
2D Materials
     

PAPER • OPEN ACCESS

Interplay of altermagnetism and weak
ferromagnetism in two-dimensional RuF4

To cite this article: Marko Milivojević et al 2024 2D Mater. 11 035025

 

View the article online for updates and enhancements.

You may also like
Magnetic parity violation and parity-time-
reversal-symmetric magnets
Hikaru Watanabe and Youichi Yanase

-

Surface and interface physics driven by
quantum materials
Shuji Hasegawa

-

Topological aspects of antiferromagnets
V Bonbien, Fengjun Zhuo, A Salimath et
al.

-

This content was downloaded from IP address 149.132.187.56 on 18/10/2024 at 13:47

https://doi.org/10.1088/2053-1583/ad4c73
/article/10.1088/1361-648X/ad52dd
/article/10.1088/1361-648X/ad52dd
/article/10.35848/1882-0786/ad4468
/article/10.35848/1882-0786/ad4468
/article/10.1088/1361-6463/ac28fa


2D Mater. 11 (2024) 035025 https://doi.org/10.1088/2053-1583/ad4c73

OPEN ACCESS

RECEIVED

5 February 2024

REVISED

19 April 2024

ACCEPTED FOR PUBLICATION

16 May 2024

PUBLISHED

30 May 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Interplay of altermagnetism and weak ferromagnetism in
two-dimensional RuF4
Marko Milivojevíc1,2, Marko Orozovíc3, Silvia Picozzi4, Martin Gmitra5,6 and Srd̄an Stavríc3,4,∗
1 Institute of Informatics, Slovak Academy of Sciences, 84507 Bratislava, Slovakia
2 Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia
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Abstract
Gaining growing attention in spintronics is a class of magnets displaying zero net magnetization
and spin-split electronic bands called altermagnets. Here, by combining density functional theory
and symmetry analysis, we show that RuF4 monolayer is a two-dimensional (2D) d-wave
altermagnet. Spin–orbit coupling leads to pronounced spin splitting of the electronic bands at the
Γ point by∼100meV and turns the RuF4 into a weak ferromagnet due to nontrivial
spin-momentum locking that cants the Ru magnetic moments. The net magnetic moment scales
linearly with the spin–orbit coupling strength. Using group theory we derive an effective spin
Hamiltonian capturing the spin-splitting and spin-momentum locking of the electronic bands.
Disentanglement of the altermagnetic and spin–orbit coupling induced spin splitting uncovers to
which extent the altermagnetic properties are affected by the spin–orbit coupling. Our results move
the spotlight to the nontrivial spin-momentum locking and weak ferromagnetism in the 2D
altermagnets relevant for novel venues in this emerging field of material science research.

1. Introduction

A recent discovery of non-relativistic spin split-
ting in electronic bands of materials with com-
pensated collinear magnetic order opened a new
venue in antiferromagnetic spintronics [1–3]. These
intriguing materials constitute a separate magnetic
phase, besides ferromagnets (FM) and antiferro-
magnets (AF), dubbed the name altermagnets (AM)
[4, 5] or, alternatively, antiferromagnets with non-
interconvertible spin-structure motif pair [6–9].
Altermagnets display a profusion of diverse physical
phenomena, including anomalous Hall effect [10],
piezoelectricity [11], and chiral magnons [12];
they can be used for efficient spin-charge inter-
conversion [13], to generate orientation-dependent
spin-pumping currents [14] and to proximitize
superconductor materials [15–17], just to scratch
the manifold of their possible applications.

Many altermagnetic compounds have been clas-
sified so far [18, 19], including MnTe [20, 21],
MnF2 [22], RuO2 [4, 10, 23] and CrSb [24]. In
MnTe the spin splitting of 380meV is experimentally
determined by angle-resolved photoemission spec-
troscopy (ARPES)measurements, thus confirming its
altermagnetic status previously predicted by dens-
ity functional theory (DFT) calculations. For pos-
sible spin-transport applications, apart from themag-
nitude of the splitting energy, the positioning of the
spin-split bands is highly important. In this respect,
CrSb may be a promising candidate for producing
spin-polarized currents as a giant spin splitting of
∼ 600meV occurs just below the Fermi energy [24].

Regarding their dimensionality, all the previ-
ously mentioned altermagnets are three-dimensional
(3D) compounds, and as of now, reports on two-
dimensional (2D) altermagnets are limited. In the
work of Brekke et al [25], it is proposed that

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2053-1583/ad4c73
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1583/ad4c73&domain=pdf&date_stamp=2024-5-30
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9583-3640
https://orcid.org/0000-0002-3018-5830
https://orcid.org/0000-0003-1118-3028
https://orcid.org/0000-0003-2097-0955
mailto:srdjan.stavric@spin.cnr.it


2D Mater. 11 (2024) 035025 MMilivojevíc et al

magnon-mediated superconductivity in a 2D alter-
magnet could result in a superconductor with sub-
stantially enhanced critical temperature. However,
this is accomplished using a microscopic model, and
no specificmaterial has been suggested to test this res-
ult. Very recently, monolayer Cr2Te2O is predicted as
a promising platform for practical realization of the
spin Seebeck and spinNernst effects ofmagnons [26].
Further, it is shown that monolayer MnPS3, which
is a conventional antiferromagnet, can be conver-
ted into altermagnet if one of its S layers is replaced
by Se [27]. However, in thus obtained MnP(S,Se)3
Janus monolayer, the spin splitting of the relevant top
valence band is modest, not exceeding ≈ 10meV in
the best case. Considering this, the endeavor to fabric-
ate the Janus monolayer might be deemed excessively
demanding in comparison to the anticipated benefits.
Hence, for prospective applications in miniature and
highly efficient spintronic devices, it would be benefi-
cial to have 2Dmaterials that inherently exhibit alter-
magnetic properties.

