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ABSTRACT
A recognized trend of research investigates generalizations of the Hadamard’s inver-
sion theorem to functions that may fail to be differentiable. In this vein, the present
paper explores some consequences of a recent result about the existence of global Lip-
schitz continuous inverse by translating its assumptions of metric nature in terms of
nonsmooth analysis constructions. This exploration focuses on continuous, but pos-
sibly not locally Lipschitz mappings, acting in finite-dimensional Euclidean spaces.
As a result, sufficient conditions for global invertibility are formulated by means
of strict estimators, ∗ -difference of convex compacta and regular/basic coderiva-
tives. These conditions qualify the global inverse as a Lipschitz continuous mapping
and provide quantitative estimates of its Lipschitz constant in terms of the above
constructions.
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1. Introduction

The celebrated Hadamard’s inversion theorem establishes a connection between the
global invertibility of a mapping and certain differential properties of it. Global as well
as local invertibility is a key property that mappings may have, widely employed in
various contexts often in synergy with more structured properties (see, for instance,
[5]). Such a property can be considered in highly abstract settings, because in its
essence it is free from references to specific structures, such as the topological, the
metric and the differential ones. This freedom however may result in a poor interplay
with the latter ones, provided that they are at disposal, as illustrated by the example
below.

Example 1.1. Let f : R −→ R be defined by

f(x) = x · χQ(x)− x · χR\Q(x) =

 x, if x ∈ Q,

−x, if x ∈ R\Q.

If R is equipped with its usual Euclidean space structure, it is clear that f is nowhere
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differentiable, while is continuous only at 0, yet it is globally invertible, namely there
exists f−1 : R −→ R (which is given, in the present case, by f itself).

That said, it must be recognized that the study of invertibility conditions took ben-
efits from tools of differential calculus and linear algebra. It is well known indeed that
if f : Rn −→ Rn is continuously differentiable in a neighbourhood of a point x̄ ∈ Rn
and its (Fréchet) derivative Df(x̄) : Rn −→ Rn at x̄ is invertible (the Jacobian matrix
Jf(x̄) representing the linear mapping Df(x̄) is nonsingular), then f admits a local
inverse, which is continuously differentiable in a neighbourhood of f(x̄). This classic
result was subsequently generalized to contexts of possible lack of differentiability in
several ways (see, among the others, [2], [4, Theorem 1E.3], [11, Theorem 3.3.1]).

Since derivatives (or their surrogates) provide only a local approximation of a map-
ping, the above result is expected to hold only locally, as it actually does. The great
advance made with the Hadamard’s theorem consists in providing a sufficient condi-
tion for the global invertibility of a mapping in terms of derivatives. Its statement is
recalled below.

Theorem 1.2 (Hadamard’s inversion theorem). Given a mapping f : Rn −→ Rn,
suppose that:

(i) f ∈ C1(Rn);
(ii) for every x ∈ Rn there exists Df(x)−1;

(iii) there exists κ > 0 such that supx∈Rn ‖Df(x)−1‖L ≤ κ.

Then f is a global diffeomorphism, namely:

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is (continuously) differentiable on Rn.

A further step in providing more general sufficient conditions for the global invert-
ibility of a mapping has been done in the early 80s with the appearance of [17], when
the unnecessary smoothness assumption on f was dropped out. Its role was replaced
by Lipschitz continuity and a proper condition on the Clarke subdifferential of the
mapping. Recall that a mapping f : Rn −→ Rm is said to be Lipschitz continuous
with constant ` > 0 in a subset U ⊆ Rn if

‖f(x1)− f(x2)‖ ≤ `‖x1 − x2‖, ∀x1, x2 ∈ U. (1)

