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Abstract

We define conic reductions X ffd for torus actions on the boundary X of a strictly pseudo-
convex domain and for a given weight v labeling a unitary irreducible representation. There
is a natural residual circle action on X', We have two natural decompositions of the corre-
sponding Hardy spaces H(X) and H (X f,ed). The first one is given by the ladder of isotypes
H(X)yv, k € Z; the second one is given by the k-th Fourier components H (X ff’d)k induced
by the residual circle action. The aim of this paper is to prove that they are isomorphic for k
sufficiently large. The result is given for spaces of (0, ¢)-forms with L2-coefficient when X
is a CR manifold with non-degenerate Levi form.
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1 Introduction

Let X be the boundary of a strictly pseudo-convex domain D in C"*!. Then (X, T1-°X) is
a contact manifold of dimension 212 + 1, n > 1, where T1-0X is the sub-bundle of TX ® C
defining the CR structure. We denote by wy € C*°(X, T*X) the contact 1-form whose
kernel is the horizontal bundle HX C T X; we refer to Sect. 2.1 for definitions. Associated
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with these data we can define the Hardy space H (X), it is the space of boundary values
of holomorphic functions in D which lie in L*(X), the Hilbert space of square integrable
functions on X. Suppose a contact and CR action of a t-dimensional torus T is given; we
denote by u : X — t* the associated CR moment map. Fix a weight i v in the lattice
i Z' C t*,if 0 € t* does not lie in the image of the moment map, the isotypes

HX)w={feHX): " - Hx) =" f(x), 0 eR), keZ,

are finite dimensional.

Suppose that the ray i Ry - v € t* is transversal to u, then X, = p~'(i R4 - v) is
a sub-manifold of X of codimension ¢t — 1. There is a well-defined locally free action of
T! ! := expp(i ker v) on X,; the resulting orbifold X' is called conic reduction of X with
respect to the weight v. Let ¢ be an Euclidean product on t, we shall also use the symbol (-, -)
and denote by A? € t be uniquely determined by A = ¢(A?, -) and ||A|| the corresponding
norm. By abuse of notation we write A for A? and we identify t = iR’ with its dual. We set

kerv:vJ‘::{ket: (v, A) =0}.

The locus X, is T-invariant; we will always assume that the action of T on X, is locally
free. After replacing T with its quotient by a finite subgroup, we may and will assume without
loss of generality that the action is generically free. In Sect.2.1, we show that Xffd is CR
manifold with positive definite Levi form of dimension 2n — 2¢ + 3.

Let us define T} := expy(i v), if v is coprime, we have a Lie group isomorphism

Ky ST Tl e? s
between T := expr(i v) and the circle S'. Let us denote by
T! =T/ = T!/(T) n T,

then the character x, : T — S', x,(e'%) := €% ("9 being trivial on T’ !, descends to
a character Xl/) : ']T}) — S! which is a Lie group isomorphism, see [14, Lemma 10]. Thus,
we have a locally free circle action of 'IT}, on X' which induces an action on the Hardy
space H (X ]r)ed). Suppose that the action of ’]ITL on X is transversal to the CR structure. We
denote by H (X ]rfd) « the corresponding k-th Fourier component, and we call the action of 'ﬂ
on X f,ed residual circle action. The aim of this paper is to prove that H (X);, and H (X‘rf’d)k
are isomorphic for k sufficiently large.

We prove the aforementioned result in the more general setting of CR manifolds for spaces
of (0, g)-forms when k is large; more precisely we consider (0, ¢g) forms with L? coefficients
and the corresponding projector S onto the kernel of the Kohn Laplacian H9(X). Now,
we make more precise the assumptions on the CR manifold X and on the group action.

Assumption 1.1 Let (X, T'9X)bea compact connected orientable CR manifold of dimen-
sion 2n + 1, n > 1, and let w be the associated contact 1-form. The Levi form L is
non-degenerate of constant signature (n_, n4) on X. That is, the Levi form has exactly
n_ negative and n positive eigenvalues at each point of X, where n_ + n4 = n.

Concerning the group action, we always assume

Assumption 1.2 The action of T preserves the contact form wg and the complex structure
J. Thatis, g*wg = wp on X and g,J = J g, on the horizontal bundle H X for every g € T
where g* and g, denote the pull-back map and push-forward map of T, respectively.
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Let X' := X, /T'~!, defined in the same way as before, more precisely we shall assume

Assumption 1.3 The moment map p is transverse to the ray i R4 - v € t*, the action of T on
X, is locally free and for every x € X,

val, (1) Nval, (v = {0}
where b is a bilinear form on H, X such that
b(-, -) =dwo(-, J-) (1)
and it is non-degenerate.

