
PREVENT: An Unsupervised Approach to Predict
Software Failures in Production

Giovanni Denaro∗, Rahim Heydarov+, Ali Mohebbi+, Mauro Pezzè+,#

∗ University of Milano-Bicocca + Università della Svizzera Italiana (USI) # Constructor Institute
Milano, Italy Lugano, Switzerland Schaffhausen, Switzerland

Email: giovanni.denaro@unimib.it, {rahim.heydarov, ali.mohebbi, mauro.pezze}@usi.ch

Abstract—This paper presents PREVENT, a fully unsupervised
approach to predict and localize failures in distributed enterprise
applications.

Software failures in production are unavoidable. Predicting
failures and locating failing components online are the first steps
to proactively manage faults in production. Many techniques
predict failures from anomalous combinations of system metrics
with supervised, weakly supervised, and semi-supervised learning
models. Supervised approaches require large sets of labelled data
not commonly available in large enterprise applications, and
address failure types that can be either captured with predefined
rules or observed while training supervised models.

PREVENT integrates the core ingredients of unsupervised ap-
proaches into a novel fully unsupervised approach to predict fail-
ures and localize failing resources. The results of experimenting
with PREVENT on a commercially-compliant distributed cloud
system indicate that PREVENT provides more stable, reliable and
timely predictions than supervised learning approaches, without
requiring the often impractical training with labeled data.

I. INTRODUCTION

Good design and quality assurance practice cannot prevent
software to fail in production [24]. The complexity of dis-
tributed enterprise applications further increases the risks of
production failures.

Several approaches apply machine learning techniques to
prevent system failures, following many studies that exploit
artificial intelligence for software engineering problems [4],
[5], [7], [12], [17], [25], [33], [35], [36], [41], [51], [53], [61],
[65]–[67]. The two mainstream classes of approaches either
predict failure prone modules based on metrics that reflect
the complexity of the code or predict the occurrence of error
states at runtime based on metrics that reflect the execution of
software systems.

Approaches that predict failure prone modules feed predic-
tion models with metrics from the code, and allow for fine-
tuning testing activities for the modules that are more likely to
contain defects [25], [67]. A notable case of approaches that
predict failure prone modules is the Nam and Kim’s CLAMI
approach [48] that clusters software modules based on the
similarity of code complexity metrics.

Approaches that predict the occurrence of error states at
runtime feed prediction models with metrics monitored at
runtime, and allow to take countermeasures before the failures
actually manifest. These approaches draw on the observation

that many failures occur in production when the execution
of some faulty statements corrupts the execution state, and
eventually the error state propagates to a system failure, that
is, a deviation of the delivered service from the required
functionality.

Current approaches for predicting failures exploit rule-
based, signature-based, or semi-supervised strategies. Rule-
based approaches rely on predicates that experts extract
from data observed during operations [13]. Signature-based
approaches rely on supervised learning models that leverage
the information from historical records of previously observed
failures [6], [15], [19], [23], [31], [40], [49], [50], [57], [62].
Signature-based approaches require large amounts of labeled
failure data for training, which are rarely available and hard
to collect. Semi-supervised approaches exploit signature-based
models on top of synthetic data inferred with either semi-
supervised, weakly supervised or unsupervised learning, to
balance accuracy and required information [22], [27], [43],
[63], [64]. Signature-based approaches for distributed appli-
cations often aim also to localize the components responsible
for the failures [13], [28], [39], [42], [43], [56], [63].

This paper investigates a purely unsupervised approach to
failure prediction. Whereas signature-based approaches iden-
tify failures of pre-defined failure types that occur in the
training data, unsupervised approaches detect anomalies as
deviations from some model of the nominal system behavior
suitably inferred in absence of failures, and can thus reveal
failures of any types, including types that do not necessarily
correspond to training data. Previous work explored unsuper-
vised anomaly detection for intrusion attacks [8], anomalies
of streaming data [2], issues in computer networks [20], log
file analysis [18] and detection of performance issues [29].

In this paper we propose PREVENT, an original application
of unsupervised approaches to predict and localize failures in
distributed enterprise applications. PREVENT is grounded on
the lessons learned from PREMISE, EMBED and LOUD, our
previous work on supervised and unsupervised approaches to
predict failures and localize faults.

PREMISE [43] combines anomaly detection technique and
Logistic Model Trees (LMT) to predict failures and localize
failing resources in supervised fashion. EMBED [46], [47]
proposes Restricted Boltzmann Machine (RBM) to predict

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

failures in complex cloud systems. LOUD [42] combines
Granger causality analysis and page rank centrality measures
to localize failing components. While PREMISE offers a
supervised end-to-end solution to predict failures and localize
faults, EMBED and LOUD propose unsupervised approaches
to predict failures and locate faults, respectively. Predicting
the occurrence of failures at the system level without local-
izing the failing components in distributed applications (as in
EMBED) does not offer developers and maintainers enough
information to activate prevention mechanisms. Relying only
on localization mechanisms (as in LOUD) results in many false
alarms.

PREVENT originally combines failure prediction and failure
localization in a coordinated and fully unsupervised approach.
It exploits a deep autoencoder model to predict failures, and
coordinates deep autoencoder, Granger causality and page rank
centrality to locate failing components. In a nutshell, The
deep autoencoder identifies anomalous states of the system,
and discriminates normal and anomalous metrics. The Granger
causality analysis combined with page rank centrality effec-
tively ranks the values that the deep autoencoder reveals as
anomalous, to spot the faulty components responsible for the
predicted failures.

We introduce a new large dataset that we obtained by run-
ning many experiments on REDIS, a commercially-compliant,
distributed cloud system. The experiments that we discuss in
the paper compare the stability, reliability and earliness of
PREVENT with PREMISE, EMBED and LOUD, in the context
of failures that we seed in REDIS.

PREVENT recomputes the prediction at each time interval.
We measure the stability of a prediction as the true positive
rate after the first true prediction, that is, the continuity in
correctly reporting the failing component in the presence of
error states. Intuitively, predictions consecutively raised at all
timestamps over a time interval are clearer messages of failures
than intermittent predictions that appear and disappear in a
time interval. We measure the reliability of the prediction with
reference to the false positive rate, that is, the frequency of
alarms that do not correspond to real error states or wrongly
track the failures to non-failing components: The lower the
false positive rate, the higher the reliability of the prediction.
Intuitively, predictions are more effective when they occur
only in error states than when they occur both in error and
correct states. We measure the earliness of a prediction as the
time interval between the first correct prediction and the actual
failure, that is, the time interval for a proactive action on the
failing component to prevent a failure before its occurrence.

This paper contributes to the research in software engineer-
ing by

• defining PREVENT, a new unsupervised approach that
originally combines deep autoencoder, Granger causality
and page rank centrality to predict failures and locate the
corresponding faulty components.

• presenting a large set of data collected from a
commercially-compliant, distributed cloud systems to

evaluate and compare different approaches, data that we
offer in a replication package,1

• comparing PREVENT with PREMISE, EMBED and
LOUD, to indicate the advantages of a fully unsupervised
approach for both predicting failures and locating faulty
components with respect to supervised approaches.

This paper is organized as follows. Section II presents
PREVENT. Section III describes the experimental setting, and
discusses the results of the experiments that comparatively
evaluate PREVENT with respect to PREMISE, EMBED and
LOUD. Section IV discusses the main state-of-the-art ap-
proaches for predicting and diagnosing failures, and their re-
lation with PREVENT. Section V summarizes the contribution
of the paper and indicates novel research directions.

II. PREVENT

The core contribution of this paper is PREVENT, an unsuper-
vised approach that both predicts failures in distributed enter-
prise applications and localizes the corresponding faulty com-
ponents. PREVENT originally combines a deep autoencoder,
Granger causality analysis and pagerank centrality analysis to
predict failures and localize faulty components without requir-
ing training with labeled data. With this original combination
of unsupervised techniques, PREVENT overcomes the main
obstacles of supervised approaches: the effort required to label
the data for training and the difficulty of predicting failures of
types that do not correspond to training data. The unsupervised
nature of PREVENT allows to both predict failures of any type
and locate the faulty components responsible for the failures.
Efficiently locating the faulty components in large distributed
enterprise applications provides enough information for state-
of-the-art self healing approaches [60] to automatically acti-
vate healing actions before the occurrence of the failures.

Figure 1 shows the main components of PREVENT, the State
classifier and the Anomaly ranker, that predict failures and
localize the faulty components, respectively. As shown in the
figure, the State classifier and the Anomaly ranker work on
time series of Key Performance Indicators, KPIs, that are sets
of metric values observed by monitoring the application at
regular time intervals (every minute in our experiments). A
KPI is a pair 〈metric, node〉 of a metric value collected at
either a virtual or physical node of the monitored application.
Our current prototype of PREVENT collects KPI series with a
monitoring facility built on top of Elasticsearch [1].

PREVENT returns a list of anomalous nodes ranked by
anomaly relevance, list that the Anomaly ranker produces
in the presence of anomalous states inferred with the State
classifier.

