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ABSTRACT

We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical
and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range

of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics

of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second,

we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors’
supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms
has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of
transformations to handle non-Gaussianity can improve interval estimates.

1 | Introduction

It is a pleasure to contribute to the discussion of the insight-
ful article “Assessing predictability of environmental time
series with statistical and machine learning models” by Bonas
et al. (2025). The authors are commended for their effort in com-
paring a wide range of methodologies for the challenging task
of predicting environmental time series data. The article clearly
highlights the role of short- and long-term autocorrelation in
determining the quality of forecasting.

One aspect of the article in particular that stands out is the com-
mitment to transparency and reproducibility. By making both
the data and code available to the public, the authors have pro-
vided the necessary tools to replicate their findings. This also
allows for the extension of their work, encouraging others to con-
sider additional models or alternative datasets, a goal that we will
explore here.

There are many interesting avenues of discussion here, however,
we will narrow our discussion to two topics of interest to us.
First, we will consider extensions of the explored methodologies
that allow for heteroscedastic error terms. Second, we will con-
sider non-Gaussianity and fitting models on transformed data.
For both of these points, we will make use of the authors’ supplied
code and data in order to extend their examples.

2 | Heteroscedastic Error Terms

Environmental time series can exhibit non-constant variance for
a variety of reasons. For example, particulate matter may exhibit
different degrees of variation by season or due to regulatory
changes. Bonas et al. (2025) show clear examples of environ-
mental time series with this behavior, most notably their wind
speed example. Understanding and modeling these heteroscedas-
tic error terms may allow for improved predictive performance
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and uncertainty quantification, as well as new opportunities for
inference.

Heteroscedastic error terms can be considered for both the classi-
cal and machine learning models explored by Bonas et al. (2025).
For example The Autoregressive conditional heteroscedasticity
(ARCH) model (Engle 1982) posits that the variance at time ¢ (af)
given observations up to time 7 — 1 is a linear combination of pre-
vious squared error terms(etz_i):

Here, o;, i = 0,1, ..., q are coefficients to be estimated. The gen-
eralized ARCH (GARCH) (Bollerslev 1986) extends this variance
model to be analogous to an ARMA model:

q P
2 _ 2 2
o, =, + Za,eH + Zy,.aH.
i=1 i=1

where y, are additional coefficients. Either of these two models for
the variance could be combined with the traditional time series
models explored by Bonas et al. (2025), in order to jointly model
the mean and variance of an environmental time series.

The recent advancements in machine learning models offer
even further opportunities to jointly model the mean and vari-
ance. One notable example is the recent development of Het-
eroscedastic Bayesian Additive Regression Trees (HBART) (Pra-
tola et al. 2020). The traditional Bayesian Additive Regression
Trees (BART) model of Chipman et al. (2010) is a homoscedastic
error model, assuming that

Y, = f(x)+0Z,

iid
where Z; " N(0, 1), and f(x) is modeled as a sum of trees,
fx)=Ye(x:T;, M)
j=1

Here, g(-; T, M) denotes a single tree with node parameters M
and tree structure parameters T, that operates on a p-dimensional
vector of covariates x € R?. The tree structure is determined by
which nodes will be split, and what variable/value they will be
split on. Meanwhile, the node parameters consist of mean values
for every terminal node that serve as a prediction for data points
within the node. For more details see Chipman et al. (2010). Alter-
natively, HBART assumes a heteroscedastic error structure,

Y, = f(x)+o0(x)Z;

where the variance is modeled as a product of trees,

1/2

o(x) = <ﬁg(x;Tz,Mz)>

=1

Thus, HBART models the log-variance as a sum of trees. This
allows for both the mean and the variance to be flexibly modeled
as a non-linear function using the sum of trees structure.