We note that b(U, V) = 2L(U, V) for every U, V € HX. By assumptions above,
we will show that X" is a CR manifold with natural CR structure induced by 71X of
dimension 2n — 2(t — 1) + 1. Let L yrea be the Levi form on X red jnduced naturally from the
Levi form L on X. For a given subsﬁace s of t, we denote sy the subspace of infinitesimal
vector fields on X. Let us consider

B =kervy @ J ker vy.

Hence, b has constant signature on B x B, suppose b has r negative eigenvalues on B x B
where r < n_ since L and b have the same number of negative eigenvalues on H X. Fix
g = n—; hence, by Lemma 2.1, L xra has g — r negative eigenvalues at each point of X red,
We refer to Sect. 2.1 for definitions; we have:

Theorem 1.1 Suppose that EIZ has L? closed range. Fix a maximal coprime weight v # 0

in the lattice inside t* and assume that the circle action T}, is a transversal CR action. Fix
q = n_, under the assumptions above, X ;ed is a compact CR manifold with non-degenerate
Levi form having q —r-negative eigenvalues. There is a natural isomorphism of vector spaces
or : H1(X)py — H‘f_’(X]rfd)k for k sufficiently large.

For strictly pseudoconvex domain, we have ¢ = n_ = r = 0 and thus we have quantiza-
tion commutes with reduction for spaces of functions for k large. We give a proof in Sect. 3,
which is inspired from [7] (see [8] for the full extension of [7]), and it is a consequence of
the microlocal properties of the projector S,E“’)) described in Sect. 2.2 and calculus of Fourier
integral operators of complex type, see [11]. Furthermore, we recall that the way to establish
the isometry from kernel expansion for k large comes from [10].

The conic reductions defined above appear naturally in geometric quantization. In fact,
given a Hamiltonian and holomorphic action with moment map & of a compact Lie group
G on a Hodge manifold (M, w) with quantizing circle bundle 7 : X — M, one can always
define an infinitesimal action of the Lie algebra g on X. If it can be integrated to an action of
the whole group G, then one has a representation of G on H (X). In [5] it was observed that
associated to group actions one can define reductions Mgd by pulling back a G-invariant and
proper sub-manifold © of g* via the moment map ®. When © is chosen to be a cone through
a co-adjoint orbit C (O,), one has associated reduction whose Hardy space of its quantization
is

C(Oy)y _ C(Oy)
H(Xg ) = @D HX g™ i
keZ

where k labels an irreducible representation of the residual circle action described above.
Now, it is natural to ask if this spaces are related to the decomposition induced by G on
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H(X). When G = T Theorem 1.1 states that they are isomorphic to H (X),; the canonical
decomposition of the Hardy space H(X) of the quantitation by the built-in circle action
does not play any role. The semi-classical parameter £ is the one induced by the ladder k v,
k=0,1,2,...,labeling unitary irreducible representations.

Further geometrical motivations for this theorem are explained in paper [14], where it is
proved that & is an isomorphism for k large enough in the setting when X is the circle bundle
of a polarized Hodge manifold whose Grauert tube is D. Thus, Theorem 1.1 generalizes the
main theorem in [14] to compact “quantizable” pseudo-Kéhler manifolds. We also refer to
[12] for examples and the explicit expression of the leading term of the asymptotic expansion
of dim H(X)g, as k goes to infinity. Along this line of research in [13] Toeplitz operators
were studied for circle action; in [1] the study of asymptotics of compositions of Toeplitz
operators with quantomopomorphism is addressed for torus actions.

2 Preliminaries

2.1 Geometric setting

We recall some notations concerning CR and contact geometry. Let (X, T1-9X) be a compact,
connected and orientable CR manifold of dimension 21 + 1, n > 1, where 710X is a CR
structure of X . There is a unique sub-bundle H X of TX suchthat HX®C = T10X@T%1 X,
Let J : HX — HX be the complex structure map given by J(u + u) = iu — iu, for every
u € T"9X. By complex linear extension of J to TX ® C, the i-eigenspace of J is T1-0X.
We shall also write (X, HX, J) to denote a CR manifold.

Since X is orientable, there always exists a real non-vanishing 1-form wy € C*° (X, T*X)
so that (wo(x), u) =0, for every u € H, X, for every x € X; wy is called contact form and
it naturally defines a volume form on X. For each x € X, we define a quadratic form on H X
by

1
L,(U, V)=Edwo(JU, V), YU,V € H: X.
Then, we extend L to HX ® C by complex linear extension; for U, V € TXI'OX,
— 1 — 1 _
L.(U,V)= Eda)g(]U, V)= % dwo(U, V).
i

The Hermitian quadratic form L, on Tx1 ‘X is called Levi form at x. In the case when X is
the circle bundle of an Hodge manifold (M, w), the positivity of w implies that the number of
negative eigenvalues of the Levi form is equal to n. The Reeb vector field R € C*°(X, T X)
is defined to be the non-vanishing vector field determined by

wo(R) =1, dwo(R,)=0 onTX.