Whenever inequality (1) holds in a neighbourhood of a given point x̄, f is said to be
locally Lipschitz around x̄. In such an event, the infimum over all `, for which there
exists a neighbourhood U of x̄ ∈ Rn such that (1) holds, will be denoted throughout
the paper by lip(f ; x̄). According to the Rademacher’s theorem, a mapping f which is
locally Lipschitz around x̄ turns out to be Fréchet differentiable in a (Lebesgue) full
measure subset of a neighbourhood of x̄. Thus, it is possible to define

∂◦f(x̄) = conv {M ∈Mm×n(R) | M = lim
k→∞

Jf(xk), for some {xk}k∈N, xk 6∈ Ωf},

where Ωf denotes the null measure subset of a proper neighbourhood of x̄ containing
all those points at which f is not Fréchet differentiable and convS denotes the convex
closure of the set S.
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Theorem 1.3 (Pourciau’s inversion theorem). Given a mapping f : Rn −→ Rn,
suppose that:

(i) f is locally Lipschitz around each point x ∈ Rn;
(ii) for every x ∈ Rn and for every M ∈ ∂◦f(x), there exists M−1;

(iii) there exists κ > 0 such that supx∈Rn supM∈∂◦f(x) ‖M−1‖ ≤ κ.

Then f is a global homeomorphism, namely:

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is Lipschitz continuous on Rn with constant κ.

Since then, the study of conditions for global invertibility remained in the agenda of
several groups of researchers. A recent trend of investigation is exploring the potential
of concepts emerged in modern variational analysis properly combined with nonsmooth
analysis constructions in deriving new generalizations of Hadamard’s theorem (see,
among the others, [1,7,8,10]).

The purpose of the present paper is to carry on such a trend, sheding light on
some possible combinations, which seem not to have been gleaned yet. More precisely,
following existent approaches, this is done by analyzing local invertibility through
metric regularity, metric injectivity and strong regularity and their stability properties
under perturbation. Such an approach leads to replace generalized derivatives with
looser approximation concepts (strict µ-estimators or coderivatives), which can be
exploited in formulating general conditions for global invertibility.

The contents of the paper are arranged as follows. In Section 2 a general scheme
for deriving conditions for global inversion of possibly nonsmooth mappings is pre-
sented. It stems from a recent global inversion result relying on variational analysis
concepts of purely metric nature. This approach leads to formulate two generaliza-
tions of Hadamard’s theorem, where derivatives are replaced by strict estimators. In
Section 3 a result obtained in the preceding section is specialized to the mappings ad-
mitting strict estimators, which are dually representable by means of pairs of convex
compacta. These representations are known to enjoy a rich calculus. Section 4 comes
back to a more general setting, providing a global invertibility condition, where the
role of derivatives is played by regular/basic coderivatives. Conclusions are gathered
in Section 5.

The notations in use throughout the paper are standard. In an Euclidean space
(Rn, 〈 ·, ·〉), ‖ · ‖ stands for the Euclidean norm, while B[x; r] denotes the closed ball,
with center at x and radius r, while B(x; r) stands for its open counterpart. The unit
sphere centered at the null vector 0 ∈ Rn is indicated by S. The metric enlargement
with radius r of a set S ⊆ Rn is denoted by B(S; r) = {x ∈ Rn | dist (x, S) < r}, where
dist (x, S) = infz∈S ‖z − x‖ is the distance of x from S. S(Rn) denotes the cone of all
sublinear (i.e. p.h. and convex) functions defined on Rn, whereas DS(Rn) = S(Rn)−
S(Rn). K(Rn) is the class of all nonempty convex compact subsets of Rn. By ς (·;S) the
support function associated to the subset S ⊆ Rn is denoted. If ϕ : Rn −→ R∪ {±∞}
is a convex function, ∂ϕ(x) stands for its subdifferential at x ∈ domϕ = ϕ−1(R) in
the sense of convex analysis, whereas if ϕ is concave ∂+ϕ(x) is the superdifferential
of ϕ at x. If l : Rn −→ Rm is a linear mapping, ker l, im l and ‖l‖L indicate the
kernel, the range and the operator norm of l, respectively. If F : Rn ⇒ Rm is a set-
valued mapping, gphF denotes the graph of F . The acronyms p.h. and u.s.c. stand
for positively homogeneous and upper semicontinuous, respectively. Further special
notations will be introduced subsequently, contextually to their use.
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2. A general scheme for global inversion without derivatives

The analysis here exposed starts with a recent global invertibility result established in
[1, Theorem 2.2], which relies on a suitable metric behaviour of mappings, disregarding
their differential properties. Such a metric behaviour deals with a covering property
formalized as follows.

