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A B S T R A C T

The EU carbon market serves as an innovative financial instrument with the primary objective of contributing to
mitigating the impacts of climate change. This market demonstrates significant interconnectedness with fossil
energy, precious metal, and financial markets, although limited research has focused on the causality, de-
pendency, intensity and direction of time-varying spillover effects. This study examines how the energy, metal,
and financial markets have an impact on the EU carbon market. It focuses on three main research questions,
namely: 1) how do these markets affect each other?; 2) how do they connect?; 3) how do volatilities spillover
among them? By answering these questions, the study aims to assist EU decision makers to develop effective
carbon policies, help investors manage risks and promote practices that are consistent with the EU’s climate goal.
To achieve these objectives, this paper proposes a novel methodological approach that combines the most recent
econometrics methods, such as Directed Acyclic Graph analysis, Canonical Vine Copula models, and Time-
Varying parameter Vector Auto Regressive models with Stochastic Volatility with the use of a comprehensive
sample of daily data from April 26, 2005 to December 31, 2022. The major findings of this study demonstrate
that causality predominantly runs from energy, metal, and financial markets to the EU carbon market. The
dependency structure, although varying across different sub-periods, shows a strong relationship observed be-
tween oil, coal, silver, copper, EuroStoxx600, and CO2 market. Additionally, the oil and copper futures prices
exhibit the highest dependence on EUA prices. Furthermore, the study establishes that the EU carbon market is a
net receiver of shocks from all other markets, with the energy, metal, and financial markets significantly
influencing volatility in EUA prices. The time-varying spillover effect is most pronounced with a one-day lag, and
the duration of the spillover effects ranges from 2 to 15 days, gradually diminishing over time. These results have
the potential to increase the understanding of the EU carbon market and offer practical guidance for policy-
makers, investors, and companies involved in this domain.

1. Introduction

Global warming is a pressing environmental issue that has attracted
significant attention. Its increasing severity, stemming from greenhouse
gas emissions, presents a formidable challenge to sustainable develop-
ment, prompting widespread global concern. Carbon dioxide (CO2 ),
mainly emitted by human activities, is the principal greenhouse gases.
The 2022 report by the Intergovernmental Panel on Climate Change
(IPCC) highlights that CO2 emissions contribute to 79.2% of global
greenhouse gases (e.g. IPCC, and Liu et al., 2022).

As CO2 emissions worsen, an increasing number of countries,
including the EU, the US, Australia, Japan, and China, have swiftly

established carbon emission trading markets since the Kyoto Protocol. In
2001, the European Commission took the initiative to implement the
first and largest cap-and-trade carbon trading scheme. The scheme
places an emissions cap on major European CO2 emitters through the
allocation of tradable EU Allowances EUA. The European Union Emis-
sions Trading System (EU-ETS) has been structured into four distinct
phases: phase I from 2005 to 2007, phase II from 2008 to 2012, phase III
from 2013 to 2020, and the recently started last phase from 2021 up to
2030. Presently, EU-ETS stands as the world’s active, efficient, and
largest carbon emissions trading system, covering about 45% of green-
house gas emissions from the EU (e.g. Jiang and Chen, 2022).

In tandem with its rapid development and consistent expansion in
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size, liquidity, trading volume, and complexity, the EU-ETS market has
demonstrated a progressively strong association with various other
markets. Specifically, over the past decade, the EUA has been associated
with an increasing price volatility. Upon analyzing the EUA future prices
(refer to Fig. 1) during the initial phase of the EU-ETS (2005–2007), the
prices started at approximately € 17.55 and surged to a peak of € 31.5 on
April 18, 2006, subsequently maintaining a range of € 0–20 until
December 17, 2007. Notably, the price experienced a significant in-
crease of over 50% in December 2007, settling at around € 22 until the
conclusion of phase I. The second phase commenced on January 1, 2008,
with EUA future prices fluctuating between € 10 and € 30, peaking on
July 1, 2008. Thereafter, prices gradually declined from July 2008 to
February 2009, reaching a trough during that period. They continued to
fluctuate in the range of € 10–20 until 2011, when a decline began,
eventually dropping to less than € 10 in December 2011. Throughout the
rest of the second phase, prices remained steady between € 5 and € 10.
Transitioning into the third phase on January 1, 2013, EUA prices
initiated trading at approximately € 6.37, but, within four months,
quickly decreased to around € 3, hitting again a trough. Subsequently,
from May 2013 onward, prices gradually increased and remained rela-
tively stable, oscillating between € 3 and € 10 until March 2018.
Notably, in early March 2018, the EUA prices experienced a gradual
increase from € 11 to € 33, reaching a peak of € 33.29 on December 28,
2020. With the onset of the fourth phase in January 2021, a sharp in-
crease and considerable fluctuations were observed in the EUA future
prices, initiating from € 33.56. Additionally, the prices gradually
increased throughout 2020, doubling in September 2020 and ultimately
reaching a peak of € 97.59 on August 19, 2022. Since the end of 2023,
the EUA prices have exhibited volatility, fluctuating within the range of
€ 60–90.

The drivers behind such volatility in the carbon market are multi-
faceted, stemming from internal fluctuations and interactions with other
interconnected markets. Several important factors considerably
contribute to the heightened volatile behavior of the carbon market.
These factors can be broadly grouped into four categories: degree of
integration with macroeconomic, financial, and commodity markets;
uncertainty concerning carbon allowance demand; fluctuations in en-
ergy prices; influence of speculators on the volatility levels of the carbon
market. (e.g. Wu et al., 2022). Understanding the potential linkage be-
tween the carbon market and other markets, this subject has attracted
significant interest from scholars, regulators, investors, and risk man-
agers. Building on this interest, this study aims to examine how energy,
metal, and financial markets influence the EU carbon market through
causality direction, degree of connectedness, and volatility spillovers. To
achieve these goals, we focus on the following research hypotheses.

Hypothesis 1). Energy, metal, and stock markets have causal effects
on the EU carbon market.

Hypothesis 2). A strong degree of connectedness exists among the EU
carbon market and the energy, metal, and financial markets.

Hypothesis 3). The EU carbon market acts as a net receiver of vola-
tility from the energy, metal, and financial markets.

An extensive body of research has been undertaken to explore as-
pects related to volatility spillover and market interconnectedness.
Numerous studies (e.g., Chevallier et al., 2008; Hammoudeh et al., 2014;
Rodríguez, 2019; Jiang and Chen, 2022) consistently find that energy
prices, particularly coal prices, significantly influence EUA prices due to
several reasons. First, lower fossil energy prices can result in increased
energy consumption, leading to higher demand for carbon emissions
and carbon prices. Secondly, increased fossil energy consumption,
driven by global population growth and ongoing economic develop-
ment, especially in developing countries, lead to higher carbon emis-
sions and carbon prices. Lastly, the sensitivity of energy use to weather
changes varies across different seasons.

However, divergent conclusions are drawn regarding the trans-
mission of volatility between financial, metal and carbon markets.
Existing research lacks robust methodological foundations to establish
the importance of those markets in influencing EUA volatilities. Due to
increasing globalization, financialization, and integration of carbon
markets with other international markets, there is strong indication that
the financial and metal markets are interconnected with EUA prices. In
recent years, all markets with an international dimension have wit-
nessed increased uncertainty, and this has led to significant fluctuations
in energy, metal, and carbon prices. Given the distinctive financial at-
tributes characterizing energy, metal, and carbon markets, an increase
in speculative activities across these markets facilitates their intercon-
nectedness, thereby amplifying the cross-spillover effects. Hence, un-
derstanding the connectedness between EUA prices and the financial
market is essential, as EUA price fluctuations may impact the economic
incentives and cost of manufacturing companies and could be reflected
in the stock market. On the other hand, specific metals, such as gold,
silver, and copper (used in fuel cells), are essential for the development
of clean energy. As a result, the metal market has become a vital source
of raw materials for clean energy production. Changes in metal prices
affect the cost of industrial manufactures and, consequently, the demand
for energy and carbon emissions. Therefore, formal investigations are
necessary to determine causality, degree of connectedness, and potential
spillover effects between EUA prices and other markets (e.g. Adekoya
et al., 2021).

To address the limitation of the existing literature, in this paper we

Fig. 1. Daily EUA futures prices (€).
(Source: European Environment Agency, EEA 2023)
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introduce the following novel contributions. First, we test causality
using the Directed Acyclical Graph (DAG) non-parametric approach.
Second, to gain a clear understanding of the interconnections and the
degree of dependencies among the carbon-energy-financial-metal mar-
kets, we employ the C-Vine-Copula model to capture information about
both upper and lower tail dependencies among the connected markets.
Copula functions are able to capture multi-dependence co-movement,
different types of dependency structures, and the degree of dependency
among markets (Bouri and Kamal, 2023). Third, to assess the spillover
effects among the identified interconnected markets, in this paper we
use the Time-Varying Parameter Vector Auto Regressive Stochastic
Volatility (TVP-VAR-SV) model. This approach allows us to estimate
both static and time-varying spillovers, considering the impacts of each
markets on all the others and the total pairwise spillovers (Yousaf et al.,
2023).

By employing these set of integrated methodologies, we aim to
obtain more reliable and comprehensive insights into the dynamics and
interconnectedness of the markets under analysis, in order for policy-
makers and stakeholders to shape more accurate decision-making
procedures.

To sum up, this paper conducts in-depth research to understand the
direction of causality, degree of connectedness, and the potential spill-
over effects among energy, metal, financial and carbon markets by
employing advanced and comprehensive methodologies. Our results are
crucial for interpreting volatility transmission among the carbon-
energy-metal-stock markets (CEMS) and promoting the stable estab-
lishment of ETS in countries outside the EU. Our results also help policy
maker to timely detect and handle financial risks generated in CEMS
markets, and provide valuable insights for investors and companies to
make more accurate predictions of both returns and volatilities.

The rest of the paper is structured as follows. The relevant literature
review is reported in Section 2. Section 3 is devoted to illustrate the
essential elements of DAG, C-Vine Copulas, and TVP-VAR-SV models, as
well as to describe the dataset. The empirical results are discussed in
Section 4. Section 5 concludes.

2. Literature review

As carbon emission trading has emerged as one of the predominant
approaches to contrast climate change globally, an increasing number of
scholars have been investigating the potential for cross-market infor-
mation spillovers among the energy-metal-financial-carbon markets.
Table 1 presents a comprehensive overview of existing studies exploring
the linkage between the carbon market and other markets. Notably,
these studies can be categorized along different dimensions.

In the context of energy-carbon market connectedness, several studies
have explored the relationship between these markets. Cheavallier et al.
(2008) pioneers in investigating the drivers behind the EU-ETS, using a
GARCHmodel and daily data from July 1, 2005, to April 30, 2007. Their
results show that carbon prices react to both energy prices and tem-
perature changes. During the first phase of EU-ETS, energy prices,
including Brent oil, natural gas, and coal, have a significant and positive
effect on EUA prices. Hammoudeh et al. (2014) conduct a study using a
Bayesian Structural VAR model and data from August 2006 to
September 2011. They focus on explaining the short-term dynamics of
carbon prices in response to changes in energy prices of oil, gas, coal,
and electricity. Their findings prove that shocks in oil prices have initial
positive effects followed by negative effects on carbon prices. However,
no spillover effects are found between gas, coal, and carbon markets. As
for electricity, a positive shock in the price has a negative impact on the
price of EUA in the second phase. At the same time, Reboredo (2014)
investigates the volatility spillovers between oil and carbon markets
using a Multi-Conditional Auto Regressive Range model. The results
suggest the existence of volatility dynamics and leverage effects but no
significant volatility spillovers between these markets. Zhang and Sun
(2016) employ an MGARCH model to study the dynamic volatility

