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Starting from a Muthian cobweb model, we extend the profit-based
evolutionary setting in Hommes and Wagener (2010) by assuming
that, in addition to pessimistic, optimistic and unbiased fundamen-
talists, the market is populated by rational producers, which correctly
anticipate the next period price. Thanks to their introduction, we
find that, differently from the framework in Hommes and Wagener
(2010), the map governing the dynamics is no more monotonically de-
creasing. Hence, if on the one hand adding rational agents enlarges
the local stability region of the steady state, on the other hand their
consideration opens the door to complex dynamic outcomes, charac-
terized by chaotic attractors and rich multistability phenomena, that
we investigate along the paper.
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1 Introduction

In Brock and Hommes (1997) a Muthian cobweb type demand-supply model
was presented, where producers can choose between rational and naive ex-
pectations about prices, selecting the strategy on the basis of the recent
profits that the two forecasting rules allowed to realize1. In particular, an
information cost is associated with the use of the more sophisticated fore-
casting rule. Dealing with the same share updating mechanism adopted
in Brock and Hommes (1997) for the case without memory, Hommes and
Wagener (2010) consider a Muthian cobweb model framework in which pro-
ducers can choose among three different fundamentalistic forecasting rules:
unbiased fundamentalists predict that prices will always be at their funda-
mental value, optimists predict that the price of the good will always be
above the fundamental price, whereas pessimists always predict prices be-
low the fundamental price. In Hommes and Wagener (2010) all agents face a
common zero information cost and the authors focus on the case in which the
Muthian model is globally eductively stable in the sense of Guesnerie (2002),
that is, on the case in which the model is stable under naive expectations,
as the slopes of demand and supply satisfy the familiar “cobweb theorem”
by Ezekiel (1938). They show that the unique steady state, which coincides
with the fundamental, is always stable and may coexist with a locally stable
two-cycle, where the prices fluctuate around the rational expectations price,
and where most agents switch between optimistic and pessimistic strategies.
The final sentence in Hommes and Wagener (2010) reads as follows: “The

1Namely, Brock and Hommes (1997) started a new phase in the study of cobweb mod-
els, in which agents heterogeneous in the decisional mechanism and in regard to the linear
forecasting rules, such as fundamentalists, contrarians and Sample AutoCorrelation (SAC)
learning users, are considered (see e.g. Goeree and Hommes 2000, where the authors deal
with nonlinear, but monotonic, demand and supply curves in a heterogeneous expecta-
tions cobweb model with rational versus naive expectations, Branch and Evans 2006 for an
evolutionary cobweb model with two types of agents, both adopting ordinary least squares
learning of a misspecified model, and Branch and McGough 2008, where the setting with
rational and naive expectations introduced in Brock and Hommes 1997 is generalized w.r.t.
the replicator mechanism). Before the turning point by Brock and Hommes (1997), in the
works by Artstein (1983), Day and Hanson (1991), Jensen and Urban (1984), Lichten-
berg and Ujihara (1989) non-monotonic supply functions were introduced, while Chiarella
(1988) and Hommes (1991, 1994) analyzed the case of monotone nonlinear demand or
supply functions assuming adaptive expectations for agents, which are homogeneous in
relation to the learning process and the decisional mechanism. See Hommes (2018) for a
recent survey on cobweb dynamics.
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study of the stability of evolutionary systems with many trader types in
various market settings and with more complicated strategies remains an
important topic for future work.” In this perspective, the present contri-
bution further develops the approach in Hommes and Wagener (2010) by
considering a richer set of forecasting rules, and aims at characterizing the
resulting dynamic outcomes. In particular, we extend the model in Hommes
and Wagener (2010) by introducing rational producers with perfect foresight
expectations about prices, which face an information cost like in Brock and
Hommes (1997).2 In Hommes (2013), Paragraph 5.2, a Muthian cobweb
model with fundamentalists and naive expectations is considered, but, to the
best of our knowledge, in the literature the setting encompassing fundamen-
talists and rational agents has not been analyzed yet. And, as we shall see
below, such match produces unexpected outcomes. We stress that another
motivation for our work is given by the ongoing debate about the stabiliz-
ing role of rational agents and non-survival of irrational agents originated by
Friedman (1953).
In order to better compare our findings with those obtained in Hommes and
Wagener (2010), at first we need to complete the analysis performed therein,
by taking into account also the case in which the model is not globally educ-
tively stable in the sense of Guesnerie (2002). Indeed, we have to investigate
what happens when the eductive stability assumption for the Muthian model
is not fulfilled, because the model outcomes do not coincide when the model
is globally eductively stable and when it is not, both when rational agents
populate the economy and when they are not present.
The results that we obtain may be summarized as follows3.

2We recall that the framework in Hommes and Wagener (2010) has been extended to
encompass heterogeneous information costs also for fundamentalistic agents in Naimzada
and Pireddu (2020a), where just one couple of groups of symmetrically biased agents
was considered, and in Naimzada and Pireddu (2020b), where several coupled groups of
symmetrically biased fundamentalists, differing in the strength of their bias, were taken
into account. On the other hand, the present contribution aims at showing the dynamic
phenomena arising when introducing rational agents in the original setting in Hommes
and Wagener (2010). For such reason, we will confine ourselves to the simplest case, in
which only rational agents face an information cost and in which the economy is populated
by one couple of groups of symmetrically biased agents.

3We stress that, since we are mainly interested in the agents’ heterogeneity, rather
than describing our findings in terms of the effect produced by increasing the intensity of
choice parameter of the evolutive mechanism, like it was done in Hommes and Wagener
(2010), we will present our results in terms of the effect produced by increasing the bias.
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In the setting analyzed in Hommes and Wagener (2010), without rational
agents, when the eductive stability assumption for the Muthian model is not
fulfilled, the steady state may first lose and then recover stability through
(supercritical or subcritical) period-doubling bifurcations of the map govern-
ing the dynamics, being stable just for suitably small and for suitably large
values of the bias. This counterintuitive finding can be easily explained in
terms of profits of the various kinds of agents and by looking at the intensity
of the market mechanism, described by the ratio between the demand and
supply curve reactivities. We stress however that the economic interpreta-
tion of the dynamic scenarios that we shall detect in this work is based on a
combination of several factors, having each time a different weight. Namely,
in addition to the intensity of the market mechanism, also the reactivity of
the share updating rule, the strength of the bias and, in the case of multi-
stability phenomena, the initial condition for prices play a crucial role.
In particular, when the model is unstable under naive expectations, and both
the bias and the ratio between the slopes of demand and supply curves are
large enough, any initial condition for prices - lying close to or far from the
steady state - produces large price variations, which alternately favor opti-
mists or pessimists, leading to the emergence of the globally stable period-
two cycle. However, when the bias is excessively large, for prices close to the
steady state it becomes again more profitable being fundamentalists, because
the forecast error made by biased agents is too big. The consequent increase
in the share of unbiased fundamentalists makes prices converge towards the
steady state, that recovers its local stability. On the other hand, for high
values of the bias and price initial conditions that are distant from the funda-
mental, having biased expectations about prices allows to make large profits
far from the steady state and this accounts for the coexistence between the
steady state and the period-two cycle for high values of the bias. Since the
map governing the dynamics is monotonically decreasing, no higher-order
cycles or complex attractors may emerge.
On the contrary, with the introduction of rational agents the map governing
the dynamics admits critical points and a horizontal asymptote, and thus
we can observe the emergence of chaotic attractors and of rich multistability
phenomena, that we illustrate in the paper. Such surprising result, which

