines
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The first heterogeneously catalyzed Strecker protocols 
in continuous flow appeared in literature in 2008 and were 
conducted employing polymer-supported (ethylenediamine-
tetraacetic acid)ruthenium(III) chloride or polymer-bound 
scandium(III) bis(trifluoromethanesulfonate) as the Lewis 
acid catalysts and trimethylsilyl cyanide as the cyanide source, 
with the aim of providing a simple and efficient methodology 
for the synthesis of aromatic and aliphatic α-aminonitriles and 
as a means of increasing the throughput of the system [57].

In 2014 a continuous flow oxidative cyanation protocol 
was disclosed, where α-amino nitriles were obtained in good 
to excellent yields using a variable-temperature continuous-
flow LED- photoreactor for singlet oxygen generation, and 
trimethylsilyl cyanide served as an in-situ imine trap [58].

However, to the best of our knowledge, the only asym-
metric flow-based protocol for the three component Strecker 
reaction was reported in 2012 and employed a heterogeneous 
self-supported chiral titanium cluster catalyst and trimethyl-
silyl cyanide as the cyanide source, although the enantiose-
lective imine-cyanation/ Strecker reaction was described 
only on acyclic imine substrates [59].

In our quest towards the development of eco-friendly pro-
tocols for indole- and indoline-based privileged scaffolds 
[60], we recently proposed flow-aided methodologies for 
the telescoped synthesis on indoline-based structural tem-
plates and their peptidomimetic derivatives [61, 62] as well 
as mechanochemical procedures for sustainable Fischer and 
interrupted Fischer reactions [63].

Capitalizing on the acquired experience in dealing with 
metastable indolenine systems and prompted by the fact that 
catalytic asymmetric Strecker reactions with cyclic imines are 
barely studied, we decided to start filling this void of knowl-
edge by implementing a convenient flow-based protocol, for the 
organocatalyzed asymmetric cyanation of cyclic (Z)-aldimines.

We herein disclose the set-up of a flow-based methodology 
for enantioselective Strecker, employing ethyl cyanoformate 
as a relatively safe cyanide source, a cinchona-based catalyst, 
i.e., (8R, 9R)-14a, (8R, 9S)-14a and (8R, 9S)-14b (Fig. 3) 
and methanol as additive. To the best of our knowledge, 
this is the first continuous flow protocol for the asymmetric 

synthesis of indolenines. A thorough exploration of key 
parameters allowed the identification of the most convenient 
reaction conditions, thus allowing the identification of the 
most efficient reagent mixing mode, the optimum solvent for 
the flow synthesis, minimum catalyst loading, additive, tem-
perature, and residence time. The newly developed method 
allows straightforward reaction channeling towards the fast 
and complete formation of the α-aminonitrile products, thus 
reducing the yield drop due to indolenine degradation dur-
ing long-lasting batch-wise reactions. Moreover, preliminary 
hints for sustainability are indicated, by proposing a simple 
procedure for catalyst recycling, thus opening the way for 
further optimization of the proposed methodology.

Results and discussion

Basic screening of reaction conditions in batch

A first investigation in batch carried out on model α,α′-
disubstituted carbaldehydes was intended to reproduce reac-
tion conditions from previous literature reports and to set 
up the starting point for the implementation of the reaction 
in segmented continuous flow mode. To this aim the spiro-
cyclohexyl indolenine 15a was selected as the starting point 
for our experiments, since i) a batchwise asymmetric Strecker 
methodology using a cinchona-based catalyst was reported 
on this substrate [46]; ii) spirocyclic indolenines are gener-
ally more prone to undergo the concomitant 1,2-migration 
path towards the corresponding indole derivatives; a good 
outcome for a Strecker reaction on these substrates would 
easily guarantee a good performance on more tractable 
cyclic and acyclic aldimines; and iii) the employment of a 
spiroindolenine as a sterically rather hindered cyclic imine 
featuring a quite extreme steric congestion around the ‘target’ 
imine carbon atom, would provide critical hints regarding the 
accessibility by the cyanide component.

