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Abstract
We define conic reductions X red

ν for torus actions on the boundary X of a strictly pseudo-
convex domain and for a given weight ν labeling a unitary irreducible representation. There
is a natural residual circle action on X red

ν . We have two natural decompositions of the corre-
sponding Hardy spaces H(X) and H(X red

ν ). The first one is given by the ladder of isotypes
H(X)kν , k ∈ Z; the second one is given by the k-th Fourier components H(X red

ν )k induced
by the residual circle action. The aim of this paper is to prove that they are isomorphic for k
sufficiently large. The result is given for spaces of (0, q)-forms with L2-coefficient when X
is a CR manifold with non-degenerate Levi form.
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1 Introduction

Let X be the boundary of a strictly pseudo-convex domain D in C
n+1. Then (X , T 1,0X) is

a contact manifold of dimension 2n + 1, n ≥ 1, where T 1,0X is the sub-bundle of T X ⊗ C

defining the CR structure. We denote by ω0 ∈ C∞(X , T ∗X) the contact 1-form whose
kernel is the horizontal bundle HX ⊂ T X ; we refer to Sect. 2.1 for definitions. Associated
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with these data we can define the Hardy space H(X), it is the space of boundary values
of holomorphic functions in D which lie in L2(X), the Hilbert space of square integrable
functions on X . Suppose a contact and CR action of a t-dimensional torus T is given; we
denote by μ : X → t∗ the associated CR moment map. Fix a weight i ν in the lattice
i Zt ⊂ t∗, if 0 ∈ t∗ does not lie in the image of the moment map, the isotypes

H(X)kν = { f ∈ H(X) : (ei θ · f )(x) = eik 〈ν,θ〉 f (x), θ ∈ R
t }, k ∈ Z,

are finite dimensional.
Suppose that the ray i R+ · ν ∈ t∗ is transversal to μ, then Xν := μ−1(i R+ · ν) is

a sub-manifold of X of codimension t − 1. There is a well-defined locally free action of
T
t−1
ν := expT(i ker ν) on Xν ; the resulting orbifold X red

ν is called conic reduction of X with
respect to the weight ν. Let ϕ be an Euclidean product on t, we shall also use the symbol 〈·, ·〉
and denote by λϕ ∈ t be uniquely determined by λ = ϕ(λϕ, ·) and ‖λ‖ the corresponding
norm. By abuse of notation we write λ for λϕ and we identify t ∼= iRt with its dual. We set

ker ν = ν⊥ := {λ ∈ t : 〈ν, λ〉 = 0} .

The locus Xν is T-invariant; we will always assume that the action of T on Xν is locally
free. After replacingTwith its quotient by a finite subgroup, wemay andwill assumewithout
loss of generality that the action is generically free. In Sect. 2.1, we show that X red

ν is CR
manifold with positive definite Levi form of dimension 2n − 2t + 3.

Let us define T1
ν := expT(i ν), if ν is coprime, we have a Lie group isomorphism

κν : S1 → T
1
ν, eiθ �→ eiθν

between T1
ν := expT(i ν) and the circle S1. Let us denote by

T1
ν := T/Tt−1

ν
∼= T

1
ν/(T

1
ν ∩ T

t−1
ν ),

then the character χν : T → S1, χν(ei θ ) := eik 〈ν, θ〉, being trivial on T
t−1
ν , descends to

a character χ ′
ν : T1

ν → S1 which is a Lie group isomorphism, see [14, Lemma 10]. Thus,

we have a locally free circle action of T1
ν on X red

ν , which induces an action on the Hardy

space H(X red
ν ). Suppose that the action of T1

ν on X is transversal to the CR structure. We

denote by H(X red
ν )k the corresponding k-th Fourier component, and we call the action of T1

ν

on X red
ν residual circle action. The aim of this paper is to prove that H(X)kν and H(X red

ν )k
are isomorphic for k sufficiently large.

We prove the aforementioned result in themore general setting of CRmanifolds for spaces
of (0, q)-forms when k is large; more precisely we consider (0, q) forms with L2 coefficients
and the corresponding projector S(q) onto the kernel of the Kohn Laplacian Hq(X). Now,
we make more precise the assumptions on the CR manifold X and on the group action.

Assumption 1.1 Let (X , T 1,0X) be a compact connected orientable CR manifold of dimen-
sion 2n + 1, n ≥ 1, and let ω be the associated contact 1-form. The Levi form L is
non-degenerate of constant signature (n−, n+) on X . That is, the Levi form has exactly
n− negative and n+ positive eigenvalues at each point of X , where n− + n+ = n.

Concerning the group action, we always assume

Assumption 1.2 The action of T preserves the contact form ω0 and the complex structure
J . That is, g∗ω0 = ω0 on X and g∗ J = Jg∗ on the horizontal bundle HX for every g ∈ T

where g∗ and g∗ denote the pull-back map and push-forward map of T, respectively.
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Let X red
ν := Xν/T

t−1
ν , defined in the same way as before, more precisely we shall assume

Assumption 1.3 The moment map μ is transverse to the ray i R+ · ν ∈ t∗, the action of T on
Xν is locally free and for every x ∈ Xν

valx (ν
⊥) ∩ valx (ν

⊥)⊥b = {0}
where b is a bilinear form on Hx X such that

b(·, ·) = dω0(·, J ·) (1)

and it is non-degenerate.

We note that b(U , V ) = 2 L(U , V ) for every U , V ∈ HX . By assumptions above,
we will show that X red

ν is a CR manifold with natural CR structure induced by T 1,0X of
dimension 2n − 2(t − 1) + 1. Let LX red

ν
be the Levi form on X red

ν induced naturally from the
Levi form L on X . For a given subspace s of t, we denote sX the subspace of infinitesimal
vector fields on X . Let us consider

B = ker νX ⊕ J ker νX .

