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ABSTRACT

Mutation testing is a technique aimed at assessing the effectiveness
of test suites by seeding artificial faults into programs. Although
available for many platforms and languages, no mutation testing
tool is currently available for conversational chatbots, which repre-
sent an increasingly popular solution to design systems that can
interact with users through a natural language interface. Note that
since conversations must be explicitly engineered by the developers
of conversational chatbots, these systems are exposed to specific
types of faults not supported by existing mutation testing tools.

In this paper, we presentMutaBot, a mutation testing tool for
conversational chatbots.MutaBot addresses mutations at multiple
levels, including conversational flows, intents, and contexts. We
designed the tool to potentially target multiple platforms, while
we implemented initial support for Google Dialogflow chatbots.
We assessed the tool with three Dialogflow chatbots and test cases
generated with Botium, revealing weaknesses in the test suites.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Human-centered computing → Natural language
interfaces.
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1 INTRODUCTION

The widespread adoption of conversational chatbots (e.g., 88% of
people had at least a conversation with a chatbot in 2022 [13]), also
known as virtual assistants or conversational agents, in various
domains (e.g., e-commerce, booking, tech support, healthcare, and
more) [1, 14, 28] raised the need of dedicated testing methodologies
and tools [4–8, 15, 24, 27] to assess their effectiveness.

Mutation testing is a popular validation strategy that can be used
to assess the effectiveness of test suites and test case generation
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techniques [17]. It is a fault-based testing technique that consists of
producing many faulty versions of a software under test, calledmu-
tants, by systematically introducing artificial faults in the software.
The faults are introduced through mutation operators, designed
to change the software according to patterns that represent pos-
sible faults. For instance, an operator may replace the name of a
variable in an expression with another one to represent the case
of a wrongly referred variable. The effectiveness of test suites is
assessed by measuring the rate of mutants that they can reveal, that
is, the percentage of mutants that fail (i.e., killed, according to the
mutation testing terminology [17]) when executed with the test
suite.

In order to apply mutation testing in a given context, it is nec-
essary to define a set of operators that can modify the relevant
language elements and entities. Conversational chatbots, differ-
ently from other software, implement a number of components
with a specific structure, even spanning multiple diverse languages,
to encode the supported conversations. For instance, chatbots im-
plemented with Google Dialogflow [12] are composed of several
JSON files that specify both the sentences that a chatbot can use
and the possible flows of conversation that the chatbot can follow,
text files with alternative sentences, and webhooks to trigger ex-
ternal functions. This case is the same for all the chatbot platforms
(e.g., Rasa [26] and Amazon Lex [18]), where conversations and
interactions are implemented with specific language elements.

Currently, there is no mutation testing tool that can properly
target the elements that implement the conversations, taking the
semantics of the mutated element into consideration. On the other
hand, conversations need to be carefully validated since they are
the main and only interface used by chatbots to interact with the
outside world.

In this paper, we introduceMutaBot, to be best of our knowl-
edge the first mutation testing tool for chatbots.MutaBot is charac-
terized by a general-purpose technology-agnostic design, inspired
by the meta-model proposed by Cañizares et al. [9], that can be ex-
ploited to virtually address any chatbot platforms. When a specific
platform has to be addressed, the technology-dependent interfaces,
which provide the operations to locate the items to be mutated in a
given platform, have to be implemented. Our first prototype version
of the tool implements 24 mutation operators specifically designed
for chatbots and provides support to Google Dialogflow [12], which
is among the most popular chatbot platforms.

We preliminary validated our tool with three Dialogflow chat-
bots, applying all the supported mutations, and observed how the
test suites generated with Botium [5], a state-of-the-art automated
test generation framework for chatbots, perform in detecting mu-
tants. Results show that the test suites were capable of killing only
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Figure 1: Chatbot structure meta-model adapted from Cañizares et al. [9].

between 28% and 37% of the mutants, indicating how test case gen-
eration tools for chatbots need to be improved to better cover the
space of the possible conversations.

The paper is organized as follows. Section 2 describesMutaBot,
its architecture and the supported mutation operators. Section 3
presents the procedure we followed to conduct our empirical evalu-
ation and discusses the results. Section 4 discusses the related work.
Finally, Section 5 provides final remarks.