As summarized in Table 1, we applied the classical 
reaction conditions in batch, employing spiroindolenine 
15a and ethyl cyanoformate 16 as a relatively safe cyanide 

Fig. 3   Cinchona-based catalysts (8R, 9R)-14a, (8R, 9S)-14a and (8R, 9S)-14b used in the present work
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source in absence (Table 1, entry 1) or in the presence of 
10 mol% (Table 1, entry 2) or 20 mol% (Table 1, entry 3) 
of catalyst (8R, 9R)-14a and molecular sieves. As per pre-
vious report, the reaction was conducted in dry 1,2-dichlo-
roethane at 10 °C, with the addition of 1.2 equivalents of 
methanol to the mixture. After 72 h of reaction at 10 °C 
we could observe almost complete conversion of the cyclic 
imine material into the corresponding α-amino nitrile 17. 
Regarding the reactions performed in the presence of the 
asymmetric catalyst (Table 1, entries 2 and 3) we regis-
tered in both cases a comparable outcome in terms enan-
tiomeric ratios, namely 70:30 and 77:23, respectively, as 
determined by chiral HPLC analysis. Although sub-opti-
mal in terms of reaction enantioselectivity, the conditions 
were projected into a segmented flow chemistry protocol 
for further optimization under conditions allowing for 
superior control.

Development of reactions conditions in segmented 
continuous flow mode

We aimed at elaborating optimised and robust flow con-
ditions for the planned asymmetric Strecker reaction by 
systematically screening of flow reaction conditions. In 
line with our driving idea that flow chemistry applications 
should display a sustainable character not only with refer-
ence to implemented reaction conditions, but also in terms 
of the employed flow chemistry platforms, our flow system 
was realized in the previously described [61], comparably 
cost-effective fashion. In particular, an HPLC piston pump 
capable of sustaining reliably low flow rates was connected 

to a six-port Rheodyne injector for meso-scale preparative 
HPLCs, that was equipped with a 1 mL volume sample loop 
made from PTFE tubing and an injection port for conven-
tional disposable syringes. Connection to a self-made reactor 
of 25 mL or 31 mL volume made from PTFE tubing, was 
realized via a simple T-piece. The self-made reactor was 
immersed in a water bath for the moderate cooling needed 
for reaction implementation. To maintain control of the sys-
tem, a 7 bar back-pressure regulator was placed at the end 
of the line.

Anticipating the possibility of an upstream modifica-
tion to combine the Strecker protocol with our previously 
developed flow-based synthesis of indolenine scaffolds [61], 
but also to adhere even more to green chemistry principles, 
screening of solvents suitable for both reactions was done 
first. In line with our batch investigation, we initially tested 
the reaction outcome using 1,2-DCE as the solvent (Table 2, 
entry 1).

Spiroindolenine 15a and ethyl cyanoformate 16 in the 
presence of catalyst (8R, 9R)-14a (10% mol) and 1.1 equiv-
alents of MeOH (1 mL total solvent volume, 0.08 m con-
centration in 15a) were loaded into a sample loop. Injecting 
this solution with an overall flow rate of 0.2 mL/min into 
the tubular flow reactor (25 mL reactor volume) held at dif-
ferent temperatures caused the reaction mixture to produce 
the desired product upon 125 min of residence time. The 
exiting stream was collected in a flask for further purifica-
tion. Although the above-mentioned conditions generated 
compound ( +)-17 in good yields (87%), the outcome in 
terms of enantiomeric ratio (e.r.) was not completely satis-
fying, since compound ( +)-17 was obtained with a 75:25. 