As we shall prove in Sections 2 and 3, the bias and the intensity of choice parameters have
the same effect on the system stability, and thus our choice does not affect the possible
dynamic outcomes of the system.
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can be rephrased by saying that rational agents may lead to complex dy-
namics, is partially mitigated by another finding, i.e., that the local stability
region of the steady state increases when the economy is also populated by
agents with perfect foresight expectations. The latter fact implies that, like
in the setting analyzed in Hommes and Wagener (2010), eductive stability
implies evolutionary stability. On the other hand, when the eductive stabil-
ity assumption for the Muthian model is not fulfilled, even in the presence of
rational agents we obtain that the unique steady state, which coincides with
the fundamental, is stable for suitably small and for suitably large values
of the bias. Like done for the setting without rational agents, the just de-
scribed findings may be interpreted from an economic viewpoint comparing
the profits of the various kinds of agents and by looking at the intensity of
the market mechanism.
In particular, the loss of stability of the steady state in favor of the period-
two cycle occurs when the bias, starting from lower values and increasing,
becomes compatible with the strength of the “separating” effect produced
by the price adjustment mechanism, which for a sufficiently high ratio be-
tween the slopes of the demand and supply curves reacts quite violently to
a production variation, determining prices that are distant from the steady
state. We stress that in this framework rational agents do not perform well
in terms of profits and shares because of the information cost they face, while
the profits of unbiased fundamentalists are not high because their price fore-
casts are not precise.
When the bias increases further, its value becomes excessive with respect
to the intensity of the just described “separating” effect produced by the
price adjustment mechanism. Since the reaction of the latter to production
variations is no more strong enough, the determined prices are not suffi-
ciently distant from the fundamental to be compatible with the bias and
the period-two cycle is not stable anymore. Namely, rational agents become
favored thanks to their perfect foresight, despite the information cost they
face. Then, a chaotic attractor may emerge, which can coexist with the fun-
damental steady state, whose basin of attraction is in this case unconnected
due to the presence of the horizontal asymptote, with its non-immediate
components lying outside the basin of attraction of the chaotic attractor.
Indeed, when the value of the initial condition is not distant from the bias,
orbits visit the chaotic attractor, while orbits converge toward the steady
state when the value of the initial condition is too close to the fundamental
or when it is excessively large, and optimists’ and pessimists’ profits are too
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low.
Finally, when the bias still increases, the chaotic attractor disappears since
the prices determined through the adjustment mechanism are much smaller
than the bias, and optimists and pessimists realize very low profits. In fact,
the fundamental steady state recovers its global stability due to the even
better than before performance of rational agents with respect to biased fun-
damentalists. Nonetheless, we prove that chaotic invariant sets still exist
when the bias is large, but those sets are no more attractive and thus the it-
erates of almost all the points lying in a neighborhood of them limit towards
the fundamental steady state.
We stress that the scenarios characterized by the presence of the chaotic at-
tractor and by the return to the global stability of the fundamental steady
state can not arise when rational agents are disregarded. Namely in both
those frameworks, without rational agents, we would observe a regular pat-
tern, characterized by the cyclical alternation between a prevailing optimism
or pessimism in the market, according to which group of biased fundamen-
talists performed better.
The remainder of the paper is organized as follows. In Section 2 we recall
the setting and the results in Hommes and Wagener (2010), and we inves-
tigate which dynamic phenomena arise when the model is unstable under
naive expectations. In Section 3 we present and analyze the model enriched
by the presence of rational agents, both when the Muthian model is glob-
ally eductively stable and when it is not, comparing the findings with those
in Section 2. In Section 4 we briefly discuss our results and describe some
possible extensions of the model.

2 The setting without rational agents

At first we recall the discrete-time evolutionary cobweb setting in Hommes
and Wagener (2010), in which the economy is populated by unbiased funda-
mentalists, named just fundamentalists, and by two types of biased funda-
mentalists, i.e., optimists and pessimists. In particular, biased fundamental-
ists are gathered in coupled groups of optimists and pessimists, that share the
same bias, but that respectively overestimate and underestimate the price of
the good they produce. For the clarity’s sake, we focus on the simplest case
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with two coupled groups4.
In the Muthian farmer model, agents have to choose the quantity q of a cer-
tain good to produce in the next period and are expected profit maximizers.
Assuming a quadratic cost function

γ(q) =
q2

2s
, (2.1)

with s > 0, the supply curve is given by

S(pe) = spe, (2.2)

where pe is the expected price and s describes its slope. The demand function
is supposed to be linearly decreasing in the market price, i.e.,

D(p) = A− dp, (2.3)

with A and d positive parameters, representing respectively the market size
and the slope of the demand function. We stress that the demand is positive
for sufficiently large values of A.
In the case of rational expectations, the price at which demand equals supply
is the so-called fundamental price p∗, i.e.,

p∗ =
A

d+ s
. (2.4)

This is also the expression of the unique model steady state in Hommes and
Wagener (2010).
Agents have heterogeneous expectations about the price of the good they
have to produce. In particular, fundamentalists predict that prices will al-
ways be at their fundamental value, while optimists (pessimists) predict that
the price of the good will always be above (below) the fundamental price.

4On the basis of a preliminary study and of the analysis performed in Naimzada and
Pireddu (2020b), where we dealt with several types of biased fundamentalists in the pres-
ence of information costs, without encompassing rational agents, we expect that adding
further couples of groups of biased agents would reproduce the results in Section 4 in
Hommes and Wagener (2010) about the coexistence of attractors. Probably, in the pres-
ence of rational agents, rather than a multiplicity of period-two cycles, we would witness
multistability phenomena involving more complex attractors. Nonetheless, the role of the
various parameters should not be affected by the number of considered coupled groups of
agents. We will deepen such investigation in a future work.
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Hence, assuming a symmetric disposition of the beliefs and characterizing the
fundamentalists, pessimists and optimists by subscripts 0, 1, 2, respectively,
in symbols we have that their expectations at time t are given by

pei,t = p∗ + bi, i ∈ {0, 1, 2}, with b0 = 0, b1 = −b, b2 = b, (2.5)

where b > 0 describes the bias degree of pessimists and optimists. In order
to avoid a negative expectation for pessimists, we will restrict our attention
to the bias values b ∈ (0, p∗), with p∗ as in (2.4).
Denoting by ωi,t the share of agents choosing the forecasting rule i ∈ {0, 1, 2}
at time t, the total supply is given by

∑2
i=0 ωi,tS(p

e
i,t) and thus the market

equilibrium condition at time t reads as

A− dpt =
2

∑

i=0

ωi,tS(p
e
i,t). (2.6)

The price which solves the equation obtained when specifying in (2.6) the
expectation formation rules for the various kinds of agents is called market
equilibrium price.
As concerns the share updating mechanism, Hommes and Wagener (2010)
deal with the discrete choice model in Brock and Hommes (1997) for the case
without memory, in which only the most recently realized net profits πj,t−1,
j ∈ {0, 1, 2}, are taken into account. In symbols

ωi,t =
exp(βπi,t−1)

∑2
j=0 exp(βπj,t−1)

, i ∈ {0, 1, 2}, (2.7)

where β > 0 is the intensity of choice parameter.
In particular, net profits πj,t, j ∈ {0, 1, 2}, are defined as

πj,t = ptS(p
e
j,t)− γ(S(pej,t)), (2.8)

with γ and S as in (2.1) and (2.2), respectively.
Introducing the variable xt = pt − p∗, Hommes and Wagener (2010) write
their model dynamic equation in deviation from the fundamental as

xt = −s
d

2
∑

i=0

ωi,t bi
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with

ωi,t =
exp

(

−βs

2
(xt−1 − bi)

2
)

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2

) ,

or, more explicitly, recalling (2.5), as

xt = sb
d
(ω1,t − ω2,t)

= sb
d

exp(−βs

2
(xt−1+b)2)−exp(−βs

2
(xt−1−b)2)

exp(−βs

2
(xt−1+b)2)+exp(−βs

2
(xt−1−b)2)+exp(−βs

2
x2

t−1)
.

(2.9)

Rewriting (2.9) as
xt = f(xt−1), (2.10)

where the one-dimensional map f : (−p∗,+∞) → R is defined as

f(x) =
sb

d

exp
(

−βs

2
(x+ b)2

)

− exp
(

−βs

2
(x− b)2

)

exp
(

−βs

2
(x+ b)2

)

+ exp
(

−βs

2
(x− b)2

)

+ exp
(

−βs

2
x2
) , (2.11)

we have that f is differentiable. Moreover, Hommes and Wagener (2010)
prove in their Theorem A that such map, for all values of s and d, is al-
ways decreasing and thus it admits a unique fixed point, which is the steady
state of (2.10). Since optimists and pessimists are symmetrically biased,
the steady state is given by x = 0, which corresponds to p = p∗ in (2.4).
Hence, at the steady state the market equilibrium price coincides with the
fundamental value. The monotonicity of f also prevents the emergence of
interesting dynamic phenomena and indeed at most period-two cycles can
occur. Nonetheless, in regard to the (local) stability of the steady state,
different frameworks may be observed. Namely, as shown in Hommes and
Wagener (2010), when s/d < 1, i.e., when the slopes of demand and supply
satisfy the familiar “cobweb theorem” by Ezekiel (1938), so that the Muthian
model is globally eductively stable in the sense of Guesnerie (2002), being
stable under naive expectations, the model is also evolutionary stable. More
precisely, the steady state may either be globally stable for all positive values
of β or b, or x = 0 can be just locally stable, due to its coexistence with a
period-two cycle. We stress that the condition s/d < 1 given in Theorem
A in Hommes and Wagener (2010) is just sufficient, but not necessary for
the unconditional stability5 of the steady state. For instance, x = 0 is (glob-
ally or locally) asymptotically stable for s ∈ (0, 1.06) when d = 1, for all

5We call a scenario unconditionally stable when the steady state is (globally or locally)
stable for every value of the considered parameter.
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positive values of β and b (cf. Figures 1 (A) and 2 for global stability of
x = 0 when s = 0.5, and Figures 1 (B) and 3 for local stability of x = 0
when s = 1.04). However, in agreement with the stability condition that we
shall derive (see (2.12) below), when fixing e.g. d = 1 and we let s increase,
the steady state may lose and then recover stability through (supercritical or
subcritical) period-doubling bifurcations6 of f, so that x = 0 is stable only
for sufficiently low and for sufficiently high values of the intensity of choice
parameter or of the bias. In this case, after recovering stability, the steady
state is just locally stable, because the period-two cycle that has emerged
through the supercritical flip bifurcation of f, persists when raising β or b
(see Figures 1 (C) and 4 for s = 1.6).
The initial global stability of the steady state, its loss and recovery of sta-
bility, as well as the persistence of the stable period-two cycle can be easily
explained in terms of profits of the various kinds of agents and by looking at
the ratio between the demand and supply curve reactivities. In particular,
the ratio s/d plays a crucial role in the loss of stability of x = 0.
Let us start from the interpretation of the global stability framework when
the values of β or b are small. If the value of β is low, agents are scarcely reac-
tive. Nonetheless, when the initial condition is close to the steady-state price,
the share of unbiased fundamentalists is reinforced due to their more accu-
rate forecast and prices are led toward the fundamental value (see Hommes
2013 for the stabilizing role of unbiased fundamentalists); when the initial
condition for prices is far from the steady state, population shares will not
differ too much, but optimists perform a bit better if x0 is e.g. positive. This
causes a moderate increase in the production, so that the excess demand is
negative and the price falls in a not too violent manner, making the realized
price closer to the steady state with respect to the original price. Then,
pessimists perform better in terms of profits. The production decreases, the
excess demand becomes positive and the price increases, so that the newly
realized price is still closer to the steady state with respect to the previous
period price. In this manner prices progressively approach the steady state
value in an oscillatory damped fashion, so that unbiased fundamentalists are
more and more favored, leading to the convergence toward the fundamental.