Hence, b has constant signature on B × B, suppose b has r negative eigenvalues on B × B
where r ≤ n− since L and b have the same number of negative eigenvalues on HX . Fix
q = n−; hence, by Lemma 2.1, LX red

ν
has q − r negative eigenvalues at each point of X red

ν .
We refer to Sect. 2.1 for definitions; we have:

Theorem 1.1 Suppose that �q
b has L2 closed range. Fix a maximal coprime weight ν �= 0

in the lattice inside t∗ and assume that the circle action T1
ν is a transversal CR action. Fix

q = n−, under the assumptions above, X red
ν is a compact CR manifold with non-degenerate

Levi form having q−r-negative eigenvalues. There is a natural isomorphism of vector spaces
σk : Hq(X)kν → Hq−r (X red

ν )k for k sufficiently large.

For strictly pseudoconvex domain, we have q = n− = r = 0 and thus we have quantiza-
tion commutes with reduction for spaces of functions for k large. We give a proof in Sect. 3,
which is inspired from [7] (see [8] for the full extension of [7]), and it is a consequence of
the microlocal properties of the projector S(q)

kν described in Sect. 2.2 and calculus of Fourier
integral operators of complex type, see [11]. Furthermore, we recall that the way to establish
the isometry from kernel expansion for k large comes from [10].

The conic reductions defined above appear naturally in geometric quantization. In fact,
given a Hamiltonian and holomorphic action with moment map 
 of a compact Lie group
G on a Hodge manifold (M, ω) with quantizing circle bundle π : X → M , one can always
define an infinitesimal action of the Lie algebra g on X . If it can be integrated to an action of
the whole group G, then one has a representation of G on H(X). In [5] it was observed that
associated to group actions one can define reductions M�

red by pulling back a G-invariant and
proper sub-manifold� of g∗ via the moment map
. When� is chosen to be a cone through
a co-adjoint orbitC(Oν), one has associated reduction whose Hardy space of its quantization
is

H(XC(Oν )
red ) =

⊕

k∈Z
H(XC(Oν )

red )k,

where k labels an irreducible representation of the residual circle action described above.
Now, it is natural to ask if this spaces are related to the decomposition induced by G on
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H(X). When G = T Theorem 1.1 states that they are isomorphic to H(X)kν ; the canonical
decomposition of the Hardy space H(X) of the quantitation by the built-in circle action
does not play any role. The semi-classical parameter k is the one induced by the ladder k ν,
k = 0, 1, 2, . . . , labeling unitary irreducible representations.

Further geometrical motivations for this theorem are explained in paper [14], where it is
proved that δk is an isomorphism for k large enough in the setting when X is the circle bundle
of a polarized Hodge manifold whose Grauert tube is D. Thus, Theorem 1.1 generalizes the
main theorem in [14] to compact “quantizable” pseudo-Kähler manifolds. We also refer to
[12] for examples and the explicit expression of the leading term of the asymptotic expansion
of dim H(X)kν as k goes to infinity. Along this line of research in [13] Toeplitz operators
were studied for circle action; in [1] the study of asymptotics of compositions of Toeplitz
operators with quantomopomorphism is addressed for torus actions.

2 Preliminaries

2.1 Geometric setting

We recall some notations concerningCR and contact geometry. Let (X , T 1,0X) be a compact,
connected and orientable CR manifold of dimension 2n + 1, n ≥ 1, where T 1,0X is a CR
structure of X . There is a unique sub-bundle HX of T X such that HX⊗C = T 1,0X⊕T 0,1X .
Let J : HX → HX be the complex structure map given by J (u + u) = iu − iu, for every
u ∈ T 1,0X . By complex linear extension of J to T X ⊗ C, the i-eigenspace of J is T 1,0X .
We shall also write (X , HX , J ) to denote a CR manifold.

Since X is orientable, there always exists a real non-vanishing 1-form ω0 ∈ C∞(X , T ∗X)

so that 〈ω0(x), u 〉 = 0, for every u ∈ Hx X , for every x ∈ X ; ω0 is called contact form and
it naturally defines a volume form on X . For each x ∈ X , we define a quadratic form on HX
by

Lx (U , V ) = 1

2
dω0(JU , V ), ∀ U , V ∈ Hx X .

Then, we extend L to HX ⊗ C by complex linear extension; for U , V ∈ T 1,0
x X ,

Lx (U , V ) = 1

2
dω0(JU , V ) = − 1

2i
dω0(U , V ).

The Hermitian quadratic form Lx on T 1,0
x X is called Levi form at x . In the case when X is

the circle bundle of an Hodge manifold (M, ω), the positivity ofω implies that the number of
negative eigenvalues of the Levi form is equal to n. The Reeb vector field R ∈ C∞(X , T X)

is defined to be the non-vanishing vector field determined by

ω0(R) ≡ 1, dω0(R, ·) ≡ 0 on T X .

Fix a smoothHermitianmetric 〈 · | · 〉onCT X so that T 1,0X is orthogonal to T 0,1X , 〈 u | v 〉
is real if u, v are real tangent vectors, 〈 R | R 〉 = 1 and R is orthogonal to T 1,0X ⊕ T 0,1X .
For u ∈ CT X , we write |u|2 := 〈 u | u 〉. Denote by T ∗1,0X and T ∗0,1X the dual bundles of
T 1,0X and T 0,1X , respectively. They can be identified with sub-bundles of the complexified
cotangent bundle CT ∗X .