2 MUTABOT APPROACH

The mutation operators implemented in MutaBot are inspired by
the chatbot meta-model originally proposed by Cañizares et al. [9],
which specifies general platform-agnostic chatbot concepts and fea-
tures, derived by analyzing 15 chatbot development platforms [21].

Figure 1 shows the meta-model. A Chatbot is represented as a
class composed of Intents (i.e., the possible goals of a user), Entities
(i.e., the data types that can be used in a conversation), Actions (i.e.,
the possible responses of a chatbot), and conversational Flows (i.e.,
the possible user-bot interaction flows). As chatbots are intended
to be multi-language, Intents declare the TrainingPhrases used to
train the chatbot for each supported language. TrainingPhrases can
use Parameters, typed according to the supported entities. Entities
can be Simple (i.e., a literal with synonyms), Complex (i.e., a com-
position of other entities and literals), or Regex (i.e., values derived
from regular expressions). In response to a user request, a chatbot
performs an Action, which can be of type Text (i.e., a plain text
response), Image (i.e., a graphical object to interact with, shown
to the user), a HTTPRequest and HTTPResponse (i.e., an action in-
voking an external service to respond to the user), or Empty (i.e.,
no action is performed). Finally, a conversational Flow determines
the sequence of interactions between the user and the chatbot, al-
ternatively activating Intents and Actions. We added the notions of
name, lifespan, and parameters of the context data (i.e., the memory

of the chatbot) associated with each conversational flow to the
meta-model, since these are also important concepts that determine
how conversations work in multiple platforms.

We annotated Figure 1 to indicate the 24 operators currently
supported by MutaBot. We list the name of the operator in a call-
out text, and we highlight the area of the meta-model affected by
the operator. We defined operators targeting all the main entities
and features that play a relevant role in a conversation. Unlike
traditional data mutation techniques,MutaBot implements oper-
ators carefully designed to manage the complexity of the target
platform, to identify the software element exactly corresponding
to the conceptual element presents in the meta-model.

The operators defined in MutaBot drastically differ from tradi-
tional mutation operators affecting statements, such as array index
manipulations or decision mutation operators. Instead, the imple-
mented operators address the peculiarities of conversational agents.
In fact, each operator defined on the meta-model may implement
changes of different nature depending on the specific chatbot tech-
nology. For instance, changing the flow of a conversation requires
changing the values stored in the JSON contexts objects for Di-
alogFlow, while they can be directly altered by changing YAML
configuration files in Rasa.

The implemented operators represent faults that may originate
from the imprecise design of the conversations, such as, mistak-
enly swapping the name of one parameter with another one in
a response, forgetting to propagate the context from one intent
to another, or not setting a mandatory parameter as required. We
briefly present below the list of supported operators, and the tool.
For a more detailed view of the operators and the tool, please refer
to the MutaBot project repository1.

1https://gitlab.com/Michael-Urrico/defectinjector-java
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Figure 2: MutaBot architecture.

2.1 Mutant Operators

We list below the mutant operators grouped by the entity that is
affected by the operators, according to Figure 1.
Chatbot: (1) changeChatbotLanguage: replace a chatbot supported
language with another existing2 language, (2) removeChatbotIntent:
remove a chatbot intent, (3) removeChatbotEntity: remove a chatbot
entity, (4) removeChatbotFlow: remove a chatbot flow.
Flow: (1) changeFlowInContextName: replace a flow input context
name with another existing name, (2) removeFlowInContextName:
remove a flow input context name, (3) changeFlowOutContextName:
replace a flow output context name with another existing name,
(4) removeFlowOutContextName: remove a flow output context
name, (5) changeFlowOutContextLifespan: replace a flow output
context lifespan with a random value between 1 and 3, different
from the original one, (6) removeFlowOutContextParameter : remove
a flow output context parameter.
Intents: (1) changeIntentName: replace an intent namewith another
existing name, (2) toggleIntentFallback: switch an intent "fallback"
flag to true/false, (3) removeIntentFallback: remove an intent "fall-
back" flag, (4) changeIntentPriority: replace an intent priority with
a random value between 0 and 1,000,000 (max priority value) dif-
ferent from the original one, (5) removeIntentParameter : remove an
intent parameter.
Parameters: (1) changeParameterName: replace a parameter name
with another existing name, (2) removeParameterName: remove a
parameter name, (3) toggleParameterIsRequired: switch a parameter
"isRequired" flag to true/false, (4) removeParameterPrompt: remove
a parameter prompt.
Inputs: (1) changeSEntityName: replace an entity name with an-
other existing name, (2) removeSEntityName: remove an entity
name, (3) changeSInputValue: replace an input value with a ran-
dom string, (4) changeSInputSynonym: replace an input synonym
with a random string, (5) changeTActionValue: replace a textual
action value with a random string.
2To generate more realistic mutations, we defined the semantics of replace operators
like replace * with another existing * (e.g., changeChatbotLanguage) as replacing the
value of the target property with another existing value of the same property, rather
than using a randomly generated value (e.g., replacing the name of an intent with
another existing intent name). We plan to add the generation of random values in the
future.