spillover impact from fossil energy prices, including oil, gas, coal, and
electricity, to the carbon market from January 2, 2008, to September 30,
2014. The findings suggest a significant unidirectional volatility spill-
over from coal to the carbon market, while no spillover impacts are
found from oil to carbon prices. Additionally, there is a significant
correlation between energy and carbon markets. By conducting a
multi-phase survey, Dhamija et al. (2017) examine the volatility spill-
over impact from energy to the carbon market using daily data from
2005 to 2015. Based on BEKK-MGARCH results, they show a high degree
of volatility co-movement between carbon and energy prices, specif-
ically Brent oil, coal, and natural gas. The results support the existence of
small but significant volatility spillover from energy markets to EUA
markets. Chevallier et al. (2019) employ the Vine-Copula approach to
capture the conditional correlation between energy and carbon prices
between January 1, 2010, and May 19, 2016. The outcomes suggest that
carbon prices co-move only weakly with oil, gas, coal, and switch energy
prices, and the link to Brent oil and gas is significantly negative. Simi-
larly, Chen et al. (2019) examine the dynamic correlation and volatility
spillover between energy and carbon prices by considering an asym-
metric BEKK model. They signal a relatively stable and positive corre-
lation between carbon, Brent oil, and natural gas prices, while the
correlation between carbon-gas and coal-carbon weaken and become
more volatile during the second and third phase of EU-ETS, particularly
after the Global Financial Crisis (GFC). Recently, Yoon and Lee (2020)
survey time-varying correlations and dynamic spillovers between en-
ergy and carbon markets from October 23, 2009, to July 5, 2020. The
results from VAR and BEKK-GARCH models demonstrate a weak vola-
tility spillover effect among the markets, while a strong impact exists
between carbon and Brent oil prices. Addressing the third phase of
EU-ETS, Xiao et al. (2021) analyze the multiscale interplay of
higher-order moments between carbon and energy markets using the
Barunik-Krehlic model. The estimated results point out weak bidirec-
tional high-order moments spillovers between the carbon and energy
markets in the short-term, but it significantly increases in the long-term.
During the same period, Ren et al. (2021) examine the marginal effects
of energy prices on EUA prices using a Quantile-on-Quantile regression
approach for estimation. The empirical results exhibit quasi-monotonic
increase and negative impacts of oil and coal prices on carbon prices,
with higher absolute values for the gas price effect. In a recent study, Lin
et al. (2021) pay attention to the time-varying spillover mechanism
between the carbon and energy markets using a TVP-VAR model. Their
outcomes from time-interval and time point response functions reveal
time-varying spillover effects from the energy market, particularly coal
prices, to the carbon market, but the effect reduces after three weeks.

A limited number of studies has been devoted to the specific analysis
of interactions between financial and carbon markets. Rodríguez (2019)
uncover the causality direction between carbon and EU major indices,
including CAC40, DAX, FTSE100, FTSEMIB, and IBEX, for the first,
second, and half periods of EU-ETS. The results of the Toda-Yamamoto
co-integration test, along with the causality Granger test, demonstrate
a causality direction from stock indices to the carbon market. Aslan and
Posch (2022) discover the volatility connectedness between FTSE300
and EUA prices, using the Diebold-Yilmaz method for the third and last
phase of the EU-ETS. According to the outcomes, the carbon market is a
net receiver of volatilities from the stock market, and this connection
enhances during the latest energy crisis in the EU.

Based on our knowledge, no prior investigation has been conducted
concerning the linkage between the metal-carbon markets and the
financial-metal-carbon markets. However, there is research on the
interconnectedness between the energy-financial-carbon markets and
the energy-metal-carbon markets. The study of Bataller and Keppler
(2010) is considered a pioneering work in the context of uncovering the
causality direction between carbon-energy-stock markets. Their contri-
bution carries out for the first phase of EU-ETS. The results of Granger
causality test imply causality direction are from energy, coal and gas to
electricity market, and from electricity to EuroStoxx600 and carbon
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Table 1
Summary of the literature on linkage between/among energy-metal-financial-carbon markets.

Author(s) Methodology Main Markets Period Major Findings

Wei et al. (2023) TVP-VAR-DY EUA, MEI index, Brent Oil,
Renewable Energy Stock

Monthly data from May
2005 to September 2021

The time-varying total connectedness varies significantly
over time, with a focus on short-term.

Zoynul Abedin
et al., 2023

Granger causality test,
DCC, DY and BK

EUA, Oil, Coal, Gas, European,
Shanghai Stock Exchange

Daily data from December
16, 2010 to December 29,
2022

Natural gas contributes the most to shocks, while the
European stock exchange contributes the least.

Wu et al. (2022) GARCHSK and QVAR EUA, Oil, Coal, Gas, Copper,
Aluminum, Lead, Zinc, Nickel, Tin

Daily data from July 1,
2015 to February 28,
2022

Significant risk spillover exists among carbon, energy, and
nonferrous metal markets, particularly with the coal
market as the core of this system.

Liu et al. (2022) QVAR EUA, Heating Oil, Gas, Brent Oil,
Gold, Silver, Copper, Lead, Zinc,
Aluminum, Nickel

Daily data from April 1,
2008 to October 29, 2021

The time-varying connectedness between energy, metal,
and carbon markets varies over time.

Jiang and Chen.
(2022)

DY and BK EUA, Gold, Silver, Copper,
Aluminum, WTI Oil, Gas, Coal

From January 1st, 2014 to
March 1st, 2022

Copper and silver, particularly copper, show strong
explanatory power for carbon price fluctuations notably
after the post-COVID-19 outbreak.

Aslan and Posch
(2022)

DY EUA, FTSEE300 From January 1, 2013 to
Jun 1, 2022

During the recent European energy crisis, the EUA receives
volatility from various sectors.

Salvador et al.
(2021)

VAR-DCC-GARCH EUA, UK Gas, Brent Oil, Rotterdam
Coal, SP Clean, Eurostoxx600

Monthly data from
January 2010 to February
2021

The correlation between EUA and other return series is
generally positive but weak.

Yuan et al.
(2021)

TVP-VAR EUA, Brent Oil, Gas, Phlelix
Electricity, STOXX600

Quarterly data from 2008
to 2018

The carbon price shows higher sensitivity to energy prices,
along with stock prices in the short-term, while its response
to stock price changes in the mid-to-long term.

Ren et al. (2021) QQ EUA, Brent Oil, Rot. Coal, UK Gas From Jan 7, 2013 to
March 30, 2019

The energy prices reveal an asymmetric and negative
impacts on carbon price, in which oil and coal prices
indicate increasing effects across carbon quantiles.

Kim et al. (2021) VAR and Wavelet EUA, Coal, Brent Oil, Electricity,
ERIX, STOXX50

From January 1, 2013 to
December 31, 2019

Coal and carbon prices share a negative correlation, while
carbon and renewable energy stock prices have a positive
correlation.

Adekoya et al.
(2021)

GFEVD,
Causality test,

EUA, Crude Oil, Gas, Copper,
Silver, Gold, S&P 500, US $

Weekly Data from
October 2009 to October
2020

Except for copper and the U.S. currency markets, carbon
prices are a net receiver of shocks from various other
markets.

Lin et al. (2021) TVP-VAR-SV EUA, Oil, Gas, Coal From January 1, 2009 to
December 31, 2018

The carbon market is significantly connected with fossil
energy markets, particularly coal. Time-varying spillover
effects last three weeks and weaken over time.

Xiao et al. (2021) BK EUA, Brent Oil, Coal, Gas From January 3, 2013 to
November 1, 2019

There is a bidirectional spillover effects between carbon
and energy markets in short-term, while the long-term
effect is weak.

Zhao and Wang,
2021

SEM EUA, Brent Oil, Gas, CAC40, DAX,
SP Clean, SP500

From February 2015 to
January 2020

CAC40, oil, gas have a direct effect on EUA prices, while
SP500 and SP clean imply an indirect effect on carbon
markets.

Yoon and Lee.
(2020)

VAR and BEKK-GARCH EUA, Brent Oil, Biofuels From October 23, 2009 to
July 5, 2020

Volatility spillover exists within the three markets, in
which Brent oil showing a strong spillover impact

Rodríguez (2019) Toda and Yamamoto
Cointegration and Granger
Causality Tests

EUA, CAC40, DAX, FTSE100,
FTSE-MIB, IBEX

Daily data from April 1st,
2005 to December 15,
2015

The causality effect runs from the stock indices to the
carbon market.

Lovcha et al.
(2019)

SVAR EUA, Oil, Gas, Coal, Electricity,
STOXX

Weekly data from 2008 to
2018

STOXX was a main driver of CO2 price fluctuations in the
past, but its influence has diminished recently, while coal
prices have experienced a contrasting trend.

Chen et al.
(2019)

Asymmetric BEKK EUA, Brent Oil, Gas, Coal From April 22, 2005 to
July 17, 2018

A stable, positive correlation exists among EUA, Brent oil,
and gas prices, while the EUA’s correlation with natural gas
and coal weakened and became more volatile after Phase II
(particularly after GFC) and III.

Chevallier et al.
(2019)

ARCH, Vine Copula EUA, Brent Oil, Gas, Coal, Switch
Energy

From January 1, 2010 to
May 19, 2016

Carbon prices have a weak correlation with energy prices,
showing a negative association with oil and gas.

Dhamija et al.
(2017)

BEKK-MGARCH EUA, Brent Oil, Coal, Gas Daily data from 2005 to
2015

Significant volatility co-movement exists between the EUA
and energy markets.

Zhang and Sun
(2016)

VAR-DCC-GARCH and
BEKK-GARCH

EUA, Coal, Natural Gas, Oil From January 2, 2008 to
September 30, 2014

An unidirectional volatility spillover emerges from coal to
the carbon, while no significant spillover is observed
between the carbon and oil.

Venmans (2015) MGARCH (BEKK-CCC-
Diagonal)

EUA, Brent Oil, Gas, Coal,
Electricity, StoxxEurope600

Daily data from 2008 to
2010

The carbon market is positively correlated to stock market.

Reboredo (2014) MCARR EUA, Brent Oil Daily data from 2010 to
2014

There is volatility dynamics, leverage effects, and the
absence of significant volatility spillovers between the
markets.

Hammoudeh
et al. (2014)

BSVAR EUA, Oil, Gas, Coal, Electricity Both daily and monthly
data from August 2006 to
November 2013

There is a consistent impact between energy to carbon
market.

Reboredo (2013) Copula and ARMA-
TGARCH

EUA, Brent Oil From January 3, 2008 to
September 7, 2011

There is a positive and average symmetric independence
between the markets, revealing no contagion effects.

Bataller and
Keppler.
(2010)

Granger Causality test CO2, Electricity, Coal, Gas,
Eurostoxx600, Temperature

From January 2005 to
December 2007

Coal and gas prices influence carbon market, subsequently
causing Granger effects on electricity, while in the initial
year, the direction reverses.

Chevallier et al.,
2008

GARCH EUA, Oil, Gas, Coal, Electricity,
Weather Index

From July 1, 2005 to April
30, 2007

EUA respond to both energy prices’ forecast errors and
unexpected temperature fluctuations during colder events.
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prices. Using a different approach, Venmans (2015) uncovers the
response of the stock market to energy and carbon returns. Daily data
from 2008 to 2010 are used, and a BEKK-CCC model is applied for the
investigation. The findings show positively weak correlations between
EUA and EuroStoxx600 prices. Lovcha et al. (2015) develop a Structural
VAR model and use weekly data from the mid-second and first-half
periods of EU-ETS to explore the determinants influencing carbon pri-
ces. The Stoxx indices are identified as a significant source of carbon
price variations, but their impact has diminished recently, whereas the
opposite trend is observed for coal prices. More recently, Zhao andWang
(2021) identify the driving factors behind EUA prices by employing a
Structural Equation Model and using data from February 2015 to
January 2020. The empirical outcomes suggest direct impacts of CAC40,
SP500, and SP clean indices on carbon prices. Additionally, energy
prices, including oil and gas, affect carbon prices through the stock
market. Focusing on the third stage of EU-ETS, Kim et al. (2021) utilize a
VAR model and Wavelet analysis to explore the relationship between
energy-financial-carbon markets. The findings reveal a negative rela-
tionship between coal and carbon prices, while a positive relationship
exists between Stoxx50 and EUA prices. Using a time-varying analysis,
Yuan et al. (2021), discover the drivers behind EUA in various time
periods. A TVP-VAR model is used to capture the time-interval and also
time point response of carbon prices to oil, gas, electricity, and Euro-
Stoxx600 prices. Results imply that the carbon price is more sensitive to
energy, particularly oil, and stock prices in short-term, however the
responses change in mid and long-term. A VAR-DCC-GARCH model is
used to conduct the co-movement between EU-ETS, energy and financial
markets between January 2010 and February 2021 by Salvador et al.
(2021). Regarding the outcomes, the correlation between EUA-gas,
EUA-oil, EUA-coal, EUA-EuroStoxx600 are positive, although not
strong. Zoynul Abedin et al. (2023) conduct a comprehensive investi-
gation into the causality direction, dynamic conditional correlation, and
spillover effects among the energy, stock, and carbon markets spanning
the period from December 16, 2010, to December 29, 2022. The findings
suggest that the carbon market Granger-causes the stock market.
Furthermore, the study highlights that natural gas emerges as the most
significant contributor of shocks, whereas the stock market exhibits a
comparatively lower impact as a shock contributor. The following study
deals with spillover effects, in particular Wei et al. (2023), quantify the
time-varying connectedness effects among energy, financial, and carbon
markets throughout all phases of the EU-ETS. To achieve this aim, they
develop a TVP-VAR model in conjunction with the Diebold-Yilmaz
spillover index. The findings indicate that the average total connected-
ness among the markets is not strong, but it exhibits significant fluctu-
ations during periods such as the GFC and the COVID-19 pandemic.