There is yet an important peculiarity concern-
ing 2D magnets in general. Namely, in the absence
of an external magnetic field the long-range order of
spins on a 2D lattice can sustain above T= 0K tem-
perature only if the system possesses the magnetic
anisotropy energy (MAE) [28]. MAE is crucial here
as it gaps the magnon spectra. Otherwise, the low-
energy magnon excitations would destroy the long-
range order at arbitrary non-zero temperatures. In
this respect, altermagnets are not any different from
ferromagnets and antiferromagnets. MAE, in turn,
requires the presence of a sizable spin–orbit coupling
(SOC) in the system. Therefore, for a realistic descrip-
tion of a 2D altermagnet the SOC must be accounted
for. This raises a question—to what extent its non-
relativistic properties, e.g. the hallmark spin splitting
of bands, are affected by SOC?

Here, we show that in the non-relativistic limit
monolayer RuF4 is a 2D altermagnet and we describe
the spin splitting of band structure and spin textures
of the altermagnetic phase. Subsequently, we analyze
the influence of SOC on the altermagnetic proper-
ties. The structure of monolayer RuF4, and its crys-
tallographic and magnetic symmetries, are described
in section 2.1. The altermagnetic phase is analyzed in
section 2.2. Weak ferromagnetism and SOC-induced
spin splitting of bands are exposed in sections 2.3
and 2.4. Finally, we summarize the paper in section 3
with an outlook on the link between altermagnetism
and weak ferromagnetism.

2. Results

2.1. The structure and crystal symmetries of RuF4
monolayer
Monolayer RuF4 is composed of ruthenium atoms
sitting in the centers of fluorine octahedra. It is a

van der Waals material that can be exfoliated from
the bulk compound which was experimentally syn-
thesized in monoclinic P21/c crystallographic space
group (group No. 14) [29]. We will refer to a Ru atom
with its surrounding F ligands as the Ru cluster. In
each Ru cluster, two out of six F atoms belong only
to that cluster, whereas four of them are shared by the
four nearest neighbors. The crystal lattice of mono-
layer RuF4 has two sublattices with symmetrically dis-
tinct Ru clusters, RuA and RuB, that are arranged as
depicted in figure 1.

Two perpendicular lattice vectors that define the
RuF4 plane, a1 and a2, have different lengths, a1 =
5.131 Å and a2 = 5.477 Å, as obtained from our
DFT calculations. Therefore, we will refer to the
two directions defined by these vectors as the shorter
and the longer in-plane directions. The structure of
monolayer RuF4 belongs to the p21/b11 layer group
(layer group No. 17) [30] which has two generators:
the space inversion g1 = I and the non-symmorphic
group element g2 = (Ux|t 1

2
) that is the combination of

two operations each transforming RuA into RuB and
vice versa: a rotation Ux by 180◦ around the shorter
in-plane direction a1 and a fractional lattice trans-
lation t 1

2
= 1

2 (a1 + a2). Therefore, the group sym-
metry consists of four elements, G= {e,g1,g2,g1g2},
where e is the identity element and g1g2 represents a
joint action of the group generators. Importantly, the
crystal structure is centrosymmetric, but the Ru–Ru
bond does not have the point of inversion, meaning
that the Dzyaloshinskii–Moriya interaction can occur
between the Ru magnetic moments [31]. We will dis-
cuss this in detail in the remainder of the manuscript.

2.2. Non-relativistic description of magnetic
properties: 2D altermagnet
RuF4 has a compensated netmagneticmoment due to
the opposite magnetic moments on the two Ru sub-
lattices. Octahedral crystal field of F− ions acts on
Ru4+ ion, leading to the t2g − eg splitting of its 4d
orbitals and leaving two spin-unpaired electrons in
the t2g manifold. Therefore, from the crystal field the-
ory, magnetic moments of 2µB are expected on Ru
atoms. Our DFT calculations give 1.464µB, in agree-
ment with the value reported in [32]. The discrepancy
between the expected and the DFT-calculated mag-
netic moments is due to the hybridization between
the Ru 4d and the F 2p orbitals. Concretely, the F
atoms that belong to a single Ru cluster exhibit mod-
erate magnetic moments of 0.214 µB, induced by the
nearest Ru magnetic moment, that are coupled fer-
romagnetically to that moment. On the other hand,
the F atoms shared between two clusters are bonded
to the two opposite-spin Ru atoms and are thus non-
magnetic. In summary, the magnitude of the mag-
netic moment on each Ru cluster is |m|= |m(Ru)+
2m(F)|= 1.9µB.
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Figure 1. Structure of monolayer RuF4 and a schematic depiction of transformations g1 = I and g2 = (Ux|t 1
2
) that are generators

of its crystallographic group. Distinct Ru clusters are depicted by red (RuA) and blue (RuB) octahedra.