Assume that X admits an action of t-dimensional torus T. In this work, we assume that
the T-action preserves ω0 and J ; that is, t∗ω0 = ω0 on X and t∗ J = J t∗ on HX . Let t
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denote the Lie algebra of T , we identify t with its dual t∗ by means of the scalar product
〈·, ·〉. For any ξ ∈ t, we write ξX to denote the vector field on X induced by ξ . The moment
map associated to the form ω0 is the map μ : X → t∗ such that, for all x ∈ X and ξ ∈ t, we
have

〈μ(x), ξ 〉 = ω0(ξX (x)). (2)

Fix a maximal weight ν �= 0 in the lattice inside t∗. Suppose that iR+ · ν is transversal to
μ, so we have

t∗ = iR+ · ν ⊕ dpμ(TpX) (3)

and Xν is a sub-manifold of X of codimension 2n + 2− t . We claim that the action of Tt−1
ν

on Xν is locally free. In fact, by the contrary suppose that there exists ξ ∈ ker ν such that
ξX (x) = 0 on Tx Xν , x ∈ Xν . For each v ∈ Tx X , we have

(dxμ(v))(ξ) = dxω0(ξX , v) = 0

which contradicts (3).
The action of T restricts to an action of Tt−1 whose moment map is given by

μ|Tt−1 = pν ◦ μ, where pν : t∗ → t∗ν

is the canonical projection onto the t − 1-dimensional subspace ν⊥ in t∗. The transversality
condition in 1.2 implies that 0 ∈ tt−1

ν is a regular value for the moment μ|Tt−1 . Thus, we
have

Xν/T
t−1
ν = μ−1

|Tt−1(0)/T
t−1
ν

and by assumptions 1.2, 1.3 and [7, Section 2.5] (we shall also refer to [3] for definitions
concerning CR structures on orbifolds) we have

Lemma 2.1 The space of orbits Xν/T
t−1
ν is a CR orbifold. Let us denote by π : Xν → X red

ν

and ι : Xν ↪→ X the natural projection and inclusion, respectively, then there is a unique
induced contact form ωred

0 on Xν/T
t−1
ν such that

π∗ωred
0 = ι∗ω0.

In particular, set H Xν = T Xν ∩ HX, we have

H X = HXν ⊕ J iν⊥
X and H Xν = iν⊥

X ⊕ dπ∗HX red
ν .

Wewill also assume that T1
ν-action is transversal CR, that is, the infinitesimal vector field

(νXu)(x) = ∂

∂t
(u(exp(i t ν) ◦ x)) |t=0, for any u ∈ C∞(X),

preserves the CR structure T 1,0X , so that νX and T 1,0X ⊕ T 0,1X generate the complex
tangent bundle to X ,

CTx X = CνX (x) ⊕ CT 1,0
x X ⊕ CT 0,1

x X (x ∈ X).

We define local coordinates that will be useful later. Recall that X admits a CR and
transversal T1

ν-action which is locally free on Xν , T ∈ C∞(X , T X) denotes the global real
vector field given by this infinitesimal circle action.Wewill take T to be our Reeb vector field
R. In a similar way as in Theorem 3.6 in [7], there exist local coordinates v = (v1, . . . , vt−1)

ofTt−1
ν in a small neighborhoodV0 of the identity ewith v(e) = (0, . . . , 0), local coordinates
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x = (x1 . . . , x2n+1) defined in a neighborhoodU1 ×U2 of p ∈ Xν , whereU1 ⊆ R
t−1 (resp.

U2 ⊆ R
2n+2−t ) is an open set of 0 ∈ R

t−1 (resp. 0 ∈ R
2n+2−t ) and p ≡ 0 ∈ R

2n+1, and a
smooth function γ = (γ1, . . . , γt−1) ∈ C∞(U2,U1) with γ (0) = 0 such that

(v1, . . . , vt−1) ◦ (γ (xt , . . . , x2n+1), xt , . . . , x2n+1)

= (v1 + γ1(xt , . . . , x2n+1), . . . , vt−1 + γd(xt , . . . , x2n+1), xt , . . . , x2n+1)

for each (v1, . . . , vt−1) ∈ V0 and (xt , . . . , x2n+1) ∈ U2. Furthermore, we have

t = span
{
∂x j

}
j=1,...,t−1

, μ−1(i Rν · ν) ∩U = {x2d−t+1 = · · · = x2d = 0},

onμ−1(i Rν ·ν)∩U there exist smooth functions a j ’s with a j (0) = 0 for every 0 ≤ j ≤ t−1
and independent on x1, . . . , x2(t−1), x2n+1 such that

J
(
∂x j

) = ∂xt−1+ j + a j (x)∂x2n+1 j = 1, . . . , t − 1,

the Levi form L p , the Hermitian metric 〈 · | · 〉 and the 1-form ω0 can be written

L p(Z j , Zk) = μ j δ j,k, 〈Z j | Zk〉 = δ j,k (1 ≤ j, k ≤ n),

and

ω0(x) =(1 + O(|x |))dx2n+1 +
t−1∑

j=1

4μ j xt−1+ jdx j +
n∑

j=t

2μ j x2 jdx2 j−1

−
n∑

j=t

2μ j x2 j−1dx2 j +
2n∑

j=r

b j x2n+1dx j + O(|x |2)

where br , . . . , b2n ∈ R,

T 1,0
p X = span{Z1, . . . , Zn}

and

Z j = 1

2
(∂x j − i ∂xt−1+ j )(p) ( j = 1, . . . , t − 1) ,

Z j = 1

2
(∂x2 j−1 − i ∂x2 j )(p) ( j = t, . . . , n) .