Another aspect of the literature that has received less attention
concerns the relationship between energy, metal, and carbon markets. A
recent study conducted by Adekoya et al. (2021) delve into the trans-
mission of volatility between carbon-energy-metal markets using weekly
data period fromOctober 2009 to October 2020. The researchers apply a
Generalized Forecasting Error Variance Decomposition model acts as
the net receiver of volatility from energy and metal markets, with the
exception of copper. More recently, Wu et al. (2022) address multidi-
mensional risk spillovers among carbon-energy- nonferrous metal mar-
kets, utilizing daily data from July 1, 2015, to February 28, 2022.
Evidence from GARCH with Skewness and Kurtosis (GARCH-SK) and
Quantile VAR (QVAR) models suggests significant spillover effects
among these markets. Notably, the coal market plays a central role in the
carbon-energy-metal system. Likewise, Liu et al. (2022) employ a QVAR
model to capture the dynamic linkage between energy-metal- carbon
markets during the period from April 1, 2008, to October 29, 2021.
Results indicate a strong linkage between these markets, with an
average connectedness of about 51%; however, spillover effects vary
between different time periods. In another study, Jiang and Chen (2022)
aim to understand the time-frequency connectedness among energy,
carbon, and metal markets, specifically considering the impact of

COVID-19, during the period from January 1st, 2014, to March 1st,
2022. They employ the Diebold-Yilmaz spillover index in conjunction
with the Barunik-Krehlic approach. The copper and silver price
demonstrate higher explanatory power for carbon price fluctuations,
particularly during the post-COVID-19 period.

From a methodological point of view on volatility spillover,
connectedness, and causality, research in energy, metal, stock, and
carbon markets has increasingly moved towards more sophisticated
analytical tools to address dynamic interdependencies. Traditional
methods like Granger causality tests and Vector Autoregressive (VAR)
models have been adopted for identifying simple causality and volatility
spillovers (see Sadorsky, 2012; Sari et al., 2010). While these methods
are valuable for examining initial directional relationships, they often
fall short in multiple markets interconnectedness, where dependencies
could evolve over time. For instance, Granger causality tests detect
linear causality but do not capture the intensity or changes in spillovers
as market conditions change. Likewise, static VAR and VAR-GARCH
models can identify volatility linkages, although they may over-
simplify the complex nature of multi-market interactions, making them
less effective in scenarios that involve time-varying connectedness
(Arouri et al., 2012). To address these limitations, researchers have
increasingly adopted more flexible methods, such as copulas and dy-
namic forecast error variance decomposition. For example, Aloui et al.
(2013) use a copula approach to analyze evolving dependencies be-
tween oil and stock markets in Central and Eastern European countries,
providing insights into both dependency strength and structural changes
during economic downturns. Similarly, Bigerna et al. (2022) utilize
rolling-window VAR and variance decomposition methods to measure
volatility spillovers within oil export portfolios, highlighting the ad-
vantages of time-varying techniques for capturing systemic risk and
market contagion in volatile contexts like the energy market. These
advanced methods, however, still face limitations, e.g. they are often
constrained to pairwise relationships or require assumptions about
linearity and stability that may not hold in rapidly changing market
environments.

Building on these recent advancements, the current study applies an
integrated multi-method framework that combines Directed Acyclic
Graphs (DAG) for causality analysis, Canonical Vine copulas (C-Vine
Copula) for capturing multiple dependency structures, and the Time-
Varying Parameter Vector Auto Regressive with Stochastic Volatility
(TVP-VAR-SV) model to describe volatility spillovers. This multi-
dimensional approach allows for a more detailed analysis of the in-
teractions among energy, metal, stock, and carbon markets. By using
DAG, we overcome the limitations of linear causality models by
uncovering the directional and contemporaneous causal relationships
among variables, enhancing our understanding of the causal structure in
a multi-market setting (Cunado and de Gracia, 2014). The C-Vine copula
method enables us to capture non-linear, multi-dimensional de-
pendencies that are essential for understanding how changes in one
market may impact others under varying conditions, an advancement
over traditional pairwise copula models (Aloui et al., 2013). Finally, the
TVP-VAR-SV model is particularly suited for studying time-varying
spillovers, as it dynamically adjusts to shifts in market volatility and
dependency structures over time (Bigerna et al., 2021).

Our paper makes significant contributions to various aspects of the
extant literature as summarized above. Specifically, our study focuses on
exploring causality, connectedness, and spillover effects among carbon-
energy-metal-financial markets from multiple perspectives. In contrast
to many existing works that limit their research to the entire cycle or
specific phases of the EU-ETS, our research covers several time spans,
motivated by the different operating periods of the EU-ETS market and
general economic conditions. When examining market relationships,
many studies rely on Granger causality tests to determine the direction
of the links, although it is well known that this approach is not aimed at
revealing causality linkages. To analyze the spillover effects between the
carbon and other markets, the main methods generally followed by the
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literature are simple techniques (such as the VAR, the MGARCH model,
and the Diebold-Yilmaz variance decomposition spillover, alongside the
Barunik-Krehlic approaches). In order to improve the limitations of
those methods, our research approach not does only focus on the overall
magnitude and direction of volatility spillovers but also sheds light on
the dynamic change processes of these spillovers, which have often been
overlooked in previous studies. Additionally, we pay careful attention to
the time lag and periodicity of the time-varying spillover effect of
returns among the markets. Our study also extends the examination of
market relationships beyond spillover effects between energy-carbon
markets or energy-financial-carbon markets. We delve into the direc-
tional linkage between the metal and carbon market, filling a gap in the
existing literature. Notably, we observe that the level of connectedness
between carbon and metal prices is lower compared to that reported in
previous studies.

To address the limitations in the existing literature on the issue of
volatility transmission mechanism from one market to the other, we
employ a multi-dimensional approach. Firstly, we explore possible cause
and effect relationships among the markets contemporaneously using a
non-parametric DAG method. Secondly, we quantify the degree of
connectedness among the markets employing the C-Vine Copula to
identify the structure and intensity of co-movements. Lastly, we
construct a TVP-VAR-SV model of EUA, energy (Brent oil, UK natural
gas, Rotterdam coal), metal (gold, silver, copper), and financial (Euro-
Stoxx600) returns, combined with Impulse Response Function (IRF)
analysis, to assess dynamic spillover effects from various perspectives,
including time-varying, time lag, and periodicity. Based on our knowl-
edge and on an extended review of previous research, the investigation
of the causality directions and degree of connectedness, together with
the measure of volatility transmissions, is relevant to understand how
different markets are intertwined and to identify specific risk sources. In
order to differentiate the spillover effects and provide a more compre-
hensive results, we study various combinations of markets, in which the
energy and metal market are distinguished including and excluding one
component in each combination (e.g. Rodríguez, 2019). This segmen-
tation leads to a more comprehensive analysis of the specific influences
and relationships among markets. Finally, the sample used in this paper,
namely daily data from April 26, 2005 to December 31, 2022, includes
all trading periods of EU-ETSmarket, and allows us to obtain evidence of
whether the volatility spillover transmission changes over time.

3. Methodology

To examine the influences of energy, metal, and financial markets on
the EU carbon market through causality direction, degree of connect-
edness, and volatility spillover, this study employs a multi-method
approach to test Hypotheses 1-2-3. Specifically, we utilize the Directed
Acyclic Graph (DAG) method to establish the causal direction of in-
fluences, in order to test the hypothesis that energy, metal, and financial
markets exhibit significant causal effects on the EU carbon market
volatility (Hypothesis 1). Next, the C-Vine Copula model is employed to
assess the structure and degree of connectedness, as outlined in the
hypothesis that strong linkages exist among the EU carbon market and
related sectors (Hypothesis 2). Finally, to assess if the EU carbon market
acts as a net receiver of volatility (Hypothesis 3), the Time-Varying
Parameter Vector Auto Regressive Stochastic Volatility (TVP-VAR-SV)
model is adopted to analyze volatility spillover effects from each of these
markets. Each method is selected for its specific strengths. Although the
details are thoroughly outlined in Section A of the Online Appendix, our
empirical approach and a comparative discussion aimed to highlight the
suitability of each method and its robustness over other options are re-
ported in this section.

We start by log-transforming each price series. This helps us compare
variables with different scales. Volatility, a crucial feature of financial
data, is assessed using the GARCH model (Bollerslev, 1986), which
captures high volatility clusters. This phenomenon is well-known in

commodity markets and helps us identify the timing and the magnitude
of price fluctuations. Next, we check the stationarity of our variables, as
non-stationary time series can lead to spurious results. To ensure that
our time-series data are stationary, we perform a series of unit-root tests,
including the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP),
Kwiatkowski–Phillips–Schmidt–Shin (KPSS), and Zivot-Andrews (ZA)
tests. A comparison of these tests is presented in Table A1 of the Online
Appendix. The Zivot-Andrews (ZA) test, in particular, accounts for po-
tential structural breaks, which are likely due to significant economic
events over the period considered in our analysis.

To identify causal effects (Hypothesis 1), we employ the Directed
Acyclic Graph (DAG) approach, which is highly effective for mapping
direct causal relationships among variables, especially contempora-
neous causality. Traditional methods, such as Granger causality, pri-
marily assess time-lagged relationships, which may overlook immediate
influences. DAG provides a clearer understanding of how each market
directly impacts the EU carbon market in real-time, which is crucial for
accurately identifying causation within multiple markets. We specif-
ically use the PC-Max algorithm within the DAG framework because of
its capability to handle multiple causal influences at once, making it
appropriate for our large dataset on carbon, energy, metal, and stock
markets. The PC-Max algorithm allows us to efficiently map the causal
influences, identifying which markets serve as direct drivers of carbon
pricing in the EU carbon market. This focus on contemporaneous cau-
sality provides insight into how each external market factor directly
impacts carbon prices, which is fundamental to testing Hypothesis 1 and
understanding which markets show the strongest directional influence
on carbon market dynamics (Pearl, 2000; Spirtes et al., 2000; Demiralp
and Hoover, 2003).

To assess market interdependencies (Hypothesis 2), we utilize the C-
Vine Copula model, particularly designed to capturing non-linear and
asymmetric relationships that are typical in commodity and financial
markets. Unlike simple correlation measures, like Pearson or Spearman,
Copula models such as C-Vine capture dependencies beyond linear re-
lationships, accounting for the complex ways in which different markets
move together, especially under extreme conditions (tail dependencies).
Given that our dataset includes variables with heavy tails—where
extreme values are more likely—the C-Vine Copula model offers an
advanced approach to mapping these articulated relationships. The C-
Vine Copula model also allows us to designate a core candidate (root
node), around which we can assess the strength of dependencies among
the EU carbon market and the energy, metal, and financial markets. The
degree of connectedness in price movements is confirmed and is in line
with the extant literature (Tarantola et al., 2018; Chevallier et al., 2019;
Pishbahar et al., 2019; Zhou et al., 2020; Ma, 2021; Tan et al., 2022; Man
et al., 2023; Ghazani et al., 2023; Czado et al., 2022).