6We stress that it would be possible to verify both the occurrence and the nature of
all the bifurcations mentioned or illustrated along the manuscript by checking that the
corresponding conditions reported in Wiggins (2003) are satisfied, similarly to what done,
in a different context, e.g. in Proposition 3.1 in Naimzada and Pireddu (2019). For
brevity’s sake, we omit those proofs.
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The global stability of the steady state for low values of the bias can be ex-
plained in a similar manner. Indeed, if b is small and the initial condition is
close to the steady state, all kinds of agents perform well in terms of profits
and the chosen production levels keep prices close to the fundamental. This
reinforces the share of unbiased fundamentalists, who lead prices toward the
steady state. If the initial condition is far from the steady state, since the
bias is small, all agents make big forecasting errors, but if x0 is e.g. positive
optimists perform better. This causes a moderate increase in the produc-
tion, so that the excess demand is negative and the price falls, but in a not
too violent manner. Then, pessimists perform better in terms of profits and
such alternation makes prices progressively approach the steady state in an
oscillatory fashion.
Since the destabilizing role of the intensity of choice parameter has been of-
ten witnessed and commented on in the existing literature (see e.g. Brock
and Hommes 1997 and Hommes 2013), we now focus on the effect produced
by the bias on the system stability when, starting from lower values of b, we
increase it. If the model is unstable under naive expectations, we observe in
Figure 1 two different scenarios according to the value of s/d. If the latter
ratio is moderate, in (B) the steady state is always stable but raising the
value of the bias it starts coexisting with a locally stable period-two cycle,
along which agents switch between optimism and pessimism. When instead
the ratio s/d is larger, for increasing values of b we find in Figure 1 (C) that
x = 0 suddenly loses stability in favor of a globally stable period-two cycle.
This dissimilarity comes from the fact that, in the scenario considered in
Figure 1 (B), the ratio between the demand and supply curve reactivities
is not excessive, while it becomes more pronounced in the framework illus-
trated in Figure 1 (C). Namely, in the scenario depicted in Figure 1 (B) an
initial condition for prices close to the steady state produces a small price
variation due to the functioning of the price adjustment mechanism, which
allows for a balance between demand and supply. This favors unbiased fun-
damentalists, whose production choices lead prices toward the fundamental.
On the other hand, an initial condition for prices lying far from the steady
state produces larger price variations, which alternately favor optimists or
pessimists, leading to the emergence of the locally stable period-two cycle.
When moving to the scenario considered in Figure 1 (C), since the ratio s/d
is larger, even for an initial condition for prices close to the steady state, the
adjustment mechanism will determine a price far from the fundamental, so
that optimists or pessimists are favored. Hence, x = 0 is not locally stable
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anymore and the period-two cycle becomes globally stable.
We can then conclude that b and β start playing a role, leading to the emer-
gence of a (locally or globally) stable period-two cycle, just when s/d is large
enough. Namely, when the ratio between the slopes of demand and supply
curves is small, the price adjustment mechanism determines a price for the
next period which is not too far from the steady state, so that unbiased fun-
damentalists are favored, leading prices toward the fundamental. This does
not occur when s/d increases, as in such case the next period price will be
distant from the fundamental and one kind of biased agents (optimists or
pessimists) will have more accurate predictions, performing better from an
evolutive viewpoint, so that prices will not approach the steady state any-
more.
However, when the bias is excessively large, for prices close to the steady
state it becomes again more profitable being fundamentalists, because the
forecast error made by biased agents is too big. The consequent increase
in the share of unbiased fundamentalists makes prices converge towards the
steady state, that recovers its local stability. On the other hand, for high
values of the bias and price initial conditions that are distant from the funda-
mental, having biased expectations about prices allows to make large profits
far from the steady state and this accounts for the persistence of the stable
period-two cycle when raising b, so that in Figure 1 (C) we observe the co-
existence between the steady state and the period-two cycle for high values
of the bias. A similar argument allows to explain why we witness the same
phenomenon when β is large enough. Namely, if the intensity of choice level
is high, profits are taken into big account, so that close to the steady state
unbiased fundamentalists perform much better from an evolutive viewpoint,
leading prices toward the fundamental, while far from the steady state the
share of biased fundamentalists is high, and their production choices make
the period-two cycle persist.
Since the map f in (2.11) is decreasing, no further frameworks may arise.
We stress that the occurrence of one or the other of the possible outcomes
is also influenced by the values of β and b, which have a destabilizing effect
when they are too large. Thus, considering lower values of those parameters,
the system will be unconditionally stable even for larger values of s/d > 1.

After this preliminary discussion, we derive in the next result the stability
condition for x = 0 with respect to the intensity of choice parameter, which
is the bifurcation parameter considered in Hommes and Wagener (2010):
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Proposition 2.1 Equation (2.10) admits x = 0 as unique steady state. The
equilibrium x = 0 is locally asymptotically stable for map f in (2.11) if

β <
d
(

2 + exp
(

βb2s

2

))

2b2s2
. (2.12)

Hence, according to the considered parameter configuration, x = 0 is stable
for any β > 0 or there exist 0 < β′ ≤ β′′ such that x = 0 is stable for each
β ∈ (0, β′) ∪ (β′′,+∞).

Proof. It is immediate to check that x = 0 solves the fixed-point equation
f(x) = x, with f as in (2.11).
In order to show that x = 0 is the unique steady state it suffices to recall
that, according to Theorem A in Hommes and Wagener (2010), the map f
is decreasing.
The stability condition follows by imposing that f ′(0) ∈ (−1, 1). By direct
computations, we have

f ′(0) =
−2b2βs2 exp

(

−βb2s

2

)

d
(

2 exp
(

−βb2s

2

)

+ 1
) .

Since f ′(0) is always negative, the stability of x = 0 is guaranteed when
f ′(0) > −1, which is equivalent to (2.12). In particular, setting φ1(β) = β

and φ2(β) =
(

d
(

2 + exp
(

βb2s

2

)))

/ (2b2s2) , we notice that for β ≥ 0 both φ1

and φ2 are increasing, convex maps with φ1(0) < φ2(0). Since φ2 tends to +∞
faster than φ1 for β → +∞ due to the presence of the exponential function,
the graphs of φ1 and φ2 intersect never or twice according to the considered
parameter configuration. We can have just one intersection between the
graphs of φ1 and φ2 only when their are tangent at some point.
This concludes the proof. �

We stress that (2.12) implies that d has a stabilizing effect on x = 0, as d en-
larges the stability condition, while s plays an ambiguous role on the stability
of the steady state. Namely, considering φ2 in the proof of Proposition 2.1 as
a function of s, it holds that lims→0 φ2(s) = lims→+∞ φ2(s) = +∞ and thus,
for suitably low (high) positive values of s, such parameter has a destabilizing
(stabilizing) effect on x = 0. However, for the parameter configuration we
shall consider below, and whose dynamic outcomes are reported in Figures
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1–4, d does not vary and we witness just the destabilizing effect of s. Indeed,
s describes the slope of the supply function. When its value is moderate and
it increases, assuming that the initial price is e.g. high, optimists produce
even more, making the supply offer increase a lot. The price adjustment
mechanism, which allows for a balance between demand and supply, makes
then prices heavily fall, operating in a more violent manner. Hence, pes-
simists’ forecast is now more accurate and, obtaining higher profits, their
share increases. Pessimists produce less, making the supply offer decrease,
so that the price raises again, and this process gives rise to wide oscillations,
which do not converge towards the steady state, thus leading to a reduction
of the steady state local stability region.
The stabilizing effect of d can be explained in a similar way. Namely, as-
suming that the initial price is e.g. high, optimists produce a lot, making
the supply offer increase. However, if d raises, the demand function is more
reactive and this weakens the price oscillations needed to reach a balance
between demand and supply. In such manner, prices are less distant from
the fundamental value, so that unbiased fundamentalists’ forecast is precise
enough. This makes their share increase, so that orbits approach the steady
state, with a consequent enlargement in the steady state local stability re-
gion.
In regard to s and d, as explained above, a sufficiently high ratio between
the slopes of demand and supply allows for the loss of stability of the steady
state for increasing values of β or b.
We also remark that, rather than dealing with the intensity of choice pa-
rameter as done in Hommes and Wagener (2010), in what follows we will
consider the bias as bifurcation parameter, measuring the influence of agents’
heterogeneity through the parameter describing the degree of optimism and
pessimism. Such choice is motivated by our interest in studying the agents’
asymptotic heterogeneity and it has no consequences on the observed model
dynamic outcomes since, as we shall prove in Corollary 2.1, the bias has the
same effect on the system stability as the intensity of choice parameter.
In fact, rewriting the stability conditions in Proposition 2.1 in terms of the
bias, we obtain the next result:

Corollary 2.1 The equilibrium x = 0 is locally asymptotically stable for
(2.10) if

b2 <
d
(

2 + exp
(

βb2s

2

))

2βs2
. (2.13)
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Hence, depending on the considered parameter configuration, x = 0 is stable
for any b > 0 or there exist 0 < b′ ≤ b′′ such that x = 0 is stable for each
b ∈ (0, b′) ∪ (b′′,+∞).