In the absence of an external magnetic field and
without SOC, the direction of magnetic moments
and thus the Néel vector (N) is arbitrary. To per-
form symmetry analysis, we assume that N points
along the longer in-plane lattice direction a2, which
coincides with the y-axis in our choice of coordin-
ate frame (see figure 1). Space inversion g1 has
a trivial effect on magnetic moments as they are
pseudovectors, whereas g2 leaves the magnetic order
invariant because the rotation Ux and the frac-
tional lattice translation t 1

2
each reverse the magnetic

order. Therefore, all the symmetry operations from
the p21/b11 layer group leave the magnetic order
unaltered and are thus the symmetries of the mag-
netic system as well, meaning that the magnetic space
group is equal to its parent crystallographic group
(type-I). Given that (1) the magnetic space group is
of type-I [33] and (2) the combination θI of time
reversal θ and space inversion symmetry I is broken
due to the magnetic order, the non-relativistic spin
splitting in monolayer RuF4 is allowed [8, 18].

In figure 2(a) we plot the band structure ofmono-
layer RuF4 calculated with spin-polarized DFT calcu-
lations. The system is a semiconductor with an indir-
ect band gap of 0.83eV between the valence band
maximum, located on the XY path, and the conduc-
tion band minimum located at S.

Along the chosen k-path in the Brillouin zone
(BZ), the spin-up and spin-down bands are degen-
erate along the ΓX, XS, and ΓY lines, whereas a siz-
able spin splitting ∆En(k) = E↑n(k)− E↓n(k) (n is the
band index) is observable along the ΓS and XY lines.
Notably, of all the bands in the energy window from
−1.5eV below to 1.5eV above EF, the spin split-
ting is the largest for the top valence (V1/2 shown in
figure 2(b)) and the bottom conduction bands (C1/2),
reaching 163meV and 117meV, respectively (yel-
low rectangle in figure 2(a)). The spin-momentum

locking of the bands V1/2 presented in figure 2(c)
clearly shows that monolayer RuF4 is a d-wave alter-
magnet [4].

To model the spin splitting of these bands around
the Γ point we employ a simple time-reversal break-
ing Hamiltonian, compatible with the system’s sym-
metry,

Hss =
1

2
αkxkyσy. (1)

Here σy =±1 and α is the band-dependent para-
meter determined by fitting the model to the DFT
bands. For the V1/2 and C1/2, up to the 25% of theΓX
line, the spin splitting in an arbitrary k-direction can
be described usingαV = 3450meVÅ2 andαC = 2368
meV Å2.

As DFT calculations pointed out, the spin degen-
eracy of bands is not lifted along the ΓX and ΓY lines.
This can be explained by analyzing how the group ele-
ments connect different points of the energy surface
En(kx,ky, s). Keeping the assumption that magnetic
moments are in the y-direction, the action of group
elements reflects on the electronic bands as

g1En
(
kx,ky, s

)
= En

(
−kx,−ky, s

)
,

g2En
(
kx,ky, s

)
= En

(
kx,−ky,−s

)
,

g1g2En
(
kx,ky, s

)
= En

(
−kx,ky,−s

)
. (2)

Based on the equations (2), one concludes that along
ΓX, where k= (kx,0), and ΓY, where k= (0,ky), the
relations

g2En (kx,0, s) = En (kx,0,−s) ,

g1g2En
(
0,ky, s

)
= En

(
0,ky,−s

)
(3)

express the spin degeneracy. On the other hand, these
constraints are not present along an arbitrary k path
and the spin splitting of bands is not forbidden. This

3
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Figure 2. Non-relativistic RuF4 band structure calculated with spin-polarized DFT calculations. In (a), the ΓXSΓYX path is
assumed and the spin splitting energies of the top valence (V1/2) and bottom conduction (C1/2) bands are given in the inset
(yellow rectangle). In (b) the top valence band V1/2 is illustrated once again along the S ′ΓS path, and the d-wave nature of its
spin-momentum locking in the full Brillouin zone (green rectangle) at−0.15eV below the Fermi energy is illustrated in (c).

is exactly the case of the ΓS and XY lines, where
we observe a noticeable non-relativistic spin splitting,
which is the hallmark of the altermagnetic phase.

2.3. SOC turning altermagnet into a weak
ferromagnet
To investigate SOCeffects on themagnetic ordering in
RuF4, we add to the one-electron DFT Hamiltonian
a symmetry-independent relativistic correction. For
more details see section 4. As SOC entangles spin
space and real space, the Néel vector N obtains a
defined crystallographic direction. Our DFT calcula-
tions reveal that the shorter in-plane lattice direction
(the y-axis) is the preferential direction for N, with
MAE separating it from the longer in-plane direction
(x-axis) and from the out-of-plane direction (z-axis)
by 1.12meV/Ru and 7.04meV/Ru, respectively.

Due to SOC, the magnetic moments are getting
canted from the y-axis towards the x-axis by 3.2◦,
as depicted in figure 3(a). Canting lowers the total
energy only slightly (0.08meV/Ru), but it induces a

net magnetic moment of |M|= |mA +mB|= 0.22µB
which points in the +x direction. Therefore, upon
the inclusion of SOC, the monolayer RuF4 changes
its magnetic phase from the altermagnetic to theweak
ferromagnetic [34] (WF) phase.

The direction of the inducedmagneticmoment in
RuF4 can be inferred from the group theory analysis.
In general, the magnetic moment M= (Mx,My,Mz)
of any system must stay invariant under the action
of all the group symmetry elements. Since the inver-
sion g1 has a trivial action on the pseudovector M
through the D representation [35], D(g1)M=M,
whereas the group elements g2 and g1g2 change the
sign of the y and z component of M, D(g2)M=
D(g1g2)M= (Mx,−My,−Mz)≡ (Mx,My,Mz), both
theMy andMz must be zero. Therefore, the net mag-
netic moment of RuF4 must point along the x-axis, in
accordance with our DFT results.