Both the State classifier and the Anomaly ranker include
a deep autoencoder that requires unsupervised training with
KPI data collected during normal (non-failing) executions
of the application, without requiring any labels at training
time. The deep autoencoder can be trained with a reasonably
small amount of data. In our experiments we train PREVENT

1The replication package at https://star.inf.usi.ch/#/software-data/14

2

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://star.inf.usi.ch/#/software-data/14

KPIs

Anomaly ranker

Anomalous
nodes

Deep
autoencoder

Reconstruction
error

Granger-
causality
analyzer

PageRank
centrality
calculator

Anomaly
causality

graph

State classifier

beyond
threshold

no

yes

Normal
state

Anomalous state

Deep
autoencoder

Anomalous
KPIs

Fig. 1. Overview of PREVENT

with data collected in two weeks of normal execution. Thus,
PREVENT is resilient to concept drifts that span over several
weeks or more. Such drifts can be overtaken with both frequent
short retraining sessions and continuous training in production,
thanks to the unsupervised nature of PREVENT.

The State classifier crosschecks the KPI values observed
in production against the normal-execution characteristics in-
ferred during training, and accepts normal states, when there
are no significant differences. It pinpoints anomalous states,
otherwise. The Anomaly ranker identifies anomalous KPIs,
that is, KPIs with values that significantly differ from values
observed during training in normal execution conditions, and
ranks anomalous nodes according to their relevance with re-
spect to the anomalous KPIs. PREVENT reports the anomalous
nodes only when the State classifier reveals anomalous states.
We discuss the inference models that instantiate the two
components later in this section.

We defined PREVENT by benefitting from the lessons
learned with PREMISE [43], EMBED [46], [47], and
LOUD [42], three representative techniques to predict and
localize failures.

The supervised PREMISE approach that we developed as
a joint project with industrial partners, gives us important
insights about the strong limitations of supervised approaches
in many industrially-relevant domains. PREMISE combines an
unsupervised approach for detecting anomalous KPIs with a
supervised signature-based approach for predicting failures.
The signature-based approach requires long supervised train-
ing, and achieves good precision only for failures of types
considered during supervised training. PREMISE indicates
that supervised approaches can indeed precisely and timely
predict failures, localize faults and identify the fault types. It
also highlights the strong limitations of training systems with
seeded faults in production, as supervised approaches require.

EMBED predicts failures by both computing the Gibbs free
energy associated with the KPIs that represent the system state
and monitoring anomalous energy fluctuations in production.
EMBED provides evidence about the correlation between
anomalous energy values of the RBM and KPI anomalies that
can lead to system failures. EMBED predicts failures of the
target application as a whole, without any information at the

level of the application nodes.
LOUD localizes faults with an unsupervised observational

strategy, by identifying the application nodes that are highly
relevant with respect to the causal dependencies between the
observed anomalies. It assumes the availability of precise
anomaly predictions at system-level to limit the otherwise
large amount of false alarms. LOUD shows how to combine
Granger causality analysis and page rank centrality to effec-
tively locate faulty components, in the presence of reliable
failure predictions.

PREVENT introduces a deep autoencoder to improve the
precision of detecting and classifying anomalous KPIs, and
proposes an original combination of the approaches as an
efficient end-to-end solution to predict failures and locate
faulty components with lightweight unsupervised training.

We implemented two State classifiers that we refer
to as PREVENTA (PreventAutoencoder) and PREVENTE

(PreventEnergy). PREVENTA implements PREVENT as illus-
trated in Figure 1. PREVENTE replaces the Deep Autoen-
coder of the State classifier in Figure 1 with a Restricted
Boltzmann Machine (RBM) that implements the free-energy-
based approach of EMBED. We use PREVENTE to compare
PREVENT with EMBED. Both PREVENTA and PREVENTE

are integrated with the Anomaly ranker that combines Granger-
causality with eigenvector-centrality (page rank centrality cal-
culator) to precisely localize failing nodes.

A. PREVENTA State Classifier

The PREVENTA State classifier uses a deep autoencoder to
predict failures without requiring training with seeded faults.
The deep autoencoder model identifies anomalous KPIs as
KPIs with values that are anomalous with respect to the
observations when training with normal executions.

A deep autoencoder (also simply referred to as autoencoder)
is a neural network architected with two contiguous sequences
of layers that mirror each other structure: A first sequence of
layers of decreasing size up to an intermediate layer of mini-
mal size, and a second sequence of layers of correspondingly
increasing size up to a layer with the same size of the initial
layer.

During training, the first half of the network learns how to
encode the input data in incrementally condensed form, up to
a minimal form in the intermediate layer. The second half of
the network learns how to regenerate the input based on the in-
formation condensed in the intermediate layer. The difference
between the input and output values is the reconstruction error
of the autoencoder.

During training the neurons of the network learn functions
that minimize the average reconstruction error on the training
data. In production, the network returns small reconstruction
errors for data similar to the training data in both absolute
values and mutual correlations. It returns large reconstruction
errors for data that significantly differ from the observations
in the training phase.

Figure 2 illustrates the architecture of the PREVENTA au-
toencoder that is composed of seven layers with sizes n, n/2,

3

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

input
layer

(size n)

Encoder Decoder

Input

O
utput

KPI1

KPI2

KPI3

KPI4 … …

KPIn

…
…

…

…

KPI1

KPI2

KPI3

KPI4

KPIn

Latent
space

…

…

…

hidden
layer
(n/8)

output
layer
(n)

hidden
layers

(n/2, n/4)

hidden
layers

(n/4, n/2)

…

Fig. 2. Deep autoencoder as instantiated in PREVENTA

n/4, n/8, n/4, n/2, and n, respectively, being n is the number
of monitored KPIs.

We trained the PREVENTA autoencoder with the KPIs
observed at regular time intervals on the distributed enterprise
application executed in normal conditions, that is, without
failures. The trained autoencoder reveals the anomalous states
that emerge in production, as the states that correspond to
reconstruction errors that significantly differ from the mean
reconstruction error computed during training. In our current
prototype this threshold is set to the reconstruction errors that
differ from the mean reconstruction error for more than three
times the standard deviation observed on the training set.

B. PREVENTE State Classifier

The PREVENTE State classifier infers anomalous combi-
nations of KPI values from perturbations of the Gibbs free
energy computed on time series of KPI values monitored from
production.

The Gibbs free energy was originally introduced in sta-
tistical physics to model macroscopic many-particle systems
as a statistical characterization of the properties of single
particles that affect the global physical quantities such as
energy or temperature [10], and is applied in many domains,
such as the growth of the World Wide Web and the spread of
epidemics [16].

We rely on the intuition that complex distributed enter-
prise software applications and physical systems share the
dependencies of properties of interest of the global state of
the system (energy and temperature in the case of physical
systems, failures in the case of software applications) on the
collective configuration of basic elements (particles in the
case of physical systems, KPI values in the case of software
applications). Intuitively, the execution of some faulty code
produces some error states with anomalous KPI values that
propagate through the execution, thus leading to a progressive
alignment of anomalous KPI values. Following this intuition,

visible
layer

hidden
layer ……

……

KPI1 KPI2 KPI3 KPI4 KPIn……

Fig. 3. RBM as instantiated in PREVENTE

we recast the problem of predicting failures in complex
distributed enterprise software applications to the problem of
revealing the collective alignment of the KPIs of an application
to correlated anomalous values.

PREVENTE supersedes the intractability of analytically rep-
resenting the physical dependencies that concretely govern the
correlations among KPIs [9] by approximating the computa-
tion of the Gibbs energy with restricted Bolzmann machines,
RBM [21], and signals anomalous states when the energy
exceeds a threshold.

Figure 3 show the two convolutional layers of the RBM
as instantiated in PREVENTE : A visible layer with as many
neurons as the number of KPIs monitored on the target
application, and a hidden layer with an equivalent number of
neurons. The visible layer takes in input the values of the KPIs
monitored at each timestamp, while the hidden layer encodes
the joint distributions of KPIs, based on the training-phase
sampling of the conditional probabilities of the hidden nodes
given the visible nodes.

PREVENTE trains the RBM with KPI values collected at
regular time intervals in production to set the reference energy
value. Our experiments indicate that a training with KPI values
collected over two weeks produces good results. PREVENTE

reports anomalies when the energy value observed at runtime
exceed the reference energy value by some thresholds. The
threshold values can be computed offline by training the
RBM with datasets from different applications. PREVENTE

implements the RBM neural network in Matlab.

C. PREVENT Anomaly ranker

The PREVENT Anomaly ranker:
(i) identifies sets of anomalous KPIs with a deep autoen-

coder,
(ii) builds a graph that represents the causality dependencies

between the anomalous KPIs with Granger-causality
analysis [3], [26], [52],

(iii) exploits the causality graph to calculate the PageRank
centrality value of each anomalous KPI in the graph [34],
[44], [58],

(iv) returns the three nodes of the application with the highest
numbers of anomalous KPIs, selecting the top anomalous
KPIs of the centrality ranking, up considering at most
20% of the KPIs.

4

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Deep Autoencoder: The deep autoencoder of PREVENT
Anomaly ranker is the same deep autoencoder of PREVENTA

state classifier. It identifies anomalous KPIs as KPIs with
locally high reconstruction errors that we implement as KPI
reconstruction errors that differ from the corresponding mean
observed on the training set for more than three times the
corresponding standard deviation, in our prototype implemen-
tation.