Thus, according to Proposition 2.1 and Corollary 2.1, recalling also The-
orem A in Hommes and Wagener (2010), when the eductive stability as-
sumption for the Muthian model is not fulfilled, there are up to two possible
stability thresholds for x = 0 with respect to β and b, and x = 0 may be
locally stable just for sufficiently low and for sufficiently high values of the
intensity of choice parameter and of the bias. In particular, this means that,
while an intermediate beliefs’ heterogeneity may have a destabilizing effect on
the steady state, sufficiently strong biases can be stabilizing, as we justified
above looking at profits.

We now report in Figure 1 the three scenarios compatible with Corollary
2.1 for increasing values of the bias. In particular, we fix the other parameters
as follows: A = 18, β = 15, d = 1, considering s = 0.5 in (A), s = 1.04 in
(B) and s = 1.6 in (C). As initial conditions in (A) we have x0 = 1; in (B)
we have x0 = 0.01 for the green points, x0 = 0.3 for the magenta points and
x0 = 1 for the blue points; in (C) we have x0 = 0.01 for the green points and
x0 = 1 for the blue points.
Since in Figure 1 (A) it holds that s/d < 1, and thus the Muthian model is
globally eductively stable, the steady state is always stable. In particular, it
is here globally asymptotically stable, since there are no other attractors, as
we can observe by looking at Figure 2, where for s = 0.5 we report the graph
of the second iterate of f for b = 1 in (A), b = 2 in (B) and b = 3 in (C).
In Figure 1 (B), although s/d > 1 and thus the eductive stability assumption
for the Muthian model does not hold true anymore, the steady state is still
stable for all values of the bias. However, while x = 0 is globally stable for
b ∈ (0, 0.48), for b = 0.48 a stable period-two cycle emerges (represented in
Figure 1 (B) with a solid line), together with an unstable period-two cycle
(represented in orange, dashed line), through a double fold bifurcation of f 2

and coexists with x = 0 for increasing values of b, so that for b > 0.48 the
steady state is just locally stable. We report in Figure 3 the graph of the
second iterate of f for s = 1.04 and b = 0.3 in (A), b = 0.48 in (B) and
b = 0.6 in (C), in order to illustrate the double fold bifurcation of f 2.
Finally, for a still larger value of s/d > 1, in Figure 1 (C) we find that
x = 0 is not stable for intermediate values of the bias. Indeed, according
to Corollary 2.1, x = 0 is stable for b ∈ (0, b′) ∪ (b′′,+∞), with b′ = 0.223
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and b′′ = 0.478, and unstable otherwise. In particular, x = 0 is globally
stable for b ∈ (0, 0.223), while for b = 0.223 a supercritical flip bifurcation
of f occurs, at which x = 0 loses stability in favor of a stable period-two
cycle (represented in Figure 1 (C) with a solid line), that persists for larger
values of the bias. However, x = 0 recovers its (local) stability for b = 0.478
through a subcritical flip bifurcation of f, at which an unstable period-two
cycle emerges (represented in orange, dashed line). Since supercritical and
subcritical flip bifurcations of f correspond to pitchfork bifurcations of f 2,
in order to illustrate the main steps that we observe in Figure 1 (C) when
the bias increases, we report in Figure 4 the graph of the second iterate of f
for s = 1.6 and b = 0.2 in (A), b = 0.223 in (B), b = 0.3 in (C), b = 0.478 in
(D) and b = 0.6 in (E).

(A) (B) (C)

Figure 1: The bifurcation diagram of f for b ∈ (0, 1.4) and different initial
conditions, for A = 18, β = 15, d = 1, and s = 0.5 in (A), s = 1.04 in (B)
and s = 1.6 in (C).

3 The model with rational agents

We now introduce rational agents in the economy and we investigate the
effects that they produce both when the model is globally eductively stable
and when it is not. In particular, we enrich the set of expectation rules in
(2.5) by assuming that agents may also be rational and thus, being endowed
with perfect foresight, they correctly predict the next period price. More-
over, when their share is strongly prevailing in the population, in choosing
the production level which allows them to maximize profits, they determine
an aggregate production level that, together with the demand, generates
a market equilibrium price close to the fundamental value. Characterizing
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(A) (B) (C)

Figure 2: The graph of the second iterate of f for s = 0.5, and b = 1 in (A),
b = 2 in (B) and b = 3 in (C).

(A) (B) (C)

Figure 3: The graph of the second iterate of f for s = 1.04, and b = 0.3 in
(A), b = 0.48 in (B) and b = 0.6 in (C).

rational agents by the subscript −1, in symbols we have

pe
−1,t = pt. (3.1)

The cost function and the demand function are supposed to be described by
(2.1) and (2.3), respectively7. At the fundamental price p = p∗ it still holds
that demand equals supply. In fact, p = p∗ in (2.4) is again the only steady

7In this respect, we stress that we investigated the just described setting in which,
in addition to the introduction of rational agents, we took into account more general
technologies. In particular, we considered the cost function γ̃(q) = 1/s0+ q/s1+ q2/(2s2),
with s0, s1, s2 > 0, which coincides with c(q) in (2.1) when letting s0, s1 → +∞ and
identifying s2 with s. Although the position of the unique steady state, which corresponds
to the fundamental price p̃ = (A + s2

s1
)/(d + s2), is influenced by the value of s1, when
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(A) (B) (C) (D) (E)

Figure 4: The graph of the second iterate of f for s = 1.6, and b = 0.2 in
(A), b = 0.223 in (B), b = 0.3 in (C), b = 0.478 in (D) and b = 0.6 in (E).

state (cf. Proposition 3.1 below).
Like in Brock and Hommes (1997), we assume that rational agents face an
information cost C > 0, so that their net profits are described by

π−1,t = ptS(p
e
−1,t)− γ(S(pe

−1,t))− C = ptS(pt)− γ(S(pt))− C. (3.2)

Consequently, denoting by ωi,t the share of agents choosing the forecasting
rule i ∈ {−1, 0, 1, 2} at time t, the evolutive mechanism in (2.7), based on
the most recently realized net profits πj,t−1, j ∈ {−1, 0, 1, 2}, becomes

ωi,t =
exp(βπi,t−1)

∑2
j=−1 exp(βπj,t−1)

, i ∈ {−1, 0, 1, 2}. (3.3)

Introducing the variable xt = pt−p∗, simple computations allow to write our
model dynamic equation in deviation from the fundamental as

xt = − s

d+ ω−1,t s

2
∑

i=0

ωi,tbi

expressing the model in deviation from the fundamental neither s0 nor s1 enter the model
equation. This happens because of the formulation of the share updating rule, as s0 and s1
affect net profits through multiplicative terms which can be simplified between numerator
and denominator in (3.4) and in (3.5). Due to such considerations, for sake of simplicity,
we decided to present our model as an extension of the setting in Hommes and Wagener
(2010) only in regard to the set of considered forecasting rules, rather than introducing
the more general cost function γ̃(q). Such choice allows also for neater conclusions about
the role of rational agents on the model stability, as their effect need not be disentangled
from that of other modifications with respect to the original framework in Hommes and
Wagener (2010).
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with

ωi,t =
exp

(

−βs

2
(xt−1 − bi)

2
)

(

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2

)

)

+ exp(−βC)
(3.4)

for i ∈ {0, 1, 2} and with

ω−1,t =
exp(−βC)

(

∑2
j=0 exp

(

−βs

2
(xt−1 − bj)2

)

)

+ exp(−βC)
. (3.5)

More explicitly, recalling (2.5), we obtain

xt = bs
d+ω

−1,ts
(ω1,t − ω2,t)

=
bs(exp(−βs

2
(xt−1+b)2)−exp(−βs

2
(xt−1−b)2))

d(exp(−βs

2
(xt−1+b)2)+exp(−βs

2
(xt−1−b)2)+exp(−βs

2
x2

t−1))+(d+s) exp(−βC)
.