The transition from the altermagnetic to the weak
ferromagnetic phase leaves its fingerprints on the
spin texture. The spin texture is a vector field in

4
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Figure 3. (a) SOC-induced canting of magnetic moments on two sublattices of RuF4. (b) Spin textures of the top valence bands
V1 and V2 at energy−0.15 eV below the Fermi level. (c) Dependence of induced net magnetic moment on the SOC strength.

the reciprocal space defined through the expectation
value of the spin operator s= (sx, sy, sz) in a given
Bloch state |ψn

kx,ky
⟩,

⟨si ⟩nkx,ky = ⟨ψn
kx,ky |si|ψ

n
kx,ky⟩, i = x,y,z. (4)

The spin texture, like the netmagneticmoment, com-
plies with the symmetry of the system. We provide
detailed derivation in appendix A and arrive here
straight at the conclusion by expressing the action of
the group elements on the spin texture,

g1 : ⟨si ⟩nkx,ky = ⟨si ⟩n−kx,−ky ,

g2 : ⟨si ⟩nkx,ky = (−1)1−δi,x ⟨si ⟩nkx,−ky ,

g1g2 : ⟨si ⟩nkx,ky = (−1)1−δi,x ⟨si ⟩n−kx,ky , (5)

where δi,x is the Kronecker delta, equal to 1 if i= x and
0 otherwise.

The equation (5) shows that the spin texture in
the I quadrant of the BZ (kx > 0,ky > 0) is related
to the spin texture in the II, III, and IV through the
action of the group elements g1g2, g1, and g2, respect-
ively. We can illustrate these relations on a concrete
example. In figure 3(b) we show the spin texture of
the valence bands V1/2 at the constant energy sur-
face −0.15eV below the Fermi level. Now, it is clear

that the spin expectation values ⟨sy/z⟩kx,ky from the
II and IV quadrants cancel out the spin expectation
values in the I and III quadrants (actually ⟨sz⟩ is zero
everywhere, which is not shown in the plot). The can-
cellation of the spin expectation values from differ-
ent quadrants of the BZ leads to the vanishing ofMy

and Mz in the real space. Indeed, each component
of the net magnetic moment can be expressed as an
integral of the corresponding spin expectation val-
ues over the BZ,Mi =

∑occ
n

´
BZ⟨si ⟩

n
kx,ky

d2k, where the
‘occ’ denotes that the sum runs over the occupied
states. On the other hand, ⟨sx⟩kx,ky > 0 in all the four
quadrants, yielding non-zeroMx.

In the following, we question the microscopic
mechanism responsible for canting the magnetic
moments. In the work of Wang et al [32] it is shown
that the Dzyaloshinskii–Moriya interaction (DMI)
acting between the Ru moments is mainly respons-
ible for their canting, with some contribution from
the single-ion anisotropy (SIA). The DMI between
the opposite-spin Ru atoms is allowed because the
Ru–Ru bond does not display inversion [31], as we
mentioned in section 2.1. Given that SOC is the com-
mon origin of both the DMI and SIA, the magnitude
of the induced net magnetic moment must depend
on the SOC strength. To shed light on this relation,
we scale the SOC strength in DFT calculations by

5
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using the modified SOC constant λ̃= ξ λ, where the
dimensionless parameter ξ ranges from 0 (no SOC)
to 1 (realistic SOC). Then, we constrain the magnetic
moments in the directions that are canted by angle
α from the y-axis. For a set of directions α the equi-
librium canting angle αξ is found by minimizing the
auxiliary function Eξ(α) = c0 + c2(α−αξ)

2, where
Eξ(α) is the total energy of the system for a particu-

lar canting angleα and SOC strength λ̃= ξ λ. Finally,
for each ξ we perform DFT calculations for magnetic
moments canted by αξ and we calculate the net mag-
netic moment. The plot in figure 3(c) shows that the
net magnetic moment is linear in SOC strength.

The linearity of the dependence M(λ̃) can be
explained by turning to the microscopic expression
for the DMI. First, we noticed that the magnitude
of the Ru cluster’s magnetic moment m=m(Ru)+
2m(F) is almost unaffected by SOC, changing only
slightly from 1.464µB for ξ= 0 to 1.453µB for ξ= 1
while |m(F)| does not change at all, staying 0.214µB.
Second, the magnitudeM= |M| of the net magnetic
momentM=mA +mB and the canting angle αξ are
related by M= 2m sinαξ , where m= |mA/B|. Now,
assuming that canted magnetic moments stay in the
xy-plane, the DMI energy can be expressed as

EDMI =D · (mA ×mB) = Dm2 cosθD sin(2αξ) , (6)

where θD = ∡(D,z). As pointed out by Moriya [31],
themagnitude of theDzyaloshinskii vector is linear in
SOC constant,D∼ λ (hereD∼ λ̃ as we are using the
scaled SOC constant), whereas its direction depends
on the symmetry of the structure. Therefore, the
angle θD does not depend on λ̃ and the DMI energy
can be expressed as EDMI ∼ λ̃ sin(2αξ). As long as
the canting angle is small the approximate relation
EDMI ∼ 2λ̃αξ holds. Noticing that the DMI energy is
quadratic in Dzyaloshinskii vector magnitude [36],
EDMI ∼ D2, the last relation shows that the canting
angle is linear in the modified SOC constant, αξ ∼
λ̃. Finally, for small canting angles, the linearity of
the M(λ̃) dependence stems from the relation M∼
2mαξ ∼ 2mλ̃.