Lastly, to examine volatility spillovers (Hypothesis 3), we employ the
Time-Varying Parameter Vector Auto Regressive with Stochastic Vola-
tility (TVP-VAR-SV) model, pioneered by Primiceri (2005); Nakajima
(2011). This model is especially suitable for capturing the way volatility
from other markets impacts the EU carbonmarket’s stability, as it adapts
to evolving market conditions and recognizes structural breaks. Tradi-
tional VAR models, with their fixed parameters, are less capable of
reflecting these dynamic relationships, whereas the TVP-VAR-SV model
allows parameters to vary over time. Within the TVP-VAR-SV model, we
perform Markov Chain Monte Carlo (MCMC) simulations to estimate
time-varying volatility effects and identify if the EU carbon market
serves as a net receiver of volatility. This model’s capacity to adjust with
evolving market conditions supports Hypothesis 3 by providing a
detailed description of the volatility spillovers from energy, metal, and
financial markets into the carbon market, particularly during the
sub-periods of EU-ETS (Pakrooh and Pishbahar, 2020; Yuan et al., 2021;
Lang et al., 2023).

This combination of advanced methodologies is supported by a
uniquely comprehensive dataset that enhances the depth of our analysis.
Our dataset is innovative, as it combines high-frequency, long-term, and
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cross-market data. With daily data on energy, metal, financial, and EU
carbon markets, it captures short-term changes and volatility patterns
that wouldn’t be visible with low-frequency data. Covering multiple EU-
ETS periods, from Phase I to Phase IV, it includes a range of regulatory
changes and major events like the 2008 financial crisis (GFC) and
COVID-19. This wide span enables us to study the interactions of these
markets over time and under different economic conditions. By
including different markets, the dataset is used to understand the mo-
dalities according to which volatility in one market can spillover others,
especially in terms of price shocks. Altogether, these features make the
dataset well-suited for studying complex relationships in the EU carbon
market and related markets.

4. Data and preliminary analysis

4.1. Variable definition and data sources

Our dataset includes daily futures prices for EU carbon allowances
(EUR/ton of CO₂), Brent Oil (USD/barrel), UK Natural Gas (USD/
Mmbtu), Rotterdam Coal (USD/ton), Gold (USD/t.oz), Silver (USD/t.
oz), Copper (USD/Lbs), and the STOXX Europe 600 index (see Table 2).
Prices originally collected in USD are converted to EUR using the EUR/
USD exchange rate for consistency across variables. Each variable is
selected for its role in contributing to (or reflecting) the dynamics of the
carbon market, as established in literature review section. The EU car-
bon allowances reflect the direct cost of carbon emissions under the EU
Emissions Trading System (EU-ETS) (Bigerna et al., 2021). Brent oil
prices, a global benchmark for crude oil, are crucial for understanding
carbon pricing dynamics due to oil’s high carbon footprint and its in-
fluence on energy costs (Sadorsky, 2012). UK natural gas prices, rep-
resenting a lower-carbon energy source, help capture the impact of
lower-emission alternatives on the carbon market, as gas plants are
included in the EU-ETS and influence carbon allowance demand
(Nazlioglu et al., 2013). Rotterdam coal prices are included as a measure

of high-emission energy, since coal significantly affects carbon pricing
through industrial emissions and regulatory costs (Ji and Fan, 2016).
Gold, often seen as a safe-haven investment, allows us to assess whether
the carbon market behaves similarly to traditional assets during eco-
nomic crisis (Aloui et al., 2013). Silver and copper, key industrial metals,
are economic activity indicators, with copper frequently used as a proxy
for global economic health, helping us explore how industrial demand
influences carbon prices (Cunado and de Gracia, 2014). Lastly, the
STOXX Europe 600 index reflects European stock market performance,
capturing economic trends and investor sentiment that impact carbon
pricing, especially in volatile periods (Arouri et al., 2012).

Data are collected from April 25, 2005, to December 30, 2022, with a
total of 4531 observations. These data are sourced from open access
databases, namely the European Energy Exchange (EEX),1 Investing2

and the Trading Economics information financial database.3 The daily
frequency and the use of futures prices equip our study to capture high-
frequency volatility spillovers and dependencies among these markets,
contributing to a more detailed analysis of market interdependencies in
line with recent advancements in the literature (Bigerna et al., 2021;
Ahmad and Sharma, 2018). The chosen time frame, extending from
2005 to 2022, spans various economic cycles, including the 2008
financial crisis (GFC), periods of volatility in energy market, and the
COVID-19 pandemic. These distinct economic conditions provide a
robust basis for investigating market behavior under diverse regimes,
adding depth to our analysis of volatility and spillover effects. Moreover,
the dataset’s length and scope increase the comparability of our findings
with those in the literature, as many studies on market spillovers and
causality also consider multi-year data to capture long-term trends
(Arouri et al., 2012; Bigerna et al., 2022). It should be noted that data for
Rotterdam Coal are only available from July 19, 2006.

4.2. Preliminary analysis

To understand how each variable behaves, we start by analyzing log
returns, since they facilitate the comparison across different assets and
help us observe relative price changes over time. Specifically, we
observe the day-to-day price movements and identify patterns of
extreme volatility throughout the different period of the EU-ETS. Brent
oil and coal returns exhibit high fluctuations, with significant negative
skewness, which suggests frequent sharp price drops. In contrast, EU
carbon allowances display a trend of declining fluctuations over time,
indicating a stabilizing effect of regulatory improvements across
different EU-ETS phases. Gold and silver returns, meanwhile, show
relatively lower fluctuations, with gold maintaining a slightly positive
skew, reflecting its function as a stable, safe-haven asset. This diversity
in return profiles motivates the varying risk and response behaviors of
each market (see Table B1 in the Online Appendix).

Volatility is another essential measure, as it tells us how much prices
are fluctuating and signals the level of uncertainty or risk in the market.
By using GARCH models, we estimate volatilities to capture how vola-
tility changes over time and across different EU-ETS phases. For
example, Brent oil and coal show consistently high volatility across
phases, indicating their sensitivity to global economic shocks and
supply-chain disruptions, which often lead to sharp price changes. In
contrast, EU carbon allowances exhibit high volatility in the early phases
of the EU-ETS but show a gradual decline in later phases, suggesting that
regulatory adjustments have contributed to increased stability in the
carbon market. Gold and silver have relatively low volatilities, con-
firming gold’s status as a safe-haven asset with stable returns even
during periods of GFC. Meanwhile, copper and the STOXX Europe 600
index show moderate volatility, reflecting their links to economic cycles

Table 2
Variable definition and data sources.

Variable Definition Unit Frequency Phasesa Source

Carbon Future prices of
EU Carbon
Allowances

(EUR/
ton of
CO2)

Daily Phase
I-IV

European
Energy
Exchange

Oil Future prices of
Brent oil,
Real-time
derived

(USD/
barrel)

Daily Phase
I-IV

Investing

Natural
gas

Future prices of
UK Natural gas,
Real-time
derived

(USD/
Mnbtu)

Daily Phase
I-IV

Investing

Coal Future prices of
Rotterdam Coal,
Real-time
derived

(USD/
ton)

Daily Phase
I-IV

Investing

Gold Gold Futures,
Real-time
derived

(USD/
t.oz)

Daily Phase
I-IV

Investing

Silver Silver Futures,
Real-time
derived

(USD/
t.oz)

Daily Phase
I-IV

Investing

Copper Copper Futures,
Real-time
derived

(USD/
t.oz)

Daily Phase
I-IV

Investing

STOXX600 StoxxEurope600
Real-time
derived

(EUR) Daily Phase
I-IV

Trading
Economics

a The EU-ETS trading periods are categorized into four main phases: 1) Phase
I, from 2005/04/25 to 2007/12/31, with a total of 680 observations; 2) Phase II,
from 2008/01/02 to 2012/12/31, with a total of 1285 observations; 3) Phase III,
from 2013/01/02 to 2020/12/31, with a total of 2051 observations; and 4)
Phase IV, from 2021/01/04 to 2022/12/30, with a total of 515 observations.

1 https://www.eex.com/en/.
2 https://www.investing.com/.
3 https://tradingeconomics.com/.
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and investor sentiment. These volatility profiles provide insight into the
stability characteristics of each market, which are essential for under-
standing the volatility spillover effects in our study (see Tables B2 and
B.3 in the Online Appendix).

In Table 3, we provide key summary statistics on daily returns (Panel
A) and volatilities (Panel B) across each EU-ETS phase. Average daily
returns range from − 0.042 to 0.089, showing modest variation across
phases, while volatilities span from 0.14 to 187.48, reflecting significant
differences across markets. Gold consistently displays the lowest vola-
tility across all phases, supporting its reputation as a stable investment
and hedge during periods of financial uncertainty (Baur and Lucey,
2010). By contrast, the EU carbon prices show a distinct pattern: they
exhibit high volatility in Phase I, reflecting the market’s initial uncer-
tainty during the trial period, but volatility declines steadily in subse-
quent phases. This pattern aligns with findings in related studies, which
suggest that well-defined regulatory frameworks tend to reduce vola-
tility over time (Bigerna et al., 2021). The distribution of returns across
different EU-ETS phases shows that negative skewness is present, espe-
cially in the early phases for commodities like coal and oil. This negative
skewness points to a higher chance of sharp price drops, indicating
greater downside risk, especially in energy markets. (Sadorsky, 2012;
Hammoudeh et al., 2014). In later phases, skewness becomes less severe,
implying at a stabilization in the market dynamics. Kurtosis values are
high across all phases, indicating that most of the series have "fat tails,"
that is they are likely to exhibit extreme movements. For instance, coal
and oil maintain particularly high kurtosis throughout all phases, sug-
gesting that these markets are frequently impacted by price shocks. The
carbon market, however, shows a decrease in kurtosis over time, sup-
porting the notion of increased market stability as the EU-ETS evolves.
Tests for normality (Shapiro-Wilk) confirm that none of the series fol-
lows a normal distribution, strengthening the need for models that
accommodate heavy tails, such as Copula functions, which are essential
in capturing volatility spillover dynamics in variables that are not nor-
mally distributed (Nazlioglu et al., 2013).

We also conduct stationarity tests—the Augmented Dickey-Fuller
(ADF), Phillips-Perron (PP), KPSS, and Zivot-Andrews (ZA) tests—to
check for stationarity at the 5% significance level on the returns and
volatilities (see Table B4 in the Online Appendix). The tests confirm that
all our data series are stationary. The Zivot-Andrews test, in particular,
helps us capture structural breaks, which indicate shifts due to major
events, like the 2008 financial crisis or the COVID-19 pandemic, and
identify the periods of sharp changes in market behavior. The results
suggest several significant breaks, especially during periods of GFC and
the COVID-19 pandemic. These breaks indicate that market behavior
and volatility change in correspondence of major economic events,
highlighting the importance of considering structural shifts when
analyzing spillovers and dependencies across markets.

5. Empirical results and discussions

5.1. Assessing causal impacts of energy, metal, and financial markets on
the EU carbon prices

In this section, we test the hypothesis that energy, metal, and stock
markets have significant causal effects on the EU carbon market, with
directional influences impacting carbon pricing (Hypothesis 1). To test
this hypothesis, we apply the Directed Acyclic Graph (DAG) approach
using the PC-Max algorithm. The main results of the DAG analysis
suggest the presence of a contemporaneous relationship among carbon,
energy, financial, and metal prices in all sub-periods (see Table 4). A
closer look to Phase I demonstrates that stock, gold, silver, copper, oil,
and gas prices cause on impact the price of carbon, indicating that en-
ergy, financial, and metal markets have contemporaneous relationships
with EUA. In other words, changes or any movements in these markets
tend to transmit almost immediately to the carbon market. The results
are in line with Bataller and Keppler (2010), who point out that the

prices of energy, gas and coal Granger-cause the carbon price during
Phase I. This pattern persists in Phase II, implying that the relationships
among these markets are not transient or episodic. Furthermore, the gas
market is the contemporaneous cause of the stock market, that is the
fluctuations in natural gas prices can directly affect the price of stock.
Actually, the significant gas price drop recorded during the GFC may
indicate weaker economic activity and, consequently, a negative effect
on the earnings of companies through the stock channel. During periods
of financial uncertainty, the coal and oil markets are the contempora-
neous cause of metal markets. Changes in energy prices can lead to
adjustments in investment strategies, which in turn influence the metal
markets. Our findings are in line with Rodríguez (2019), who proves
that the causal direction is from stock market to EUA spot prices during
both Phase I and Phase II. Moving to Phase III, the contemporaneous
relationships among these markets become more complex. According to
our results, energy, financial, and metal markets are the contempora-
neous cause of the carbon market, although new “bilateral” relation-
ships emerge between energy-stock, metal-stock, and energy-metal
markets. This suggests that the interconnection between carbon and
other markets has become significantly entangled. Carbon, energy,
financial, and metal markets are closely integrated for several possible
reasons, including the impact of globalization through trade, financial-
ization, market volatility, and advances in technology. The outcomes
from Phase IV suggest that energy, metal, and financial markets
continue to have a contemporaneous effect on the carbon market.
Similarly, to Phase III, the relationships between the pairs of markets
metal-stock, energy-stock, energy-metal still persist; however, our
analysis does not show the complex causal directions observed in Phase
III. These findings support Hypothesis 1, showing that changes in en-
ergy, stock, and metal markets directly impact the carbon market, which
does not operate in isolation. Our results support the conclusion by
Abedin et al. (2023) about the Granger causality from oil and gas prices
to the EU stock market, as well as the absence of Granger causality from
stock to carbon prices.