Definition 2.1. Given α > 0 and x ∈ Rn, a mapping f : Rn −→ Rm is said to be
α-covering at x if for every ε > 0 there exists r ∈ (0, ε] such that

B[f(x);αr] ⊆ f(B[x; r]). (2)

The value

cov(f ;x) = sup{α > 0 | for which (2) holds }

is called covering bound of f at x. If inclusion (2) holds true for all x ∈ Rn and r ≥ 0,
with the same value of α, then f will be called α-covering.

In what follows, a mapping f : Rn −→ Rn is said to be locally injective provided
that every x ∈ Rn admits a neighbourhood in which f is injective.

Theorem 2.2 ([1]). Given a mapping f : Rn −→ Rn, suppose that:

(i) f is continuous on Rn;
(ii) f is locally injective;

(iii) f is α-covering at each x ∈ Rn.

Then

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is Lipschitz continuous on Rn with constant α−1.

It is worth noticing that Theorem 2.2 avoids any reference to (traditional or gen-
eralized) differential properties of mappings, while focusing on basic, yet more than
set-theoretic (topological and metric) properties, namely continuity, injectivity and
metric covering. A related feature is that its thesis is not only qualitative (f is a
homeomorphism), but it provides quantitative estimates for the Lipschitz constant of
f−1. In the above theorem, a key role is played by hypothesis (iii), which is indeed
a metric surjection assumption. The property of being α-covering at a given point
is a weaker (point-based) variant of the linear openness (a.k.a. openness at a linear
rate), which is well-known and largely employed in variational analysis. Recall that a
mapping f : Rn −→ Rm is said to be linearly open around a point x̄ ∈ Rn if there
exists a constant α > 0 together with neighbourhoods U of x̄ and V of f(x̄) such that

B(f(x);αr) ∩ V ⊆ f (B(x; r)) , ∀x ∈ U, ∀r > 0. (3)

The quantity

lop(f ; x̄) = sup{α > 0 | ∃U, V for which (3) holds }

is called (exact) linear openness bound of f around x̄ (see [4,13,14]).

4



Remark 1. If a continuous mapping f : Rn −→ Rm is linearly open around x̄, then
for any α < lop(f ; x̄) it is also α-covering at x̄ in the sense of Definition 2.1, and it is
true that lop(f ; x̄) ≤ cov(f ; x̄). On the other hand, if the property of being α-covering
holds true at each point of Rn with the same α > 0, then it implies linear openness
around each point x of Rn, with lop(f ;x) ≥ α. Indeed, as done at the beginning of the
proof of [1, Theorem 2.2] by means of a Caristi-like condition (see [1, Lemma 4.2]),
it is possible to prove that, for a continuous mapping, α-covering at each point of Rn
actually implies α-covering.

The concept of linear openness turned out to be highly fruitful for the development
of several topics in variational and nonlinear analysis, in particular under its equivalent
reformulation in terms of metric regularity. It is indeed known that f is linearly open
around x̄ iff there exists κ > 0 together with a neighbourhood U of x̄ and V of f(x̄)
such that

dist
(
x, f−1(y)

)
≤ κ‖y − f(x)‖, ∀(x, y) ∈ U × V.