2.4. SOC-induced spin splitting of bands
Spin–orbit coupling, besides inducing net magnetic
moment in the 2D altermagnet RuF4, is responsible
for significant (additional) spin splitting of the elec-
tronic bands. To shed light on this SOC effect, in
figures 4(a) and (b) we plot the band structure calcu-
lated with SOC along the same k-path and in the same
energy window as in the figure 2. In addition, we pro-
ject the spin expectation values ⟨sx⟩kx,ky and ⟨sy⟩kx,ky
over each band to reveal how their spin polarization
evolves along different k-directions.

Due to SOC, the bands V1/2 and C1/2, which
are degenerate in the AM phase along some spe-
cial k-directions, are now split in almost the entire

BZ, displaying highly nonuniform splitting energies
(figure 4(c)). Intriguingly, the non-relativistic (AM-
induced) and relativistic (SOC-induced) spin split-
ting reach their respectivemaxima in different regions
of the BZ: while SOC-induced splitting is maximal
at Γ and S points, where the bands were previously
degenerate in the AM phase, the AM-induced split-
ting in the middle of the ΓS and XY lines is barely
affected by SOC.

Apart from the splitting energies, the polariza-
tion of bands displays non-uniform k-dependence.
For example, the V1/2 bands are polarized in the x-
direction along the ΓX and ΓY lines, with ⟨sx⟩< 0
for V1 and ⟨sx⟩> 0 for V2 (figures 4(a) and (b)). The
polarization in the x-direction along these k-lines is
the most evident for the V7/8 bands. On the other
hand, both ⟨sx⟩ and ⟨sy⟩ are nonzero and vary sub-
stantially along the ΓS and XY lines, meaning that
V1/2 have mixed polarization along these directions.
Also, there are k-directions along which the bands are
almost unpolarized, such as the XS line where ⟨sx⟩ ≈
⟨sy⟩ ≈ 0.

The point that deserves special attention is the lift-
ing of spin degeneracy along the XΓY path. What is
particularly striking is a large spin splitting atΓ, which
is a time-reversal invariant momenta (TRIM) point,

of ∆
V1/2

Γ = 86meV and ∆
C1/2

Γ = 79meV for the V1/2

and C1/2 bands, respectively.Moreover,∆Γ scales lin-
early with the SOC strength, as shown in figure 4(d).
At first glance, this linear splitting seems to occur due
to a nonzero net magnetic moment pointing in the x-
direction, but our additional DFT calculations reveal
that even when the Ru magnetic moments are strictly
constrained in the y-direction (so that M= 0), the
spin splitting of bands along XΓY persists.

To shed light on this, let us consider a non-
relativistic Hamiltonian of the AM phase Hnrel

AM and
include SOC as a perturbation. The complete deriv-
ation is exposed in appendix B but here we dis-
cuss the most important conclusions. Assuming
that two Bloch wavefunctions corresponding to the
same k= (kx,ky) point, |Ψ1⟩kx,ky = |ψ1⟩⊗ |↑⟩ and
|Ψ2⟩kx,ky = |ψ2⟩⊗ |↓⟩, are with the same energy E, the
perturbation HSOC = (∇V× p) ·σ = λL ·σ in the
{|Ψ1⟩kx,ky , |Ψ2⟩kx,ky} basis has the matrix elements of
the form

⟨HSOC⟩= λ

(
ℓy i(ℓx − ℓz)

−i(ℓx − ℓz) ℓy

)
, (7)

where ℓi = ℓi(kx,ky), i = x,y,z, are real num-
bers related to nonzero matrix elements of the
pseudovector operator L, see appendix B. From the
equation (7), the SOC contribution to the level E is
λ(ℓy ± (ℓx − ℓz)), meaning that SOC lifts the degen-
eracy of |Ψ1⟩kx,ky and |Ψ2⟩kx,ky inducing the spin split-
ting of ∆k = 2λ(ℓx − ℓz). The derivation exposed in

6
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Figure 4. Non-collinear relativistic DFT calculations of the band structure for RuF4 along high symmetry lines. (a) spin
expectation values ⟨sx(k)⟩ and (b) ⟨sy(k)⟩ plotted as a band color. (c) spin splitting of the top valence V1/2 and bottom
conduction bands C1/2 is along the same k-path given, with the AM-induced spin splitting plotted for comparison with dashed
lines. (d) spin splitting of V1/2 and C1/2 at the Γ point calculated for the different SOC strength ξ. (e) the difference between spin
splitting energies with and without SOC of V1/2 and C1/2 bands along the ΓS path for different SOC strengths ξ.

appendix B applies to any two degenerate Blochwave-
functions as it only exploits the action of the group
element g2 and the assumption that N points in the
y-direction. Therefore, the conclusions of appendix B
apply to any k point, showing that the linear-in-SOC
spin splitting is a cooperative effect of breaking the
time-reversal symmetry due to the magnetic order
and of the spin–orbit coupling.