(3.6)
Expressing the model in terms of xt, according to Proposition 3.1 the unique
steady state is still given by x∗ = 0.
In view of the analysis we shall perform below, it is expedient to rewrite (3.6)
as

xt = g(xt−1), (3.7)

where the one-dimensional map g : (−p∗,+∞) → R is defined as

g(x) =
bs

(

exp
(

−βs

2
(x+ b)2

)

− exp
(

−βs

2
(x− b)2

))

d
(

exp
(

−βs

2
(x+ b)2

)

+ exp
(

−βs

2
(x− b)2

)

+ exp
(

−βs

2
x2
))

+ (d+ s) exp(−βC)
.

(3.8)
We stress that, like f in (2.11), also g is differentiable. Moreover, recalling
the expression of p∗ in (2.4), the domain of g is enlarged by considering
increasing values of A. When extending its domain to R, the map is odd8.
Namely, replacing x with −x leaves the denominator unchanged, while the
two terms on the numerator of g are interchanged, so that g(−x) = −g(x)
for every x ∈ R. We also observe that the extension of g to R admits the
x-axis as horizontal asymptote for x → ±∞. Hence, unlike f in (2.11),
g is not monotone and indeed, as we shall see below, the introduction of
rational agents may lead to complex dynamics. We notice however that
chaotic phenomena can occur only when the eductive stability assumption

8We remark that analogous properties hold for f in (2.11) as well, even if we did not
need to use them in Section 2.
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for the Muthian model is not fulfilled. Indeed, according to Proposition 3.1,
the local stability region is enlarged by the introduction of rational agents
and thus, like in Hommes and Wagener (2010), when s/d < 1 the steady
state x = 0 is always stable. More precisely, since a stable period-two cycle
emerges through a supercritical flip bifurcation of g, rather than through
a fold bifurcation of g2, and since for s/d < 1 the equilibrium is always
stable, it cannot coexist neither with the period-two cycle, nor with any
chaotic or periodic attractor following the period-two cycle, when the model
is stable under naive expectations. Hence, as we shall notice below, a scenario
analogous to Figure 1 (B) cannot occur when rational agents are taken into
account. On the other hand, for s/d > 1 we witness interesting dynamic
outcomes of the model. Before illustrating the possible scenarios in Figures
5–9, we derive the stability conditions for the steady state x = 0 with respect
to the intensity of choice parameter in Proposition 3.1 and with respect to
the bias in Corollary 3.1. The proof of Proposition 3.1, where we also show
that x = 0 is the unique steady state for (3.7), is based on the same argument
that we used to derive the stability region in Proposition 2.1. Nonetheless,
we report all the details for the sake of completeness.

Proposition 3.1 Equation (3.7) admits x = 0 as unique steady state. The
equilibrium x = 0 is locally asymptotically stable for map g in (3.8) if

β <
2d+ exp

(

βb2s

2

)

(d+ (d+ s) exp(−βC))
2b2s2

. (3.9)

Hence, according to the considered parameter configuration, x = 0 is stable
for any β > 0 or there exist 0 < β′

R ≤ β′′

R such that x = 0 is stable for each
β ∈ (0, β′

R) ∪ (β′′

R,+∞).

Proof. A straightforward check ensures that x = 0 solves the fixed-point
equation g(x) = x, with g as in (3.8).
In order to show that x = 0 is the unique steady state it suffices to observe
that g is positive if and only if x is negative.
The stability condition follows by imposing that g′(0) ∈ (−1, 1). By direct
computations, we have

g′(0) =
−2b2βs2 exp

(

−βb2s

2

)

d
(

2 exp
(

−βb2s

2

)

+ 1
)

+ (d+ s) exp(−βC)
.
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Since g′(0) is always negative, the stability of x = 0 is guaranteed when
g′(0) > −1, which is equivalent to (3.9). In particular, setting ϕ1(β) =

β and ϕ2(β) = (2d + exp(βb
2s

2
)(d + (d + s) exp(−βC)))/(2b2s2), we notice

that for β ≥ 0 both ϕ1 and ϕ2 are convex maps with 0 = ϕ1(0) < ϕ2(0).
Since ϕ2 tends to +∞ faster than ϕ1 for β → +∞ due to the presence of
the exponential function, the graphs of ϕ1 and ϕ2 intersect never or twice
according to the considered parameter configuration. We can have just one
intersection between the graphs of ϕ1 and ϕ2 only when their are tangent at
some point. This concludes the proof. �

Comments analogous to those made after Proposition 2.1 about the sta-
bilizing role of d and the ambiguous role of s hold in relation to (3.9) as well.
Again, for the parameter configuration we shall consider below and whose
dynamic outcomes are reported in Figures 5–9, we witness just the destabi-
lizing effect of s, while d does not vary.
Moreover, rewriting (3.9) as

β <
d
(

2 + exp
(

βb2s

2

))

+ (d+ s) exp(β( b
2s
2
− C))

2b2s2
(3.10)

and comparing such expression with (2.12), we notice that the right-hand
side in (3.10) is larger than that in (2.12) for any C > 0. Hence, as ex-
pected, we can conclude that rational agents have a stabilizing effect on
the system stability, no matter what is the information cost C they face.
Nonetheless, as the right-hand side in (3.10) is decreasing in C, raising the
latter parameter has a destabilizing effect on the steady state. Indeed, the
choices of rational agents lead prices towards the fundamental value. Rais-
ing their information cost makes the corresponding share decrease, due to
their resulting lower fitness in terms of profits, not only for prices far from
the steady state, but also in a neighborhood of it, and this may lead to a
destabilization of the steady state. In particular, in the limit C → +∞ the
term on the right-hand side in (3.10) coincides with that on the right-hand
side in (2.12), meaning that the stabilizing effect of rational agents tends to
disappear when C is excessively large. Namely, in correspondence to x = 0
for the profits and the share of rational agents we find π∗

−1 = s
2
(p∗)2 − C

and ω∗

−1 = exp (−βC) /
(

2 exp
(

−βs

2
b2
)

+ 1 + exp (−βC)
)

, respectively, from
which it follows that, when C is too high, their profits become negative and
their share tends to vanish. On the other hand, in addition to the information
cost faced by rational agents, also the bias degree plays an important role in
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determining which forecasting strategy is more profitable at the steady state.
Indeed, in correspondence to x = 0 the profits of biased fundamentalists are
given by π∗

1 = π∗

2 = s
2
((p∗)2 − b2) , and thus it holds that π∗

−1 > π∗

1 = π∗

2

if and only if C < s
2
b2. We can then conclude that, when the bias is very

large, due to the high inaccuracy degree of the price forecasts by optimists
and pessimists, it is still more convenient being rational at the steady state,
despite the information cost faced by rational agents.

As done in Section 2, also in the framework encompassing rational agents
we will consider as bifurcation parameter the bias, which again has the same
effect on the system stability as the intensity of choice parameter. Namely,
rewriting the stability conditions in Proposition 3.1 in terms of the bias, we
obtain the next result:

Corollary 3.1 The equilibrium x = 0 is locally asymptotically stable for
(3.7) if

b2 <
2d+ exp

(

βb2s

2

)

(d+ (d+ s) exp(−βC))
2βs2

. (3.11)

Hence, according to the considered parameter configuration, x = 0 is stable
for any b > 0 or there exist 0 < b′R ≤ b′′R such that x = 0 is stable for each
b ∈ (0, b′R) ∪ (b′′R,+∞).

Thus, we found up to two stability thresholds for x = 0 with respect to b as
well, and the steady state is locally stable for sufficiently low and for suffi-
ciently high values of the bias. We are going to illustrate in Figures 5–9 the
latter double effect of b, as well as the interesting dynamic phenomena which
may arise when the economy is populated by rational agents, too.
In particular, we report in Figure 5 the bifurcation diagrams corresponding
to the three main scenarios9 compatible with Corollary 3.1 for increasing val-
ues of the bias. In particular, like in Section 2 we fix the other parameters