Fix a smooth Hermitian metric ( - | - ) on CT X sothat 710X is orthogonal to T%! X, (u | v)
is real if u, v are real tangent vectors, ( R | R) = 1 and R is orthogonal to 710X @ 701X,
For u € CT X, we write |u|? := (u|u ). Denote by T*1-0X and T*%! X the dual bundles of
719X and T%! X, respectively. They can be identified with sub-bundles of the complexified
cotangent bundle CT*X.

Assume that X admits an action of 7-dimensional torus T. In this work, we assume that
the T-action preserves wq and J; that is, t*wg = wg on X and t,J = Jt, on HX. Let t
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denote the Lie algebra of T, we identify t with its dual t* by means of the scalar product
(-, -). For any &€ € t, we write £x to denote the vector field on X induced by &£. The moment
map associated to the form wy is the map p : X — t* such that, forall x € X and & € t, we
have

(1(x), &) = wo(§x (x)). (©))

Fix a maximal weight v # 0 in the lattice inside t*. Suppose that iR - v is transversal to
/L, SO we have

= iRy v ®dyu(T,X) 3)

and X, is a sub-manifold of X of codimension 2n + 2 — ¢. We claim that the action of T’ ~!
on X, is locally free. In fact, by the contrary suppose that there exists £ € ker v such that
Ex(x) =0on Ty X,, x € X,. For each v € T, X, we have

(dept(v))(§) = dewo(§x,v) =0

which contradicts (3).
The action of T restricts to an action of T'~! whose moment map is given by

W1 = py o, where p, 1 £ — ]

is the canonical projection onto the ¢ — 1-dimensional subspace v in t*. The transversality
condition in 1.2 implies that 0 € t/~! is a regular value for the moment pri-1- Thus, we
have

Xo/Ty ! = 1 (0)/T]

and by assumptions 1.2, 1.3 and [7, Section 2.5] (we shall also refer to [3] for definitions
concerning CR structures on orbifolds) we have

Lemma 2.1 The space of orbits XV/']T{,_1 is a CR orbifold. Let us denote by w : X,, — Xff’d
and 1 : X, — X the natural projection and inclusion, respectively, then there is a unique
induced contact form w(r)ed on X, /T!=1 such that

T *a)(r)ed = *wy.

In particular, set HX,, = T X,, N HX, we have
HX =HX,® Jivy and HX,=ivy ®dr*HX"™,
‘We will also assume that 'ﬂ-aotion is transversal CR, that is, the infinitesimal vector field
0]
(vxu)(x) = % (u(exp(it v) 0 x)) |;=0, foranyu € C*(X),
preserves the CR structure 719X, so that vy and T"9X @ TO!'X generate the complex
tangent bundle to X,
CTyX = Cox(x) ®CT°X @ CTH'X  (x € X).

We define local coordinates that will be useful later. Recall that X admits a CR and
transversal 'H‘L-action which is locally free on X,, T € C*°(X, T X) denotes the global real
vector field given by this infinitesimal circle action. We will take 7 to be our Reeb vector field
R.In a similar way as in Theorem 3.6 in [7], there exist local coordinates v = (vy, ..., V;—1)
of ’JI‘L_1 in a small neighborhood V) of the identity e with v(e) = (O, ..., 0),local coordinates
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X = (x1 ..., X2p41) defined in a neighborhood U x U; of p € X,,, where U; C R (resp.
U, € R?"+271) is an open set of 0 € R~ (resp. 0 € R¥*2~")and p = 0 € R *! and a
smooth function y = (y1, ..., y;—1) € C*(U,, U;) with y(0) = 0 such that

W1, 0 (Y (Xry ooy X2n41)s Xy v vy X204 1)
=1+ Y10, e Xon1)s s V1 + Vd(Xry ooy X2n41)5 Xpy oo s X2n41)
for each (vy, ..., v;,—1) € Vg and (x;, ..., x24,+1) € Us. Furthermore, we have

t = span {8Xj}j=1 /,L_l(i Ry -v)NU = {x24—t4+1 = -+ = x24 = 0},

on 1~ (i R, -v)NU there exist smooth functions aj’switha;(0) = Oforevery0 < j <r—1
and independent on x1, ..., X2¢—1), X2,+1 such that

J(0;) =0 yy; +aj(0)0nyy  J=1,...,0—1,
the Levi form L, the Hermitian metric (- | -) and the 1-form wq can be written
Ly(Zj, Z) = wj 8k, (Zi\Zy) =8k (1< jk<n),

and
t—1 n
w0 () =(1+ O(xD)dxans1 + Y 4pjx—14jdxj + Y 2ujxjdxa;g
j=] j=t
n 2n
=3 2pjxoadigj + Y bjxasrdxj + O(1xf?)

j=t Jj=r
where b;, ..., by, € R,

TPI’OX =span{Zy, ..., Z,}

and
1 . ;
iji(axj_lax,_1+j)(p) (j:177t_1)’
1 . .
iji(axzj,] _laxzj)(p) (]:l,...,l’l).