Table 1   Basic screening of reaction conditions for the formation of compound 17 in batch

Entry Equiv. of 
16 Catalyst Yield (%)[c] e.r.[d] Main product

1[a] 1.1 none 96 // 17 rac

2[b] 1.1 10 mol% 94 70:30 (+)-17

3[b] 1.1 20 mol% 93 77:23 (+)-17

[a] General procedure A (see experimental part); [b] General procedure B with the suitable variations; [c] Isolated yield after column chroma-
tography; [d] Enantioselectivity was determined by HPLC analysis on a chiral stationary phase (see Supporting Information)
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Leaving unaltered the reaction conditions and molar ratio 
of catalyst, dichloromethane was tested as solvent (Table 2, 
entry 2). In this case, an important yield drop of more than 
30% was registered, accompanied, however, by a slight 
improvement in terms of e.r. Next attempts were mainly 
focused at improving the reaction eco-compatibility, by 
replacing halogenated solvents with ethyl acetate (Table 2, 
entry 3) and cyclopentyl methyl ether (Table 2, entry 4). In 
both cases, the reaction yields dramatically dropped, thus 
discouraging subsequent evaluation in terms of product 
enantiopurity.

We thus opted for transferring the best solvent condi-
tions among those tested within this small preliminary 
screening into a more elaborated screening of catalyst 
nature and amount, in order to set an efficient asymmetric 
catalytic protocol for the Strecker reaction in flow on cyclic 
(Z)-aldimines. This investigation was also flanked by the 
parallel fine-tuning of the amount of 16 employed for the 
reaction, as reported in Table 3. The increase of catalyst 
(8R, 9R)-14a loading from 10 mol% up to 20 mol%, while 
providing only a slight increase of the yield, guaranteed 

a robust improvement in terms of e.r. (75:25 vs. 91:9, 
Table 2, entry 1 and Table 3, entry 1). The use of a higher 
amount of catalyst (40 mol%), quite predictably led to an 
optimum e.r. of 95:5, while inducing a slight yield drop 
by 10% (Table 3, entry 2). We also attempted running the 
reaction at 0 °C, using 10 mol% of catalyst (8R, 9R)-14a, 
and found a satisfying e.r. of 93:7, but lower yield of 70% 
(Table 3, entry 3).

Next, we increased the excess of 16 from 1.1 to 1.3 equiv-
alents (Table 3, entry 4), which proved to be a successful 
move in terms of both reaction yield (93%) and e.r. (95:5). 
In these conditions, halving the catalyst loading was again of 
adverse effect for the e.r. (90:10, Table 3, entry 5).

As a control for the power with which the chiral catalyst 
induces stereoinformation, we assessed cinchona catalyst 
(8R, 9S)-14a, featuring opposite chirality with respect to 
(8R, 9R)-14a to the C9. The experiment substantially con-
firmed the results obtained with (8R, 9R)-14a under oth-
erwise identical conditions, while chiral HPLC analysis 
confirmed the generation of (–)-17 (Table 3, entry 6). Pres-
surizing the system to only 1.8 bar, and working at both 

Table 2   Solvent screening in flow for asymmetric Strecker on compound 15a 

Entry[a] Equiv. of 16 Solvent Yield (%)[b] e.r.[c]

1 1.1 DCE 87 75:25

2 1.1 DCM 53 82:18

3 1.1 EtOAc 8 n.d.

4 1.1 CPME 20 n.d.

[a] General procedure C with the suitable variations (see experimental part); [b] Isolated yield after column chromatography; [c] Enantioselec-
tivity was determined by HPLC analysis on a chiral stationary phase (see Supporting Information)
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at 0 °C and 10 °C (Table 3, entries 7 and 8, respectively), 
led to decreased yields and enantiomeric ratios. Finally, we 
performed an experiment with squaramide-based catalyst 
(8R, 9S)-14b at 10 mol%, which provided compound (-)-17 
with a totally superimposable outcome with respect the use 
of (8R, 9S)-14a under identical conditions (Table 3, entry 9).

Starting from the winning configuration of our flow path, 
we felt to assess the nature of the protic additive. Accord-
ingly, as the last task, we assessed a small set of different 
alcohols.

In general, the reaction rate was greatly improved 
in the presence of a protic additive, although none 
of the tested alcohol could outperform methanol. 
Accordingly, performing the reaction in absence of 
methanol led to a dramatic yield drop, although the 
reaction kept its enantioselective outcome (Table 4, 
entry 2). In another attempt, we replaced methanol 
with ethanol; in this case, the reaction provided mod-
erate yields (65%), accompanied by a significant drop 
in the enantiomeric ratio to 67:33 (Table 4, entry 3). 
Last, the use of isopropanol as the protic additive led 

to an even worse yield (44%), although f lanked by 
a better performance in terms of enantiomeric ratio 
(86:14) (Table 4, entry 4).