Granger Causality Analysis: At each timestamp in produc-
tion, the Granger-causality analyzer builds a causality graph
that represents the causal dependencies among the KPIs with
anomalous values at the considered timestamp. During train-
ing, PREVENT builds a baseline causality graph that represents
the causality relations between the KPIs, as captured under
normal execution conditions: For each pair of KPIs 〈ka, kb〉,
there is an edge from from the corresponding node ka to node
kb in the baseline casualty graph, if the analysis of the time
series of the two KPIs reveals a causal dependency from the
values of ka on the values of kb, according to the Granger
causality test [26]. The weight of the edges indicates the
strength of the causal dependencies.2 At each timestamp in
production, PREVENT Anomaly ranker derives the causality
graph of the anomalous KPIs by pruning the baseline causality
graph, to exclude the KPIs that autoencoder does not indicate
as anomalous.

PageRank Centrality: At each timestamp in production, the
PREVENT Anomaly ranker exploits the causality graph of
the anomalous KPIs to weight the relative relevance of the
anomalous KPIs as the PageRank centrality index. PageRank
scores the graph nodes (KPIs) according to both the number of
incoming edges and the probability of anomalies to randomly
spread through the graph (teleportation) [34].

Top Anomalous Application Nodes: PREVENT Anomaly
ranker sorts the anomalous KPIs according to the decreasing
values of their centrality scores; It selects the top anomalous
KPIs of the ranking up to considering at most 20% of the KPIs;
It tracks these anomalous KPIs to the corresponding nodes of
the application, and returns the three application nodes with
highest number of top-anomalous KPIs that correspond to their
location.

The PREVENT Anomaly ranker improves LOUD by (i) dis-
criminating the anomalous KPIs with a deep autoencoder
instead of time-series analysis, to improve the results, (ii) ex-
ploiting the top anomalous KPIs of the ranking up to 20% of
KPIs, rather than simply referring to the top 20 anomalous
KPIs, to scale to large systems with thousands KPIs and

2 The Granger causality test determines the existence of a causal depen-
dency between a pair of KPIs ka and kb as a statistical test of whether the
time series values of ka provide statistically significant information about
the evolution of the future values of kb [3], [26], [52]. Specifically, we test
the null-hypothesis that ka does not Granger-cause kb by (i) building an
auto-regression model for the time series values of kb, (ii) building another
regression model that considers the values of both ka and kb as predictors for
the future values of kb, (iii) testing if the latter model provides significantly
better predictions than the former one. If so, we reject the null-hypothesis in
favor of the alternative hypothesis that ka Granger-causes kb, and compute
the strength of the causality relation as the coefficient of determination R2.
We implemented the test with the Statsmodels Python library [45], [59].

(iii) considering the KPIs that are anomalous at each specific
timestamp, rather than the KPIs that are detected as anomalous
at least once in the scope of a time window, to identify
anomalous states and anomalous nodes at each timestamp.

III. EXPERIMENTS

A. Research Questions

Our experiments address three research questions:
RQ1: Can PREVENT predict failures in distributed enterprise

applications?
RQ2: Does the unsupervised PREVENT approach improve

over state-of-the-art (supervised) approaches?
RQ3: Does PREVENT improve over LOUD, that is, the

Anomaly ranker used as a standalone component?

RQ1 studies the ability of PREVENT to predict failures. We
consider both PREVENTA and PREVENTE , and comparatively
evaluate their ability to predict failures in terms of false alarm
rate, prediction earliness, and stability of true predictions.

We compute the false alarm rate in terms of false-prediction
and false-location alarms. The false-prediction alarms are
the timestamps that correspond to states wrongly identified
as anomalous during normal execution. The false-location
alarms are the timestamps that correspond to states that are
identified as anomalous, but with failures wrongly located in
non-anomalous nodes, during failing execution. The lower the
false alarm rate of either types is, the higher the reliability of
the prediction is.

We compute prediction earliness as the number of times-
tamps between the first true prediction and the observed
system failure, that is, the time interval for activating a healing
action before a system failure. We compute the stability as
the true positive rate after the first prediction, that is, the
ratio between predictions after the first true prediction and
timestamps before the observed system failure. Intuitively,
the stability indicates the continuity in correctly reporting the
failing component in the presence of error states.

RQ2 investigates the advantages and limitations of training
without failing executions. PREVENT trains models with data
from normal (non-failing) executions only, while supervised
techniques rely on training with both normal and failing
executions. The non-necessity of training with failing exe-
cution extends the applicability of PREVENT with respect to
supervised techniques. PREVENT discriminates failure-prone
conditions as executions that significantly differ from ob-
servations at training time, while supervised techniques can
identify only failures of types considered during training. As
a result, PREVENT is failure-type agnostic, that is, it can
predict failures of any types, while supervised techniques
foster effectiveness by limiting the focus on specific types
of failures. We answer RQ2 by comparing both PREVENTA

and PREVENTE with PREMISE, a state-of-the-art supervised
approach that we studied in the last years and successfully
applied in industrial settings [43], in terms of true positive,
true negative, and false alarm rates.

5

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

A comparison with state-of-the-art approaches requires a
conceivable effort to set up the experimental context and exe-
cute the experiments. By comparing PREVENT with PREMISE
we offer a fair comparative evaluation while keeping the
costs within an acceptable threshold. The original PREMISE
paper [43] reports a comparative evaluation with both Op-
eration Analytics - Predictive Insights (OA-PI)3, a widely
adopted industrial anomaly-based tool, and G-BDA [57], a
state-of-the-art signature-based approach, both outperformed
by PREMISE. Thus, the comparison with PREMISE offers a
good data spectrum, within acceptable set-up costs because of
our full access to PREMISE.

RQ3 evaluates the contribution of the synergetic combi-
nation of the State classifier and Anomaly ranker, to skim
the false alarms that derive from ranking anomalous KPIs in
either non-anomalous states or non-anomalous components.
We evaluate the contribution of combining State classifier
and Anomaly ranker by comparing both PREVENTA and
PREVENTE with LOUD, the Anomaly ranker component stan-
dalone that locates faults failures for any state, by referring to
the improved approach that we integrated in the PREVENT
Anomaly ranker.

B. Experimental Settings

We report the results of experimenting with PREVENT on
Redis Cluster, a popular open-source enterprise application
that provides in-memory data storage.4 A Redis Cluster de-
ploys the in-memory data storage services on a cluster of
computational nodes, and balances the request workload across
the nodes to improve throughput and response time. Figure 4
illustrates the structure of the Redis Cluster that we deployed
for our experiments: twenty computational nodes running on
separate virtual machines, combined pairwise as ten master
and ten slave nodes. We integrated the Redis Cluster with a
monitoring facility built on top of Elasticsearch [1], to collect
the 85 KPIs indicated in Table I for each of the twenty nodes
of the cluster, on a per-minute basis, resulting in 1,700 KPIs
collected per minute.5

We executed Redis Cluster on Google cloud with a work-
load consisting of calls to operations for both storing and re-
trieving data into and from the Cluster. The synthetic workload
implements a typical workload of applications in a working
environment, with a high amount of calls at daytime and a
decreased workload at nighttime, peaks at 7 PM and 9 AM,
low traffic in weekends and high traffic in workdays: between
0 and 26 requests per second in the weekends, between 0 and
40 in workdays [42].

C. Injecting failures

We executed the Redis cluster with either no or injected
failures, to collect data during normal executions (normal

3IBM. Operation Analytics - Predictive Insights Last access: July 2019
4https://redis.io
5The monitoring infrastructure is commonly part of the deployment of

distributed applications like Redis, and executing PREVENT at runtime has
negligible overhead (less than 1 second) every minute.

Traffic generator (store/retrieve requests)

Master node 0 Master node 1 Master node 9

Slave node 0 Slave node 1 Slave node 9

Google Cloud Platform

Elastic search KPI monitor

Fig. 4. Structure of the Redis Cluster

execution data) and in the presence of failures (failing exe-
cution data), respectively. We reinitialized Redis and restarted
the virtual machines before each execution, and dropped the
first 15 timestamps (15 minutes) of execution under normal
conditions, to collect data on completely separated runs and
experiment in a stable and unbiased context, respectively. We
injected failures after 15 timestamps of execution under normal
conditions. In this way, we reproduce the occurrence of failures
in production at any time in normal execution conditions. We
injected a failure type at a time, to reproduce failures that
appear rarely in production.

We injected failures with Chaos Mesh6, a popular tool for
injecting failures in the cloud. We experimented with five of
the most common types of failures as defined in Chaos Mesh:
CPU stress, memory stress, network packet loss, network
packet delay, and network packet corruption.

We executed the Redis cluster with no injected failures for
a total of three weeks. We used two weeks of continuous
execution for training (80%) and validation (20%). We used
the third week of execution, disjoint from the previous two
weeks, to collect independent data to check for false positives.
We injected each failure at a master-slave node pair of the
Redis Cluster, and repeated each experiment three times, with
failures injected in three different master-slave pairs to reduce
statistical biases.