We need to define in local coordinates we just introduced the phase function of the T/~ !-
invariant Szeg6 kernel ®_(x, y) € C®(U x U) which is independent of (xi, ..., x;—1)
and (yi, ..., yr—1). Hence, we write ®_(x, y) = ®_((0,x”), (0, y")) := ®_(x", y”) and
= (x,..., %), Y == (s, ..., Yan). Moreover, there is a constant ¢ > 0 such that

Im®_(x",y") > c (1> + 31>+ ¥ — §"|?), forall ((0,x”),(0,y") € U x U.(4)

Furthermore,
t—1 t—1 n 5
. 2 . 2 .
(", ") = =Xawit + Yot A2 Y |y viag A2 iy |l |z —w;
j=1 j=l i=t
n d
+ Ziﬂj(fjwj —z;w;j) + Z(_bt—l+jxd+jx2n+l + b1+ Yi—1+jY2n+1)
j=t Jj=1
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n

n
1 . 1 . _ _
+ Z E(ijfl — ib2j)(—zjXom+1 + Wjyan+1) + Z E(ijfl +ib2j)(=ZjXon+1 + WjYyan+1)

j=t j=t
+ @anp1 — Yaur )L ) + O, P, )
where z; = x2j1 +ix2j, wj = yzj_i+iy2j,j =t,...,n,uj, j=1,...,n, f is smooth

and satisfies f(0,0) =0, f(x,y) = f(y, x).

We now consider T} circle actionon X. Let p € w (iR -v), there exist local coordinates
v=(vi,...,v—_1)of T"!in a small neighborhood Vj of e with v(e) = (0, ..., 0), local
coordinates x = (x| ..., xp,+1) defined in a neighborhood U; x U; of p, where U; C R
(resp. U;_1 € R?"*) is an open set of 0 € R'~! (resp. 0 € R¥"*)and p = 0 € R***!, and
a smooth function y = (y1, ..., 1) € C®(U,, Uy) with y(0) = O such that T = _axiﬂ
and all the properties for the local coordinates defined before hold. The phase function W
satisfies W(x, y) = —Xont1 + yong1 + W&, 37), where W(£”, §") € C°(U x U) and ¥
satisfies (5).

2.2 Hardy spaces

We denote by L%O.q)(X), q =0,1,...,n, the completion of Q09(X) with respectto (- |-).

We extend (-|-) to L%O!q)(X) in the standard way. We extend dp to L%O q)(X) by

dp : Dom 3, C L%O,q)(X) — L(zo’q_H)(X),

where Dom dp, := {u € L%O’q)(X); Apu € L%o,q+1)(X)} and, for any u € L%O’q)(X), Apu is

defined in the sense of distributions. We also write
8y, : Dom 3, C Ly 40 1)(X) = L 4 (X)

to denote the Hilbert space adjoint of 3, in the L2 space with respect to (- |-). There is a
well-defined orthogonal projection

S+ LG 4 (X) > Ker O] (6)

with respect to the L? inner product (-|-) and let

S@(x,y) e D'(X x X, T*"1X R (T*"1X)*)
denote the distribution kernel of $@. We will write HY (X) for ker 07, and for functions,
we simply write H (X) to mean H 0(X). The distributional kernel '@ (x, y) was studied in
[6], before recalling an explicit description describing the oscillatory integral defining the
distribution S (x, y) we need to fix some notation. To begin, let us review the concept of

the Hormander symbol space. Let D C X be a local coordinate patch with local coordinates
X =(X1,..., X2041)-

Definition 2.1 For every m € R, we denote with
SPo(D x D x Ry, T X R (T*4X)*) € C®(D x D x Ry, T**1X B (T**9X)*)
7

the space of all a such that, for all compact K € D x Dandall«, 8 € Ng"“, y € Ny, there
is a constant Cy g, > 0 such that

92900) a(x, y, )| < Capy(L+ 1t 77, forevery (x,y.1) € K xRy, 1> 1.
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For simplicity we denote with S*, the spaces defined in (7); furthermore, we write

S7%(D x D x Ry, T*1x R (T*%9X)*) .= ﬂ S'o(D x D x Ry, T*4X ® (T X)").

meR

Leta; € S;n'é, j=0,1,2,...withm; — —o0, as j — oo. Then there exists a € S;"g
unique modulo S~°°, such that

k—1
a—Y ajeSlt(DxD xR, T*X R (T*1X)¥)
Jj=0

fork=0,1,2,....If a and a; have the properties above, we write a ~ Z;’»OZO ajin ST?)'
It is known that the characteristic set of DZ is given by
L=%"Uzt 27 ={k 0x) e T*X; 1 <0},

and TV is defined similarly for A > 0. We recall the following theorem (see [6, Theorem
1.2]).