With the functional set-up in hands, we investigated 
the scope of the reaction by using different indolenines 
as substrates (Table 5). First, the tetrahydropyran-fused 
spiroindolenine 15b, afforded the corresponding (Z)-
aldimine ( +)-18 in good yield and excellent e.r. (Table 5, 
entry 3). The N-Boc-piperidine containing spiroindolenine 
15c required the addition of 20 mol% of cinchona catalyst 
to generate compound ( +)-19 (Table 5, entry 4), since the 
use of 10 mol% unfortunately gave very poor results in 
term of e.r. (data not shown). The Cbz-protecting group in 
15d only provided a moderate e.r. for compound ( +)-20 
(Table 5, entry 5) while the process demonstrated to be 
amenable for 3,3-diethylindolenine 15e, providing com-
pound ( +)-21 in excellent e.r. (Table 5, entry 6). Under 
the same conditions, we also tried to replace the classic 
phenylhydrazine with a derivative bearing a methyl group 
at 2-position (15f). The flow protocol provided compound 
( +)-22 in excellent yield; however, the outcome in terms of 

Table 3   Screening of catalysts

Entry[a] Equiv. of 16 Catalyst Yield (%)[b] e.r.[c] Product

1 1.1
(8R,9R)-14a

20 mol%
90 91:9 (+)-17

2 1.1
(8R,9R)-14a

40 mol%
82 95:5 (+)-17

3[d] 1.1
(8R,9R)-14a

10 mol%
70 93:7 (+)-17

4 1.3 (8R,9R)-14a
10 mol%

93 95:5 (+)-17

5 1.3
(8R,9R)-14a

5 mol%
92 90:10 (+)-17

6 1.3
(8R,9S)-14a

10 mol%
88 85:15 ( )-17

7[e] 1.3
(8R,9R)-14a

10 mol%
34 65:35 (+)-17

8[f] 1.3
(8R,9R)-14a

10 mol%
78 80:20 (+)-17

9 1.3
(8R,9S)-14b

10 mol%
92 92:8 ( )-17

[a] General procedure C with the suitable variations (see the experimental part); [b] Isolated yield after column chromatography; [c] Enantiose-
lectivity was determined by HPLC analysis on a chiral stationary phase (see Supporting Information); [d]: The reaction mixture was stirred at 
0 °C; [e]: The mixture was pressurized at 1.8 bar; [f] The reaction mixture was stirred at 0 °C with 1.8 bar of pressure at 0.1 mL/min
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e.r. was disappointing (Table 5, entry 7). In this latter case, 
the poor e.r. registered might be ascribable to a problem-
atic coordination of the cinchona catalyst due to the steric 
obstruction caused by the presence of the methyl group, as 
shown in Scheme 2.

In agreement with literature, a plausible reaction mech-
anism is represented in Scheme 2. The thiourea catalyst 
is responsible for the pre-orientation and the activation of 
substrates acting as bifunctional organocatalyst. It is rea-
sonable that ethyl cyanoformate in the presence of an alco-
hol (R-OH) generates HCN during the enantioselective 
Strecker reaction. Therefore, an ammonium salt derived 
from the dihydroquinine-derived thiourea and HCN can be 
formed. The cyanide anion can be activated by the thiourea 
moiety of the catalyst, while the cyclic imine is activated 
upon formation of a hydrogen bond with the ammonium 
salt. The cyanide is directed to the Si-face of the imine, 
thus accounting for the observed enantioselectivity.