Experimenting with PREVENT

We trained the Deep autoencoder and the RBM neural
network, and we built the granger-causality graph for the
granger-causality analyzer with the unlabeled data collected in
two weeks of normal execution. We preprocessed the collected
KPIs, and discard the ones that kept a stable value all the
time, which we identified as the ones for which the variance
is below 10−5 for the entire time series, since these KPIs are
not representative of the how the application reacts to input
stimuli. We trained our models by considering 719 KPIs out
of the 1,700 KPIs initially collected.

6https://chaos-mesh.org/

6

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.ibm.com/support/knowledgecenter/en/SSJQQ3_1.3.3/com.ibm.scapi.doc/kc_welcome-scapi.html
https://redis.io
https://chaos-mesh.org/

TABLE I
KPIS COLLECTED AT EACH NODE OF THE REDIS CLUSTER

KPI
type

of
KPI

KPI names

Core 9 Id (CPU Core Identifier), idle.pct (Percentage of Idle time), iowait.pct (Percentage of CPU time spent in wait), irq.pct (Percentage
of CPU time spent in handling hardware interrupts), nice.pct (Percentage of CPU time spent in low-priority processes), softirq.pct
(Percentage of CPU time spent in handling software interrupts), steal.pct (Percentage of CPU time spent in involuntary wait by the
virtual CPU while the hypervisor was servicing another processor), system.pct (Percentage of CPU time spent in kernel space), user.pct
(Percentage of CPU time spent in user space)

CPU 19 cores (Number of CPU cores on the host), idle.pct, iowait.pct, irq.pct, nice.pct, softirq.pct, steal.pct, system.pct, total.pct (Percentage
of CPU time spent in states other than Idle and IOWait), user.pct norm.idle.pct, norm.iowait.pct, norm.irq.pct, norm.nice.pct,
norm.softirq.pct, norm.steal.pct, norm.system.pct, norm.total.pct , norm.user.pct (norm prefix means normalized value of the corre-
sponding CPU metric without the norm prefix. They are normalized by considering number of cores)

File 5 count (Number of file systems), total files (Total number of files), total size.free (Total free space on disk), total size.total (Total disk
space either used or free), total size.used (Total used disk space)

Load 7 load.1 (Load average for the last minute), load.5 (Load average for the last 5 minutes), load.15 (Load average for the last 15 minutes),
cores (Number of CPU cores on the host), norm.1 (Load in the last minute divided by number of cores), norm.15, norm.5

Memory 18 actual.free, actual.used.bytes, actual.used.pct, free, hugepages.default size, hugepages.free, hugepages.reserved, hugepages.total,
hugepages.used.pct, swap.used.bytes, swap.used.pct, total, used.bytes, used.pct

Process 8 dead (Number of dead processes), idle (Number of idle processes), running (Number of running processes), sleeping (Number of
sleeping processes), stopped (Number of stopped processes), total (Total number of processes), un-known (Number of processes for
which the state could not be retrieved or is unknown), zombie (Number of zombie processes)

Socket 11 all.count (All open connections), all.listening (All listening ports), tcp.all.close wait (Number of TCP connections in close_wait state),
tcp.all.count (All open TCP connections), tcp.all.established (Number of established TCP connections), tcp.all.listening (All TCP
listening ports), tcp.all.orphan (Number of all orphaned tcp sockets), tcp.all.time wait (Number of TCP connections in time_wait state),
tcp.memory (Memory used by TCP sockets), udp.all.count (All open UDP connections), udp.memory (Memory used by UDP sockets)

Network 8 in.bytes (Number of bytes received), in.dropped (Number of incoming packets that were dropped), in.errors (Number of errors while
receiving), in.packets (Number or packets received), out.bytes (Number of bytes sent), out.dropped (Number of outgoing packets that
were dropped), out.errors (Number of errors while sending), out.packets (Number or packets received)

Total 85 KPI/node (1,700 KPI in the Redis Cluster with 20 nodes)

TABLE II
TYPES OF INJECTED FAILURES

We used the data collected during a third week of normal
execution to evaluate the impact of false-prediction alarms,
that is, timestamps that the prediction approaches might er-
roneously indicate as anomalous states during normal execu-
tions.

We used the failing execution data to evaluate (i) the ability
of revealing failures, (ii) the ability to correctly locate the
corresponding failing nodes, (iii) the impact of both false
prediction and false location alarms, that is, the timestamps
that correspond to states wrongly identified as anomalous
during normal executions, and the timestamps that correspond
to wrongly identified localizations during failing executions,
respectively, as defined in Section II.

Experimenting with PREMISE and LOUD

The supervised PREMISE approach requires training with
labeled data. To train PREMISE, we labeled normal execution
data as no-failure, and we labelled the failing execution data as
〈failure type,master-slave node pair〉 to indicate the type of
the injected failure and the pair of nodes at which the failures
were injected, respectively. We augmented the training data
set to include failing execution data for all nodes, synthesized
by replicating failures on symmetric nodes. In this way, we
obtained ten failing data sets for each original failing data
set, one per node pair. For each failure type FT , we trained
PREMISE with the labeled data from both normal and failing

executions, without the data from the failing executions cor-
responding to FT , and we evaluated the ability of PREMISE
to predict failures when induced by faults of type FT .

We compared PREVENT with LOUD, by considering the
same embodiment of LOUD that we exploit in PREVENT,
that is, the standalone Anomaly ranker component trained as
described above.

LOUD (the standalone Anomaly ranker) ranks anomalous
KPIs for all execution states, regardless of any prediction,
and thus suffers from many false-prediction alarms on normal
execution data. For a fair comparison, we filtered out false-
prediction alarms by signaling failure predictions only when
LOUD reports the same node at the top of the anomalous node
ranking for N consecutive timestamps. This follows the intu-
ition that anomalies increase in the presence of failures, and
thus the failing nodes should likely persist as the top ranked
nodes if the failing conditions keep occurring. We report the
false-prediction alarm rate of LOUD for N = 3, 4, 5, 6, after
observing a huge amount of false alarms for values of N
less than 3, and an unacceptable delay in signaling anomalous
states for values of N greater than 6.

D. Results

Figures 5, 6, 7, 8, 9 visualize the results of PREVENTA,
PREVENTE , and PREMISE in the experiments with the in-
jected failures. Each figure shows three plots that report the
results of three replicas of the experiments for PREVENTA,
PREVENTE , and PREMISE, respectively. The plots of
PREMISE report the data obtained with the PREMISE model
trained without the failures of the type considered in the plot.

7

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Failure Injection

- Prediction: Yes
- Localization: Yes

- Prediction: Yes
- Localization: No

- Prediction: No
- Localization: -

- Failure

Pr
ev
en

t-A
re
pl
ic
as

Pr
ev
en

t-E
re
pl
ic
as

Pr
em

ise
re
pl
ic
as

1

2
3

1

2
3

1

2
3

Minutes

Fig. 5. Failure predictions for CPU stress

Failure Injection

Pr
ev
en

t-A
re
pl
ic
as

Pr
ev
en

t-E
re
pl
ic
as

Pr
em

ise
re
pl
ic
as

1
2
3

1

2

3

1

2
3

Minutes

Fig. 6. Failure predictions for memory leak

Failure Injection

Pr
ev

en
t-A

re
pl
ic
as

Pr
ev

en
t-E

re
pl
ic
as

Pr
em

ise
re
pl
ic
as

1

2

3

Minutes

1

2

3

1

2

3

Fig. 7. Failure predictions for packet loss

Failure Injection

Pr
ev

en
t-A

re
pl
ic
as

Pr
ev

en
t-E

re
pl
ic
as

Pr
em

ise
re
pl
ic
as

1

2

3

Minutes

1

2

3

1

2

3

Fig. 8. Failure predictions for packet delay

Failure Injection

Pr
ev

en
t-A

re
pl
ic
as

Pr
ev

en
t-E

re
pl
ic
as

Pr
em

ise
re
pl
ic
as

1

2

3

1

2

3

1

2

3

Minutes

Fig. 9. Failure predictions for packet corruption

The x-axis indicates the timeline of each experiment in
minutes: Each experiment includes a (not showed) initial
15 minutes lag to stabilize the system, a fault injection after
additional 15 minutes of normal execution (the vertical red
line in the plots), and a failing execution (the area after the
red line) up to an observable system failure (a red square at
the end of the plots).

We observe a Redis failures when the memory fragmenta-
tion ratio of Redis servers exceeds 1.5, following the Redis
documentation that requires the memory fragmentation ratio
of Redis servers to be lower than 1.5, and the servers to be
restarted otherwise.7

Each plot shows three rows of colored squares, one row for
each experiment replica. The colors visualize the strength of
the predictions of the different approaches at each timestamp:

• Blue squares indicate successful failure predictions, that
is, failure predictions reported along with correct local-
ization results. In the case of PREVENT this means that
the node reported at the top of the localization ranking is
a node in which we injected the failure.

• Grey squares indicate either false prediction alarms before
the injection or false location alarms after the injection,
that is, states wrongly identified as anomalous during
normal executions and failures wrongly located in non-
anomalous nodes, respectively.

• Yellow squares indicate the absence of prediction, which
correspond to either true negatives before the start of the
failure injection or false negatives after the injection.

• The red squares indicate the timestamps at which the
injected failures manifest as observable failures of the
cluster, and the experiment terminates.