In order to gauge the impact of heteroscedastic error term mod-
eling for environmental time series, we consider the same test
datasets used by Bonas et al. (2025). Specifically, we fit the
HBART model to the pollution, temperature, and wind speed
time series examples. In all three examples, we kept the mean
structure the same and used the same inputs (x) for the vari-
ance function, o(x) as for the mean f(x). HBART was fit using
the rbart package in R (McCulloch et al. 2019) with default set-
tings of 40 trees for the variance model and 200 trees for the mean
model. Note that the standard BART model also uses 200 trees,
so any improvements are attributable to the improved variance
model. Table1 summarizes these results using the same met-
rics: Mean squared error (MSE), continuous ranked probability
score (CRPS), 95% prediction interval coverage rate, and inter-
val score. For the pollution data, the results are more or less the
same as what was obtained using standard homoscedastic BART.
However, for the other two datasets, HBART offers considerable
improvement in terms of both superior predictions and uncer-
tainty quantification. For example, with the temperature data,
HBART results in about a 12% reduction in MSE compared to
standard BART and roughly a 21% reduction in interval score.
Similarly, for the wind speed dataset, HBART results in a roughly
11% decrease in MSE and a 95% interval coverage rate that is
4% points closer to the nominal value compared to the standard
BART. This indicates that the inclusion of heteroscedastic mod-
eling can improve both the MSE of point estimates, but also the
quality of interval estimates.

Finally, Figure1 presents a visual comparison of BART and
HBART applied to the wind speed data from February 20 to 28,
2021. The black line in each plot represents the observed data,
the red line indicates the posterior mean of each model’s fitted
values, and the green shaded region denotes the point-wise 95%
credible interval (i.e., 2.5% and 97.5% percentiles of the poste-
rior distribution) around the predictions. Visually, both BART
and HBART capture the general trends and fluctuations in the
data, with the credible intervals providing further insight into
the models’ uncertainty. The credible intervals for BART have
constant width throughout the temporal domain. In contrast
to this, HBART adapts the uncertainty to changes in the data.
For example, HBART is able to reduce the uncertainty in peri-
ods of low variance, such as February 25 and 27. In periods of
high variance, such as February 23 and 24, HBART allows for
greater uncertainty, resulting in better coverage of the observed
data points. Finally, although only a slight difference, HBART
seems to allocate more model complexity in periods of low vari-
ance and less complexity in periods of high variance. This results
in slightly smoother point estimates for HBART compared to
BART when there is considerable noise present. In other words,

TABLE1 | Comparison of forecasting and uncertainty quantification
performance using HBART in terms of the MSE, CRPS, 95% Coverage,
and interval score for three environmental time series.

95% Interval
Dataset MSE CRPS Coverage scores
Pollution 20.44 2.46 0.95 0.63
Temperature 63.32 4.64 0.80 1.27
Wind speed 0.50 0.39 0.88 0.11
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FIGURE1 | BART and HBART fitted values for the wind speed data from February 20 to 28, 2021. The shaded regions represent point-wise 95%

credible intervals.

the homoscedastic BART model has a tendency to overfit the
data in periods of higher variance. This is most likely the reason
that HBART was able to improve prediction MSE along with the
improved uncertainty quantification.

In addition to HBART, there is potential to model heteroscedas-
tic error terms within other machine learning frameworks. For
example, Parker et al. (2021) construct an echo-state network
volatility model by linking an echo-state network to a model
for the variance (on the log scale) rather than the mean. Sim-
ilar to HBART, it would be straightforward to extend this and
use an echo-state network to model both the mean and the vari-
ance simultaneously. Machine learning approaches such as this
that model both the mean and the variance in a flexible man-
ner may offer superior uncertainty quantification by capturing
complex non-linear relationships between the model inputs and
the response variability. This is indicated by the improved inter-
val coverage rate for HBART. At the same time, they may result
in improved predictions by allowing the model the appropriately
allocate complexity within the mean function. This could be par-
ticularly valuable in the context of environmental time series,
where volatility may vary with changing environmental condi-
tions and uncertainty quantification is critical for risk assessment
and decision-making.

3 | Non-Gaussianity and Transformations

A further crucial aspect to consider when examining environ-
mental time series is the shape of the data distribution. Mea-
surements of atmospheric concentrations are, by definition,
non-negative values that typically exhibit a positively skewed dis-
tribution characterized by a considerable number of high values.
This property obviously contrasts with the classical assumption
of symmetry and Gaussianity of the data, which are fundamental
building blocks of statistical models. As shown in the left panel
of Figure 2, the air quality data for Toronto are no exception to
this situation of non-normality. In fact, the distribution of atmo-
spheric concentrations is clearly skewed towards low values, with
only a few instances of elevated concentrations. Moreover, for all
monitoring stations, we can observe a considerable range of vari-
ation, reaching up to 40 pg/m3 in some cases.