The infimum over all κ for which there exist U and V satisfying the above inequality is
called (exact) metric regularity bound of f around x̄ and will be denoted throughout
the paper by reg(f ; x̄). In other terms, both linear openness and metric regularity are
seemingly different manifestations of the same metric behaviour of a mapping. The
linear openness bound and the metric regularity bound are known to be intertwined
by the sharp relation

lop(f ; x̄) · reg(f ; x̄) = 1, (4)

with the conventions that 0 · ∞ = 1, while lop(f ; x̄) = 0 and reg(f ; x̄) = ∞ indicate
the lack of the related property (see [4, Theorem 3E.6], [14, Theorem 3.2]).

In its essence, differentiability of a mapping amounts to be suitable for being locally
approximated by linear mappings. Nonsmooth analysis went beyond this property,
by admitting relaxed forms of approximation (via directional restrictions or metric
estimates) and by removing the linearity of the approximating terms. Among several
possible ways to accomplish this (see [3,11,13,15]) in [4, Chapter 1.5] this approach
resulted in the following notion.

Definition 2.3 (Strict µ-estimator). Consider a mapping f : Rn −→ Rm, a point
x̄ ∈ Rn and µ ≥ 0. A function hx̄ : Rn −→ Rm is said to be a strict µ-estimator of f
at x̄ if

(i) hx̄(x̄) = f(x̄);
(ii) lip(f − hx̄; x̄) ≤ µ.

More than generalized derivatives, strict µ-estimators provide a scheme for building
various kind of controlled metric perturbations of a given mapping. In the example
below, some specific implementations of this concept are presented.

Example 2.4 (Strict first-order approximation). Following [4, Chapter 1.5], given a
mapping f : Rn −→ Rm and a point x̄ ∈ Rn, a mapping Af(x̄; ·) : Rn −→ Rm is said
to be a strict first-order approximation of f at x̄ if Af(x̄; x̄) = f(x̄) and

lip(f −Af(x̄; ·); x̄) = 0. (5)
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These conditions obviously imply that any strict first-order approximation of f at x̄
is, in particular, a strict µ-estimator of f at x̄, for every µ ≥ 0. It is worth observing
that the axiomatic notion of strict first-order approximation can cover several classic
and generalized (less classic) situations of differentiability. For instance, if Af(x̄; ·) can
be taken in the class of all affine mappings, then, whenever f is strictly differentiable
at x̄, by setting

Af(x̄;x) = f(x̄) + Df(x̄)[x− x̄]

one sees that its first-order expansion at x̄, expressed by its Fréchet derivative, falls in
the general scheme of strict first-order approximation.

Another specific instance of strict first-order approximation is given by the notion
of strong Bouligand derivative. According to [6, Definition 3.1.2], f : Rn −→ Rm is
strongly Bouligand differentiable at x̄ if it is locally Lipschitz around x̄ and condition
(5) holds with

Af(x̄;x) = f(x̄) + f ′(x̄;x− x̄),

where f ′(x̄; v) denotes the directional derivative of f at x̄, in the direction v ∈ Rn.
Let us further mention that strict first-order approximations appeared in a more

general setting (normed linear spaces) already in [18] under the name of strong ap-
proximations.

Remark 2. (i) From Definition 2.3(ii) it follows that if hx̄ (resp. f) is locally Lipschitz
around x̄, then f (resp. hx̄) inherits the same property around x̄. Nevertheless, it may
happen that mappings failing to be locally Lipschitz around a reference point do admit
estimators at that point, of course affected by the same lack of Lipschitz continuity
(see Example 2.17).

(ii) For the subject under investigation, the question of existence of µ-estimators
for a given mapping at a given point becomes a relevant issue. Example 2.4 and the
point (i) of the present remark should offer perspectives for addressing this question.
Obviously, whenever f is locally Lipschitz around x̄, it admits hx̄ ≡ 0 as a µ-estimator
at x̄, for every µ < lip(f ; x̄). On the other hand, in any case f admits hx̄ = f as a
µ-estimator at x̄, for every µ ≥ 0 and x̄ ∈ Rn. The contexts of employment should
determine the convenience of choices to be made, through specific requirements on the
class {hx : x ∈ Rn}.