The spin degeneracy along the ΓS and XY lines is
lifted already in the AM phase, but the inclusion of
SOC changes this spin splitting drastically. To show
how the SOC-induced splitting gradually develops
over the AM-induced one, we plot the difference of
the SOC-induced and AM-induced splitting energies
for V1/2 and C1/2 bands along the ΓS path for dif-

ferent SOC strengths λ̃= ξ λ (figure 4(e)). As ξ var-
ies from 0 to 1 the SOC-induced splitting increases,
but the fraction of the ΓS path where it dominates
over the AM-induced splitting never surpasses 40%.

Therefore, the AM-induced splitting is still domin-
ant along the ΓS line despite the sizable SOC-induced
spin splitting.

3. Discussion and conclusion

In this work, we have shown that in the non-
relativistic limit, the monolayer RuF4 represents a 2D
d-wave altermagnet. Using the type-I magnetic space
group, we have revealed the symmetry properties of
the non-relativistic spin splitting in the altermagnetic
phase. By applying the theory of invariants, we have
derived a simple model Hamiltonian that captures
the spin-momentum locking of the top valence and
the bottom conduction bands, both of which can
be activated for spin transport by carrier doping. In
the relativistic limit, we have shown that spin–orbit
coupling induces weak ferromagnetism and signific-
antly changes the spin splitting and the spin texture of
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bands. Using the perturbation theory, we explained
the appearance of a sizable SOC-induced spin split-
ting at the time-reversal invariant Γ point, which
is reminiscent of Zeeman splitting but occurs even
in the limit of vanishing net magnetic moment. We
have shown that the magnetic moment induced due
to canting of Ru spins is linear in SOC strength.
This implies that in altermagnetic compounds con-
taining heavy atoms, which exhibit very strong SOC,
the altermagnetic phase could be significantly altered.
The presence of the weak ferromagnetism in our
system, originating from the SOC, could be detec-
ted using the charge-spin interconversion schemes
[37, 38]. By applying a current in the y-direction,
the nonzero spin accumulation due to the Rashba–
Edelstein effect [39] would be a signature of the can-
ted magnetic moments of Ru. Alternatively, weak fer-
romagnetism can be measured using standard mag-
netometry techniques or neutron diffraction [40].

Finally, it is worth noting that Autieri et al [41]
recently highlighted that the emergence of weak fer-
romagnetism in metallic altermagnets is a property
unparalleled in conventional antiferromagnets. As
such, the appearance of weakmagnetization inmetal-
lic compounds can be used to demarcate the conven-
tional antiferromagnets from altermagnets. Yet, as we
have shown in this work, RuF4 is a semiconductor
and we argue that the appearance of SOC-induced
weak ferromagnetism may be a general property of
all the altermagnetic compounds, not just metallic
ones. Actually, this opens additional possibilities once
one realizes that the small component of net mag-
netic moment, induced by SOC, could be employed
as a knob to control the direction of dominant mag-
netic arrangement in altermagnets. Indeed, the Néel
vector in weak ferromagnets can be dragged by a
small external magnetic field using the experimental
technique exposed in the work of Dmitrienko et al
[42]. In this way, one could control the direction of
spin-polarized currents in altermagnets. Therefore,
we strongly believe that the relation between weak
ferromagnetism and altermagnetismwarrants greater
attention, and would stimulate interest to delve into
this intriguing topic.

4. Methods

DFT calculations were performed using the VASP
code [43]. The effects of electronic exchange and cor-
relation were described at the Generalized Gradient
Approximation (GGA) level using the Perdew–
Burke–Ernzerhof (PBE) functional [44]. The Kohn–
Sham wavefunctions were expanded on a plane
wave basis set with a cutoff of 500eV. We used
the projector-augmented wave (PAW)[45] pseudo-
potentials with Ru 4p,5s,4d and F 2s,2p states as
valence states. The lattice constants a1 = 5.131 Å
and a2 = 5.477 Å were obtained from spin-polarized

non-relativistic DFT calculations using the Birch–
Murnaghan equation of state and assuming the
antiparallel arrangement of RuA and RuB magnetic
moments. In the out-of-plane direction, we used the
lattice constant of a3 = 20Å to ensure sufficient separ-
ation between the periodic replicas. The atomic pos-
itions were relaxed until all the forces’ components
dropped below 0.002 eV/Å−2. The Brillouin zonewas
sampled with 10× 9× 1 k points mesh during the
relaxation and with a finer 15× 14× 1 mesh during
the self-consistent field calculations. To find the cant-
ing angle of the Ru magnetic moment we performed
magnetic non-collinear DFT calculations with SOC
and for a set of directions we constrained the mag-
netic moments using the penalty functional [46]. The
SOC in the VASP code is implemented by adding a

termHSOC = h̄2

(2mec)2
K(r)
r

dV(r)
dr σ · L to the one-electron

DFTHamiltonian, where L is the angularmomentum
operator, σ = (σx,σy,σz) is the vector of Pauli spin
matrices, V(r) is the spherical part of the effective
all-electron potential inside the PAW sphere, and
K(r) = (1−V(r)/(2mec2))−2, as explained in [47].
As the SOC is a relativistic interaction, it is assumed
that the predominant contribution comes from the
regions close to the nuclei. Therefore, the matrix ele-
ments of the HSOC operator are neglected outside
the PAW spheres. For plotting bandstructure and
spin texture we used the Pyprocar package [48]. For
setting up DFT calculations and for structural visual-
ization we used the Atomic Simulation Environment
[49], XCRYSDEN [50], and VESTA [51] packages.
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Appendix A. General constraints on spin
expectation values in the relativistic case