5.2. Degree of connectedness among the EU carbon and related markets

In this section, we test the hypothesis that there is strong degree of
connectedness among the EU carbon market and the energy, metal, and
financial markets (Hypothesis 2). To test Hypothesis 2, we use the C-
Vine Copula model, which is ideal for identifying multiple, non-linear
relationships and degree of connectedness. Table 5 presents the results
based on the parametric C-Vine Copula models, which show that the
dependence structure between carbon, energy, financial, and metal
markets varies across the sub-periods. In Phase I, the dependence be-
tween the carbon market and other markets is dominated by the oil
market, which exhibits the stronger negative dependence (Kendall’s tau
equal to − 0.27). Given this asymmetric tail dependence, extrememarket
fluctuations in the oil market are transmitted to the carbon market. An
increase in oil price might have a different impact on the CO2 price
compared to a decrease in the oil price of the same magnitude. On the
other hand, the silver market is the second largest spillover transmitter
to the carbon market, with a Kendall’s tau of 0.20, suggesting that both
markets tend to move in the same direction. The reasons for this positive
correlation include the fact that silver is used in various industries, such
as in the production of solar panels, while EUA are tied to industrial
emissions. Additionally, volatility in the silver price can reflect changes
in energy costs. Conversely, the dependence between the carbon market
and other markets is relatively weak and symmetric, that is high (low)
prices are associated with high (low) levels of CO2 emissions. Moving to
Phase II, it is clear that the financial market shows a stronger depen-
dence with the carbon market. In particular, the stock market (Kendall’s
tau equal to − 0.17) shows the most negative significant connection with
the carbon market. Additionally, the coal and silver markets (Kendall’s
tau equal to 0.14) demonstrate positive and moderate dependence with
the carbon market, while the oil, gas, gold, and copper markets show a
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Table 3
Descriptive statistics of daily returns and volatility across the period.

Panel A Returns OBS Mean Std. dev. Min Max Skewness Kurtosis Shapiro Wilk

I Carbon 680 0.015 13.67 − 60.20 335.12 21.53 532.17 14.51a

Oil 680 0.043 0.867 − 2.42 2.91 − 0.006 3.23 2.05a

Gas 680 0.010 1.62 − 6.47 10.86 0.68 7.42 7.25a

Coal 380 0.010 0.58 − 1.88 6.01 3.94 37.77 10.12a

Gold 680 0.049 0.63 − 3.42 2.48 − 0.48 5.032 5.46a

Silver 680 0.053 0.99 − 6.09 3.85 − 1.12 9.49 6.09a

Copper 680 0.053 0.94 − 3.61 4.83 − 0.20 5.20 13.70a

Stock 680 0.021 0.29 − 1.15 1.23 − 0.52 4.67 6.11a

II Carbon 1285 − 0.042 1.18 − 5.57 8.76 0.033 7.043 8.57a

Oil 1285 0.0007 1.16 − 7.42 7.55 0.10 8.11 9.42a

Gas 1285 − 0.032 1.48 − 4.37 11.51 0.92 7.82 9.02a

Coal 1285 − 0.015 0.91 − 10.22 7.02 − 1.73 26.33 12.91a

Gold 1285 0.018 0.75 − 2.79 4.29 0.03 5.56 7.84a

Silver 1285 0.019 1.25 − 8.36 5.92 − 0.577 6.884 8.84a

Copper 1285 0.002 1.11 − 5.58 5.89 − 0.093 5.291 7.32a

Stock 1285 − 0.008 3.44 − 80.29 80.91 0.23 475.8 16.42a

III Carbon 2051 0.034 1.46 − 18.88 10.44 − 1.09 20.70 12.15a

Oil 2051 − 0.017 1.38 − 28.01 17.86 − 3.21 109.90 15.24a

Gas 2051 − 0.007 1.31 − 7.77 8.72 0.25 6.91 9.91a

Coal 2051 − 0.007 0.65 − 7.87 7.44 0.39 38.93 14.61a

Gold 2051 0.001 0.52 − 4.51 2.62 − 0.34 7.84 9.748a

Silver 2051 − 0.004 0.82 − 5.66 3.39 − 0.55 8.70 11.30 a

Copper 2051 − 0.002 0.58 − 2.86 3.01 − 0.09 4.69 7.68 a

Stock 2051 0.007 0.38 − 3.91 2.32 − 1.42 17.25 12.47a

IV Carbon 515 0.075 1.31 − 7.69 7.03 − 0.69 8.05 7.36a

Oil 515 0.031 1.14 − 5.59 3.86 − 0.71 5.78 6.37a

Gas 515 0.036 1.94 − 8.27 6.50 − 0.36 4.37 4.40a

Coal 515 0.089 2.05 − 23.75 13.80 − 2.32 46.93 11.65a

Gold 515 − 0.014 0.51 0.51 2.12 − 0.20 5.24 5.46a

Silver 515 − 0.019 0.91 − 4.96 3.91 − 0.19 7.19 6.79 a

Copper 515 − 0.004 0.77 − 2.46 4.07 0.16 4.50 3.37 a

Stock 515 0.005 0.37 0.37 1.30 − 0.52 5.14 6.05a

Panel B Volatility OBS Mean Std. dev. Min Max Skewness Kurtosis Shapiro Wilk

I Carbon 680 187.48 2969.33 0.632 77453.87 25.96 676.23 14.79a

Oil 680 0.749 0.109 0.651 1.546 3.184 16.823 12.01a

Gas 680 2.678 1.522 1.956 36.03 16.41 345.16 14.11a

Coal 380 0.531 1.732 0.116 40.22 19.29 419.77 14.55a

Gold 680 0.398 0.068 0.338 1.022 3.712 23.757 12.15a

Silver 680 0.993 0.714 0.556 11.73 8.541 105.07 13.70 a

Copper 680 0.896 0.450 0.429 3.958 2.975 14.52 11.98 a

Stock 680 0.080 0.034 0.053 0.388 4.917 34.613 13.07a

II Carbon 1285 1.435 1.262 0.682 29.40 10.79 201.86 15.40a

Oil 1285 1.444 1.084 0.678 18.07 9.85 128.52 15.67a

Gas 1285 2.229 0.693 1.756 11.36 6.24 59.97 15.10a

Coal 1285 1.099 2.832 0.231 75.84 17.33 405.2 16.22a

Gold 1285 0.555 0.203 0.324 2.74 5.33 42.67 14.71a

Silver 1285 1.624 0.725 0.877 11.10 5.31 6.72 14.65 a

Copper 1285 1.239 0.756 0.661 11.56 46.52 68.71 15.12 a

Stock 1285 4.443 8.729 0.233 194.6 18.64 385.06 16.26a

III Carbon 2051 2.178 2.162 0.643 43.69 9.21 128.32 16.77a

Oil 2051 1.807 10.44 0.331 350.95 26.66 790.12 17.93a

Gas 2051 1.826 1.487 0.793 25.85 7.12 76.66 16.66a

Coal 2051 0.748 3.489 0.101 82.94 16.47 322.33 17.74a

Gold 2051 0.279 0.122 0.160 2.155 5.33 52.91 15.84a

Silver 2051 0.655 0.206 0.479 3.450 7.18 71.67 16.68 a

Copper 2051 0.347 0.098 0.259 1.567 3.90 28.03 15.46 a

Stock 2051 0.140 0.183 0.056 4.355 14.10 261.70 17.41a

IV Carbon 515 1.673 1.235 0.853 17.839 7.35 81.24 12.62a

Oil 515 1.302 0.630 0.850 8.219 6.43 57.53 12.69a

Gas 515 3.775 1.177 1.966 14.750 3.85 25.67 11.49a

Coal 515 4.175 1.450 3.915 34.612 18.43 379.42 13.78a

Gold 515 0.244 0.071 0.166 0.671 2.55 11.48 10.85a

Silver 515 0.833 0.161 0.756 3.060 8.09 8.093 12.90 a

Copper 515 0.610 0.214 0.480 4.109 9.78 143.90 12.80 a

Stock 515 0.143 0.064 0.080 0.772 4.53 32.90 11.89a

Notes: the superscript “a” indicates the 1% significance level.
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weak correlation. This is line with Reboredo (2013), who finds a positive
average dependence between the oil and carbon prices during Phase II
and points out that the carbon market can be the net receiver of shocks
from both the stock market and the energy. An increase in stock, silver,
and coal prices might have different impacts on CO2 prices, compared to
a decrease in the prices of the same magnitude. The results of Phase III
are almost similar to the findings in Phases I. The structure of the re-
lationships between carbon and the other related markets is mostly
dominated by the link between stock, silver, and oil markets. The
connection degree between the carbon market and the silver market is
positive (Kendall’s tau around 0.19), which implies a moderate asym-
metric tail dependence. Likewise, the dependence between carbon and
stock markets is positive (Kendall’s tau around 0.23). In contrast, a
negative asymmetric dependency is observed between the carbon mar-
ket and the oil market (Kendall’s tau around − 0.10). These outcomes
suggest that shocks originating in oil, coal, stock and silver markets can
potentially affect the price of carbon. Our findings are also consistent
with the conclusions drawn by Chevallier et al. (2019) about the weak
and negative co-movement between oil, gas, and carbon prices in Phase
III. During Phase IV, stock and metal markets, particularly the copper
market, demonstrate the closest relationship with the carbon market
with a Kendall’s tau of 0.27. The carbonmarket has a positive and strong
connection with the copper market, and any fluctuations in the copper
prices strongly impact the EUA future prices. A rise in copper prices
could have an impact on CO2 prices that is distinct from the effect that a
decrease of the same size in copper prices would have on CO2 prices.
The coal and stock markets display a moderate correlation with the
carbon market (Kendall’s tau values of 0.10 and 0.16, respectively).
Based on the asymmetric tail dependencies, the carbon market can be
the net receiver of shocks from both the coal and stock markets.

Table 4
The contemporaneous causal relationships among Carbon-Energy-Financial-
Metal markets.

Phases Markets Causality Directions

I CO2-Oil-Gold-
EuroStoxx600

CO2-Gas-Gold-
EuroStoxx600

CO2-Oil-Silver-
EuroStoxx600

CO2-Gas-Silver-
EuroStoxx600

CO2-Oil-Copper-
EuroStoxx600

CO2-Gas-Copper-
EuroStoxx600

II CO2-Oil-Gold-
EuroStoxx600

CO2-Gas-Gold-
EuroStoxx600

CO2-Coal-Gold-
EuroStoxx600

CO2-Oil-Silver-
EuroStoxx600

CO2-Gas-Silver-
EuroStoxx600

CO2-Coal-Silver-
EuroStoxx600

CO2-Oil-Copper-
EuroStoxx600

CO2-Gas- Copper
-EuroStoxx600

CO2-Coal- Copper
-EuroStoxx600

III CO2-Oil-Gold-
EuroStoxx600

CO2-Gas-Gold-
EuroStoxx600

CO2-Coal-Gold-
EuroStoxx600

CO2-Oil-Silver-
EuroStoxx600

CO2-Gas-Silver-
EuroStoxx600

CO2-Coal-Silver-
EuroStoxx600

Table 4 (continued )

Phases Markets Causality Directions

CO2-Oil-Copper-
EuroStoxx600

CO2-Gas- Copper
-EuroStoxx600

CO2-Coal- Copper
-EuroStoxx600

IV CO2-Oil-Gold-
EuroStoxx600

CO2-Gas-Gold-
EuroStoxx600

CO2-Coal-Gold-
EuroStoxx600

CO2-Oil-Silver-
EuroStoxx600

CO2-Gas-Silver-
EuroStoxx600

CO2-Coal-Silver-
EuroStoxx600

CO2-Oil-Copper-
EuroStoxx600

CO2-Gas- Copper
-EuroStoxx600

CO2-Coal- Copper
-EuroStoxx600
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Table 5
Results for the C-Vine Copula models.