We need to define in local coordinates we just introduced the phase function of the Tt−1
ν -

invariant Szegő kernel 
−(x, y) ∈ C∞(U × U ) which is independent of (x1, . . . , xt−1)

and (y1, . . . , yt−1). Hence, we write 
−(x, y) = 
−((0, x ′′), (0, y′′)) := 
−(x ′′, y′′) and
x̊ ′′ := (xt , . . . , x2n), ẙ′′ := (yt , . . . , y2n). Moreover, there is a constant c > 0 such that

Im
−(x ′′, y′′) ≥ c
(|x̊ ′′|2 + |ẙ′′|2 + |x̊ ′′ − ẙ′′|2) , for all ((0, x ′′), (0, y′′)) ∈ U ×U . (4)

Furthermore,


−(x ′′, y′′) = −x2n+1 + y2n+1 + 2i
t−1∑

j=1

∣∣μ j
∣∣ y2t−1+ j + 2i

t−1∑

j=1

∣∣μ j
∣∣ x2t−1+ j + i

n∑

j=t

∣∣μ j
∣∣ ∣∣z j − w j

∣∣2

+
n∑

j=t

iμ j (z jw j − z jw j ) +
d∑

j=1

(−bt−1+ j xd+ j x2n+1 + bt−1+ j yt−1+ j y2n+1)
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+
n∑

j=t

1

2
(b2 j−1 − ib2 j )(−z j x2n+1 + w j y2n+1) +

n∑

j=t

1

2
(b2 j−1 + ib2 j )(−z j x2n+1 + w j y2n+1)

+ (x2n+1 − y2n+1) f (x, y) + O(|(x, y)|3), (5)

where z j = x2 j−1 + i x2 j , w j = y2 j−1 + iy2 j , j = t, . . . , n, μ j , j = 1, . . . , n, f is smooth
and satisfies f (0, 0) = 0, f (x, y) = f (y, x).

We now considerT1
ν circle action on X . Let p ∈ μ−1(iR+·ν), there exist local coordinates

v = (v1, . . . , vt−1) of Tt−1 in a small neighborhood V0 of e with v(e) = (0, . . . , 0), local
coordinates x = (x1 . . . , x2n+1) defined in a neighborhoodU1 ×U2 of p, whereU1 ⊆ R

t−1

(resp. Ut−1 ⊆ R
2n+t ) is an open set of 0 ∈ R

t−1 (resp. 0 ∈ R
2n+t ) and p ≡ 0 ∈ R

2n+1, and
a smooth function γ = (γ1, . . . , γt ) ∈ C∞(U2,U1) with γ (0) = 0 such that T = − ∂

∂x2n+1
and all the properties for the local coordinates defined before hold. The phase function �

satisfies �(x, y) = −x2n+1 + y2n+1 + �̂(x̊ ′′, ẙ′′), where �̂(x̊ ′′, ẙ′′) ∈ C∞(U × U ) and �

satisfies (5).

2.2 Hardy spaces

We denote by L2
(0,q)(X), q = 0, 1, . . . , n, the completion of �0,q(X) with respect to ( · | · ).

We extend ( · | · ) to L2
(0,q)(X) in the standard way. We extend ∂b to L2

(0,q)(X) by

∂b : Dom ∂b ⊂ L2
(0,q)(X) → L2

(0,q+1)(X),

where Dom ∂b := {u ∈ L2
(0,q)(X); ∂bu ∈ L2

(0,q+1)(X)} and, for any u ∈ L2
(0,q)(X), ∂bu is

defined in the sense of distributions. We also write

∂
∗
b : Dom ∂

∗
b ⊂ L2

(0,q+1)(X) → L2
(0,q)(X)

to denote the Hilbert space adjoint of ∂b in the L2 space with respect to ( · | · ). There is a
well-defined orthogonal projection

S(q) : L2
(0,q)(X) → Ker�q

b (6)

with respect to the L2 inner product ( · | · ) and let
S(q)(x, y) ∈ D′(X × X , T ∗0,q X � (T ∗0,q X)∗)

denote the distribution kernel of S(q). We will write Hq(X) for ker�q
b , and for functions,

we simply write H(X) to mean H0(X). The distributional kernel S(q)(x, y) was studied in
[6], before recalling an explicit description describing the oscillatory integral defining the
distribution S(q)(x, y) we need to fix some notation. To begin, let us review the concept of
the Hörmander symbol space. Let D ⊂ X be a local coordinate patch with local coordinates
x = (x1, . . . , x2n+1).

Definition 2.1 For every m ∈ R, we denote with

Sm1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗) ⊆ C∞(D × D × R+, T ∗0,q X � (T ∗0,q X)∗)
(7)

the space of all a such that, for all compact K � D× D and all α, β ∈ N
2n+1
0 , γ ∈ N0, there

is a constant Cα,β,γ > 0 such that
∣∣∣∂α

x ∂β
y ∂

γ
t a(x, y, t)

∣∣∣ ≤ Cα,β,γ (1 + |t |)m−γ , for every (x, y, t) ∈ K × R+, t ≥ 1.
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For simplicity we denote with Sm1,0 the spaces defined in (7); furthermore, we write

S−∞(D × D × R+, T ∗0,q X � (T ∗0,q X)∗) :=
⋂

m∈R
Sm1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗).

Let a j ∈ S
m j
1,0, j = 0, 1, 2, . . . with m j → −∞, as j → ∞. Then there exists a ∈ Sm0

1,0
unique modulo S−∞, such that

a −
k−1∑

j=0

a j ∈ Smk
1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗

)

for k = 0, 1, 2, . . .. If a and a j have the properties above, we write a ∼ ∑∞
j=0 a j in Sm0

1,0.

It is known that the characteristic set of �q
b is given by

� = �− ∪ �+, �− = {
(x, λω0(x)) ∈ T ∗X; λ < 0

}
,

and �+ is defined similarly for λ > 0. We recall the following theorem (see [6, Theorem
1.2]).