Theorem 2.1 Suppose that the Levi form is non-degenerate and DZ has L? closed range.
Then, there exist continuous operators S—, Sy : L%O q)(X) — Ker DZ such that

SO =8 +8,, S.=0 ifg#n,
and
WF' (S_) =diag(X~ x £7), WF (S;) =diag(Tt x =) ifg =n_ =ng,

where WF' (S_) ={(x,§,y,n) € T*X x T*X; (x,&,y,—n) € WF(S_)}, WF (S_) is the
wave front set of S—_ in the sense of Hormander.
Moreover, consider any small local coordinate patch D C X with local coordinates

X =(Xx1,...,X241), then S_(x, ), S+ (x, y) satisfy
oo
Se(x,y) = /0 ei*"*("’y)’sq:(x, y,t)dt on D,
with
o .
sz, 3. 1) ~ Y st )" in ST o(D x D x Ry, T X R (T X)"),
j=0

sy(x,y,1) = 0ifq # ny and s°(x,x) # 0 for all x € D. The phase functions ¢_, ¢
satisfy

P4, 9- €CP(D x D), Tmepx(x,y) >0, p—(x,x) =0, ¢_(x,y) #0 if x #y,
and

dep—(x. y)|,_, = —00(x), dyp-(x.y)|,_, = @0(x), =P1(x.y) = 9_(x, y).

Remark 2.1 Kohn [9] proved thatif g =n_ =ny or [n— —n4| > 1 then DZ has L? closed
range. For a description of the phase function in local coordinates see chapter 8 of part I in

[6].
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Now we focus on the decomposition induced by the group action on H?(X).Fixt € T and
let1* : AL(CT*X) — A7, (CT*X) be the pull-back map. Since T preserves J, we have

o TMX > T4 X, forall x € X. Thus, for u € @%4(X), we have r*u € Q04(X).
Put

Q04X = [u € QU9(X); () u = K"y, Vo € ]R’] .

Since the Hermitian metric (-|-) on CTX is T-invariant, the L? inner product (-|-) on
Q%4 (X) induced by (-|-) is T-invariant. Let u € L (X) and t € T, we can also define
t*u in the standard way. We introduce the following notatlon

Ly Xn 1= [ € LY (05 (@)u =5, vo e R'},
and put
(Ker O ) == Ker O0f N Ly ) Xk
The equivariant Szeg0 projection is the orthogonal projection
SO L% ) (X) — (Ker O

with respect to (- |-). Let S(q)(x, y) € D'(X x X, T**4 X X (T*%9X)*) be the distribution
kernel of S,E?)). The asymptotic expansion for the distributional kernel of the projector S,Eg)
was studied in [12] when X is the quantizing circle bundle of a given Hodge manifold in
Heisenberg local coordinates. Using similar ideas as in [7] one can generalize the results for
(0, g)-forms in the following theorem, we give a sketch of the proof, which is similar to the
proof of [7, Theorem 1.8], here the group G in [7] is ’]I'f,’1 , and the circle action in [7] is given
by the action of ']IT,

Since the action is locally free we need to recall some notations from [2]. Since the action
is locally free 1~ (0)/T! is an orbifold, let us denote with = : pu=1(0) — u~'(0)/T!
the projection. Furthermore the action of ’]I‘Tl) commutes with the one of ’]I‘f)_l; then, we have
a smooth locally free action of T/~! on u=1(0) /ﬂ. Given y € X and g in the stabilizer
(T (y). there exist |(T])! | elements ¢! % € T} (j = 1, ..., |(T})}|) such that

goy = e i 0si oy.

Thus, all the elements (¢?, g) € T! x T/~ = T satisfying
" goy=y.
are of the form (e'%.J g) foreach g € (T@_l)n(y).

Theorem 2.2 Suppose that DZ has L? closed range. Then, there exist continuous operators
S S,:; : L(z0 q)(X) — (Ker DZ);W such that

SO =5 4855 S, =0 ifg #ny
Suppose for simplicity that ¢ # ny. If ¢ # n_, then S,i‘{}) =0k ) onX.