Phases Markets Tree, Edge Family P1 P2 Kendall’s Tau

I CO2-Oil-Gold-EuroStoxx600 (CO2-Oil) Rotated-Tawn Type 1, 900 − 2.07 0.42 − 0.27
(CO2-Gold) Gaussian 0.08 – 0.05
(CO2-EuroStoxx600) Frank 0.7 – 0.08

CO2-Gas-Gold-EuroStoxx600 (CO2-Gas) Rotated-Tawn Type 2, 1800 1.24 0.17 0.06
(CO2-Gold) Rotated BB8, 2700 − 1.21 − 0.85 − 0.05
(CO2-EuroStoxx600) Frank 0.7 – 0.08

CO2-Oil-Silver-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 900 − 2.07 0.42 ¡0.27
(CO2-Silver) Tawn type 2 1.87 0.32 0.20
(CO2-EuroStoxx600) Frank 0.7 – 0.08

CO2-Gas-Silver-EuroStoxx600 (CO2-Gas) 214, Rotated-Tawn Type 2, 1800 1.24 0.17 0.06
(CO2-Silver) Tawn type 2 1.87 0.32 0.20
(CO2-EuroStoxx600) Frank 0.7 – 0.08

CO2-Oil-Copper-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 900 − 2.07 0.42 − 0.27
(CO2-Copper) Rotated Tawn type 1, 900 − 2.02 0.03 − 0.03
(CO2-EuroStoxx600) Frank 0.7 – 0.08

CO2-Gas-Copper-EuroStoxx600 (CO2-Gas) 214, Rotated-Tawn Type 2, 1800 1.24 0.17 0.06
(CO2-Copper) Rotated Tawn type 1, 900 − 2.02 0.03 − 0.03
(CO2-EuroStoxx600) Frank 0.7 – 0.08

II CO2-Oil-Gold-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 180◦ 1.57 0.05 0.04
(CO2-Gold) Rotated Tawn type 2, 180◦ 1.35 0.04 0.02
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Gas-Gold-EuroStoxx600 (CO2-Gas) Survival Joe 1.06 – 0.03
(CO2-Gold) Rotated Tawn type 2, 1800 1.35 0.04 0.02
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Coal-Gold-EuroStoxx600 (CO2-Coal) Survival BB8 1.36 0.96 0.14
(CO2-Gold) Rotated Tawn type 2, 1800 1.35 0.04 0.02
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Oil-Silver-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 1800 1.57 0.05 0.04
(CO2-Silver) Survival BB8 1.32 0.98 0.14
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Gas-Silver-EuroStoxx600 (CO2-Gas) Survival Joe 1.06 0 0.03
(CO2-Silver) Survival BB8 1.32 0.98 0.14
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Coal-Silver-EuroStoxx600 (CO2-Coal) Survival BB8 1.36 0.96 0.14
(CO2-Silver) Survival BB8 1.32 0.98 0.14
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 ¡0.17

CO2-Oil-Copper-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 1800 1.57 0.05 0.04
(CO2-Copper) Rotated Tawn type 1, 1800 1.88 0.02 0.01
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Gas-Copper-EuroStoxx600 (CO2-Gas) Survival Joe 1.06 0 0.03
(CO2- Copper) Rotated Tawn type 1, 1800 1.88 0.02 0.01
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

CO2-Coal-Copper-EuroStoxx600 (CO2-Coal) Survival BB8 1.36 0.96 0.14
(CO2- Copper) Rotated Tawn type 1, 1800 1.88 0.02 0.01
(CO2-EuroStoxx600) Rotated Tawn type 1, 900 − 2.41 0.21 − 0.17

III CO2-Oil-Gold-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 900 − 1.38 0.22 − 0.10
(CO2-Gold) Survival Clayton 0.05 – 0.02
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Gas-Gold-EuroStoxx600 (CO2-Gas) Rotated Tawn type 2, 2700 − 1.56 0.09 − 0.06
(CO2-Gold) Survival Clayton 0.05 – 0.02
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Coal-Gold-EuroStoxx600 (CO2-Coal) Rotated Tawn type 1, 900 − 1.69 0.14 − 0.10
(CO2-Gold) Survival Clayton 0.05 – 0.02
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Oil-Silver-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 900 − 1.38 0.22 ¡0.10
(CO2-Silver) Survival BB8 3.88 0.43 0.19
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Gas- Silver -EuroStoxx600 (CO2-Gas) Rotated Tawn type 2, 2700 − 1.56 0.09 − 0.06
(CO2-Silver) Survival BB8 3.88 0.43 0.19
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Coal- Silver -EuroStoxx600 (CO2-Coal) Rotated Tawn type 1, 900 − 1.69 0.14 − 0.10
(CO2-Silver) Survival BB8 3.88 0.43 0.19
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Oil-Copper-EuroStoxx600 (CO2-Oil) Rotated Tawn type 1, 900 − 1.38 0.22 − 0.10
(CO2-Copper) Rotated Tawn type 1, 1800 1.37 0.07 0.04
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Gas-Copper-EuroStoxx600 (CO2-Gas) Rotated Tawn type 2, 2700 − 1.56 0.09 − 0.06
(CO2-Copper) Rotated Tawn type 1, 1800 1.37 0.07 0.04
(CO2-EuroStoxx600) t 0.36 3.13 0.23

CO2-Coal-Copper-EuroStoxx600 (CO2-Coal) Rotated Tawn type 1, 900 − 1.69 0.14 − 0.10
(CO2-Copper) Rotated Tawn type 1, 1800 1.37 0.07 0.04
(CO2-EuroStoxx600) t 0.36 3.13 0.23

IV CO2-Oil-Gold-EuroStoxx600 (CO2-Oil) Rotated Tawn type 2, 2700 − 1.51 0.06 − 0.04
(CO2-Gold) Gaussian 0.1 – 0.06

(continued on next page)
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As a consequence, these findings support,Hypothesis 2 showing
strong degree of connections among the EU carbon market and the en-
ergy, metal, and financial markets. Oil, stock, and copper in particular
are the most effective channels of transmission of volatility to the carbon
market. The intensity of this pass-through varies across sub-periods. The
strongest connection is observed between oil and carbon prices in Phase
I, followed by stock prices in both Phase II and Phase III, and finally by
copper prices in Phase IV. Overall, the degree of dependence between
the carbon and oil markets decrease over time, whereas the relationship
with gas remain weak, with coal showing a consistently high degree of
dependence. Conversely, the gold market presents a weak relationship
with the carbon market, whereas the relationships with silver and cop-
per are stronger. The degree of dependence between carbon and stock
markets remains consistently strong throughout the sub-periods.

5.3. Volatility spillovers into the EU carbon market

To test that the EU carbon market receives volatility from energy,
metal, and financial markets (Hypothesis 3), we examine how volatil-
ities in these markets impact the stability of EU carbon prices. We use the
TVP-VAR-SV model to capture volatility spillovers over time and to see
how these connections change under different economic conditions. By
breaking the analysis into subperiods, we can observe changes in vola-
tility across different phases, and capture structural breaks and evolving
patterns in volatility spillovers. We apply Bayesian techniques based on
the MCMC method to estimate the TVP-VAR-SV models for the market
combinations that are most strongly correlated with carbon prices.
Specifically, we use the MCMC algorithm to simulate 20000, 2000 of
which are burnt out. The final estimation results, including posterior
mean, standard deviations, 95% confidence interval, Geweke Converge
Diagnostic (CD) absolute value, and invalid influencing factors of the
estimated parameters are available in Table 6. Accordingly, the CD
statistics stand within the confidence intervals and the null hypothesis of
“parameters converging to the posterior distribution” cannot be rejected
at conventional significance levels, indicating that the parameters have
converged to their posterior distributions. Furthermore, the invalid
influencing factors of the parameters are quite small. Actually, the
maximum value observed is 286.16, implying that at least 70 unrelated
samples can be observed from 20000 simulations. We can also infer that
the sample path appears stable and the autocorrelations consistently
decrease, suggesting that the MCMC algorithm accurately reproduces

samples and parameter distributions. Based on the TVP-VAR-SV models,
we provide the time-interval and time-point impulse functions to
analyze the time-varying spillover effects between the carbon market
and the most correlated markets at different lag periods and specific
points in time. Regarding the time-intervals, we select 1, 2, 3 and 4 days,
while, as for time-points selection, potential outliers are considered and
detected. The time-varying stochastic volatilities of carbon market and
different driving forces are presented in Table 6 across the four different
phases of the EU market.

5.3.1. Phase I
The time-interval responses of carbon to shocks on Brent oil vary

significantly from positive to negative, and as the number of lags in-
creases, the intensity of the carbon response tends to increase. Accord-
ingly, an increase in Brent oil prices has two distinct impacts on
economic growth: 1) it limits economic growth by reducing energy de-
mand and, consequently, carbon emissions, or 2) it stimulates economic
growth due to the substitution effect of oil, which leads economies to use
alternative lower-priced energy sources, such as coal. By comparing the
shock effects over time, we find that in case of a four-day lag, oil has the
most significant positive shock effect, especially in the second half of
2005 and 2006. However, this effect becomes limited and turns negative
when considering the other lags (see green spot line). The possible
reasons behind this phenomenon can be reconducted to the introduction
of the Kyoto protocol, supply disruptions caused by Hurricane Katrina,
and the increasing in global energy demand, driven by China and India.
In the case of time-point impulse functions of carbon to Brent oil prices,
it is evident that the impacts of the shock vary for up to 15 days, reaching
their maximum intensity (− 0.065) on the 13th day. These results are
aligned with Dhamija et al. (2017)’s findings on the volatility
co-movement between markets of EUA and Brent oil, with Cretì et al.
(2012), who show that the oil market is a determinant of carbon prices
in Phase I, and with Hammoudeh et al. (2014)’s conclusions on the
persistent impact of energy price shocks on carbon market during Phase
I.

The impacts of stock shocks on EU carbon prices oscillate between
positive and negative and exhibit large volatility in the latter part of
2006. The stock market shows its largest shock effect on the carbon
market in the four-day lag case (response intensity around 7.0). The
early stages of the GFC cause significant financial turbulence, enhancing
market uncertainty and volatility due to changes in industrial activity.

Table 5 (continued )

Phases Markets Tree, Edge Family P1 P2 Kendall’s Tau

(CO2-EuroStoxx600) BB7 1.03 0.33 0.16
CO2-Gas-Gold-EuroStoxx600 (CO2-Gas) Rotated Tawn type 2, 900 − 2.27 0.07 − 0.07

(CO2-Gold) Gaussian 0.10 – 0.06
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Coal-Gold-EuroStoxx600 (CO2-Coal) Rotated Tawn type 2, 1800 1.59 0.16 0.10
(CO2-Gold) Gaussian 0.10 – 0.06
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Oil-Silver-EuroStoxx600 (CO2-Oil) Rotated Tawn type 2, 2700 − 1.51 0.06 − 0.04
(CO2-Silver) Survival Clayton 0.03 0 0.02
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Gas- Silver -EuroStoxx600 (CO2-Gas) Rotated Tawn type 2, 900 − 2.27 0.07 − 0.07
(CO2-Silver) Survival Clayton 0.03 0 0.02
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Coal- Silver -EuroStoxx600 (CO2-Coal) Rotated Tawn type 2, 1800 1.59 0.16 0.10
(CO2-Silver) Survival Clayton 0.03 0 0.02
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Oil-Copper-EuroStoxx600 (CO2-Oil) Rotated Tawn type 2, 2700 − 1.51 0.06 − 0.04
(CO2-Copper) Rotated Tawn type 1, 1800 3.06 0.33 0.27
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Gas-Copper-EuroStoxx600 (CO2-Gas) Rotated Tawn type 2, 900 − 2.27 0.07 − 0.07
(CO2-Copper) Rotated Tawn type 1, 1800 3.06 0.33 0.27
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16

CO2-Coal-Copper-EuroStoxx600 (CO2-Coal) Rotated Tawn type 2, 1800 1.59 0.16 0.10
(CO2-Copper) Rotated Tawn type 1, 1800 3.06 0.33 0.27
(CO2-EuroStoxx600) BB7 1.03 0.33 0.16
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Table 6
Time-interval impulse response and time-point impulse response results.