Theorem 2.1 Suppose that the Levi form is non-degenerate and �q
b has L2 closed range.

Then, there exist continuous operators S−, S+ : L2
(0,q)(X) → Ker�q

b such that

S(q) = S− + S+, S+ ≡ 0 if q �= n+

and

WF′ (S−) = diag (�− × �−), WF′ (S+) = diag (�+ × �+) if q = n− = n+,

whereWF′ (S−) = {(x, ξ, y, η) ∈ T ∗X × T ∗X; (x, ξ, y,−η) ∈ WF (S−)},WF (S−) is the
wave front set of S− in the sense of Hörmander.

Moreover, consider any small local coordinate patch D ⊂ X with local coordinates
x = (x1, . . . , x2n+1), then S−(x, y), S+(x, y) satisfy

S∓(x, y) ≡
∫ ∞

0
eiϕ∓(x,y)t s∓(x, y, t)dt on D,

with

s∓(x, y, t) ∼
∞∑

j=0

s j∓(x, y)tn− j in Sn1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗),

s+(x, y, t) = 0 if q �= n+ and s0−(x, x) �= 0 for all x ∈ D. The phase functions ϕ−, ϕ+
satisfy

ϕ+, ϕ− ∈ C∞(D × D), Im ϕ∓(x, y) ≥ 0, ϕ−(x, x) = 0, ϕ−(x, y) �= 0 if x �= y,

and

dxϕ−(x, y)
∣∣
x=y = −ω0(x), dyϕ−(x, y)

∣∣
x=y = ω0(x), −ϕ+(x, y) = ϕ−(x, y).

Remark 2.1 Kohn [9] proved that if q = n− = n+ or |n− − n+| > 1 then �q
b has L2 closed

range. For a description of the phase function in local coordinates see chapter 8 of part I in
[6].
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Nowwe focus on the decomposition induced by the group action on Hq(X). Fix t ∈ T and
let t∗ : �r

x (CT
∗X) → �r

t−1◦x (CT
∗X) be the pull-back map. Since T preserves J , we have

t∗ : T ∗0,q
x X → T ∗0,q

g−1◦x X , for all x ∈ X . Thus, for u ∈ �0,q(X), we have t∗u ∈ �0,q(X).
Put

�0,q(X)kν :=
{
u ∈ �0,q(X); (eiθ )∗u = ei k〈ν, θ〉u, ∀θ ∈ R

r
}

.

Since the Hermitian metric 〈 · | · 〉 on CT X is T-invariant, the L2 inner product ( · | · ) on
�0,q(X) induced by 〈 · | · 〉 is T-invariant. Let u ∈ L2

(0,q)(X) and t ∈ T, we can also define
t∗u in the standard way. We introduce the following notation

L2
(0,q)(X)kν :=

{
u ∈ L2

(0,q)(X); (eiθ )∗u = ei k〈ν, θ〉u, ∀θ ∈ R
r
}

,

and put

(Ker�q
b)kν := Ker�q

b ∩ L2
(0,q)(X)kν .

The equivariant Szegő projection is the orthogonal projection

S(q)
kν : L2

(0,q)(X) → (Ker�q
b)kν

with respect to ( · | · ). Let S(q)
kν (x, y) ∈ D′(X × X , T ∗0,q X � (T ∗0,q X)∗) be the distribution

kernel of S(q)
kν . The asymptotic expansion for the distributional kernel of the projector S(0)

kν
was studied in [12] when X is the quantizing circle bundle of a given Hodge manifold in
Heisenberg local coordinates. Using similar ideas as in [7] one can generalize the results for
(0, q)-forms in the following theorem, we give a sketch of the proof, which is similar to the
proof of [7, Theorem 1.8], here the groupG in [7] isTt−1

ν , and the circle action in [7] is given

by the action of T1
ν .

Since the action is locally free we need to recall some notations from [2]. Since the action
is locally free μ−1(0)/T1

ν is an orbifold, let us denote with π : μ−1(0) → μ−1(0)/T1
ν

the projection. Furthermore the action of T1
ν commutes with the one of Tt−1

ν ; then, we have

a smooth locally free action of Tt−1
ν on μ−1(0)/T1

ν . Given y ∈ X and g in the stabilizer

(Tt−1
ν )π(y), there exist |(T1

ν)
1
y | elements ei θg, j ∈ T1

ν ( j = 1, . . . , |(T1
ν)

1
y |) such that

g ◦ y = e−i θg, j ◦ y.

Thus, all the elements (ei θ , g) ∈ T1
ν × T

t−1
ν = T satisfying

ei θ · g ◦ y = y.

are of the form (eiθg, j , g) for each g ∈ (Tt−1
ν )π(y).

Theorem 2.2 Suppose that �q
b has L2 closed range. Then, there exist continuous operators

S−
kν, S

+
kν : L2

(0,q)(X) → (Ker�q
b)kν such that

S(q)
kν = S−

kν + S+
kν, S+ ≡ 0 if q �= n+

Suppose for simplicity that q �= n+. If q �= n−, then S(q)
kν ≡ O(k−∞) on X.

Suppose q = n− and let D be an open set in X such that the intersection μ−1(i R+ · ν) ∩
D = ∅. Then S(q)

kν ≡ O(k−∞) on D.
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Let p ∈ μ−1(i R+ · ν) and let U a local neighborhood of p with local coordinates
(x1, . . . x2n+1). Then, if q = n−, for every fix y ∈ U,we consider S(q)

kν (x, y) as a k-dependent
smooth function in x, then

S(q)
kν (x, y) =

∑

h∈Gπ(y)

|S1x |∑

j=1

eik θh, j eik‖ν‖�(x, y) b(x, y, k‖ν‖) + O(k−∞).

for every x ∈ Uy, where Uy is a small open neighborhood of y. The phase function �(x, y)
is defined in local coordinates in the end of Sect.2.1; the symbol satisfies

b(x, y, k‖ν‖) ∈ Sn+(1−t)/2
loc (1, U ×U , T ∗ (0,q)X � (T ∗ (0,q))∗)

and the leading term of b(x, x, ‖ν‖) is nonzero.