In Bonas et al. (2025) the authors compare models which treat
the distribution of the response variable in different ways. For
instance, ARIMA models assume the error term (conditionally
to the covariates and past values) to be a sequence of indepen-
dent and normally distributed random variables (see Section 7 of
Wei 2006), reflecting in a Gaussian distribution for the response
time series. However, in the case of skewed data, such as the air-
borne pollutant concentrations commented on above, this may
not be ideal.
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Empirical distribution of PM2.5 concentrations by station
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FIGURE2 | Empirical density distributions of site-specific daily concentrations of PM, 5 in Toronto (Canada) from 2009 to 2019. The left panel
represents data in the original scale (ug/m?), the central panel uses log-transformed data (log[ug/m?]), the right panel uses Box-Cox transformed data

with A parameter estimated using maximum likelihood.

In order to deal with the apparent skewness, the authors propose
the use of transformations such as the Box-Cox transformation
(Box and Cox 1964; Sakia 1992) or logarithmic transformations
(see, for example, the case of TBATS models or mixtures with
log-normal components). The family of Box-Cox transformation
could be used as a pre-processing step for any model, where the
estimation of the parameters (i.e., the A value) is performed in a
separate stage w.r.t. the model’s parameter estimation. Also, The
Box-Cox transform is known to be helpful in addressing specific
forms of heteroscedasticity (i.e., the variance stabilizing property
of the Box- Cox transform). Figure 2 illustrates the empirical den-
sities of the data following the application of a logarithmic trans-
formation (middle panel), which corresponds to the Box-Cox
transform with parameter A = 0, and after the Box-Cox transfor-
mation in which the parameter is estimated by maximum like-
lihood (right panel). It is evident that the transformations result
in distributions that are highly similar and more symmetric than
the original data'.

To test the influence of transformations on the predictive ability
of models, we implement the rolling window validation forecast-
ing strategies presented in the article for a subset of model classes.
In particular, we consider ARIMA models without covariates
(i.e., ARIMA) and with deterministic twenty-harmonic Fourier
term to capture seasonal patterns (i.e., Fourier + ARIMA), TBATS
models, and homoscedastic BART. Model parameters are esti-
mated using observations up to 31 December 2018 as the training

set?, while forecasts’ and corresponding error metrics are calcu-
lated out-of-sample using 2019 data.

In Figure3, we show the site-specific daily PM,; concentra-
tions observed in 2019 (black time series) and the correspond-
ing one-step-ahead predictions obtained with the models applied
to the original and transformed data. The plot shows that the
methods are mutually consistent as yield very similar point fore-
casts; in fact, the overlapping among the series is very high, and
the range in which the values move is almost identical*. Thus,
from an initial visual inspection, no obvious advantages in point
prediction can be identified from the data transformations. This
belief is confirmed by the results shown in Table 2, in which we
report (for each class) the MSE of the models on the transformed
data to the MSE obtained by the model on the original data. Note
that for models fit on transformed data, the MSE is computed on
the original data scale (i.e., after back-transforming). Although
both transformations are almost always more effective than using
the raw data, the out-of-sample gain rarely exceeds 5% and in
some cases, even leads to worse results (e.g., BART).

Although the transformations seem to have little effect on the
point predictions, we find the uncertainty of the predictions can
be considerably improved. In Table 3, we report two of the uncer-
tainty quantification metrics discussed by the authors, namely
the coverage of the generated 95% prediction intervals and the
interval score, both for the models on raw data and for those with
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Observed concentrations in 2019 and one-step-ahead prediction
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FIGURE3 | Station-specific pollution concentrationsin 2019 (black lines) and one-step-ahead out-of-sample predictions obtained by several models

(colored lines).

TABLE2 |

Station-specific relative MSE of models with transformed data (and with bias adjustment) compared to the corresponding benchmark

model with untransformed data. Metrics are computed using only out-of-sample observations from January 1st, 2019 to December 31st, 2019.