Suppose g = n_ and let D be an open set in X such that the intersection 1~ (i Ry - v) N
D =0. Then S\ = 0(k=*) on D.
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Let p € w '(iR4 - v) and let U a local neighborhood of p with local coordinates
(X1, ... Xon41). Then, ifq = n_, foreveryfixy € U, we consider Sg}) (x,y) as a k-dependent
smooth function in x, then

ISH]

SO yy= 3 DRIk pixy ki) + OGK™).
/’lEGﬂ(),) j=l1

forevery x € Uy, where Uy is a small open neighborhood of y. The phase function W (x, y)
is defined in local coordinates in the end of Sect. 2.1; the symbol satisfies
b(x, y, ki) € SEET2 (1, U x U, THOOX ® (THOD)¥)

loc

and the leading term of b(x, x, ||v||) is nonzero.

Proof Suppose g = n_, on small local neighborhood D of a point p € X,, we have

1 T T '
S]E’II})(X, y) = o) / / etk(v,G) S(q)(x, elf - y)do
—n -

where 6 = (61, ..., 6y). Itis easy to prove that the oscillatory integral has a rapidly decreasing
asymptotic as k — +oo far away from a local neighborhood of those elements (¢! . ¢ €
T! x T'~! = T such that

e . goy=y.

We shall consider the case of a local neighborhood of the identity in T; we set 6; the

variable for circle action of ﬂ and (0y, ..., 0,_1) the variables for ’H‘{,’l. We can then use
local coordinates defined in 2.1; we have

[ i F ky . i e
S,g]})(x, y) = ﬁ/ e K I N0 —i kxon 1+ kyan i1 Sq(l“{zl(x7 P - §) d6; ®)
—7T

where

1 T T o
Syl (x, y)=—_1f / S (x, o MO0 y)doy 61, (9)
2m) - —7

and x = (x1,...,x,,0)and y = (y1,..., ¥, 0). The action of T restricts to an action of
T*~! whose moment map is given by

M-t = py o, where p,: t* — £

is the canonical projection onto the ¢ — 1-dimensional subspace vl in t*. Since we are
assuming X, # ¢, we have that 0 € t/_; does lie in the image of the moment map Hye-1-
The proof follows in a similar way as in Theorem 1.8 in [7] where here we have the action
of G = T'~! with moment map pu.—1 and the kv Fourier components are the ones induced
by the transversal ’JI‘& -action; notice that [7, Assumption 1.7] is satisfied. We shall also refer
to [2, Theorem 5.4] for the locally free action case. O

For ease of notation we introduce a definition to say that an operator behaves microlocally
as equivariant Szeg6 projector we just studied. For simplicity we assume g = n_.
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Definition 2.2 (Equivariant Szeg6-type operator) Suppose that ¢ = n_ and consider H :
Q%4 (X) — ©%4(X) be a continuous operator with distribution kernel

H(x,y) € D'(X x X, T*"1 X R (T4 x)*).

We say that H is a complex Fourier integral operator of equivariant Szegd type of order
n+ (1 —1)/2 € Zif H is smoothing away 1! (i R, - v) and for given p € u~'(i Ry - v) let
D alocal neighborhood of p with local coordinates (x1, ... x2,+1). Then, the distributional
kernel of H satisfies

Hy(x,y) = e* Y@V a(x, y, k) + 0k™) onD

"+(l t)/2(D x DxRy, T*04 X K (T*%4 X)*), and W is as in the end of Sect. 2.1.

wherea € §)

For k = 0, H9(X)q is the space of T-fixed vectors, by Theorem 1.5 in [7] we have
dim Héq)(X) < +o0 since when 0 ¢ w(X) the projector Sq(l-q) is smoothing. Now, given
ki, ky € Z with ki, ky # 0, consider f; € HP(X)i,, and fo € HD(X)i,,, we have
fi-pe H(")(X)(kl+k2)v; we can study dim H (X)y, for k large; we have

dim H'P (X);, = / S (x, x)dVyx (x).
X

These dimensions can be studied as k — +oo by using the microlocal properties of the
Szeg6 kernel and Stationary Phase Lemma in a similar way as in Corollary 1.3 in [12] we
have dim H@ (X)z, = Ok4t!17"). So, we have the following generalization of Theorem
A.3 in [4], where it is proved for spaces of functions H (X)g,.

Lemma 2.2 [f0 ¢ n(X), then H1(X)y, are finite dimensional.