The next proposition justifies the employment of µ-estimators in the current ap-
proach by asserting the stability behaviour of linear openness/metric regularity in the
presence of additive Lipschitz perturbations, which was independently observed by
A.A. Milyutin and S.M. Robinson. Actually, it captures the quantitative stability phe-
nomenon behind many recent extensions of the celebrated Lyusternik-Graves theorem.
As presented below, it is a reformulation of [4, Theorem 3F.1], adapted in the light of
the relation (4).

Proposition 2.5 (Linear openness via strict estimators). Let f : Rn −→ Rm be a
given mapping, let x̄ ∈ Rn, and µ ≥ 0. Suppose that:

(i) f admits a strict µ-estimator hx̄ : Rn −→ Rm at x̄;
(ii) lop(hx̄; x̄) > µ.

Then, f is linearly open around x̄, with lop(f ; x̄) ≥ lop(hx̄; x̄)− µ. In particular, f
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is α-covering at x̄ with any α < lop(hx̄; x̄)− µ.

The impact of Proposition 2.5 becomes clear when studying linear openness of hx̄
is easier than studying the same property of f , by virtue of the specific features of hx̄
(e.g. linearity, positive homogeneity, some form of convexity property for vector-valued
mappings, and so on).

Together with surjection properties, an enhanced (again, metric) form of injectivity
will be employed in the sequel. To the best of the author’s knowledge, such a property
was first formalized as follows in [7], wherefrom the terminology is borrowed.

Definition 2.6. A mapping f : Rn −→ Rm is said to be metrically injective around
x̄ ∈ Rn if there exist constants β, δ > 0 such that

‖f(x1)− f(x2)‖ ≥ β‖x1 − x2‖, ∀x1, x2 ∈ B[x̄; δ]. (6)

The value

inj(f ; x̄) = sup{β > 0 | ∃δ > 0 for which (6) holds }

is called (exact) metric injection bound of f around x̄.

Remark 3. (i) It is plain to see that, whenever a mapping f is metrically injective
around a point, it must be locally injective around that point, whereas the converse
implication fails to be true, in general (see Example 2.10).

(ii) Notice that the metric injection bound of a mapping f around x̄ can be expressed
in terms of displacement rate of the values taken by f as follows

inj(f ; x̄) = lim inf
x1, x2→x̄
x1 6=x2

‖f(x1)− f(x2)‖
‖x1 − x2‖

.

Example 2.7 (Characterization of metric injectivity for linear mappings). Let l :
Rn −→ Rm be a linear mapping. As a preliminary remark about metric injectivity of
linear mappings, notice that, because this property implies mere injectivity and hence
the relation dim ker l + dim im l = 0 + dim im l = n must be true, then a necessary
dimensional condition for metric injectivity of linear mapping to hold is that m ≥ n.

Then, the following are equivalent:

(i) l is metrically injective all over Rn (i.e. inequality (6) holds with δ = +∞);
(ii) l is metrically injective around 0;

(iii) dist (0, l[S]) > 0.

Implication (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii): Since, in particular, for some β, δ > 0, it is ‖l[x]‖ ≥ β‖x‖ for every

x ∈ B[0; δ], one obtains by linearity

‖l[u]‖ ≥ β, ∀u ∈ S, (7)

whence, passing to the infimum over S, it immediately follows

dist (0, l[S]) ≥ β > 0.
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(iii) ⇒ (i): Set β = dist (0, l[S]). Then inequality (7) must be true. Thus, by taking
an arbitrary pair x1, x2 ∈ Rn, with x1 6= x2, one can write∥∥∥∥l [ x1 − x2

‖x1 − x2‖

]∥∥∥∥ ≥ β.
From the last inequality, one obtains by linearity

‖l[x1]− l[x2]‖ ≥ β‖x1 − x2‖, ∀x1, x2 ∈ Rn. (8)

The reader should notice that, by exploiting the above inequalities, one can deduce
also that it holds

inj(l;x) = inj(l) = sup{β > 0 | (8) holds } = dist (0, l[S]) , ∀x ∈ Rn.