Phase Sample Autocorrelations (top),
Paths (middle), and Posterior Densities (bottom) of case (CO2-Oil-Silver-EuroStoxx600)

Estimation Results (α,β,h) of case
(CO2-Oil-Silver-EuroStoxx600)

I

Time impulse grapha of ↑ε Oil→CO2 Time-point impulse graphb of ↑ε Oil→CO2

Time impulse graph of ↑ε Silver→CO2 Time impulse graph of ↑ε EuroStoxx600→CO2

Phase Sample Autocorrelations (top),
Paths (middle), and Posterior Densities (bottom) of case (CO2-Coal-Silver-EuroStoxx600)

Estimation Results (α,β,h) of case
(CO2-Coal-Silver-EuroStoxx600)

II

Time impulse graph of ↑ε Coal→CO2 Time impulse graph of ↑ε Silver→CO2

(continued on next page)
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Table 6 (continued )

Phase Sample Autocorrelations (top),
Paths (middle), and Posterior Densities (bottom) of case (CO2-Coal-Silver-EuroStoxx600)

Estimation Results (α,β,h) of case
(CO2-Coal-Silver-EuroStoxx600)

Time impulse graph of ↑ε EuroStoxx600→CO2 Time-point impulse graph of ↑ε EuroStoxx600→CO2

Phase Sample Autocorrelations (top),
Paths (middle), and Posterior Densities (bottom) of case (CO2-Oil-Silver-EuroStoxx600)

Estimation Results (α,β,h) of case
(CO2-Oil-Silver-EuroStoxx600)

III

Time impulse graph of ↑ε Oil→CO2 Time impulse graph of ↑ε Silver→CO2

Time impulse graph of ↑ε EuroStoxx600→CO2 Time-point impulse graph of ↑ε EuroStoxx600→CO2

(continued on next page)
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Table 6 (continued )

Phase Sample Autocorrelations (top),
Paths (middle), and Posterior Densities (bottom) of case (CO2-Oil-Silver-EuroStoxx600)

Estimation Results (α,β,h) of case
(CO2-Oil-Silver-EuroStoxx600)

Phase Sample Autocorrelations (top),
Paths (middle), and Posterior Densities (bottom) of case (CO2-
Coal-Copper-EuroStoxx600)

Estimation Results (α,β,h) of case
(CO2-Coal-Copper-EuroStoxx600)

IV

Time impulse graph of ↑ε Coal→CO2 Time impulse graph of ↑ε Copper→CO2

Time impulse graph of ↑ε EuroStoxx600→CO2 Time-point impulse graph of ↑ε Copper→CO2

a Time impulse graph, response of CO2 to key factors (i.e. multiple market combinations with the highest degree of connection with the carbon market) for 1 (red
thin solid line), 2 (purple dashed line), 3 (green spot line), and 4 (blue thick solid line) days ahead. ↑ε indicates a unit-standard deviation positive shock to the volatility
of the carbon price.
b Time-point impulse graph, response of CO2 to structural break time of key factors (i.e. multiple market combinations with the highest degree of connection with the

carbon market). ↑ε indicates a unit-standard deviation positive shock to the volatility of the carbon price.
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These effects directly impact carbon prices, in the light of the close link
between industrial output and emissions.

Additionally, the impacts of shocks in the silver market on EU carbon
prices alternate between positive and negative. However, by increasing
the number of time lags, the strength of responses gradually increases,
and, in case of four-day lag, the silver market shows its greatest shock
effect on the carbon market. By the latter part of 2006, we observed a
relevant response intensity (7.5) to silver shocks, suggesting that the
GFC exerts a significant impact on silver demand, consequently causing
fluctuations in the EUA. Despite the financial crisis, the industrial de-
mand for silver, particularly in the solar industries, remain relatively
stable. Stability in industrial demand, coupled with the increased in-
vestment demand due to the crisis, causes significant fluctuations in
silver prices, which, in turn, affect the EU carbon market. This finding
aligns with the conclusions of Liu et al. (2022) regarding the
time-varying connectedness between metals, particularly silver, and the
carbon market.

5.3.2. Phase II
The response of carbon prices to stock price shocks alternate between

positive and negative. The strength and direction of shock effect changes
frequently, reaching its maximum in 2009. The short-term impact of
stocks on carbon price is greater than the long-term impact. In the case
of one-day lag, the stock market has the most significant shock effect,
ranging between − 0.2 and + 0.22. Considering the second half of 2009
and the early part of 2010, the magnitude of the shock impact is sig-
nificant. This is due to the strong market interconnectedness during the
EU Debit Crisis (EDC), as the world economy gradually begins to recover
after the GFC. During this period, despite the positive pressure on fossil
energy prices, firms’ output improves (in particular the performance of
leading companies reflects to the stock prices and increases investors’
returns), thus the demand for EU allowances increases. These findings
are in line with Lin et al. (2021), Yuan et al. (2021), Lovcha et al. (2019),
and Venmes (2015), according to whom EuroStoxx600 is a major source
of carbon price variations. Additionally, it is noticeable that the
time-point responses of carbon to stock shocks last approximately 2–3
days. The responses are positive, reaching a trough at lag 2, and then
begin to diminish.

The time-interval responses of carbon prices to silver market shocks
vary significantly between positive and negative. As the number of lags
increases, the intensity of the carbon response does not follow a clear
trend. By comparing the shock effects over time, we find that, with a
one-day lag, silver has the most significant positive shock effect, espe-
cially before mid-2010. However, this effect becomes limited and turns
negative with longer-term lags. After mid-2010, the responses vary be-
tween negative and positive, based on their short and long-term impacts.
These phenomena can be attributed to the GFC, which leads to
decreased economic and industrial activity, particularly in silver mining
and demand. Additionally, bearing in mind that silver is a key material
in the production of solar panels, an increased demand for silver, driven
by investments in renewable energy, can lead to higher carbon prices as
the market anticipates larger demand for carbon credits to offset emis-
sions from traditional energy sources. Our conclusions are supported by
the findings of Liu et al. (2022), Jiang and Chen. (2002), and Adekoya
et al. (2021) on the volatility spillover from silver to the CO2 prices.

Regarding the effects of shocks in the coal market on the carbon
market, the strength and direction of these shocks are not constant over
time. When the coal price unexpectedly rises, carbon prices typically
respond positively, except in late 2009 and early 2010, suggesting that
an increase in coal prices leads to greater demand for EUA and, conse-
quently, for coal. The coal market has the greatest impact on carbon
prices with a one-day lag before 2010. As the number of lags increases,
the strength of the carbon market’s response gradually weakens. After
early 2010, the coal market shows the largest impact with a three-day
lag. In 2011, responses peak, ranging between 0.02 and 0.15, and
then experience a dramatic drop until the end of the period. These trends

can be explained by the impact of the GFC, which increased demand for
coal as an alternative fuel. Additionally, many Eastern and Central Eu-
ropean countries heavily depend on coal, and it was the primary fuel for
power generation in the EU during that period. From 2010 to mid-2011,
two bell-shaped curves with peaks are observed, possibly due to firms’
efforts to stimulate economic activity after the GFC, along with the EDC
phenomenon. Our results are consistent with the findings reported by
Lin et al. (2021) and Hammoudeh et al. (2014) regarding the impacts of
coal prices shocks on the EU carbon market.

5.3.3. Phase III
The impacts of stock shocks on EU carbon prices are dominated by

positive responses and exhibit large volatility. This suggests that it is not
possible to identify a clear pattern between 2013 and 2020. According to
our results, an increase in stock prices has two distinct impacts on the
carbon market, that is, it can either limit or stimulate the emissions
indirectly. Additionally, as the number of lags increases, the degree of
the carbon market’s response tends to decrease, although these effects
persist over time. In the case of one-day lag, the stock market shocks
have the greatest effects on the carbon market. In the early years of
Phase III, especially between 2013 and 2015, the magnitude of re-
sponses is smaller than in the later period. This indicates that the carbon
market becomes more sensitive to changes in stock prices, and the in-
formation transmission between the markets is more intense. Several
factors can explain the volatile response of carbon to stock shocks,
including the back-loading structural change in ETS, economic recovery
after the EDS crisis, European Central Bank policies to combat inflation,
the Brexit referendum in 2016, disruptions in global energy oversupply,
and the 2015 Paris agreement on climate change. Regarding the time-
point impulse functions of carbon to stock prices, the impacts of the
shocks last between 1 and 5 days, reaching their maximum intensity
(0.004) on the first day and then gradually diminishing. These outcomes
are close to the conclusions of Lovcha et al. (2019), Salvador et al.
(2021), Kim et al. (2021).

The response of the carbon market to oil market shocks indicates two
types of impacts, one positive, the other occasionally negative. As the
number of lags increases, the magnitude of the carbon market response
decreases. Due to an oversupply disruption between the end-2014 and
mid-2015, the price of Brent oil declines from $ 100 to $ 30. This leads to
an improvement of the performance of leading companies via an in-
crease in energy intensity, which raises the demand for EUA. In the last
period of Phase III, due to various factors, including green energy
transition policies of the EU, OPEC production cuts, geopolitical tensions
between the USA and the Middle East, Brexit, and the impact of COVID-
19, we document a volatile response of the carbon price to changes in oil
prices, with response magnitudes ranging between − 0.02 and − 0.41.
Lin et al. (2021), Yoon and Lee (2020), Adekoya et al. (2021), and
Dhamija et al. (2017) study the volatility spillovers between Brent oil
and EU carbon prices and come to conclusions very close to our findings.

The response of carbon prices to silver price shocks alternate be-
tween positive and negative, although strength and direction of the
shock effect change frequently. Accordingly, a bell-shaped pattern of
this response, with its maximum magnitude in 2016, is observed, fol-
lowed by an uncertain and volatile trend. An increase in silver price can
either stimulate or dampen carbon prices over time, which aligns with
the findings by Jiang and Chen (2022). The intensity of carbon market’s
response to changes in silver prices ranges between − 0.011 and+0.021.
In the case of one-day lag, the silver market shocks have the largest
effects on the carbon market. As the number of lags increases, the size of
carbon’s response tends to decrease before mid-2015, while the opposite
occurs after, a pattern documented also by Liu et al. (2022). This sug-
gests that the carbon market becomes more sensitive after the Paris
Agreement in 2015. Additionally, several factors can explain the change
in the carbon price response to silver prices, including the EU’s energy
and environment concerns, as well as shifts in power generation towards
cleaner fuels, which result in an increase in silver mining.

P. Pakrooh and M. Manera Resources Policy 99 (2024) 105408 

16 



5.3.4. Phase IV
The response of the carbon market to stock market shocks indicates

two types of impacts, one positive, the other negative, reaching its
maximum in the first quarter of 2021. The long-term impact of stocks on
carbon prices is greater than the short-term impact. In the case of four-
day lag, the stock market shocks have the most significant effects,
ranging between − 0.001 and 0.0042. During early 2021, due to the post
COVID-19 pandemic and lockdowns, the magnitude of the shock impact
is significant. As the world economy gradually begins to recover after
widespread vaccination in the EU, the responses diminish considerably.
This implies that the stock market shocks, occurring during the COVID-
19 pandemic and invasion of Russia into Ukraine, do not persist over
time and they are noticeably smaller compared to the effects of the GFC
(Pappas et al., 2023). This picture is supported by the time-point
response functions of the stock market to the carbon market, which
last approximately 1–5 days. The responses are negative, reaching a
peak at lag 2, and then start to decline.

In examining the response function of the carbon market to coal, it
emerges that the response is dominated by positive responses and ex-
hibits large volatility in 2021. As the number of lags increases, the
magnitude of the carbonmarket responses decreases. During the COVID-
19 pandemic lockdowns, the magnitude of the shock impacts is large,
around 0.16. This value can be attributed to reduced economic activity,
which leads to fluctuations in coal demand and disrupts supply, conse-
quently affecting the demand for EUA. By comparing the size of these
responses, the coal market is the highest contributor to shocks to the
carbon market, while the stock market has the least impact (Wu et al.,
2022; Zoynul Abedin et al., 2023). With widespread vaccination and the
gradual recovery of the EU economy, these responses diminish slightly.
With the beginning of the Russian invasion into Ukraine, the coal rises,
due to supply shortages, leading to a decline in demand for both coal and
the EUA.