Table 1: Subject Chatbots.

Name Domain # Int./Ent./Act. # Tests

AppointmentScheduler [21]a Booking 3/3/19 21(0)
Device [21]b Home Automation 11/2/11 95(28)

Nutrition [8, 20]c Food & Health 4/7/18 46(1)
a https://github.com/priyankavergadia/AppointmentScheduler-GoogleCalendar
b https://dialogflow.cloud.google.com/ (prebuilt)
c https://github.com/viber/apiai-nutrition-sample

2.2 MutaBot Tool

The architecture of the tool is shown in Figure 2. Its core component
is a MutationManager that is responsible of running the individual
mutators available in the tool. Each mutator is implemented as
an abstract operator, responsible of actuating the change, and an
abstract finder, responsible of finding the code element that must be
changed by the operator. These abstract components are refined for
the target platform. Our prototype supports Dialogflow chatbots.
In order to find the elements to mutate,MutaBot knows how to
search within the files that compose a chatbot and process them.

The tool takes in input multiple XML configuration files that
specify the target folder that hosts the code of the chatbot, the type
of desired output (a full copy of the mutated chatbot, or only a copy
of the modified files), and the set of operators that must be applied.
The output consists of a set of mutated chatbots, either including
the full executable code of the bot or only the modified files, and a
report file with the list of seeded mutations.

3 EMPIRICAL EVALUATION

We preliminarily evaluatedMutaBot by generating mutants for
Dialogflow chatbots, and assessing the effectiveness of the test cases
generated with the Botium test case generation tool [5], which is a
white-box testing technique developed by Botium GmbH in 2018,
widely used in both industrial and academic contexts [8, 19, 22].
Note that here a test is a conversation, with specific expectations
on the responses of the chatbot. The conversations automatically
generated by Botium cover the user-bot scenarios that could be
derived from the implementation of the chatbot under test. In the
case of Dialogflow, conversations are derived from the JSON files
that encode the possible requests and responses.

As subjects, we selected three third-party Dialogflow chatbots
of different domains and features, that have been used in previous
studies [8, 20, 21]. Table 1 summarizes their characteristics (i.e.,
name, domain, and number of intents/entities/actions), and the
sizes of the test suites generated by Botium.

For each chatbot, we first ran Botium in generation mode in
order to generate our baseline regression test suite. We then used
Botium in execution mode, repeating five times each test suite, in
order to detect and discard any spuriously failing test or flaky test
case3, that Botium may have generated and that could invalidate
our results. We report, between parentheses in Table 1, the number
of discarded tests.

We applied MutaBot to each chatbot, generating mutants with
all the operators listed in Section 2.1, applying each mutation to
every entity instance present in the target chatbot. For instance, the
3"A flaky test is a test that both passes and fails periodically without any code
changes." [31]

81



ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Urrico et al.

Table 2: Mutants killed over total by Botium test suites.

Chatbots

# Killed/# Equivalent/# Generated (% Killed)

Chatbot Flows Intents Parameters Inputs Total

AppointmentScheduler 4/0/5 (80%) - 4/5/12 (57%) 0/0/3 (0%) 0/0/7 (0%) 8/5/27 (36%)
Device 12/0/19 (63%) 3/2/12 (30%) 11/17/44 (41%) 0/0/8 (0%) 0/0/6 (0%) 26/19/89 (37%)

Nutrition 5/2/12 (50%) - 3/7/16 (33%) 0/0/6 (0%) 1/16/23 (14%) 9/25/57 (28%)

removeChatbotIntent operator was applied to every intent present
in a tested chatbot, generating mutants each one with a different
intent removed. Some mutations were not applicable to all chatbots
because of missing properties to mutate (e.g., removing a context
parameter from a chatbot with no context). We finally indepen-
dently deployed each mutant on Dialogflow and tested it with the
Botium test suite. Table 2 reports the numbers and percentages of
non-equivalent4 mutants killed by the test suites, grouped per type
of mutated element.