In operator theory, the quantity dist (0, l[S]) is connected with the Banach constant
of a bounded linear operator between Banach spaces. More precisely, if referred to the
adjoint operator to l, here denoted by l∗, the Banach constant quantifies the (global)
linear openness of an onto operator, i.e. lop(l; 0) = lop(l;x) = cov(l; 0) = dist (0, l∗[S])
(see, for instance, [13, Corollary 1.58]). This notion appears in [10] under the name of
surjectivity index. The link between injectivity of l and openness of l∗ is well known
in operator theory and it is summarized by the condition on the annihilator of the
kernel of a regular operator: (ker l)⊥ = im l∗, where S⊥ denotes the annihilator of a
subspace S of a Banach space.

Example 2.8 (Metric injectivity of p.h. scalar functions). Let h : R −→ R be a p.h.
continuous function, taking the form

h(x) =

 θ+x, if x ≥ 0,

θ−x, if x < 0,

for proper θ+, θ− ∈ R. Then h is metrically injective around 0 iff it is locally injective
around the same point. This happens iff h is injective all over R, namely iff it is strictly
monotone (increasing or decreasing), or, equivalently, iff

θ− · θ+ > 0. (9)

Upon condition (9), if 0 < θ− ≤ θ+, h turns out to be sublinear and 0 6∈ ∂h(0) =
[θ−, θ+]. Upon condition (9), if 0 < θ+ ≤ θ−, h turns out to be superlinear and
0 6∈ ∂+h(0) = [θ+, θ−]. Again under condition (9), if θ− ≤ θ+ < 0, h is sublinear and
0 6∈ ∂h(0) = [θ−, θ+], whereas if θ+ ≤ θ− < 0, h is superlinear and 0 6∈ ∂+h(0) =
[θ+, θ−]. In any case,

inj(h; 0) = min{|θ+|, |θ−|} =

 dist (0, ∂h(0)) , if h is sublinear,

dist (0, ∂+h(0)) , if h is superlinear.

The next proposition establishes a useful stability behaviour of metric injectivity
under additive Lipschitz perturbations.
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Proposition 2.9. Given two mappings g, h : Rn −→ Rm, suppose that:

(i) g is metrically injective around x̄ ∈ Rn;
(ii) h is locally Lipschitz around x̄, with lip(h; x̄) < inj(g; x̄).

Then, the mapping g + h is metrically injective, with

inj(g + h; x̄) ≥ inj(g; x̄)− lip(h; x̄). (10)

Proof. It is clear that, by the triangle inequality, it holds

‖g(x1)− g(x2)‖ ≤ ‖g(x1) + h(x1)− g(x2)− h(x2)‖
+ ‖h(x1)− h(x2)‖, ∀x1, x2 ∈ Rn,

whence it follows

‖(g+h)(x1)− (g+h)(x2)‖ ≥ ‖g(x1)−g(x2)‖−‖h(x1)−h(x2)‖, ∀x1, x2 ∈ Rn. (11)

By hypothesis (i), taken an arbitrary β ∈ (0, inj(g; x̄)) there exists δβ > 0 such that

‖g(x1)− g(x2)‖ ≥ β‖x1 − x2‖, ∀x1, x2 ∈ B[x̄; δβ]. (12)

By hypothesis (ii), taken an arbitrary ` > lip(h; x̄) there exists δ` > 0 such that

‖h(x1)− h(x2)‖ ≤ `‖x1 − x2‖, ∀x1, x2 ∈ B[x̄; δ`]. (13)

Thus, by taking δ = min{δβ, δ`} and combining inequalities (11), (12), and (13), one
obtains

‖(g + h)(x1)− (g + h)(x2)‖ ≥ (β − `)‖x1 − x2‖, ∀x1, x2 ∈ B[x̄; δ],

which shows that g + h is metrically injective around x̄ and

inj(g + h; x̄) ≥ β − `.