Let |ψn
kx,ky

⟩ represent an eigenstate of the altermag-

netic Hamiltonian in a relativistic phaseHrel
AM

Hrel
AM|ψn

kx,ky⟩= En
(
kx,ky

)
|ψn

kx,ky⟩, (A1)

with group symmetry G= p21/b11 of both the
relativistic and/or altermagnetic phase, since themag-
netic space group is equal to the crystallographic
group, see section 2.2. The commutation relation
[d(g),Hrel

AM] = 0 holds for any element g ∈ G, where
d is the representation of the group acting in the
Hilbert space of the Hamiltonian Hrel

AM. For a given
state |ψn

kx,ky
⟩, the spin expectation values are defined

as

⟨si ⟩nkx,ky = ⟨ψn
kx,ky |si|ψ

n
kx,ky⟩, i = x,y,z. (A2)

Using the action of the group element g ∈ G in the
Hilbert space in which the Hamiltonian H acts, the
previous equation can be transformed to

⟨si ⟩nkx,ky = ⟨ψn
kx,ky |d

† (g)d(g) sid
† (g)d(g) |ψn

kx,ky⟩.
(A3)

By analyzing the action of nontrivial group elements
g1 = I , g2 = (Ux|t 1

2
) and g1g2, one obtains general

constraints on the spin expectation values

g1 : ⟨si ⟩nkx,ky = ⟨si ⟩n−kx,−ky ,

g2 : ⟨si ⟩nkx,ky = (−1)1−δi,x ⟨si ⟩nkx,−ky ,

g1g2 : ⟨si ⟩nkx,ky = (−1)1−δi,x ⟨si ⟩n−kx,ky , (A4)

where δi,x is the Kronecker delta, equal to 1 if
i= x and 0 otherwise. To obtain the previous
relations, we have used the following identities

g1 : d(g1) sid
† (g1) = si, d(g1) |ψn

kx,ky⟩= |ψn
−kx,−ky⟩,

g2 : d(g2) sid
† (g2) = (−1)1−δi,x si, d(g2) |ψn

kx,ky⟩= |ψn
kx,−ky⟩

g1g2 : d(g1g2) sid
† (g1g2) = (−1)1−δi,x si, d(g1g2) |ψn

kx,ky⟩= |ψn
−kx,ky⟩. (A5)

In short, the set of equations (A4) show that
in a system with p21/b11 symmetry the spin tex-
ture ⟨sx⟩ can accumulate, yielding a finite net mag-
netic moment in the x-direction, whereas the ⟨sy⟩
and ⟨sz⟩ from different quadrants of the BZ cancel
out, as explained in the main text and illustrated in
figure 3(b).

Furthermore, the equations (A4) in the special
cases of the Γ point and along the ΓX and ΓY lines,
suggest that spin expectation values are nonzero in the
x-direction solely since for ky = 0 (ΓX line) we have

⟨sx⟩nkx,0 = ⟨sx⟩nkx,0,
⟨sy⟩nkx,0 =−⟨sy⟩nkx,0 = 0,

⟨sz⟩nkx,0 =−⟨sz⟩nkx,0 = 0, (A6)

while along the ΓY line (ky = 0) one gets

⟨sx⟩n0,ky = ⟨sx⟩n0,ky ,

⟨sy⟩n0,ky =−⟨sy⟩n0,ky = 0,

⟨sz⟩n0,ky =−⟨sz⟩n0,ky = 0. (A7)

This conclusion is in agreement with the band struc-
ture plotted in figure 4 which shows that along the
XΓY path the x-component of spin is nonzero (blue
and red bands figure 4(a)) while the y-component
equals to zero (gray bands figure 4(b)).

Also, it should be mentioned that the conclusions
agree with the ones given in appendix B, where we
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have shown that the SOC is solely responsible for the
observed splitting along the high-symmetry lines ΓX
and ΓY, as well as in the Γ point.

Appendix B. Perturbation theory of
SOC-induced removal of spin degeneracy
at arbitrary k point

The spin splitting at theΓ point and along theΓX and
ΓY lines can be explained using the perturbation the-
ory, where the SOC Hamiltonian is introduced as a
perturbation. To do this, we apply a first-order degen-
erate perturbation theory, valid for bands not only
along the XΓY path but also at other k points of the
Brillouin zone that host the degenerate bands in the
altermagnetic phase.

We describe the two degenerate states as |Ψ1⟩=
|ψ1⟩⊗ |↑⟩ and |Ψ2⟩= |ψ2⟩⊗ |↓⟩, where |ψ1/2⟩ cor-
responds to the orbital part of the wave function,

while |↑ / ↓⟩ are eigenstates of the Pauli σy operator
for the eigenvalues 1 and −1, respectively. We chose
σy becausewe assumed that the spin quantization axis
is along the y-direction. Now, if the Hnrel

AM is the non-
relativistic one-electron Hamiltonian (AM emphas-
izes here that this is the non-relativistic Hamiltonian
of the altermagnetic phase), then the following rela-
tion holds

Hnrel
AM|Ψ1/2⟩= E|Ψ1/2⟩. (B1)

In the orbital space the action of the group ele-
ment g2 is through the representation dO(g2), while
in the magnetic space acts as a representation dM,
dM(g2) =

(
0 1
1 0

)
, which flips the magnetic moments

dM(g2)|↑ / ↓⟩= |↓ / ↑⟩. Using the commutation rela-
tion between theHamiltonian and the elements of the
group, [dO(g2)⊗ dM(g2),Hnrel