Results show that the test suites were capable of killing only
between 28% and 37% mutants in total.

Mutations affecting the chatbot structure, like intent or entity
removal, as well as those affecting intents properties, are easier to
reveal (50%-80% for Chatbot category, 33%-57% for Intents), with
the exception of those targeting the fallback mechanism, which
is activated when the bot cannot understand the message of the
user. The application of toggleIntentFallback operator to an intent
may introduce tricky behaviors in chatbots, which are sometime
detected, but are not always covered by the generated test cases,
as they are mainly covering the positive scenarios. On the other
hand, changing the priority of intents mainly produces equivalent
mutants, as intents are rarely in competition in terms of which
one is supposed to be activated first when a certain user request is
formulated.

Mutations targeting the Flows category are difficult to be re-
vealed (30% in the Device chatbot), since they require the construc-
tion of lengthy and articulated conversations that Botium often
fails to create. This group of mutations requires further investiga-
tion on more complex chatbots, as the conversational flows cannot
be mutated if intents are self-contained. Finally, the mutations tar-
geting parameters and inputs remain mostly undetected (0% for the
Parameters category, and 14% at best for Inputs).

These initial results obtained with MutaBot show how there is
still a significant gap to be addressed in terms of the capability of
test generation tools to exercise chatbot conversations thoroughly.

4 RELATED WORK

Conversational chatbots are increasingly exploited in various con-
texts (e.g., Web, Mobile) to support users 24/7 in a plethora of
activities (e.g., booking, home banking, etc.) [1, 2]. Despite their in-
creasing level of adoption, the dedicated quality assurance solutions
are still limited [8, 19]. Indeed, they are often restricted to individual
modules (e.g., the automated speech recognition systems [3, 16, 25]),

4An equivalent mutant is a mutant that cannot be killed by any test case [17]. We
manually inspected the generated mutants to establish their equivalence to the original
program, comparing the differences between the original and mutated properties and
detecting those that had no impact on the behavior of the chatbot (e.g., changing the
priority of an intent when there are no other intents to compete with).

or they heavily rely on human knowledge and fixtures [6, 7, 30], or
are limited to performance evaluation metrics [10, 11, 24].

Support to test automationmainly consists of frameworks for the
automation of test execution. They include solutions to test Alexa
skills [29], Rasa chatbots [26], and to generically address end-to-
end conversational agents [4, 23]. The commercial tool Botium [5]
represents an initial effort in the design of automated functional
testing tools for chatbots. Input mutation is further addressed in
Charm [8], and by Guichard et al. [15], by building paraphrases
of user queries generated by another tool [27]. Bozic et al. face
the oracle problem of chatbot testing via metamorphic relations,
involving input transformations, such as synonyms replacements
and words removal [6].

The lack of mutation testing solutions for conversational chat-
bots limits the number of faults against which techniques can be
assessed, generating difficulties with large scale experimentation.
To address this gap, this paper proposes MutaBot, a mutation
testing tool specifically designed to target the conversations imple-
mented by chatbots.

5 CONCLUSION

Mutation testing is an important solution to extensively validate
test suites and testing techniques, as it ensures that the software
under test is thoroughly exercised. So far, no mutation testing tool
that can target the conversations implemented by chatbots have
been defined, hindering the opportunity to systematically validate
test suites against a large number of faults.

In this paper, we presented MutaBot, a mutation testing tool
for chatbots. Our tool targets Google Dialogflow chatbots and im-
plements operators to alter the main elements that may impact a
conversation, including intents, conversational flows, entities, and
contexts. We reported an initial validation of our tool that shows
how the state-of-the-art Botium test generation technique may fail
at revealing several mutations, calling for solutions that can more
thoroughly validate conversations.

As future work, we aim at exploiting our platform-agnostic ar-
chitecture to support additional chatbot platforms, such as Amazon
Lex and Rasa, and to cover additional elements of the meta-model.
Further, we plan to add more variants of the existing operators
(e.g., adding operators that mutate properties with random values),
and to finally exploit MutaBot to perform large scale fault-based
assessment of the existing test case generation tools for chatbots.
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