Since the last inequality is true for every β < inj(g; x̄) and ` > lip(h; x̄), then by
passing to the supremum over β and the infimum over `, one gets inequality (10),
thereby completing the proof.

In order for demonstrating that an analogous stability behaviour does not hold for
mere injectivity, one can consider the following example.

Example 2.10. Let f : R −→ R be given by f(x) = x3. This function is globally
injective. Therefore, fixing x̄ = 0, f is injective in particular in a neighbourhood of 0,
whereas it fails to be metrically injective at the same point. As a perturbation terms
let us take the linear (and hence Lipschitz continuous) functions hζ : R −→ R, given
by

hζ(x) = −ζ2x, ζ ∈ R.
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For every δ > 0 one can find a function hζ , with ζ ∈ (0, δ), such that the sum f + hζ ,
namely the function

x 7→ f(x) + hζ(x) = x(x− ζ)(x+ ζ),

is clearly not injective in [−δ, δ]. Notice that lip(hζ ; 0) = ζ2 can be chosen arbitrarily
small.

The stability behaviour stated in Proposition 2.9 enables one to employ estimators
for detecting metric injectivity, in the same way as done for linear openness.

Corollary 2.11 (Metric injectivity via strict estimators). Let f : Rn −→ Rm be a
mapping and let x̄ ∈ Rn. If f admits a strict η-estimator hx̄ at x̄ and inj(hx̄; x̄) > η,
then f inherits from hx̄ the metric injectivity around x̄, with bound

inj(f ; x̄) ≥ inj(hx̄; x̄)− η.

Proof. Since by hypothesis it is lip(f −hx̄; x̄) ≤ η, it suffices to apply Proposition 2.9
with g = hx̄ and h = f − hx̄.

On the base of the above constructions, the following condition for global inversion
can be established.

Proposition 2.12. Let f : Rn −→ Rn be a mapping and let µ ≥ 0. Suppose that:

(i) f is continuous on Rn;
(ii) for every x ∈ Rn f admits a strict ηx-estimator gx such that inj(gx;x) > ηx;

(iii) for every x ∈ Rn f admits a strict µ-estimator hx and

σf = inf
x∈Rn

lop(hx;x) > µ.

Then,

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is Lipschitz continuous on Rn with constant (σf − µ)−1.

Proof. By hypothesis (ii) and Corollary 2.11, f is metrically injective at each point
of Rn and hence locally injective. Since for any x ∈ Rn f admits a strict µ-estimator
hx, with lop(hx;x) > µ, according to Proposition 2.5 f is α-covering at x, with any
α < σf−µ. As a consequence, by recalling what observed in Remark 1, f is α-covering
with any α < σf −µ. These facts mean that all the hypotheses of Theorem 2.2 happen
to be fulfilled. Accordingly, there exists f−1 : Rn −→ Rn, which is Lipschitz continuous
on Rn with constant

α−1 >
1

σf − µ
.

By arbitrariness of α < σf − µ also assertion (tt) in the thesis follows. This completes
the proof.

The aim of Proposition 2.12 is to define an interplay between metric properties and
approximation tools, able to rule viable methods for deriving conditions for global
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invertibility, which are formulated in terms of more specific nonsmooth analysis con-
structions. In order to implement the above scheme, the next property may be of
help.

Definition 2.13 (Strong regularity). A mapping f : Rn −→ Rm is said to be strongly
metrically regular (henceforth, for short, strongly regular) around a point x̄ ∈ Rn if it
has both the following properties:

(i) f is metrically regular (equivalently, linearly open) around x̄;
(ii) the set-valued mapping f−1 : Rm ⇒ Rn has a graphical localization around

(f(x̄), x̄), which is nowhere multi-valued, i.e. there exist neighbourhoods V of
f(x̄) and U of x̄ such that

f−1(y) ∩ U = {x}, ∀y ∈ V.