The response of the carbon price to copper market shocks is initially
negative, followed by a positive phase. With a one-day lag, copper
market shocks exhibit a distinct pattern compared to those associated
with mid and long-term lags. Our findings indicate that, before the last
quarter of 2021, the long-term positive response of carbon prices to
copper market shocks follow a bell curve, peaking during the COVID-19
pandemic lockdowns, a pattern documented also by Jiang and Chen
(2022). The magnitude of these shock impacts is around 0.016, and it
can be attributed to reduced economic activity leading to fluctuations in
copper demand and supply disruptions, consequently affecting the de-
mand for EUA. Additionally, as the number of lags increases, the
magnitude of the carbon market’s response decreases. This evidence is
close to the findings of Wu et al. (2022) and Liu et al. (2022).

The results strongly confirm Hypothesis 3, showing that the EU
carbon market is indeed a net receiver of volatility from external mar-
kets, particularly energy and commodities. The analysis highlights how
volatilities in these markets are directly affecting changes in the EU
carbon prices. This finding demonstrates that the EU carbon market is
not isolated; rather, it reacts significantly to volatility in the connected
markets. This effect is particularly evident during times of economic
stress (like GFC), where the stability of the EU carbon market is shaped
by the volatility received from the energy and commodity markets.

6. Robustness checks

In the context of DAG analysis, we employ alternative algorithms
(namely, Fast Casual Inference, FCI and Fast Greedy Equivalence Search,
FGES) to assess the robustness of the results obtained from the Peter-
Clark (PC) max algorithm. The PC max algorithm produces accurate
results, as it efficiently handles large datasets, such as the one used in
our paper and reduces the risk of false causal inferences. Conversely,
both FCI and FGSE methods encounter scalability issues when dealing
with large datasets, they require additional assumptions about the dis-
tribution of latent variables, and are dependent on turning parameters.

Regarding the copula methodology, we apply both R-Vine and D-Vine
copulas to ensure that the chosen copula, C-Vine, satisfies the assump-
tions obtained from the DAG analysis. According to our findings, the
complex structures and a large number of estimated parameters in both
R- and D-Vine copulas are more challenging. In contrast, the C-Vine
copula allows us to select a center variable as a dependent variable when
modelling dependencies. This type of vine copula simplifies our esti-
mations and enhances the interpretability of our results. In the context of
TVP-VAR-SV models, we increase the lag order and the number of
simulations, ranging from 10000 to 30000. Accordingly, we find that lag
1 and 20000 sample simulation provide credible results, that is both
statistically significant and consistent with previous findings.

7. Conclusions and policy implications

The EU-ETS market, settled to reduce carbon emissions, is influenced
by environmental, energy, and economic factors. In the context of EU
carbon market, the relationship between carbon, fossil energy, metal,
and financial markets has been investigated by many scholars, who have
mainly studied the volatility spillover effects between subgroups (typi-
cally pairs) of markets. In this study, we test three key hypotheses on the
EU carbon market connections with energy, metal, and financial mar-
kets, namely direction of causality (Hypothesis 1), degree of connect-
edness (Hypothesis 2), and volatility spillovers (Hypothesis 3).
However, according to our knowledge, no study has paid attention to the
multiple contemporaneous relationships, size of connectedness, strength
and direction of time-varying spillovers, as well as periodicity and time-
lags, among carbon, energy, metal and financial markets. Unlike most
previous studies, this paper combines TVP-VAR-SV models along with
DAG and C-Vine Copula analysis methods to comprehensively analyze
the dynamic spillover effects, and net spillover effects in carbon, Brent
Oil, UK Natural Gas, Rotterdam Coal, Gold, Silver, Copper, and Euro-
Stoxx600 future prices over the period from April 25, 2005 to December
30, 2022. The advanced methods we have chosen are effective in
capturing these multiple connections, allowing us to move beyond a
simple description and gain a deeper understanding of how the EU
carbon market stability is influenced by volatility in other markets. Our
dataset is unique, as it combines high-frequency data across multiple-
markets and covers several EU-ETS phases which allow us to describe
these dynamics in detail. Our findings support Hypothesis 1, showing
that the EU carbon market is significantly influenced by causal effects
from energy and metal markets, that is carbon prices react strongly to
changes in these related markets. For Hypothesis 2, the results confirm
close interdependencies, particularly with energy and metal commod-
ities, which reflect how carbon price volatility is connected to larger
market volatilities. Hypothesis 3 is also supported, since our analysis
shows that the EU carbon market acts as a net receiver of volatility,
especially during periods of GFC or COVID-19, in energy and metal
markets.

The findings of our study shed new insight on the EU-ETS policy
design and can be summarized as follow.

1) Long-term, stable, and multiple relationships among carbon, energy,
metal, and financial markets do emerge. However, some short-term
relationships are observed during different phases of the EU-ETS
market. During Phase I, the trial period of EU-ETS, the carbon mar-
ket is as a net receiver of shocks from oil, gas, coal, gold, silver,
copper, and stock markets. Moving to Phase II, all the previous re-
lationships persist, and a short-term relationship is observed between
energy-stock and energy-metal markets. During the GFC, volatility in
energy prices impacts metal mining, output and, consequently, the
financial performance of firms (Pappas et al., 2023). In Phase III, in
addition to the previously established relationships, short-term
multiple relationships emerge between the pairs of markets
energy-stock, metal-stock, and energy-metal, in accordance with
Rodríguez (2019). This finding can be attributed to the high
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volatility in Brent oil prices, which increases the general price level
and economic risk. This situation urges investors to seek a safe-haven
against economic risks and high inflation (Cheng et al., 2022).
Similar to Phase III, during the final phase of the EU-ETS market, all
relationships remain consistent, except for the short-term link be-
tween metal-stock markets. In conclusion, our results suggest com-
plex but consistent contemporaneous relationships among carbon,
energy, financial, and metal markets across sub-periods. Under-
standing these intricate relationships across different phases of the
EU-ETS market is crucial for carbon market participants, investors,
and policymakers.

2) In this paper the degrees of connectedness among carbon, energy,
metal and financial markets are unveiled and quantified. Our anal-
ysis based on C-Vine Copula models reveals that Brent oil prices are
one of the significant driving factors of volatility transmissions
within the carbon market during Phase I. The GFC triggers an in-
crease in oil prices, which consequently leads to decreased output
and increased demand for EUA. Additionally, we observe large co-
movements between silver prices and carbon prices during this
phase. In Phase II, the carbonmarket is more sensitive to stock prices,
as well as to silver and coal prices, showing a response to changes in
these three variables which is negative and positive, respectively.
This result can be attributed to the GFC and the EDC, during which
many firms either turn to use coal as an alternative fuel or scale down
their activities. These findings are consistent with Ren et al. (2021),
but contrast with the conclusions by Venmans (2015) on the positive
correlation between stock and carbon market during the period
2008–2010. These apparently diverging views can be motivated by
differences in the data periods and methodologies. Moving on to
Phase III, EUA prices are found to be positively correlated with stock
and silver prices while their link to oil is negative, similar to Kim
et al. (2021) and Chevallier et al. (2019). The negative correlation
between energy and carbon markets can be attributed to the intro-
duction of back-loading structural change in ETS, EU implementa-
tion of Green Energy policies, followed by the 2015 Paris Agreement,
Brexit, COVID-19, and disruption in energy supply. In the final phase
of our analysis, we find a positive correlation between carbon prices
and both stock and copper prices. This change in the direction of the
co-movements between coal and carbon markets is influenced by
global economic recovery after COVID-19 and Russian-Ukraine
conflict.

3) Significant volatility spillover effects are observed among the mar-
kets of carbon, oil, coal, silver, copper and stocks, while UK natural
gas and gold markets show the lowest explanatory power for carbon
prices. The time-varying spillover effects fluctuate fiercely between
sub-periods, as noted in Wei et al. (2023). The carbon market is
mostly a net receiver of volatility during the GFC and the
Russian-Ukraine war, as suggested by Aslan and Posch (2022). Re-
sults document reasonable spillover effects between the carbon
market and silver, stock, oil, and coal markets. The coal market
presents a long-run higher spillover effect, reaching its maximum
during Phase IV, in line, among others, with Wu et al. (2022), Yuan
et al. (2021), Lin et al. (2021), Zhang and Sun (2016). Findings for
Phase I of the EU-ETS point to the existence of volatility spillovers
from the silver, stock, and oil market to carbon prices due to several
unprecedented events, including supply disruption and increase in
global energy demand. This aligns with the results of Chevallier et al.
(2008). During Phase II, due to the GFC and the EDC, both the stock
market and the coal market exhibit a high degree of volatility spill-
overs, consistent with Lovcha et al. (2019). Moving to Phase III, weak
volatility spillover effects are observed among energy, metal, stock
and carbon markets. Finally, EUA future prices react not only to coal
prices but also to the copper and stockmarkets, because of the energy
crisis and COVID-19. Regarding the duration of the time-varying
spillover effects, we observe that the energy market, demonstrates
a persisting shock effect during trading periods of the EU-ETS, lasting

between 5 and 15 days, in line with Lin et al. (2021) and Ham-
moudeh et al. (2014).

Our findings have economic implications for investors, firms, and
policy makers interested in predicting the evolution of carbon future
prices. Our measures of causality direction, connectedness degree, and
time-varying spillover transmissions among the markets can support
policy makers in proposing more accurate policies to achieve the 2050
Net Zero Carbon goals. The stability of the EU carbon market has sig-
nificant economic implications, as it is closely linked to volatilities in
energy and commodity markets. Volatilities in these markets directly
impacts carbon prices, which affect industries reliant on carbon allow-
ances and influence overall economic stability. Stabilizing the EU al-
lowances prices can support the general economy by reducing
uncertainty and. More specifically, by helping carbon-intensive in-
dustries to manage costs more effectively and plan for long-term in-
vestments in clean energy. When policy makers design carbon market
policies, they should consider the larger volatility spillover effects and
risk transmissions from fossil energy, metal, and stock markets. Addi-
tionally, policy makers need to pay attention to the magnitude, the
frequency, and the direction of shock transmissions to the carbon
trading prices, due to its reactivity with fossil energy, metal, and
financial markets. Our findings indicate that energy market volatility
has a direct impact on the EU carbon prices. Policymakers could use this
insight to design measures that shield the carbon market from extreme
volatility in energy, metal and stock markets, and to help stabilize the
EU allowances prices for carbon-intensive industries. Ensuring stability
in the EU carbon market is crucial for advancing the EU’s climate goals,
as it reduces uncertainty, and supports the transition to a low-carbon
economy. Investors, who have assets and derivatives in the EU carbon
market in their own portfolios, should precisely monitor volatilities
spillover mechanisms in the fossil energy markets, which are unstable,
different at different timescales and conditions, in order to develop a
more effective hedging strategy and reduce risk. Moreover, investors
should be aware of the energy, metal, and financial markets relation-
ships under different unprecedented events, such as GFC and COVID-19,
if they wish to timely adjust their investment in the EU carbon market.
Furthermore, it seems necessary to stay “tuned” about both short- and
long-term trends in energy markets, which may impact the carbon pri-
ces. Firms, particularly high energy-intensive industrial companies,
should optimize their carbon emissions reduction strategies by adapting
their fossil energy consumption patterns in response to any change be-
tween fossil fuels markets and EUA. In the past, firms have forecasted
carbon prices based on fossil fuel prices, including Brent oil, UK natural
gas, and Rotterdam coal, to choose the best energy bundle. However, the
EU-ETS affects predictions and marginal costs of fuel conservation.
Therefore, firms should not postpone investments on clean-energy
technologies facilitating the transition to lower-carbon production
modes. For this aim, policies should integrate the dynamics of silver and
copper markets to better predict carbon price fluctuations. Given their
role in renewable energy, understanding the trends of these markets can
help in designing more resilient carbon pricing mechanisms. Policy-
makers should promote investments in renewable energy technologies
that rely on silver and copper. This support can stabilize demand for
these metals and reduce volatility in carbon prices, facilitating the
transition to a low-carbon economy.

Our future research agenda contains at least two items. First, we plan
to explore howmarket connectedness changes over time by using a set of
time-varying Copula models. This methodological extension will help us
investigate the evolution of the degree of connectedness among markets
during different sub-periods, especially in response to economic shocks.
Second, we intend to update our dataset for Phase IV, in order to include
recent international events, which would offer a more accurate
description of the intensity of the connection among these markets
during challenging times.
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