3 Proof of Theorem 1.1

In this section we shall explain how to prove asymptotic commutativity for quantization and
reduction for spaces of (0, g)-forms. We recall that X' is a CR orbifold whose Levi form is

non-degenerate, with n_ — r negative eigenvalues; let us denote with S @) 4 the corresponding
Szegé kernel for (0, g)-forms whose k-th Fourier components are the one induced by the
T!-action on XLed. We shall recall briefly its microlocal expression by [3, Theorem 1.2].
Now, let us denote by '?- the transversal and CR locally free T! -action and we take the Reeb
vector field R to be the vector field on X induced by it.

Let ¢ = n— —r, and consider an open set U C X, p € U, and an orbifold chart
(U, Gy) — U; we denote by X the coordinates on U. For every £ € N, put

Xe:i={xeX; efx #£x,0€(0,2m/¢,e ¥/ x =x).

With the assumptions and notations used above, assume that p € X, for some £ € N. We
have as k — 400,

S . y) = Z Y o ST Dy g k4 0w (10)
Jj=0geGy
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where the phase function
Ve C®UxU), VYEFI)=0 forall¥eU,
inf {distz(sz, et y)] /C<IMmUEF) <C inf {distz(f, et y)]
et’eS§

eiG ESI
for each (X, V) € U x 17, C > 1 is a constant, and the symbol satisfies

+00
bR 3. k)~ Y by E K in sCDA U x U, 79X R (T09X)%)
j=0

and by (X, X) is nonzero.

Let us recall briefly why we have a local chart (5 , Gy) — U, for ease of notation let us
putG = ’]I‘{,‘1 . We recall that, for every x € X, by the slice theorem a neighborhood of any
orbit T!~! . x = xg is equivariantly diffeomorphic to a neighborhood of the zero section of
the associated principal bundle

G ch Nx,

where N, is the normal space to G - x in X, and G, is the stabilizer of x for the action of
G, which is finite. Therefore, foL some € > 0 and for an open ball By.(€) € Ny, one has a
homeomorphism Bj.(€)/G, = U onto some neighborhood of xp in X ff‘d.

Since v)% = val(vl) is orthogonal to

H.X,NJ H X, and H,X,NJ H. X, C (vy)t®

for every x € X,, we can find a T-invariant orthonormal basis {Z1, ..., Z,} of T*9%1X on
X, such that foreach j, k=1,...n,

L(Zj(x), Zj(x)) = 853 1 (x),

where
j(x) € (vX’x +IJUX’X) foreach j =1, ..., t—1,
Zj(x) e H X, NJy(H:X,) foreach j =r, ..., n.
Let {Z], ..., Z}} denote the orthonormal basis of T7*9%1X on X, dual to Zy, ..., Z,. Fix

s=0,1,2,...,n—r+1.Forx € X, put

*0,8 v __ . L7k * L.
B X = E aj,..., JSZjl,...,ZjS,a]1

.....

r<ji<-<js=<n

and let B*%5 X be the vector bundle of X, with fiber BX**, x € X,. Let C®(X,, B*%s X)T
denote the set of all T-invariant sections of X, with values in Bj s x s let

Lred : COO(XU, B*O’YX)T N QO,S(X;ed)

be the natural identification. Before defining the map between H?(X)y, and HY~"(X fd)k
we need one more piece of notation. We can assume that A1 < 0,---, A, < 0 and also
A <0, Ay —r4t—1 <0.Forx € X, set

N, no) = {cZfn---NZy _ . _1,ceC)
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andlet p : N(x,n_) — N(x,n_) tobe

A * * * * —— * *
PCZIN - NZINZIN - NZE oy ) i=CZEA - NZE

where ¢ is a complex number. Put ¢, : X, — X be the natural inclusion and let ¢
Q%4 (x) - Q%4(X,) be the pull-back of .
Let ¢ = n_; now, inspired by [7], we define the map

o+ HY(X)w — HI (X
given by
o) = (k) VAU o g0 poten oeodto ST ), (11)

here, e(x) is a T-invariant smooth function on X, that can be found explicitly. Notice that
operators Sr(ng,: " and S appearing in (11) are known explicitly. Sr(gd_,I: ) is the k-th Fourier
component of the standard Szeg6 kernel for the CR manifold X ffd; on the other hand, S,E?))
is described in Sect.2.2.

Before stating the next theorem we shall specialize the local coordinates defined in
Sect.2.1. Let us consider p € X, and letx = (x1, ..., x2,+1) be the local coordinates in an
open neighborhood U of p defined in Sect.2.1. We may assume that U = Uj x Uy x Uz x Uy,
where Uy € R'™!, Uy ¢ R'~! are open sets of 0 € R, U3 ¢ R?*~2(=1D j5 an open set of
0 € R=20=D apnd Uy is an open set of 0 € R. From now on, we can identify U, with

{O, ..., 0, xt, ..., x20-1), 0, ..., 00 €U : (xs, ..., x2¢—1)) € U2}
and U3z with
{©, ..., 0, x2r—1, ..., X210, 0) €Ut (x4, ..., x20) € U3}

For a given orbifold chart (U, Gy) — U we write U; for the corresponding open sets in U.
Eventually we recall that X" := (x2/—1, ..., X2n+1)-

Theorem 3.1 Under the assumptions above, if x ¢ X,, then for every sufficiently small open
set D of x with D N X, = @, we have o}, = O (k™) on Xffd x D.