Proof Suppose q = n−, on small local neighborhood D of a point p ∈ Xν we have

S(q)
kν (x, y) = 1

(2π)t

∫ π

−π

. . .

∫ π

−π

eik 〈ν, θ〉 S(q)(x, ei θ · y) dθ

where θ = (θ1, . . . , θt ). It is easy to prove that the oscillatory integral has a rapidly decreasing
asymptotic as k → +∞ far away from a local neighborhood of those elements (ei θ , g) ∈
T1

ν × T
t−1
ν = T such that

ei θ · g ◦ y = y.

We shall consider the case of a local neighborhood of the identity in T; we set θt the
variable for circle action of T1

ν and (θ1, . . . , θt−1) the variables for Tt−1
ν . We can then use

local coordinates defined in 2.1; we have

S(q)
kν (x, y) = 1

2π

∫ π

−π

eik ‖ν‖θt−i kx2n+1+i ky2n+1 S(q)

Tt−1(x̊, e
i θt · ẙ) dθt (8)

where

S(q)

Tt−1(x, y) = 1

(2π)t−1

∫ π

−π

. . .

∫ π

−π

S(q)(x, ei diag(θ1,...,θt−1) · y) dθ1 . . . dθt−1, (9)

and x̊ = (x1, . . . , xn, 0) and ẙ = (y1, . . . , yn, 0). The action of T restricts to an action of
T
t−1 whose moment map is given by

μ|Tt−1 = pν ◦ μ, where pν : t∗ → t∗ν

is the canonical projection onto the t − 1-dimensional subspace ν⊥ in t∗. Since we are
assuming Xν �= ∅, we have that 0 ∈ t∗t−1 does lie in the image of the moment map μ|Tt−1 .
The proof follows in a similar way as in Theorem 1.8 in [7] where here we have the action
of G = T

t−1 with moment map μTt−1 and the kν Fourier components are the ones induced
by the transversal T1

ν-action; notice that [7, Assumption 1.7] is satisfied. We shall also refer
to [2, Theorem 5.4] for the locally free action case. ��

For ease of notation we introduce a definition to say that an operator behaves microlocally
as equivariant Szegő projector we just studied. For simplicity we assume q = n−.
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Definition 2.2 (Equivariant Szegő-type operator) Suppose that q = n− and consider H :
�0,q(X) → �0,q(X) be a continuous operator with distribution kernel

H(x, y) ∈ D′(X × X , T ∗0,q X � (T ∗0,q X)∗).

We say that H is a complex Fourier integral operator of equivariant Szegő type of order
n+ (1− t)/2 ∈ Z if H is smoothing away μ−1(i R+ · ν) and for given p ∈ μ−1(i R+ · ν) let
D a local neighborhood of p with local coordinates (x1, . . . x2n+1). Then, the distributional
kernel of H satisfies

Hk(x, y) = eik �(x, y) a(x, y, k) + O(k−∞) on D

where a ∈ Sn+(1−t)/2
1,0 (D×D×R+, T ∗0,q X�(T ∗0,q X)∗), and� is as in the end of Sect. 2.1.

For k = 0, H (q)(X)0 is the space of T-fixed vectors, by Theorem 1.5 in [7] we have
dim H (q)

0 (X) < +∞ since when 0 /∈ μ(X) the projector S(q)

T
is smoothing. Now, given

k1, k2 ∈ Z with k1, k2 �= 0, consider f1 ∈ H (q)(X)k1ν and f2 ∈ H (q)(X)k2ν , we have
f1 · f2 ∈ H (q)(X)(k1+k2)ν ; we can study dim H(X)kν for k large; we have

dim H (q)(X)kν =
∫

X
S(q)
kν (x, x) dVX (x).

These dimensions can be studied as k → +∞ by using the microlocal properties of the
Szegő kernel and Stationary Phase Lemma in a similar way as in Corollary 1.3 in [12] we
have dim H (q)(X)kν = O(kd+1−t ). So, we have the following generalization of Theorem
A.3 in [4], where it is proved for spaces of functions H(X)kν .

Lemma 2.2 If 0 /∈ μ(X), then Hq(X)kν are finite dimensional.

3 Proof of Theorem 1.1

In this section we shall explain how to prove asymptotic commutativity for quantization and
reduction for spaces of (0, q)-forms. We recall that X red

ν is a CR orbifold whose Levi form is

non-degenerate, with n− − r negative eigenvalues; let us denote with S(q)
red the corresponding

Szegő kernel for (0, q)-forms whose k-th Fourier components are the one induced by the
T1

ν-action on X red
ν . We shall recall briefly its microlocal expression by [3, Theorem 1.2].