Model station 60,410 60,430 60,434 60,512 61,104 61,402 61,502 61,603 62,601 63,001 65001 65,101
ARIMA (4 = 0) 097 098 098 101 099 098 098 100 1.00 099 097 098
ARIMA (A, 1) 097 098 098 100 099 098 098 100 1.00 099 097 098
Fourier + ARIMA(4=0) 093 095 096 100 099 096 098 093 097 096 093 099
Fourier + ARIMA (4,,,;) 093 095 097 100 099 095 098 093 098 096 093 098
TBATS (4 = 0) 096 098 098 100 098 098 099 099 100 098 096  0.99
TBATS (A1) 096 098 096 100 098 097 099 099 100 098 096  1.02
BART (4 = 0) .01  1.02 1.02 100 104 103 104 101 105 101 101  1.02
BART (A, 1) 101 103 102 099 104 103 103 101 106 101 101 103

transformations. The estimates show that the prediction intervals
have very similar coverage regardless of whether the logarith-
mic or Box-Cox transformation is used. However, the interval
scores for the transformed data are significantly lower than for

the untransformed case, resulting from a significantly more pre-
cise prediction interval. The reductions are always greater than
10%, with an observed a mass of around 17% for the ARIMA mod-
els with deterministic seasonal components.
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TABLE3 | Uncertainty quantification performance in terms of the
95% coverage and IS across all spatial locations, time horizon and win-
dows for the transformed and untransformed Canada air pollution data.

Coverage Interval Variation w.r.t.
probability score benchmark model

ARIMA 0.94 0.62 /
ARIMA (A =0) 0.95 0.53 —14.72%
ARIMA (Ay7 ) 0.95 0.53 ~15.84%
Fourier + ARIMA 0.92 0.66 /
Fourier + ARIMA (4 = 0) 0.93 0.55 —-17.27%
Fourier + ARIMA (4,,,)  0.93 0.54 ~17.88%
TBATS 0.95 0.62 /
TBATS (4 = 0) 0.95 0.53 —14.81%
TBATS (A4, ) 0.95 0.53 —15.14%
BART 0.95 0.60 /
BART (41 =0) 0.96 0.53 —-10.91%
BART (A4, 1) 0.96 0.52 ~13.09%

Other techniques for handling skewed data could also be con-
sidered. In the context of environmental data, techniques such
as warping of the input space (Colombo et al. 2024; Snelson
et al. 2003; Agou et al. 2022) or models with non-Gaussian
errors (Alodat and Shakhatreh 2020; Jafari Khaledi et al. 2023)
or responses (Otto, Fusta Moro et al. 2024) are becoming pop-
ular. However, while these tools are typically implemented in a
spatio-temporal smoothing context, their performance in fore-
casting tasks is still poorly studied.

4 | Final Remarks and Conclusions

We have discussed the excellent article by Bonas et al. (2025) and
tried to highlight its strengths and potential future extensions and
comparisons to be developed. The article presented two appli-
cations to environmental data, where the goal was to compare
the performance of a variety of forecasting models for time series
derived from the statistical and machine learning worlds. The
comparison showed that, depending on the application, the two
philosophies can work antithetically, but also complement each
other, and that no clear superiority can be highlighted. Based
on an exploratory analysis of the data provided by the authors,
we have emphasized in our commentary that at least two sta-
tistical properties can further be considered in order to obtain
more accurate and meaningful predictions. The first concerns
the heteroscedasticity of environmental time series, while the
second concerns the skewed distribution of many environmen-
tal data, especially air quality. In both cases, the most impor-
tant contribution is made to the quantification of the uncer-
tainty of the predictions. On one side, models for heteroscedas-
tic data such as HBART fit the dynamics of variability over time
remarkably well by assigning more or less complexity depend-
ing on the periods. On the other hand, preprocessing trans-
formations such as logarithmic and Box-Cox transformations
strongly reduce the overall uncertainty over the entire forecast
window.