9We stress that for the parameter configuration considered in Figure 5 (B), where in
particular s = 1.6, the stable and unstable period-two cycles persist for all b ≥ 0.282.
Nonetheless, for lower values of s the period-two cycles may disappear for sufficiently high
values of the bias, because the maximum and minimum values of g2 are not pronounced
enough. Since increasing values of b produce an horizontal translation of those extrema,
if they are not sufficiently high in absolute value, they do not exceed the 45-degree line
when b is too large. We observe the just described phenomenon e.g. with s = 1.5, in
correspondence to which, drawing in Figure 8 the bifurcation diagram with respect to b,
like in Figure 5 (B) we still find a double stability threshold, but the period-two cycles
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as follows: A = 18, β = 15, d = 1, considering C = 0.1 and s = 1.2 in (A),
s = 1.6 in (B) and s = 3 in (C). As initial conditions in (A) we have x0 = 1;
in (B) we have x0 = 0.01 for the green points, x0 = 0.5 for the magenta
points and x0 = 1 for the blue points; in (C) we have x0 = 0.01 for the green
points, x0 = 0.35 for the magenta points and x0 = 0.55 for the blue points.
Although in Figure 5 (A) it holds that s/d > 1, and thus the eductive stability
assumption for the Muthian model is not fulfilled, the steady state is always
globally asymptotically stable, since there are no other attractors, as we can
observe by looking at Figure 6, where we report the graph of the second
iterate of g for b = 0.4 in (A), b = 0.9 in (B) and b = 1.4 in (C). Namely, also
in the setting with rational agents, the condition s/d < 1 is just sufficient,
but not necessary for the unconditional stability of the steady state. This
phenomenon is strengthened by the stabilizing effect produced by the intro-
duction of rational agents, whose presence enlarges the local stability region,
as discussed just after Proposition 3.1. Indeed, for A = 18, β = 15, d = 1,
in the setting considered in Section 2 it holds that x = 0 is globally asymp-
totically stable for all values of the bias when s ∈ (0, 0.768), while in the
framework with rational agents facing an information cost C = 0.1 we ob-
serve the unconditional stability of x = 0 for a larger interval of values for
s, i.e., for s ∈ (0, 1.422). On the other hand, due to the destabilizing effect
produced by an increase in the information cost faced by rational agents,
when C raises it holds that x = 0 is globally asymptotically stable for all
values of the bias when s varies in a smaller interval. For instance, with
C = 0.2 the unconditional stability of x = 0 holds just for s ∈ (0, 1.099),
which is anyway larger than the interval (0, 0.768) found in regard to the
setting without rational agents.
In Figure 5 (B), we have again s/d > 1, but this time we find a scenario
similar to Figure 1 (C), in which x = 0 is unstable for intermediate values

disappear for b = 1.307 through a double reverse fold bifurcation of g2, at which they
coincide, and after that x = 0 is globally asymptotically stable. Although the latter
framework is new with respect to the scenarios portrayed in Section 2, we chose not to
deal with it in details because for s = 1.5 the map g2 almost coincides with the 45-degree
line in a neighborhood of x = 0 and thus the bifurcations illustrated in Figure 7 would
not be clearly visible.
We also remark that, for values of s larger than those used in Figure 5 (C), the chaotic
attractor could not coexist with the steady state and that, for still higher values of s,
the chaotic attractor in two pieces could become a chaotic attractor in one piece before
disappearing. All such effects are in agreement with the destabilizing role of s, highlighted
and interpreted in Section 2.
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of the bias. Indeed, according to Corollary 3.1, for the considered parameter
configuration x = 0 is stable just for b ∈ (0, b′R)∪ (b′′R,+∞), with b′R = 0.282
and b′′R = 0.386. In particular, x = 0 is globally stable for b ∈ (0, 0.282),
while for b = 0.282 a supercritical flip bifurcation of g occurs, at which x = 0
loses stability in favor of a stable period-two cycle (represented with a solid
line), which persists for larger values of the bias. However, x = 0 recovers its
(local) stability for b = 0.386 through a subcritical flip bifurcation of g, at
which an unstable period-two cycle emerges (represented in orange, dashed
line). Recalling that flip bifurcations of g correspond to pitchfork bifurca-
tions of g2, in order to illustrate the main steps that we observe in Figure 5
(B) as the bias increases, we report in Figure 7 the graph of g2 for b = 0.2 in
(A), b = 0.282 in (B), b = 0.36 in (C), b = 0.386 in (D) and b = 0.5 in (E).
Before discussing the framework in Figure 5 (C), we stress that in the pres-
ence of rational agents it is not possible to observe a scenario analogous to
Figure 1 (B). Namely in that case x = 0 was locally stable even after the
emergence of the stable period-two cycle through a double fold bifurcation of
f 2. On the contrary, with rational agents the stable period-two cycle arises
through a supercritical flip bifurcation of g and thus the steady state can not
be stable for all values of the bias. However, like in Figure 1 (C), also with
rational agents x = 0 recovers stability through a subcritical flip bifurcation
of g. Another difference between the frameworks with and without rational
agents lies in the fact that, as remarked in Section 2, with the map f in
(2.11) once a period-two cycle has emerged, it persists for increasing values
of the bias. Vice versa, as explained in Footnote 9, when dealing with g
in (3.8), for suitable values of s such as s = 1.5, the stable and unstable
period-two cycles, born respectively through a supercritical and a subcritical
flip bifurcation of g at x = 0, may disappear for sufficiently high values of
the bias through a double reverse fold bifurcation of g2 and after that x = 0
is globally asymptotically stable. We show the corresponding bifurcation di-
agram for g in Figure 8, in which s = 1.5 and b varies in (0, 1.4), and where
we represent with a solid line the stable period-two cycle born through a
supercritical flip bifurcation of g at x = 0 for b = 0.319 and with an orange
dashed line the unstable period-two cycle born through a subcritical flip bi-
furcation of g at x = 0 for b = 0.371. The stable and unstable period-two
cycles coincide and disappear through a double reverse fold bifurcation of g2

occurring for b = 1.307. Due to unconnectedness of the basin of attraction
of x = 0, we need different initial conditions to represent the whole stable
period-two cycle. Indeed, in Figure 8 as initial conditions we have x0 = 0.01
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for the green points, x0 = 0.5 for the magenta points, x0 = 1 for the blue
points and x0 = 1.2 for the red points.
Passing now to Figure 5 (C), for a still larger value of s/d > 1 we finally
observe the presence of chaotic dynamics, which could not arise in the frame-
work without rational agents, where the map f governing the dynamics is
monotonically decreasing. On the contrary, quite surprisingly, when the econ-
omy is populated by agents endowed with perfect foresight, too, we may wit-
ness complex behaviors and variegated multistability phenomena. Namely,
according again to Corollary 3.1, for the considered parameter configura-
tion x = 0 is stable just for b ∈ (0, b′R) ∪ (b′′R,+∞), with b′R = 0.134 and
b′′R = 0.354. In particular, x = 0 is globally stable for b ∈ (0, 0.134), while
it becomes unstable and recovers its local stability through flip bifurcations
of g, occurring at b = b′R and b = b′′R, respectively. More precisely, the flip
bifurcation occurring at b = b′R is supercritical and in correspondence to it
x = 0 loses stability in favor of a stable period-two cycle, which undergoes
a cascade of flip bifurcations leading to chaos. We notice that the external
- first periodic, and then chaotic - attractor coexists with the locally stable
steady state for b ∈ (0.354, 0.487), while for b = 0.487 the chaotic attractor
suddenly disappears due to a contact bifurcation with the unstable period-
two cycle, represented with an orange dashed line in Figure 5 (C), born
through the subcritical flip bifurcation occurring at x = 0 for b = b′′R. Indeed,
for b = 0.487 the forward iterates of the extrema of g enter the basin of
attraction of x = 0 exceeding the unstable period-two cycle, which separates
the basin of attraction of x = 0 from that of the chaotic attractor. After
the disappearance of the chaotic attractor, x = 0 is again globally stable.
In order to better describe the dynamic phenomena related to Figure 5 (C),
we chose to report in Figure 9 the graph of g rather than that of g2. This
allows us to represent the periodic and chaotic trajectories of the system, at
the cost of not showing the bifurcations occurring as the bias value raises.
We stress however that the two pitchfork bifurcations of g2, corresponding
to the supercritical and subcritical flip bifurcations of g through which the
steady state loses and recovers its stability, are analogous to those depicted
in Figure 7. In more detail, in Figure 9 we draw the graph of g for various
increasing values of the bias, in order to illustrate how x = 0, after losing
stability for b = 0.134, recovers stability for b = 0.354, at first locally and
then globally. In particular, in (A), for b = 0.1, the steady state x = 0 is
globally asymptotically stable. In (B), for b = 0.2, x = 0 has become unsta-
ble and we represent the stable period-two cycle that has arisen through the
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supercritical flip bifurcation of g occurring for b = 0.134. After recovering its
local stability through the subcritical flip bifurcation of g, the steady state
coexists with two stable period-two cycles, born through a flip bifurcation of
the period-two cycle occurring for b = 0.295. Due the oddness of the map g,
the two-cycles are symmetric and for e.g. b = 0.36 they are composed by the
periodic points {x̂1, x̂2} = {−0.351, 0.553} and {x̄1, x̄2} = {−0.553, 0.351},
respectively. Raising b in Figure 9 to 0.46, x = 0 is still locally stable and
it is surrounded by a one-piece chaotic attractor. In particular, in (C) we
show an orbit visiting the chaotic attractor, while in (D), still for b = 0.46,
we illustrate an orbit which directly hits the steady state, since the initial
condition belongs to a non-immediate component of its basin of attraction,
contained in the x-axis. We remark that the basin of attraction of x = 0 is
unconnected due to presence of rational agents, since now the map generat-
ing the dynamics is no more monotone. Finally, in Figure 9 (E), for b = 0.5,
x = 0 is again globally stable because of the disappearance of the chaotic
attractor due to the above described contact bifurcation with the unstable
period-two cycle born through the subcritical flip bifurcation of g at x = 0.

(A) (B) (C)

Figure 5: The bifurcation diagram of g for b ∈ (0, 1) and different initial
conditions, for C = 0.1, A = 18, β = 15, d = 1, and s = 1.2 in (A), s = 1.6
in (B) and s = 3 in (C).