With these conditions in hands, our next goal was 
to further enhance sustainability of the proposed pro-
tocol. Although it was not possible to identify a better 

performing solvent other than 1,2-dichloroethane, the 
developed methodology displays an improved sustain-
ability profile with respect to its batch counterpart. First 
of all, the drastic reduction of reaction time (125 min 
in flow vs. 72 h in batch) represents a robust develop-
ment. The operational simplicity represents a further 
benefit, since the reaction implementation in flow did 
not require additional efforts for realizing a dry system, 
such as the use of activated molecular sieves, which is 
instead a crucial precaution when performing the reac-
tion in traditional batch mode. The flow system deliv-
ered a space–time-yield (STY) of approx. 0.24 g L−1 h−1 
for the model substrate, which is a significant intensi-
fication compared to 0.0208 g L−1 h−1 of batch coun-
terpart process.

As a last means to further improve sustainability was 
thus identified the possibility of recovering the cinchona-
based catalyst. In a first trial, given the basic functionali-
ties embedded in the cinchona catalyst, we tried to employ 
the acidic resin Amberlyst 15 to catch, and then release 
again, the catalyst, as reported in the literature [64]. We set 

Table 4   Screening of alcohols

Entry[a] Equiv. of 16 ROH[b] Yield (%)[c] e.r.[d]

1
[e]

1.3 MeOH 93 95:5

2 1.3 // 8 92:8

3 1.3 EtOH 65 67:33

4 1.3 iPrOH 44 86:14

[a] General procedure C with the suitable variations (see Experimental); [b]: 1.3 equiv.; [c] Isolated yield after column chromatography; [d] 
Enantioselectivity determined by HPLC analysis on a chiral stationary phase (see Supporting Information); [e] Best result from Table 3, entry 4
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Table 5   Scope of the reaction

Entry Indolenine Product
Yield 
(%)

e.r.

1
93 95:5

2

3

93

82

85:15

93:7
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Table 5   (continued)

4
a

78 94:6

5
48 75:24

6
60 95:5

7
90 60:40

[a] 20 mol% of catalyst

Scheme 2   Proposed mechanism 
for the enantioselective Strecker 
on cyclic (Z)-aldimines using 
ethyl cyanoformate
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up this protocol by extending our flow sequence through 
a column reactor filled with sand containing 1  mmol 
Amberlyst 15. However, in the collected stream, no traces 
of product were detected, since the acidic resin also held 
back the 2-cyanospiroindoline product, alongside the cin-
chona catalyst. In another attempt, we moved to bromo-
tris(triphenylphosphine)copper(I), used as ligand for the 
thiourea functionality as reported in the literature, but 
again we obtained a disappointing outcome [65]. Better 
results were obtained when employing just silica gel and 
sand in the column reactor (Scheme 3). This resulted in 
an in-line separation with the initially collected stream 
only containing the reaction product. Once all the prod-
uct fractions were collected, the catalyst could be easily 
released by passing ethyl acetate and methanol through 
the column reactor. The entire amount of the employed 
cinchona catalyst was recovered, and the purity was up 
to 95%, as determined by NMR analysis (see Supporting 
Information for details). The catalyst recovering allowed to 
decrease the reaction Process Mass Intensity (PMI) from 
2.56 g g−1 to 2.25 g g−1.

Conclusions

We have developed a flow-based methodology for the 
enantioselective Strecker reaction. The newly disclosed 
protocol employs ethyl cyanoformate as a relatively safe 
cyanide source. The enantioselective outcome was guar-
anteed by the use of a thiourea cinchona-based catalyst, 
while the methanol was the best performing alcohol addi-
tive. A thorough exploration of key parameters allowed 
the identification of the most convenient reaction condi-
tions, in terms of reagent mixing mode, solvent, catalyst, 
and alcohol additive, temperature and residence time. To 
the best of our knowledge, this is the first continuous 

f low protocol for the asymmetric Strecker on cyclic 
(Z)-aldimines. This newly developed method guaran-
tees effective reaction channeling towards the fast and 
complete formation of the α-aminonitrile products, thus 
reducing the yield drop due to indolenine degradation 
during long-lasting batch-wise reactions. We have also 
provided preliminary evidence for developing a sustain-
able flow-based protocol, by setting up a simple ed effi-
cient protocol for cinchona catalyst recycling. Further 
optimization of the methodology and scope broadening 
for the proposed methodology are currently ongoing in 
our laboratories.
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