We add the legend only to Figure 5 to reduce redundancy.
In a nutshell, the more the yellow squares occur before
the injection and the blue squares occur after the injection,
the better the approach is. As we discuss below, the three
experiment replicas yields consistent results in all cases, thus
suggesting that three replicas are sufficient indeed.

RQ1: Effectiveness

RQ1 focuses on PREVENTA and PREVENTE (the bottom
and mid plots in Figures 5, 6, 7, 8, 9). We comparatively
evaluate the effectiveness of PREVENTA and PREVENTE to
predict failures in terms of false prediction alarm rate, reaction
time, prediction earliness and true positive rate that we define
as follows:

• False prediction alarm rate: The portion of false pre-
dictions during normal execution, before the failure in-
jection, that is, the portion of grey squares before the
vertical red line;

• Reaction time: The time interval between the injection
and the first true prediction, that is, the number of squares
between the failure injection and the first blue square;

7https://redis.io/docs

8

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://redis.io/docs

• Prediction earliness: The time interval between the first
true positive and the observable system failures, that is,
the number of squares between the first blue square and
the red square;

• True positive rate: The portion of true positives between
the first true positive and the observable system failures,
that is, the portion of blue squares between the first blue
square and the red square.

The false prediction alarm rate quantifies the annoyance of
operators receiving useless alerts. The reaction time quantifies
the delay in alerting the operators. The prediction earliness
quantifies the time offered to the operators to adopt coun-
termeasures before the observable system failure. The true
positive rate indicates the stability of the failure location
alarms, once they are first raised. Predictions with high
stability are most desirable since they indicate good sensitivity
of the models after they start sensing the failure symptoms.

The plots in the figures show that both PREVENTA (the
bottom plots) and PREVENTE (the mid plots) successfully
predict all five types of failures, consistently across the exper-
iment replicas. PREVENTA predicts both slightly earlier and
with slightly better stability than PREVENTE both packet delay
and packet corruption failures. The yellow squares before the
injection of the failure indicate that both PREVENTA and
PREVENTE do not suffer from false-prediction alarms during
normal execution.

Tables III and IV report in detail the reaction time interval,
the prediction earliness interval, and the true positive rate of
predictions (TPR) per failure type and experiment replica, for
PREVENTA and PREVENTE , respectively. The data indicate
that both PREVENTA and PREVENTE predict failures within
the first minute after the failure injection in most cases
(reaction interval ≤ 1), and in four minutes in the worst
case. In details, PREVENTE predicts the failure in less than
a minute in 13 out of 15 cases, and PREVENTA in 12 out of
15 cases. The predictions of PREVENTA are more stable than
the predictions of PREVENTE for packet loss, packet delay
and packet corruption. The TPR of PREVENTA is 100% in
14 out of 15 cases, and 88% in a single replica of the packet
delay experiment, while the TPR of PREVENTE is 100% in
10 cases; it is between 60% and 71% in 4 cases; It is 33% in
a replica of the packet corruption experiment.

Overall both PREVENTA and PREVENTE predict failures
early and with good stability in most cases. The two ap-
proaches have comparable performance, although PREVENTA

provides slightly more stable predictions than PREVENTE .
These results confirm the ability of the general PREVENT
approach to predict failures in unsupervised fashion, and the
relevance of the original PREVENTA instantiation that we
propose in this paper.

RQ2: Comparative Evaluation

RQ2 focuses on the advantages and limitations of the
unsupervised PREVENT approach with respect to state-of-the-
art (supervised) approaches. Unsupervised approaches do not
require training with data collected during failing executions,

TABLE III
PREDICTION EARLINESS FOR PREVENTA

Failure
Type

Experiment
replica

reaction
interval

earliness
interval

TPR

(in minutes)

CPU stress
r1 0 26 100%
r2 0 24 100%
r3 0 26 100%

Mem leak
r1 2 33 100%
r2 2 25 100%
r3 3 30 100%

Pckt loss
r1 1 8 100%
r2 0 6 100%
r3 0 7 100%

Pckt delay
r1 1 8 88%
r2 0 8 100%
r3 1 6 100%

Pckt corr
r1 0 8 100%
r2 0 12 100%
r3 0 9 100%

TABLE IV
PREDICTION EARLINESS FOR PREVENTE

Failure
Type

Experiment
replica

reaction
interval

earliness
interval

TPR

(in minutes)

CPU stress
r1 0 26 100%
r2 0 24 100%
r3 0 26 100%

Mem leak
r1 1 34 100%
r2 2 25 100%
r3 1 32 100%

Pckt loss
r1 1 8 63%
r2 0 6 100%
r3 0 7 71%

Pckt delay
r1 4 5 60%
r2 1 7 100%
r3 1 6 67%

Pckt corr
r1 0 8 100%
r2 0 12 33%
r3 1 8 100%

thus they can be used in the many industrially relevant cases
where it is not possible to seed failures during operations, as
required for supervised approaches.

We experimentally compare PREVENT with PREMISE, a
representative supervised state-of-the-art approach as we dis-
cuss in Section II at page 3, to understand the impact of the
lack of training with data from failing execution on earliness
and true positive rate. The top plots in Figures 5, 6, 7, 8, 9
visualize the results of executing PREMISE on the same data
we use in the experiments with PREVENTA and PREVENTE .

In the experiments PREMISE rarely predicts failures and
never localizes the faulty component (grey squares after failure
injection, that is, false location alarms). The experiments con-
firm that the original combination of a state classifier with an
anomaly ranker of both PREVENTA and PREVENTE is more
effective than the PREMISE supervised learning approach, in
terms of both true and false positive rate.

9

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE V
FALSE ALARM RATE ON THE NORMAL EXECUTION DATA

Approach False-prediction alarm rate
PREVENTA 2%
PREVENTE 5%
LOUDN3 57%
LOUDN4 43%
LOUDN5 32%
LOUDN6 22%

RQ3: state classifier and anomaly ranker interplay

RQ3 focuses on the effectiveness of the original combi-
nation of an anomaly ranker with a state classifier in both
PREVENTA and PREVENTE . We compare PREVENTA and
PREVENTE with LOUD, the state-of-the-art anomaly ranker
that inspired our anomaly ranker. We estimated the false-
prediction alarm rate of PREVENTA, PREVENTE , and LOUD
(with N = 3, 4, 5, 6) by executing each approach with the data
that we collected during a week of normal execution of the
Redis Cluster (the third week of our collected data, disjoint
from the two weeks of data that we used for training).

Table V reports the false-prediction alarm rate, that is,
the portion of false predictions during the week of normal
data. The false-prediction alarm rate quantifies the annoy-
ance of operators receiving useless alerts. PREVENTA and
PREVENTE dramatically reduced the false-prediction alarm
rate from unacceptable values between 22% and 57%, when
using LOUD stand-alone, to 2% and 5%, respectively, by
combining LOUD with failure predictors, as in PREVENT.
PREVENTA outperforms all approaches.

Threats to validity

We evaluated PREVENT by executing a prototype imple-
mentation on a large dataset that we collected on a complex
cluster. We carefully implemented the approach and carefully
designed our experiments to avoid biases. We understand that
the limited experimental framework may threaten the validity
of the results, and we would like to conclude this section by
discussing how we mitigated the main threats to the validity
of the experiments that we identified in our work.

Threats to the external validity

Possible threats to the external validity of the experiments
derive from the experimental evidence being available for a
single system and five failure types, which in turn depend on
the effort required to set up a proper experimental environment
and collect data for validating the approach. The main threats
derive from the experimental setting, and the set of failures.

Experimental setting
We experimented with a dataset collected from a Redis cluster
that we implemented on the Google Cloud Platform, control-
ling the stability of the cluster and guaranteeing the same
running conditions for all experiments, and the results may

not generalise to other systems. We mitigated the threat that
derive from experimenting with a single system by collecting
data from a standard installation of a popular distributed
application that is widely used in commercial environments,
and by collecting a large set of data from several weeks of
experiments. The data we used in the experiments are available
in a replication package8 for replicating the results and for
comparative studies with new systems.

Set of failures
We experimented with five failure types, and the results
may not generalize to other failure types. We limited the
experiments to five failure types due to the large effort required
to properly install and tune failure injectors and collect valid
data sets for each failure. We mitigated this threat to the
validity of our results by choosing types of failures which are
both common and very relevant in complex cloud systems,
and by injecting the failures with Chaos Mesh9, a failures
injector commonly used to study failure in cloud systems.

Threats to the internal validity

Possible threats to the internal validity of the experiments
derive from the prototype implementation of the approaches
and the traffic profile used in the experiments.

Prototype implementation
We carried on the experiments on an in-house prototype
implementation of PREVENT, PREMISE and LOUD. We mit-
igated the threats to the validity of the experiments that may
derive from a faulty implementation by carefully designing and
testing our implementation, by (i) comparing the data obtained
with our PREMISE and LOUD implementations with the data
available in the literature, (ii) repeating the experiments three
times, and (iii) making the prototype implementation available
in a replication package, to allow for replicating the results.

Traffic profile
We mitigated the threats to the validity of the results that
may derive from the traffic profile that we use to collect the
experimental data, by experimenting with a seasonal traffic
profile excerpted from industrial collaborations, and that we
compared with analogous traffic profiles publicly available in
the literature. We carried on the experiments by collecting data
over weeks of continuous executions with profiles that corre-
spond to traffic commonly observed in commercial settings.