We stress that, although the chaotic attractor has disappeared, two unstable
invariant chaotic sets still exist for the parameter values considered in Figure
9 (E). We do not see them in the bifurcation diagram in Figure 5 (C) because
the forward iterates of almost all the points in a neighborhood of those sets
limit towards x = 0. In order to show their existence, we rely on the method of
the strictly turbulent maps in Block and Coppel (1992), which guarantees the
existence of invariant, chaotic sets, but in general not their attractiveness.
Such technique requires to find for a given continuous map ψ : J → J,
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(A) (B) (C)

Figure 6: The graph of the second iterate of g for C = 0.1, s = 1.2, and
b = 0.4 in (A), b = 0.9 in (B) and b = 1.4 in (C).

(A) (B) (C) (D) (E)

Figure 7: The graph of the second iterate of g for C = 0.1, s = 1.6, and
b = 0.2 in (A), b = 0.282 in (B), b = 0.36 in (C), b = 0.386 in (D) and b = 0.5
in (E).

where ∅ 6= J ⊂ R is a compact interval, two nonempty compact disjoint
sub-intervals J0 and J1 of J such that

J0 ∪ J1 ⊆ f(J0) ∩ f(J1). (3.12)

If the latter property is fulfilled, then the map ψ is called strictly turbulent
in Block and Coppel (1992) and it is therein shown to display some of the
typical features associated with the concept of chaos like, e.g., existence of
periodic points of each period (cf. Lemma 3 on page 26), semi-conjugacy to
the Bernoulli shift of ψ restricted to a suitable compact invariant set (see
Proposition 15 on page 35), and thus positive topological entropy, as defined
in Adler et al. (1965).
We will use the just described methodology in the proof of Proposition 3.2.
In particular, since we need an invariant compact interval J in order to apply
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Figure 8: The bifurcation diagram of g for b ∈ (0, 1.4) and different initial
conditions, for C = 0.1, A = 18, β = 15, d = 1 and s = 1.5.

(A) (B) (C) (D) (E)

Figure 9: The graph of map g for C = 0.1, s = 3, and b = 0.1, x0 = 0.4 in
(A), b = 0.2, x0 = 0.26 in (B), b = 0.46, x0 = 0.5 in (C), b = 0.46, x0 = 1.3
in (D) and b = 0.7, x0 = 0.4 in (E).

the method of the strictly turbulent maps and since the map g is odd and
positive just when x is negative, we have to deal with the second iterate of g,
so that for us ψ = g2. For brevity’s sake, we will focus on what happens on
the positive horizontal axis only, but a completely symmetric picture occurs
for g2 for negative values of x, as well.

Proposition 3.2 Let us consider the map g in (3.8) for the parameter con-
figuration used in Figure 9 (E), i.e., C = 0.1, A = 18, β = 15, d = 1, s =
3 and b = 0.7. Setting J = [0.451, 0.584], J0 = [0.451, 0.458] and J1 =
[0.572, 0.584], it holds that

g2(Ji) = J, i = 0, 1. (3.13)

Hence, the map g2 is strictly turbulent and, in particular, it follows that
htop(g) ≥ log(

√
2), where we denote by htop(g) the topological entropy of g.
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Proof. The map g2 is strictly turbulent because it is continuous on R, and
thus on J, and J0, J1 are nonempty compact disjoint sub-intervals of J for
which (3.13) is satisfied. In fact, the left endpoint of J0 is a fixed point for g2,
that we call x∗ and whose value is given by x = 0.451, and the right endpoint
of J1, which coincides with the right endpoint of J, is the smallest solution
on the right of x∗ to the equation g2(x) = x∗. Notice that x∗ is also the left
endpoint of J. Moreover, the right endpoint of J0 and the left endpoint of
J1 are the solutions to the equation g2(x) = 0.584, where 0.584 is the right
endpoint of J. Thus, by construction, it holds that g2(Ji) = J, i = 0, 1, and
g2 is strictly turbulent. By Corollary 15, page 200, in Block and Coppel
(1992), it follows that htop(g

2) ≥ log(2) and, by Theorem 2 in Adler et al.
(1965), we can conclude10 that htop(g) ≥ log(

√
2). �

(A) (B)

Figure 10: The graph of g2 for positive values of x in (A) and an enlargement
in (B), together with a pictorial illustration of Proposition 3.2. We draw with
a ticker line the interval J, its sub-intervals J0 and J1, as well as their images
through g2.

10Actually, by the shape of the graph of g2 it is easy to show that taking J =
[0.451, 0.950], where x = 0.950 is the largest solution on the right of x∗ (visible in Figure 10
(A)) to the equation g2(x) = x∗ = 0.451, then there exist four pairwise disjoint compact
sub-intervals Ji of J, with i ∈ {0, 1, 2, 3}, for which it holds that g2(Ji) = J. Indeed, by a
geometrical construction analogous to the one described in the proof of Proposition 3.2, we
have J0 = [0.451, 0.483], J1 = [0.542, 0.584], J2 = [0.816, 0.859], J3 = [0.918, 0.950]. Then,
by Proposition 8, page 196, in Block and Coppel (1992), it follows that htop(g

2) ≥ log(4)
and, by Theorem 2 in Adler et al. (1965), we obtain the better estimate htop(g) ≥ 2.
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See Figure 10 for a graphical illustration of the result. In particular, in (B)
we do not use the same scaling on the horizontal and vertical axes, in order
to better show the interval J and its sub-intervals J0 and J1.
We stress that, although in the statement of Proposition 3.2 we have consid-
ered the parameter configuration used in Figure 9 (E), the same conclusions
hold for several different sets of parameter values, as well.
We also remark that, once that a result analogous to Proposition 3.2 is
proven for a certain parameter configuration, by continuity, the same con-
clusions still hold, suitably modifying the intervals J, J0 and J1, for small
variations in those parameters. Hence, for instance, Proposition 3.2 actually
allows to infer the existence of complex dynamics for the map g2 when b lies
in a neighborhood of 0.7, or when s lies in a neighborhood of 3, and for some
suitable values of the other parameters.