AM ] = 0, one can say that

(dO (g2)⊗ dM (g2))Hnrel
AM|ψ1⟩⊗ |↑⟩= (dO (g2)⊗ dM (g2))E|ψ1⟩⊗ |↑⟩,

Hnrel
AM (dO (g2) |ψ1⟩)⊗ |↓⟩= E(dO (g2) |ψ1⟩)⊗ |↓⟩. (B2)

The last relation is equal to Hnrel
AM |ψ2⟩⊗ |↓⟩=

E|ψ2⟩⊗ |↓⟩, which leads us to conclude that the
relation dO(g2)|ψ1⟩= |ψ2⟩ must hold. Furthermore,
noticing that dO(g2)dO(g2) = dO(g22) = I, where I is
the identity matrix, one concludes that dO(g22)|ψ1⟩=
|ψ1⟩, which suggests that the relation dO(g2)|ψ2⟩=
|ψ1⟩ holds. Therefore, the group element g2 inter-
changes the orbital parts of two degenerate states.
This will be useful for calculating the matrix elements
of the SOC operator in the {|Ψ1⟩, |Ψ2⟩} basis.

To account for the SOC effects we use the first-
order perturbation theory and calculate the allowed
matrix elements of the operator HSOC = (∇V× p) ·
σ, where ∇V represents the gradient of the crys-
tal potential, p the momentum operator, and σ the
Pauli operator. Now, the fact that (∇V× p) trans-
forms as a pseudovector allows us to rewrite the SOC
Hamiltonian as HSOC = λL ·σ, where λ describes
the SOC strength. Note that L is not the angular
momentum but it transforms like one. Now, the mat-
rix elements of HSOC in the {|Ψ1⟩, |Ψ2⟩} basis are

⟨HSOC⟩= λ

(
⟨ψ1|Ly|ψ1⟩ i⟨ψ1|Lx|ψ2⟩− ⟨ψ1|Lz|ψ2⟩

−i⟨ψ2|Lx|ψ1⟩− ⟨ψ2|Lz|ψ1⟩ −⟨ψ2|Ly|ψ2⟩

)
. (B3)

Here we have used that the Pauli operators in
a given spin basis {|↑⟩= 1√

2

(
− i|+⟩+ |−⟩

)
, |↓⟩=

1√
2

(
i|+⟩+ |−⟩

)
} (|±⟩ are eigenvectors of the σz

operator, σz|±⟩=±|±⟩) are equal to σx =
(

0 i
−i 0

)
,

σy =
(
1 0
0 −1

)
, σz =

(
0 −1
−1 0

)
. The symmetry argument

in this case gives us

⟨ψ1|Ly|ψ1⟩= ⟨ψ1|d†O (g2)dO (g2)Lyd
†
O (g2)dO (g2) |ψ1⟩

=−⟨ψ2|Ly|ψ2⟩= ℓy,

(B4)

where we have used that dO(g2)Lyd
†
O(g2) =−Ly and

that ℓy is the real number. Also, we calculate the mat-
rix elements ⟨ψ1|Lx|ψ2⟩ and ⟨ψ1|Lz|ψ2⟩,

ℓ12x = ⟨ψ1|Lx|ψ2⟩

= ⟨ψ1|d†O (g2)dO (g2)Lxd
†
O (g2)dO (g2) |ψ2⟩

= ⟨ψ2|Lx|ψ1⟩=
(
ℓ12x

)∗
,

ℓ12z = ⟨ψ1|Lz|ψ2⟩

= ⟨ψ1|d†O (g2)dO (g2)Lzd
†
O (g2)dO (g2) |ψ2⟩

=−⟨ψ2|Lz|ψ1⟩=−
(
ℓ12z

)∗
,

(B5)
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and use the relations dO(g2)Lxd
†
O(g2) = Lx and

dO(g2)Lzd
†
O(g2) =−Lz.

The conditions obtained in (B5) imply that ℓ12x =
ℓx ∈R and ℓ12z = iℓz, where ℓz ∈R, allowing us to
simplify ⟨HSOC⟩ to

⟨HSOC⟩= λ

(
ℓy i(ℓx − ℓz)

−i(ℓx − ℓz) ℓy

)
. (B6)

Using the final form of ⟨HSOC⟩ given by
equation (B6), the SOC-induced energy contribu-
tion to the degenerate level in the altermagnetic case

is equal λ
(
ℓy ± (ℓx − ℓz)

)
. The spin splitting due to

the SOC is equal to 2λ(ℓx − ℓz). Furthermore, by cal-
culating the eigenvectors of E0I2 + ⟨HSOC⟩, where E0
represents the energy of the double degenerate bands,
while I2 is the 2× 2 identity matrix in the eigenbasis
{|↑⟩, |↓⟩} of the altermagnetic phase, we find that the
spin expectation values have the nonzero compon-
ent in the x-direction only, consistent with the general
conclusion from appendix A.However, the first-order
perturbation theory predicts ⟨sx⟩=±1 (in the units
of h̄/2) at the Γ point, which is not consistent with
the data obtained from first-principles calculations,
where ⟨sx⟩< 1. This implies that the higher-order
perturbation theory needs to be applied to account
for the interaction with the bands higher in energy,
responsible for the reduction of the intensity of the
spin expectation value.
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[4] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X
12 031042
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