IV. RELATED WORK

In this section we overview the applications of machine
learning to software engineering, and discuss in detail the
approaches for predicting software failures at runtime.

8The replication package at https://star.inf.usi.ch/#/software-data/14
9https://chaos-mesh.org/

10

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://star.inf.usi.ch/#/software-data/14
https://chaos-mesh.org/

A. Machine Learning for Software Engineering
Many studies address software engineering problems

with supervised, unsupervised, weakly-supervised and semi-
supervised machine learning strategies.

Supervised learning approaches require training samples
annotated (labelled) with the prediction outcomes. The super-
vised training phase tunes the parameters of the model by min-
imizing the errors with respect to the outcomes encoded with
the labels. There are many supervised learning approaches for
predicting failures [40], [43], [49], [50], [57].

Unsupervised learning approaches work with unlabelled
datasets, and either do not require training at all or tune models
that represent the characteristics of the samples as a whole,
as in our PREVENT approach. In production, unsupervised
learning approaches either discriminate clusters of mutually
similar samples [48] or identify anomalies as samples that
notably differ from the samples used in the training phase [8],
[18], [20], [47], as in PREVENT. Unsupervised approaches do
not require the expensive effort of annotating large training
samples, while supervised approaches precisely predict the
outcomes observed in the training set.

Semi-supervised approaches are an interesting tradeoff be-
tween costs and precision, and have been recently applied
to solve several software engineering problems, including
predicting software fault-proneness [36], [65], [67].

Weak-supervised approaches aim to achieve the benefits of
supervised learning, while reducing the costs of labelling [4],
[35], [51], [53], [61], [66]. The popular active learning ap-
proaches require to label a relatively small set of training
samples that the active learning algorithms select as the
samples that contribute most to improve the quality of the
predictions [17].

Semi-supervised learning approaches are weak-supervised
approaches that rely on samples that the approaches automat-
ically label from the characteristics of a small set of data
that come with known labels [5], [12], [33], [41]. Bodo et
al. propose a semi-supervised learning approach to analyze
the performance indicators related to the software process,
and show that the semi-supervised algorithm outperforms
supervised learning approaches [7]. There are many semi-
supervised learning approaches for software analytics, and in
particular for predicting fault-prone software modules [36],
[65], [67].

Classic approaches identify fault-prone modules with super-
vised models based on metrics that reflect the complexity of
the code. These approaches require training datasets labeled
either as defective or non-defective according to historical
data, with a high cost for collecting the training samples [25].
Zhang et al. alleviate the labelling cost by exploiting the
similarity among the code-level metrics of software mod-
ules. They propose a semi-supervised learning approach that
propagate an initially small set of the labelled samples to
unlabelled samples, by applying spectral clustering [67]. Tu
and Menzies’ FRUGAL approach extends the semi-supervised
approach from fault-proneness predictions to other software
analytics, like code warnings and issue close time [65].

The problem of identifying fault-prone software from both
historical data on the defects identified in the software and
code metrics that can be measured during software testing and
maintenance radically differs from the problem of predicting
failures at runtime from metrics that measure the execution of
the software and not the code. To the best of our knowledge,
there exist no semi-supervised or weak-supervised approaches
to predict failures at runtime.

B. Failure Prediction and Diagnosis

Salfner et al.’s survey identifies online failure prediction
as the first step to proactively manage faults in production,
followed by diagnosis, action scheduling and execution of
corrective actions, and defines failure symptoms as the out-
of-norm behavior of some system parameters before the oc-
currence of a failure, due to side effects of the faults that
are causing the failure [55]. In this section we focus on the
failure prediction and diagnosis steps of Salfner et al.’s fault
management process, the steps related to PREVENT. We refer
the interested readers to Colman-Meixner et al.’s comprehen-
sive survey for a discussion of mechanisms for scheduling
and executing corrective actions to tolerate or recover from
failures [14].

Detecting failure symptoms, often referred to as anomalies,
is the most common approach to predict failures online. The
problem of detecting anomalies has been studied in many
application domains, to reveal intrusions in computer systems,
frauds in commercial organizations, abnormal patient condi-
tions in medical systems, damages in industrial equipments,
abnormal elements in images and texts, abnormal events
in sensor networks, failing conditions in complex software
systems [11]. Approaches to detect anomalies heavily depend
on the characteristics of the application domain. In this sec-
tion, we discuss approaches to detect anomalies in complex
software systems, to predict failures in production.

A distinctive characteristics of approaches for detecting
anomalies is the model that the approaches use to interpret the
data monitored in production, models that are either manually
derived by software analysts in the form of rules that the
system shall satisfy [13] or automatically inferred from the
monitored data. Approaches that automatically infer models
from monitored data work in either supervised or unsupervised
fashion, and do or do not require labeled data to synthesize
the models, respectively.

Rule-based approaches leverage analysts’ knowledge about
the symptoms that characterize failures, and rely on rules
manually defined for each application and context. Super-
vised approaches that are also referred to as signature-based
approaches [28] build the models by relying on previously
observed anomalies, and offer limited support for detecting
anomalies that were not previously observed. Unsupervised
approaches derive models without requiring labeled data, thus
better balancing accuracy and required information. Some
approaches focus on failure predictions only, yet others ap-
proaches support both prediction and diagnosis, thus address-

11

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ing the first two steps of Salfner et al.’s proactive fault
management process.

The PREVENT approach that we propose in this paper is
an unsupervised approach that both predicts and diagnoses
failures, by detecting anomalies in the KPI values monitored
on distributed enterprise applications. The PREVENT State
classifier predicts upcoming failures as it observes system
states with significant sets of anomalous KPIs. The PREVENT
Anomaly ranker diagnoses the components that correspond
to the largest sets of representative anomalies as the likely
originators of the failures. In the remainder of this section
we review the relevant automatic approaches to predict and
diagnose faults in complex software systems.

Failure Prediction

The failure prediction approaches reported in the literature
predict failures in either datacenter hosts that serve cloud-
based applications and services or distributed applications that
span multiple hosts.

Approaches that predict failures in datacenter hosts monitor
metrics about resource consumption at host levels, like CPU,
disk, network and memory consumption, to infer whether
a host is likely to incur some failure in the near future,
and proactively migrate applications that run on likely-failing
hosts. Tehrani and Safi exploit a support-vector-machine model
against (discretized) data on CPU usage, network bandwidth
and available memory of the hosts, to identify hosts that
are about to fail [19]. Both Islam and Manivannan and
Gao et al. investigate the relationship between resource con-
sumption and task/job failures, to predict failures in cloud
applications [23], [31]. Both David et al. and Sun et al. exploit
neural networks against data on disk and memory usage, to
predict hardware failures, isolate the at-risk hardware, and
backup the data [15], [62]. Approaches that predict failures in
distributed applications, like PREVENT, address the complex
challenge of sets of anomalies that span multiple physical and
virtual hosts and devices.

Signature-based approaches leverage the information of ob-
served anomalies with supervised learning models, to capture
the behavior of the monitored system when affected by specific
failures. Signature-based approaches are very popular and
support a large variety of approaches. Among the most repre-
sentative approaches, both Seers [50] and Malik et al.’s ap-
proaches [40] label runtime performance data as related to
either passing or failing executions, and train classifiers to
identify incoming failures by processing runtime data in
production, Sauvanaud et al. classify service level agreement
violations based on data collected at the architectural tier
[57], The SunCat approach models and predicts performance
problems in smartphone applications [49].

Signature-based approaches suffer from two main limita-
tions: they both require labeled failure data for training, which
may not be easy to collect, and foster predictions that overfit
the failures available in the training set, without well capturing
other failures and failure patterns.

Both semi-supervised and unsupervised approaches learn
models from data observed during normal (non-failing) ex-
ecutions, and identify anomalies when the data observed in
production deviate from the normal behaviors captured in the
models, thus discharging the burden of labelling the training
data.

Most approaches that claim a semi-supervised nature com-
bine semi-supervised learning with signature-based models
to yield their final prediction verdicts [22] [64] [63] [27].
As representative examples, Mariani et al.’s PREMISE ap-
proach uses a semi-supervised approach on monitored KPIs
(IBM SCAPI [30]) to identify anomalous KPIs, and builds a
signature-based model to identify failure-prone anomalies, by
capturing the relation between failures observed in the past
and the sets of anomalous KPIs [43]. Fulp et al.’s approach
builds failure prediction models with a support vector machine
(a signature-based approach) based on features distilled in
semi-supervised fashion from system log files [22]. Tan et
al.’s PREPARE approach predicts anomalies with a Bayesian
networks trained in semi-supervised fashion, and feeds the
anomalies to a 2-dependent Markov model (a signature based
model) to predict failures [64]. Tan et al.’s ALERT approach
refers to unsupervised clustering to map the failure data to
distinct failure contexts, aiming to predict failures by using
a distinct decision tree (a signature-based approach) for each
failure context [63].

These approaches are in essence signature-based approach
themselves, although they preprocess the input data in semi-
supervised fashion. They may successfully increase the preci-
sion of the predictions, by training the signature-based models
on pre-classified anomalies rather than plain runtime data,
but share the same limitations of signature-based models
of requiring labeled failure data for training, and fostering
predictions that overfit the failures of the training set. Indeed,
in our experiments, the PREMISE approach was ineffective
against failures and failure patterns that did not correspond to
the signatures considers during training.