Letw : X, — X]rfd the projection. If x, y € X, and w(x) # m(€'? - y) for every ¢’ T},
then there exist open set U of w(x) in X' and V of y in X such that o, = O (k™) on
UxV.

Eventually, let p € X, N Xy, using the local coordinates defined above, we have

-1 . 2 j .
2k . ~ =L 2 ~ ~ ~
O @y =Y N T VT T D T, T g T k) + OU™®) on (Us x Us) x U
j=0geGy

where

_3—1
a()?”,y”,k) c S” 7@=1)

loc

(I; (U3 x Uy) x U, 7047 x4 ® (7409 x)*)

and the leading term « in the expansion of o can be computed explicitly along the diagonal.

Proof Since, by Theorem 2.2, S,E'f}) has rapidly decreasing asymptotics as k goes to infinity
away X, we obtain that oy = O (k~°°) on Xf,ed x D.
Now, let us prove the second statement. If x, y € X, and 7 (x) # m(e!? - y) for every

e!% e T}, since Sr(gdfg ) is smoothing away from diagonal, then there exist open set U of 7 (x)

in Xff’d and V of y in X such that x Sr(gd_,:)n = 0(k~°) on X‘rf’d, where x € Cg°(U) and
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n € C§°(V). Furthermore by (8), we see that, for sufficiently small neighborhoods of x and

y, we can integrate by parts in d; and see that S ,i’f)) has rapidly decreasing asymptotic. The
second statements follow.

Eventually, let p € X, and consider a small open neighborhood U with coordinates
defined as above. Let x € C(?°(03) be a Gy invariant bump function and assume y = 1

on some neighborhood of p, it extends naturally to a function on T - Us. Let us put U% =
{m(x): x e U}. Letn € Cg° (Xffd) such that 7 = 1 on some neighborhood of U* and

supp(n) C {w(x) € X : x € X, x(x) =1}.
Thus, we get
nOky ™~ (kv)(t l)/47)S(dk Olredopofxn onL:OXSIEZ).

Now, we can compose the operators and we can use the complex stationary phase formula
of [11]; we get the theorem. m]

In fact, oy, is an isomorphism for k large if we can prove that
v HI(X)g — HIT(X™ and o, 0 HTT (X — HI(X)ko

are injective for k large. Notice that, by Theorem 3.1, we have

_ 2mj
2mkj . ” -5 ~ -
O T =Y Y T T T g g k) 4 007 (12)
j=0geGy

"‘// "‘// =N "‘//)

on U x (U3 X U4) where we can check By (x ) = ap(X
The injectivity of the map oy, is a consequence of the followmg theorem which is an
adaptation of proof of the main theorem in [7].

Theorem 3.2 There exists a Fourier integral operator Ry of equivariant Szegd type of degree
n — (t — 1)/2 such that

oo = co (1 + R) S9 (13)

where cq is a positive constant and 1 + Ry : Qo’q(X) — Qo’q(X) is an injective Fourier
integral operator of equivariant Szegd type.

Proof By Theorem 3.1 and equation (12) we can compose o}, and oy, using the complex
stationary phase formula of [11]. We can pick e in the definition of oy, so that the leading
term of the symbol of o} oy, agrees with the one of S (q)

find an operator

along the diagonal. Thus we can

Ri(x, y) = Z Z T kv, esz'g‘y”) r(x”, 7 gy K+ 0Kk ™) onUxU
j=0geGy
such that
res" =V U x O, T*OVX ) (70D X)*)
and
lro(x, )| = Cl(x, y) — (x0, x0)]

forall xg € X, N U, where C > 0 is a constant.
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The injectivity of the operator 1 + Ry follows from direct computations of the leading
symbol of Ry which vanishes at diag(X, x X,). In fact, as a consequence of this, by Lemma
6.7 and Lemma 6.8 in [7] we have that || Ryu||< e||lu| for all u € Q¥9(X), forall k € N
where ¢ is a sequence with limy_,  », €, = 0O; this in turn implies, if & is large enough, that
the map 1 + Ry is injective. O

Analogously, the injectivity of the map o7, follows by studying oy, 07,. We do not repeat
the proof here since it is an application of the stationary phase formula for Fourier integral
operators of complex type, see [11], and it follows in a similar way as above.
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