In addition to the two specific issues addressed, others could be
considered and developed in the future. For instance, the follow-
ing may all be interesting points to consider:

« The forecasting horizon can affect model performance and
the selection of the best predictor. When considering a
single-horizon framework, in order to compare forecasts
is common practice to implement the Diebold & Mariano
test (Diebold and Mariano 1995; Diebold 2015), which tests
the null hypothesis of no difference in the prediction accu-
racy of two competing forecasts using a broad class of accu-
racy measures and mild assumptions. Several extensions of
the test have been developed to allow for more complex
situations (e.g., (Giacomini and White 2006; White 2000;
Hansen 2005)). When considering a multi-horizon forecast-
ing setup (as the one implemented here), models can exhibit
either uniform or average superior predictive ability (Quaed-
vlieg 2021). The former is defined as a model with lower
loss at each individual horizon, while the latter allows poor
performance at some horizons to be compensated by supe-
rior performance at other horizons. To test for these proper-
ties one can consider several test statistics, including those
proposed in Quaedvlieg (2021), which extend the previously
cited statistics at both the multiple-model and multi-horizon
framework.

« The article compares models that leverage lagged values of
the time series under consideration. However, some mod-
els allow one to use not only the information embedded
in the time series (e.g., ARIMA without exogenous vari-
ables), but also external information provided by covari-
ates (e.g., regARIMA or BART). In this particular case,
the authors only considered deterministic components (e.g.,
Fourier bases for seasonality) that can be predicted into
the future without error. In general, the presence of covari-
ates in forecasting tasks can offer great advantages (Masini
etal. 2023; Medeiros et al. 2021) by exploiting the correlation
between variables to predict short-term patterns. However,
one complication is the need to produce reliable predictions
for exogenous information to be used as input. A potential
solution is to forecast both covariates and the target variable
in a multivariate framework as in (Salinas et al. 2019) and
Salinas et al. (2020).

« A crucial issue in forecasting is to implement an adequate
evaluation setup, typically involving a sample split strategy.
In Bonas et al. (2025), the authors propose a rolling win-
dow approach in which the model’s parameters are esti-
mated once and taken as fixed for the whole evaluation
test set while the h-step-ahead predictions are obtained
sequentially. As discussed in Hewamalage et al. (2023),
other structures, such as the expanding window or tem-
poral cross-validation schemes could be taken into con-
sideration. Two issues in choosing the desired setup are
the computational burden and the presence of missing
data. For instance, ARIMA models allow for missing data
only when estimated using a state space form or through
the expectation-maximization algorithm. Another impor-
tant consideration is the stationarity assumption, which
can be misleading, as the unknown future may differ from
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the training sample, the test sample, or both (Otto, Fasso
et al. 2024).

Acknowledgments

Open access publishing facilitated by Universita degli Studi di
Milano-Bicocca, as part of the Wiley - CRUI-CARE agreement.

Data Availability Statement

The data that supports the findings of this study are available in the Sup-
porting Information of this article.

Endnotes

!To further argue on the benefits provided by the log-transform, for
all the monitoring sites, we computed the Jarque—Bera (JB) test, the
Shapiro-Wilk (SW) test, and the Kolmogorov-Smirnov (KS) test (Das
and Imon 2016) on both natural scale and logarithmic scale values.
According to the BJ and SW tests for most of the stations, the logarithmic
transformation mitigates the positive skewness, leading to normality in
half of the cases. Conversely, the KS test, being more conservative, does
not support the hypothesis of normality even after transforming.

2To avoid bias from outliers, all time series were pre-processed by imple-
menting a robust STL decomposition to identify outliers and substitu-
tion via the boxplot rule on the residual component as suggested by
(Hyndman 2021).

3In the case of Box-Cox transformed data models, forecasts are
back-transformed and the bias-adjustment formula (see Section 5.6 of
Hyndman and Athanasopoulos 2021) is applied.

#In order to assess the coherence among the point forecasts from differ-
ent models we computed the station-specific pairwise Pearson’s linear
correlation. Indeed, as two series predict similar values toward the same
direction, they should exhibit a positive and close-to-one linear correla-
tion. For every station, we estimate that the proposed models are mutu-
ally consistent. Indeed, the linear correlation is very high for ARIMA
and TBATS models (often above 0.80) while decreases for BART mod-
els (around 0.30 linear correlation with respect to other models but over
0.90 for other BARTS).
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