Guan et al.’s approach [27] combines supervised and un-
supervised learning in a different way. They exploit Bayesian
networks to automatically label the anomalous behaviors that
they feed to supervised learning models for training, thus
potentially relieving the burden of labelling the data.

Only few approaches work in unsupervised fashion like
PREVENT and EMBED [47] the energy-based failure predic-
tion approach that PREVENT exploits as state classifier and
that we have already described in Section II-B. Fernandes
and al.’s approach [20] matches the actual traffic again mod-
els of the normal traffic built with either principal compo-
nent analysis or the ant colony optimisation metaheuristic
to detect anomalous traffic in computer networks. Ibidun-
moye et al.’s unsupervised approach [29] estimates statistical
and temporal properties of KPIs during normal executions, and
detects deviations by means of adaptive control charts. Both
Bontemps et al.’s [8] and Du et al.’s [18] approaches detect
anomalies with long short-term memory recurrent neural net-
works trained on normal execution data. Ahmad et al.’s ap-

12

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

proach [2] uses hierarchical temporal memory networks to
detect anomalies in streaming data time series.

Roumani and Nwankpa [54] propose a radically different
approach that extrapolates the trend of occurrence of past
incidents (extracted from historical data) to predict when
other incidents will likely occur again in the future, without
requiring data monitored in production.

Failure Diagnosis

Failure Diagnosis is the process of identifying the appli-
cation components responsible for predicted failures. Most
approaches proposed in the literature target performance bot-
tlenecks in enterprise applications, and include kowledge-
driven, depedency-driven, observational and signature-based
approaches [28].

Knowledge-driven approaches rely on knowledge that ana-
lysts manually extract from historical records, and encode in
rules that the inference engine processes to detect performance
issues and identify the root-cause component. As represen-
tative example, Chung et al.’s approach [13], is designed to
work at both development- and maintenance-time, to provide
testing-as-a-service, and assumes that analysts frequently up-
date the underlying rules when observing new issues.

Dependency-driven approaches analyze the communication
flow among components, measure the frequency of the flows,
and perform causal path analysis to detect anomalies and their
causes. As a representative example, Sambasivan et al.’s Spec-
troscope [56] approach assists developers to diagnose the
causes of performance degrades after a software change. It
identifies significant variations in response time or execution
frequency, by comparing request flows between two corre-
sponding executions, observed before and after the change.

Observational approaches directly analyze the distribution
of the profiled data to explain which application component
correlates the most with a given system-level failure. As a
representative example, Magalhaes and Silva’s approach [37]
identifies performance anomalies of Web applications, by
analyzing the correlation between the workload and response
time of the transactions: A response time variation that does
not correlate with a workload variation is pinpointed as a
performance anomaly. Then, they analyze the profiled data of
each component with ANOVA (analysis of variance) to spot
which data (and thus which components) explain the variance
in the response time [38], [39].

Signature-based strategies use prior knowledge about the
mapping between failures and components to diagnose failures
of previously observed types [32]. As representative examples,
both PREMISE and ALERT that we already mentioned above
consider the failure location as an additional independent
variable of their signature-based prediction models [43], [63].

All approaches suffer from restrictions that limit their ap-
plicability to distributed enterprise applications. Knowledge-
driven and dependence-driven approaches, like Chung et al.’s
approach [13] and Sambasivan et al.’s Spectroscope [56], are
defined to assist developers in offline analyses, for instance,
after a software change. Signature-based approaches suffer

from the same limitations of signature-based failure prediction
approaches: They require labeled failure data for training,
and foster predictions that overfit the failures available in the
training set, without well capturing other failures and failure
patterns.

Magalhaes and Silva’s observational approach [38] is the
closest approach to PREVENT anomaly ranker, since both
approaches identify failing components as the components
related to data strongly connected to anomalies. Magalhaes and
Silva’s approach and PREVENT differ in their technical core:
PREVENT uses Granger-causality centrality of the anomalous
KPIs of the component, while Magalhaes and Silva rely on the
ANOVA analysis. In this respect, PREVENT is more failure-
type-agnostic than Magalhaes and Silva’s approahc, since the
Granger-causality models only causal relations among KPIs,
while the ANOVA analysis refer to some specific failure
metric, like poor response time in Magalhaes and Silva’s
approach.

Overall all approaches face challenges in balancing high
detection rates with low false-alarm rates, and the effectiveness
of the different strategies largely depends on the system ob-
servability, the detection mode (real-time or post-mortem), the
availability of labelled data, the dynamics of the application
workload, the underlying execution context, and the nature of
the collected data.

V. CONCLUSIONS

Software failures in production are unavoidable [24]. Pre-
dicting failures and locating failing components online are the
first steps to proactively manage faults in production [55].
In this paper we discuss advantages and limitations of the
approaches reported in the literature, and propose PREVENT, a
novel approach that overcomes the main limitations of current
approaches.

PREVENT originally combines Deep autoencoder with
Granger causality analysis and PageRank centrality, to ef-
fectively predict failures and locate failing components. By
relying on a combination of unsupervised approaches, PRE-
VENT overcomes a core limitation of supervised approaches
that require seeding failures to gather labeled training data,
activity hardly possible in commercial systems in production.

The experimental results that we obtained on data collected
by monitoring for several weeks a popular distributed applica-
tion used in commercial environments show that the original
combination of unsupervised techniques in PREVENT outper-
forms supervised failure prediction approaches in the majority
of the experiments, and largely reduces the unacceptable false
positive rate of fault localizers used in isolation.

The main contribution of this paper are (i) PREVENT, an
original combination of unsupervised techniques to predict
failures and localize failing resources in distributed enterprise
applications, (ii) a large set of data that we collected on Redis,
a cluster widely used in commercial environments, data that
we offer in a replication package,10 (iii) a thorough evaluation

10The replication package at https://star.inf.usi.ch/#/software-data/14

13

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://star.inf.usi.ch/#/software-data/14

that indicates the effectiveness of PREVENT with respect to
the start of the art.

The results presented in this paper indicate the feasibility
of unsupervised machine-learning-based approaches to predict
failures and locate failing components in commercial envi-
ronments, and open the horizon to study the effectiveness
of unsupervised approaches for predicting failure in complex
systems.

ACKNOWLEDGEMENT

This work is partially supported by the Swiss SNF project
ASTERIx: Automatic System TEsting of InteRactive software
applications (SNF 200021_178742), and by the Italian PRIN
project SISMA (PRIN 201752ENYB).

REFERENCES

[1] Elasticsearch reference. https://www.elastic.co/elasticsearch/.
[2] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time

anomaly detection for streaming data. Neurocomputing, 262:134–147,
2017.

[3] A. Arnold, Y. Liu, and N. Abe. Temporal causal modeling with graphical
granger methods. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’07, pages
66–75. ACM, 2007.

[4] S. H. Bach, B. He, A. Ratner, and C. Ré. Learning the structure of
generative models without labeled data. In International Conference on
Machine Learning, pages 273–282. PMLR, 2017.

[5] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A.
Raffel. Mixmatch: A holistic approach to semi-supervised learning.
Advances in neural information processing systems, 32, 2019.

[6] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen.
Fingerprinting the datacenter: automated classification of performance
crises. In Proceedings of the 5th European conference on Computer
systems, pages 111–124, 2010.

[7] L. Bodo, H. Oliveira, F. A. Breve, and D. M. Eler. Semi-supervised
learning applied to performance indicators in software engineering pro-
cesses. In International Conference on Software Engineering Research
and Practice (SERP 2015), Las Vegas, EUA, pages 255–261, 2015.

[8] L. Bontemps, J. McDermott, N.-A. Le-Khac, et al. Collective anomaly
detection based on long short-term memory recurrent neural networks.
In International Conference on Future Data and Security engineering,
pages 141–152. Springer, 2016.

[9] M. Á. Carreira-Perpiñán and G. E. Hinton. On contrastive divergence
learning. In Proc. International Workshop on Artificial Intelligence and
Statistics. The Society for Artificial Intelligence and Statistics, 2005.

[10] D. Chandler. Introduction to Modern Statistical Mechanics. Oxford
University Press, September 1987.

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):15, 2009.

[12] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised
Learning. The MIT Press, 2006.

[13] I.-H. Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and H.-F.
Wen. A framework for automated performance bottleneck detection.
In 2008 IEEE International Symposium on Parallel and Distributed
Processing, pages 1–7. IEEE, 2008.

[14] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee. A
survey on resiliency techniques in cloud computing infrastructures and
applications. IEEE Communications Surveys & Tutorials, 18(3):2244–
2281, 2016.

[15] N. A. Davis, A. Rezgui, H. Soliman, S. Manzanares, and M. Coates.
Failuresim: A system for predicting hardware failures in cloud data
centers using neural networks. In 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), pages 544–551. IEEE,
2017.

[16] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical
phenomena in complex networks. Reviews of Modern Physics, 80:1275–
1335, 2008.