Now, let us denote by eiθ · the transversal and CR locally freeT1
ν-action and we take the Reeb

vector field R to be the vector field on X induced by it.
Let q = n− − r , and consider an open set U ⊂ X , p ∈ U , and an orbifold chart

(Ũ ,GU ) → U ; we denote by x̃ the coordinates on Ũ . For every � ∈ N, put

X� := {x ∈ X; eiθ x �= x, θ ∈ [0, 2π/�[, ei 2π/�x = x}.
With the assumptions and notations used above, assume that p ∈ X�, for some � ∈ N. We
have as k → +∞,

S(q)
red,k(x, y) =

�−1∑

j=0

∑

g∈GU

e
2πk j

� eik �(̃x,ei
2π j
� ·g·̃y)b(̃x, ei

2π j
� · g · ỹ, k) + O(k−∞) (10)
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where the phase function

� ∈ C∞(Ũ × Ũ ) , �(̃x, x̃) = 0, for all x̃ ∈ Ũ ,

inf
eiθ∈S1

{
dist2 (̃x, eiθ ỹ)

}
/C ≤ Im�(̃x, ỹ) ≤ C inf

eiθ ∈S1
{
dist2 (̃x, eiθ ỹ)

}

for each (̃x, ỹ) ∈ Ũ × Ũ , C > 1 is a constant, and the symbol satisfies

b(̃x, ỹ, k) ∼
+∞∑

j=0

b j (̃x, ỹ) k
n− j in Sn−(t−1)(1; Ũ × Ũ , T ∗0,q X � (T ∗0,q X)∗)

and b0 (̃x, x̃) is nonzero.
Let us recall briefly why we have a local chart (Ũ , GU ) → U , for ease of notation let us

put G = T
t−1
ν . We recall that, for every x ∈ Xν , by the slice theorem a neighborhood of any

orbit Tt−1
ν · x = x0 is equivariantly diffeomorphic to a neighborhood of the zero section of

the associated principal bundle

G ×Gx Nx ,

where Nx is the normal space to G · x in Xν and Gx is the stabilizer of x for the action of
G, which is finite. Therefore, for some ε > 0 and for an open ball B2e(ε) ⊆ Nx , one has a
homeomorphism B2e(ε)/Gx ∼= U onto some neighborhood of x0 in X red

ν .
Since ν⊥

X := val(ν⊥) is orthogonal to

Hx Xν ∩ Jx Hx Xν and Hx Xν ∩ Jx Hx Xν ⊂ (ν⊥
X )⊥b

for every x ∈ Xν , we can find a T-invariant orthonormal basis {Z1, . . . , Zn} of T ∗ 0,1X on
Xν such that for each j, k = 1, . . . n,

Lx (Z j (x), Z j (x)) = δ jk λ j (x),

where

Z j (x) ∈ (ν⊥
X ,x + i Jν⊥

X ,x ) for each j = 1, . . . , t − 1,

Z j (x) ∈ Hx Xν ∩ Jx (Hx Xν) for each j = r , . . . , n.

Let {Z∗
1 , . . . , Z∗

n} denote the orthonormal basis of T ∗ 0,1X on Xν , dual to Z1, . . . , Zn . Fix
s = 0, 1, 2, . . . , n − r + 1. For x ∈ Xν , put

B∗ 0,s
x X =

⎧
⎨

⎩
∑

r≤ j1<···< js≤n

a j1,..., js Z
∗
j1 , . . . , Z∗

js ; a j1,..., js ∈ C,

⎫
⎬

⎭

and let B∗ 0,s X be the vector bundle of Xν with fiber B
∗ 0,s
x , x ∈ Xν . Let C∞(Xν, B∗ 0,s X)T

denote the set of all T-invariant sections of Xν with values in B∗ 0,s
x X ; let

ιred : C∞(Xν, B
∗ 0,s X)T → �0,s(X red

ν )

be the natural identification. Before defining the map between Hq(X)kν and Hq−r (X red
ν )k

we need one more piece of notation. We can assume that λ1 < 0, · · · , λr < 0 and also
λt < 0, . . . , λn−−r+t−1 < 0. For x ∈ Xν , set

N̂ (x, n−) = {c Z∗
t ∧ · · · ∧ Z∗

n−−r+t−1, c ∈ C}
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and let p̂ : N (x, n−) → N̂ (x, n−) to be

p̂(c Z∗
1 ∧ · · · ∧ Z∗

r ∧ Z∗
t ∧ · · · ∧ Z∗

n−−r+t−1) := c Z∗
t ∧ · · · ∧ Z∗

n−−r+t−1

where c is a complex number. Put ιν : Xν → X be the natural inclusion and let ι∗ν :
�0,q(X) → �0,q(Xν) be the pull-back of ιν .

Let q = n−; now, inspired by [7], we define the map

σkν : Hq(X)kν → Hq−r (X red
ν )k

given by

σkν(u) := (kν)(t−1)/4 S(q−r)
red,k ◦ ιred ◦ p̂ ◦ τx,n− ◦ e ◦ ι∗ν ◦ S(q)

kν (u), (11)

here, e(x) is a T-invariant smooth function on Xν that can be found explicitly. Notice that
operators S(q−r)

red,k and S(q)
kν appearing in (11) are known explicitly. S(q−r)

red,k is the k-th Fourier

component of the standard Szegő kernel for the CR manifold X red
ν ; on the other hand, S(q)

kν
is described in Sect. 2.2.

Before stating the next theorem we shall specialize the local coordinates defined in
Sect. 2.1. Let us consider p ∈ Xν and let x = (x1, . . . , x2n+1) be the local coordinates in an
open neighborhoodU of p defined in Sect. 2.1.Wemay assume thatU = U1×U2×U3×U4,
whereU1 ⊂ R

t−1, U2 ⊂ R
t−1 are open sets of 0 ∈ R

t−1,U3 ⊂ R
2n−2(t−1) is an open set of

0 ∈ R
2n−2(t−1) and U4 is an open set of 0 ∈ R. From now on, we can identify U2 with

{(0, . . . , 0, xt , . . . , x2(t−1), 0, . . . , 0) ∈ U : (xt , . . . , x2(t−1)) ∈ U2}
and U3 with

{(0, . . . , 0, x2t−1, . . . , x2n, 0) ∈ U : (xt , . . . , x2n) ∈ U3}.
For a given orbifold chart (Ũ , GU ) → U we write Ũi for the corresponding open sets in Ũ .
Eventually we recall that x̃ ′′ := (x2t−1, . . . , x2n+1).