Like done for the setting without rational agents, the scenarios illustrated
in Figure 9 for increasing values of the bias may be interpreted from an eco-
nomic viewpoint comparing the profits of the various kinds of agents and by
looking at the ratio between the demand and supply curve reactivities.
Let us start from the global asymptotic stability framework in (A), whose
explanation bears a strong resemblance to that presented for Figure 1 (A),
being based on the functioning of the price adjustment mechanism and on
the stabilizing role of unbiased fundamentalists, which is now strengthened
by the presence of rational agents. In more detail, when the bias is small
and the initial condition for prices is close to the steady state, recalling the
information cost faced by rational agents, unbiased fundamentalists realize
higher profits due to their more accurate price forecasts with respect to bi-
ased fundamentalists, which however do not perform badly since the bias
is small. Then the share of unbiased fundamentalists increases more and,
due to the positive effect they have on the system stability (see Hommes
2013), prices converge towards the fundamental. When the initial condition
is far from the steady state, since the bias is small, biased fundamentalists
make big forecast errors and thus they are not favored by the share updating
mechanism. More precisely, if like in Figure 9 (A) the initial condition is
positive, rational agents and, in a much reduced manner, optimists perform
well. Hence, the share of rational agents is that which increases more and
the total supply approaches its stationary value. Close to the steady state,
the forecasting errors made by both biased and unbiased fundamentalists are
small, being the bias low. In particular, unbiased fundamentalists’ forecast
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is now the most precise among fundamentalists, while the profits realized by
rational agents are low due to the information cost they face. Nonetheless,
the convergence towards the steady state occurs like in the case in which the
initial condition for prices is close to the steady state.
Also the loss of stability of the steady state in favor of the period-two cy-
cle that we observe in Figure 9 (B) can be interpreted similarly to what
done with Figure 1 (C). Indeed, since b has increased with respect to (A), its
value has become compatible with the strength of the “separating” effect pro-
duced by the price adjustment mechanism, which determines prices that are
quite distant from the steady state. Namely, due to the high value of s, the
price adjustment mechanism reacts violently to a production variation due
to the strong difference in the slopes of the demand and supply curves. Such
compatibility between the bias and the prices allows to explain the global
stability of the period-two cycle, characterized by an alternation of optimism
and pessimism. We stress that in this framework rational agents do not per-
form as well as biased fundamentalists in terms of profits and shares due to
the information cost they face, while the profits of unbiased fundamentalists
are not high because their price forecasts are not precise.
When b increases further moving to Figures 9 (C) and (D), its value becomes
excessive with respect to the intensity of the just described “separating” effect
produced by the price adjustment mechanism. Since the reaction of the lat-
ter to production variations is no more strong enough, the determined prices
are not sufficiently distant from the fundamental to be compatible with the
bias and the period-two cycle is not stable anymore. Namely, rational agents
become favored thanks to their perfect foresight, despite the information cost
they face. According to the chosen initial condition for prices, orbits visit
the chaotic attractor, when like in (C) the value of the initial condition is
not distant from the bias, or they converge toward the steady state, when
the value of the initial condition is too close to the fundamental or when
like in (D) it is excessively large, and optimists’ and pessimists’ profits are
too low. In particular, if the initial condition is close to the fundamental,
unbiased fundamentalists perform better than rational agents, while if the
initial condition is much higher than the bias then rational agents perform
well and this immediately leads prices toward the steady state, where un-
biased fundamentalists obtain higher profits. The latter scenario, reported
in Figure 9 (D), is made possible by the unconnectedness of the basin of
attraction of the steady state. Indeed, the initial condition x0 = 1.3 belongs
to a non-immediate component of the basin of attraction, contained in the
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horizontal asymptote, located on the x-axis. We recall that without rational
agents the map governing the dynamics would be decreasing, and thus the
basin of attraction of the steady state would be connected.
Finally, when like in Figure 9 (E) the bias still increases, the chaotic attractor
disappears since the prices determined through the adjustment mechanism
are much smaller than the bias, and optimists and pessimists realize very low
profits. In fact, the fundamental steady state recovers its global stability due
to the even better than before performance of rational agents and of unbiased
agents with respect to biased fundamentalists. In particular, in Figure 9 (E)
we depict a situation in which the bias, being very large, exceeds the initial
condition. Hence, rational agents obtain the highest profits, due to their more
accurate forecast, and this makes prices approach the steady state, so that
unbiased agents start performing well. We stress that if in (E) we started
from an initial condition larger than the bias, then the convergence towards
the steady state could be explained again thanks to the prevailing role played
by rational agents in the beginning, witnessing however less oscillations with
respect to the case depicted in (E), since the initial condition would probably
belong to a non-immediate component of the basin of attraction like in (D).
We remark that the phenomena portrayed in Figure 9 (C)–(E) can not occur
when rational agents are not taken into account. Indeed in framework (C),
rather than irregular oscillations, without rational agents we would observe
a regular pattern, like that found in (B), characterized by the alternation be-
tween a prevailing optimism or pessimism in the market, according to which
group of biased fundamentalists performed better. Similarly in (D) and (E),
if rational agents were not present, rather than the convergence toward the
steady state, we would observe again a periodic behavior of the same kind.
Making a comparison with the role played by rational agents in the frame-
work considered in Brock and Hommes (1997), where producers can choose
between costly rational and costless naive expectations about prices, some
similarities emerge, but also a few crucial differences. Namely, in that setting
the emergence of chaos was explained by the existence of homoclinic orbits,
which start close to the unstable steady state, move away from its neighbor-
hood due to the destabilizing effect played by naive agents, and then return
close to the steady state thanks to the stabilizing role of rational forecast.
Indeed, with prices close to the steady state, naive agents perform better
than rational agents in terms of realized profits because they can free ride
on the rational expectations, without facing any information cost. When the
intensity of choice parameter is high enough, most agents will then switch
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to the cheap predictor, and this leads prices far from the equilibrium in a
fluctuating manner. In the unstable phase however the profits realized by
using naive expectations are low and thus, when the intensity of choice is
high, most agents are willing to switch to rational expectations, despite the
related information cost. In such manner prices return close to the steady
state, where naive agents are favored again and the process repeats, with
the alternation between the prevalence of a centrifugal force generated by
the simple predictor and the prevalence of the centripetal force induced by
the sophisticated predictor. Our setting shares with the Brock and Hommes
(1997) framework the centripetal force induced by the rational predictor when
initial conditions for prices are very far from the steady state. Close to the
steady state, we witness a better performance by unbiased fundamentalists
and by biased fundamentalists, too, when the bias is low. In this case, the
steady state is locally or globally stable. We observe the centrifugal force
produced by biased agents when their bias is moderately high. More pre-
cisely, if it is compatible with the “separating” effect produced by the price
adjustment mechanism, a globally stable period-two cycle emerges, charac-
terized by an alternation of optimism and pessimism, and rational agents
do not play any role. When instead the value of the bias becomes too large
with respect to the strength of the price adjustment mechanism, rational
agents become favored, despite the information cost they face, and break the
symmetry of the former configuration, leading to the emergence of complex
dynamics. In particular, if the steady state is still locally stable, orbits visit
the chaotic attractor when the initial condition is not distant from the bias
value, while orbits converge toward the steady state when the initial con-
dition is close to the fundamental or when it is excessively large. Indeed,
differently from the Brock and Hommes (1997) framework in which chaos
can only occur when the unique equilibrium is an unstable saddle point, we
can witness the coexistence between the complex attractor and the locally
stable fundamental steady state. The chaotic attractor for us persists as long
as the bias value is too large to be compatible with the strength of the price
adjustment mechanism, but without being excessively high, since otherwise
optimists and pessimists would realize very low profits with respect to ra-
tional agents, whose prevalence would lead prices towards the fundamental,
thanks to the stabilizing centripetal effect that they produce.
Hence, in order to understand when complex dynamics can arise in our setting
we have to jointly take into account the intensity of the market mechanism,
defined as the ratio between the demand and supply curve reactivities, the
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value of the bias, and also the initial condition for prices in case of coexis-
tence between the chaotic attractor and the locally stable steady state.
Summarizing, we have shown that, despite being locally stabilizing, glob-
ally the introduction of rational agents opens the door to complex dynamic
outcomes, characterized not only by chaotic attractors, but also by rich mul-
tistability phenomena. Namely, differently from the context considered in
Hommes and Wagener (2010), the basin of attraction of the steady state
may be unconnected due to the presence of the horizontal asymptote, with
its non-immediate components lying outside the basin of attraction of the
chaotic attractor, when they coexist.

4 Conclusion

In the present contribution, following the final suggestion by Hommes and
Wagener (2010) according to which “The study of the stability of evolution-
ary systems with many trader types in various market settings and with more
complicated strategies remains an important topic for future work”, we en-
riched the set of forecasting rules considered in that paper by assuming that
the economy is populated by rational agents, too. We found that, on the one
hand, their presence enlarges the steady state local stability region, but, on
the other hand, they allow for the emergence of chaotic attractors and varie-
gated multistability phenomena, since the map governing the dynamics is no
more monotonically decreasing. Hence, we can say that, quite unexpectedly,
rational agents may lead to complex dynamics.
We deem that the proposed setting can be the starting point for other inter-
esting investigations.
A first natural extension of the present framework consists in considering
several couples of groups of symmetrically biased fundamentalists, which dif-
fer in the strength of the bias, in view of investigating the effect of their
presence on the system stability and on the possible model dynamic out-
comes. We recall that we dealt with several types of biased fundamentalists
also in Naimzada and Pireddu (2020b), where we introduced heterogeneous
information costs in the original framework in Hommes and Wagener (2010),
without encompassing rational agents.
In regard to information costs, we have here considered the simplest setting
in which, like in Brock and Hommes (1997), only rational agents face a non-
zero cost. However, as done in Naimzada and Pireddu (2020a), where we

34



dealt with just one couple of groups of symmetrically biased agents, and in
Naimzada and Pireddu (2020b), with several types of biased fundamentalists,
the present framework could be extended so as to encompass for all groups
of agents heterogeneous information costs, that are directly proportional to
their rationality degree. Indeed, in the present contribution we found that ra-
tional agents have a stabilizing effect on the steady state, while in Naimzada
and Pireddu (2020a, 2020b) we discovered that introducing heterogeneous in-
formation costs for fundamentalists may have a destabilizing effect. Hence,
it would be interesting to analyze the setting including both rational agents
and heterogeneous information costs, in order to investigate whether the sta-
bilizing effect of the former element or the destabilizing effect of the latter
factor prevails. Such study will be the topic of a future work.
A further research question concerning rational agents would consist in the in-
vestigation of their effect in the macroeconomic setting considered in Anufriev
et al. (2013), where, dealing just with biased and unbiased fundamentalists,
the map linking the variable which describes the dynamical system to the
expectations about it formulated by the various groups of agents is increas-
ing, rather than decreasing like in the framework analyzed in Hommes and
Wagener (2010).
Looking from a formal viewpoint at the model here proposed, two weak
points emerge, that partially pertain also to the setting in Hommes and Wa-
gener (2010). The first limit concerns the assumed symmetry in the bias
of optimists and pessimists, without which the steady state would not nec-
essarily coincide with the fundamental value. The second issue regards the
formulation of the considered evolutionary mechanism, that does encompass
the extinction of any group of agents neither at the steady state, nor along
orbits. It would then be worth investigating how the results obtained in the
present work change when dealing with one or both those improvements. In
particular, we stress that, even in the presence of asymmetric biases, one
of the steady states could coincide with the fundamental value if the share
updating rule allowed for the extinction of some kinds of agents.
A different modification of the model, which would also lead to an increase
in the number of dynamic equations describing the system, would consist
in introducing into the original framework in Hommes and Wagener (2010)
a group of agents endowed with naive expectations, in addition to rational
agents. We recall indeed that a Muthian cobweb model with fundamentalists
and naive expectations has been considered in Hommes (2013). However, to
the best of our knowledge, in the literature the setting encompassing fun-
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damentalists, rational agents and naive expectations has not been analyzed
yet.
Another variant of the proposed setting, which would raise the number of dy-
namic equations describing the system, too, would consist in the introduction
of memory in the share updating mechanism, so that agents, in choosing the
heuristics to adopt, rather than taking into account just the most recently re-
alized profit, would consider the performance of the various forecasting rules
in terms of realized profits in the recent past.
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