[17] G. Druck, B. Settles, and A. McCallum. Active learning by labeling
features. In Proceedings of the 2009 conference on Empirical methods
in natural language processing, pages 81–90, 2009.

[18] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1285–1298, 2017.

[19] A. Fadaei Tehrani and F. Safi-Esfahani. A threshold sensitive failure
prediction method using support vector machine. Multiagent and Grid
Systems, 13(2):97–111, 2017.

[20] G. Fernandes Jr, L. F. Carvalho, J. J. Rodrigues, and M. L. Proença Jr.
Network anomaly detection using ip flows with principal component
analysis and ant colony optimization. Journal of Network and Computer
Applications, 64:1–11, 2016.

[21] A. Fischer and C. Igel. An introduction to restricted boltzmann
machines. In Iberoamerican congress on pattern recognition, pages 14–
36. Springer, 2012.

[22] E. W. Fulp, G. A. Fink, and J. N. Haack. Predicting computer system
failures using support vector machines. In Proceedings of the USENIX
conference on Analysis of system logs, WASL’08, pages 5–5. USENIX
Association, 2008.

[23] J. Gao, H. Wang, and H. Shen. Task failure prediction in cloud data
centers using deep learning. IEEE Transactions on Services Computing,
2020.

[24] L. Gazzola, L. Mariani, F. Pastore, and M. Pezzè. An exploratory study
of field failures. In Proceedings of the International Symposium on
Software Reliability Engineering, ISSRE ’17, 2017.

[25] D. Giovanni, S. Morasca, and M. Pezzè. Deriving models of software
fault-proneness. In Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2002), 2002.

[26] C. W. J. Granger. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, 37:424–438, 1969.

[27] Q. Guan, Z. Zhang, and S. Fu. Ensemble of bayesian predictors and
decision trees for proactive failure management in cloud computing
systems. Journal of Communication, 7(1):52–61, 2012.

[28] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. Performance
anomaly detection and bottleneck identification. ACM Computing
Surveys, 48(1):4:1–4:35, 2015.

[29] O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth. Adaptive anomaly
detection in performance metric streams. Transactions on Network and
Service Management, 15(1):217–231, 2018.

[30] IBM Corporation. SmartCloud Analytics - Predictive Insights 1.3
(Tutorial), 2014. Document Revision R2E2.

[31] T. Islam and D. Manivannan. Predicting application failure in cloud: A
machine learning approach. In 2017 IEEE International Conference on
Cognitive Computing (ICCC), pages 24–31. IEEE, 2017.

[32] H. Kang, X. Zhu, and J. L. Wong. Dapa: Diagnosing application
performance anomalies for virtualized infrastructures. In 2nd {USENIX}
Workshop on Hot Topics in Management of Internet, Cloud, and Enter-
prise Networks and Services (Hot-ICE 12), 2012.

[33] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning.
arXiv preprint arXiv:1610.02242, 2016.

[34] A. N. Langville and C. D. Meyer. A survey of eigenvector methods for
web information retrieval. SIAM Review, 47(1):135–161, 2005.

[35] P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in
exponential families. In Proceedings of the 26th annual international
conference on machine learning, pages 641–648, 2009.

[36] H. Lu, B. Cukic, and M. Culp. Software defect prediction using
semi-supervised learning with dimension reduction. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, pages 314–317, 2012.

[37] J. P. Magalhaes and L. M. Silva. Detection of performance anomalies in
web-based applications. In 2010 Ninth IEEE International Symposium
on Network Computing and Applications, pages 60–67. IEEE, 2010.

[38] J. P. Magalhaes and L. M. Silva. Adaptive profiling for root-cause
analysis of performance anomalies in web-based applications. In
2011 IEEE 10th International Symposium on Network Computing and
Applications, pages 171–178. IEEE, 2011.

[39] J. P. Magalhaes and L. M. Silva. Root-cause analysis of performance
anomalies in web-based applications. In Proceedings of the 2011 ACM
Symposium on Applied Computing, pages 209–216, 2011.

[40] H. Malik, H. Hemmati, and A. E. Hassan. Automatic detection of
performance deviations in the load testing of Large Scale Systems. In
Proceedings of the International Conference on Software Engineering,
ICSE ’13, pages 1012–1021. IEEE Computer Society, 2013.

14

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.elastic.co/elasticsearch/

[41] G. S. Mann and A. McCallum. Generalized expectation criteria for
semi-supervised learning with weakly labeled data. Journal of machine
learning research, 11(2), 2010.

[42] L. Mariani, C. Monni, M. Pezzè, O. Riganelli, and R. Xin. Localizing
faults in cloud systems. In Proceedings of the International Conference
on Software Testing, Verification and Validation, ICST ’18, pages 262–
273. IEEE Computer Society, 2018.

[43] L. Mariani, M. Pezzè, O. Riganelli, and R. Xin. Predicting failures in
multi-tier distributed systems. Journal of Systems and Software, 161,
2020.

[44] T. Martin, X. Zhang, and M. E. J. Newman. Localization and centrality
in networks. Phys. Rev. E, 90:052808, Nov 2014.

[45] W. McKinney, J. Perktold, and S. Seabold. Time series analysis in
python with statsmodels. pages 96–102, 2011.

[46] C. Monni and M. Pezzè. Energy-based anomaly detection a new
perspective for predicting software failures. In Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE (NIER) 2019, Montreal, QC, Canada, May 29-
31, 2019, pages 69–72. IEEE / ACM, 2019.

[47] C. Monni, M. Pezzè, and G. Prisco. An RBM anomaly detector for
the cloud. In 12th IEEE Conference on Software Testing, Validation
and Verification, ICST 2019, Xi’an, China, April 22-27, 2019, pages
148–159. IEEE, 2019.

[48] J. Nam and S. Kim. Clami: Defect prediction on unlabeled datasets
(t). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 452–463. IEEE, 2015.

[49] A. Nistor and L. Ravindranath. Suncat: Helping developers understand
and predict performance problems in smartphone applications. In
Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA ’14, pages 282–292. ACM, 2014.

[50] B. Ozcelik and C. Yilmaz. Seer: A Lightweight Online Failure Prediction
Approach. IEEE Transactions on Software Engineering, 42(1):26–46,
2016.

[51] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010.

[52] V. A. Profillidis and G. N. Botzoris. Modeling of transport demand:
Analyzing, calculating, and forecasting transport demand. Elsevier,
2018.

[53] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré. Data
programming: Creating large training sets, quickly. Advances in neural
information processing systems, 29, 2016.

[54] Y. Roumani and J. K. Nwankpa. An empirical study on predicting cloud
incidents. International journal of information management, 47:131–
139, 2019.

[55] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction
methods. ACM Computing Surveys, 42(3):1–42, 2010.

[56] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing
performance changes by comparing request flows. In NSDI, volume 5,
pages 1–1, 2011.

[57] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun. Anomaly
detection and root cause localization in virtual network functions. In
Proceedings of the International Symposium on Software Reliability
Engineering, ISSRE ’16, pages 196–206. IEEE Computer Society, 2016.

[58] J. P. Scott and P. J. Carrington. The SAGE Handbook of Social Network
Analysis. Sage Publications Ltd., 2011.

[59] S. Seabold and J. Perktold. Statsmodels: Econometric and statistical
modeling with python. In Proceedings of the 9th Python in Science
Conference, volume 57, page 61. Austin, TX, 2010.

[60] P. Stack, H. Xiong, D. Mersel, M. Makhloufi, G. Terpend, and D. Dong.
Self-healing in a decentralised cloud management system. In Proceed-
ings of the 1st International Workshop on Next generation of Cloud
Architectures, CloudNG@EuroSys 2017, Belgrade, Serbia, April 23-26,
2017, pages 3:1–3:6, 2017.

[61] R. Stewart and S. Ermon. Label-free supervision of neural networks
with physics and domain knowledge. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[62] X. Sun, K. Chakrabarty, R. Huang, Y. Chen, B. Zhao, H. Cao, Y. Han,
X. Liang, and L. Jiang. System-level hardware failure prediction using
deep learning. In 2019 56th ACM/IEEE design automation conference
(DAC), pages 1–6. IEEE, 2019.

[63] Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly prediction for
large-scale hosting infrastructures. In Proceedings of the Symposium on

Principles of Distributed Computing, PODC ’12, pages 173–182. ACM,
2010.

[64] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan. Pre-
pare: Predictive performance anomaly prevention for virtualized cloud
systems. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pages 285–294. IEEE, 2012.

[65] H. Tu and T. Menzies. FRUGAL: unlocking semi-supervised learning for
software analytics. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 394–406. IEEE, 2021.

[66] J. Zhang, C. Hsieh, Y. Yu, C. Zhang, and A. Ratner. A survey on
programmatic weak supervision. CoRR, abs/2202.05433, 2022.

[67] Z.-W. Zhang, X.-Y. Jing, and F. Wu. Low-rank representation for semi-
supervised software defect prediction. IET Software, 12(6):527–535,
2018.

15

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3327583

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Prevent
	PreventA State Classifier
	PreventE State Classifier
	Prevent Anomaly ranker

	Experiments
	Research Questions
	Experimental Settings
	Injecting failures
	Results

	Related Work
	Machine Learning for Software Engineering
	Failure Prediction and Diagnosis

	Conclusions
	References