Theorem 3.1 Under the assumptions above, if x /∈ Xν , then for every sufficiently small open
set D of x with D ∩ Xν = ∅, we have σkν = O(k−∞) on X red

ν × D.

Let π : Xν → X red
ν the projection. If x, y ∈ Xν and π(x) �= π(eiθ · y) for every eiθ ∈ T1

ν ,
then there exist open set U of π(x) in X red

ν and V of y in X such that σkν = O(k−∞) on
U × V .

Eventually, let p ∈ Xν ∩ X�, using the local coordinates defined above, we have

σkν(x̃
′′, y′′) =

�−1∑

j=0

∑

g∈GU

e
2πk j

� eik �(̃x, e
2π j
� ·g·̃y) α(̃x, e

2π j
� · g · ỹ, k) + O(k−∞) on (Ũ3 × Ũ4) × Ũ

where

α(x̃ ′′, y′′, k) ∈ S
n− 3

4 (t−1)
loc (1; (Ũ3 × Ũ4) × Ũ , T ∗,(0,q−r)X red

ν � (T ∗,(0,q)X)∗)

and the leading term α0 in the expansion of α can be computed explicitly along the diagonal.

Proof Since, by Theorem 2.2, S(q)
kν has rapidly decreasing asymptotics as k goes to infinity

away Xν , we obtain that σk = O(k−∞) on X red
ν × D.

Now, let us prove the second statement. If x, y ∈ Xν and π(x) �= π(eiθ · y) for every
eiθ ∈ T1

ν , since S
(q−r)
red,k is smoothing away from diagonal, then there exist open setU of π(x)

in X red
ν and V of y in X such that χ S(q−r)

red,k η = O(k−∞) on X red
ν , where χ ∈ C∞

0 (U ) and
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η ∈ C∞
0 (V ). Furthermore by (8), we see that, for sufficiently small neighborhoods of x and

y, we can integrate by parts in dθt and see that S(q)
kν has rapidly decreasing asymptotic. The

second statements follow.
Eventually, let p ∈ Xν and consider a small open neighborhood U with coordinates

defined as above. Let χ ∈ C∞
0 (Ũ3) be a GU invariant bump function and assume χ = 1

on some neighborhood of p, it extends naturally to a function on T · Ũ3. Let us put U � =
{π(x) : x ∈ U }. Let η ∈ C∞

0 (X red
ν ) such that η = 1 on some neighborhood of U � and

supp(η) ⊂ {π(x) ∈ X red
ν : x ∈ Xν, χ(x) = 1}.

Thus, we get

η σkν ∼ (kν)(t−1)/4 η S(q−r)
red,k ◦ ιred ◦ p̂ ◦ τx,n− ◦ e ◦ ι∗ν ◦ χ S(q)

kν .

Now, we can compose the operators and we can use the complex stationary phase formula
of [11]; we get the theorem. ��

In fact, σkν is an isomorphism for k large if we can prove that

σkν : Hq(X)kν → Hq−r (X red
ν )k and σ ∗

kν : Hq−r (X red
ν )k → Hq(X)kν

are injective for k large. Notice that, by Theorem 3.1, we have

σ ∗
kν(x

′′, ỹ′′) =
�−1∑

j=0

∑

g∈GU

e
2πk j

� e−ik �(x ′′,e
2π j
� ·g·ỹ′′) β(x ′′, e

2π j
� · g · ỹ′′, k) + O(k−∞) (12)

on Ũ × (Ũ3 × Ũ4) where we can check β0(x̃ ′′, x̃ ′′) = α0(x̃ ′′, x̃ ′′).
The injectivity of the map σkν is a consequence of the following theorem which is an

adaptation of proof of the main theorem in [7].

Theorem 3.2 There exists a Fourier integral operator Rk of equivariant Szegő type of degree
n − (t − 1)/2 such that

σ ∗
kνσkν ≡ c0 (1 + Rk) S

(q)
kν (13)

where c0 is a positive constant and 1 + Rk : �0,q(X) → �0,q(X) is an injective Fourier
integral operator of equivariant Szegő type.

Proof By Theorem 3.1 and equation (12) we can compose σ ∗
kν and σkν using the complex

stationary phase formula of [11]. We can pick e in the definition of σkν so that the leading
term of the symbol of σ ∗

kνσkν agrees with the one of S(q)
kν along the diagonal. Thus we can

find an operator

Rk(x, y) =
�−1∑

j=0

∑

g∈GU

e
2πk j

� eik �(x ′′,e
2π j
� ·g·y′′) r(x ′′, e

2π j
� · g · y′′, k) + O(k−∞) on Ũ × Ũ

such that

r ∈ Sn−(t−1)/2(1; Ũ × Ũ , T ∗(0,q)X � (T ∗(0,q)X)∗)

and

|r0(x, y)| ≤ C |(x, y) − (x0, x0)|
for all x0 ∈ Xν ∩ Ũ , where C > 0 is a constant.
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The injectivity of the operator 1 + Rk follows from direct computations of the leading
symbol of Rk which vanishes at diag(Xν × Xν). In fact, as a consequence of this, by Lemma
6.7 and Lemma 6.8 in [7] we have that ‖Rku‖≤ εk‖u‖ for all u ∈ �0,q(X), for all k ∈ N

where εk is a sequence with limk→+∞ εk = 0; this in turn implies, if k is large enough, that
the map 1 + Rk is injective. ��

Analogously, the injectivity of the map σ ∗
kν follows by studying σkνσ

∗
kν . We do not repeat

the proof here since it is an application of the stationary phase formula for Fourier integral
operators of complex type, see [11], and it follows in a similar way as above.
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