The above enhanced form of metric regularity can be equivalently reformulated by
postulating that the multifunction f−1 admits a single-valued localization f ] : V −→
Rn around (f(x̄), x̄), which is locally Lipschitz around f(x̄), with

lip(f ]; f(x̄)) = reg(f ; x̄) = lop(f ; x̄)−1. (14)

(see [4, Proposition 3G.1]).
For the purposes of the present paper, it is convenient to provide the following char-

acterization of strong regularity for continuous mapping, which involves the notion of
metric injection. To the best of the author’s knowledge, it has remained still unnoticed
within the variational analysis literature.

Proposition 2.14. Let f : Rn −→ Rm be a mapping continuous at x̄ ∈ Rn. f is
strongly regular around x̄ iff it is metrically regular and metrically injective around x̄.
In such an event, it holds

inj(f ; x̄) ≥ lop(f ; x̄). (15)

Proof. Assume first that f is metrically regular and metrically injective around x̄.
Since f is continuous at x̄ and linearly open around x̄, one has in particular

B[f(x̄);αr] ⊆ f(B[x̄; r]), ∀r ∈ (0, r∗], (16)

for α < lop(f ; x̄) and for a proper r∗ > 0. By the local injectivity of f around x̄, taken
an arbitrary 0 < β < inj(f ; x̄) there exists δβ > 0 such that

‖f(x1)− f(x2)‖ ≥ β‖x1 − x2‖, ∀x1, x2 ∈ B[x̄; δβ]. (17)

Thus, if taking r0 = min{r∗, δβ}, from inclusion (16) it follows that

∀y ∈ B[f(x̄);αr0] ∃x ∈ B[x̄; r0] : y = f(x). (18)

Such x must be unique in B[x̄; r0] by virtue of inequality (17). Therefore, one can define
as a single-valued graphical localization of f−1 the mapping f ] : B[f(x̄);αr0] −→ Rn
given by f ](y) = x, where x is as in (18). Furthermore, one can readily see that f ] is
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Lipschitz continuous in B[f(x̄);αr0], because, on account of inequality (17), it holds

‖f ](y1)− f ](y2)‖ = ‖x1 − x2‖ ≤ β−1‖f(x1)− f(x2)‖
= β−1‖y1 − y2‖, ∀y1, y2 ∈ B[f(x̄);αr0].

Vice versa, assume now that f is strongly regular around x̄. According to the
aforementioned equivalent reformulation, fixed an arbitrary κ > reg(f ; x̄) there ex-
ist neighbourhoods Uκ of x̄ and Vκ of f(x̄) and a graphical single-valued localization
f ] : Vκ −→ Rn such that

‖f ](y1)− f ](y2)‖ ≤ κ‖y1 − y2‖, ∀y1, y2 ∈ Vκ. (19)

Since f is continuous at x̄, fixing α < lop(f ; x̄), it is possible to pick r > 0 in such a
way that

B[x̄; r] ⊆ Uκ and f(B[x̄;αr]) ⊆ Vκ. (20)

Take arbitrary x1, x2 ∈ B[x̄; r]. By virtue of the second inclusion in (20), it must be
yi = f(xi) ∈ Vκ, for i = 1, 2. On the other hand, by virtue of the first inclusion in
(20), one has

f ](yi) = xi = f−1(yi) ∩ Uκ, i = 1, 2.

Therefore, by taking into account inequality (19), one obtains

‖x1 − x2‖ ≤ κ‖y1 − y2‖ = κ‖f(x1)− f(x2)‖,

which shows that f is metrically injective around x̄ with inj(f ; x̄) ≥ κ−1. By passing
to the infimum over all κ > reg(f ; x̄) = lop(f ; x̄)−1, one achieves the inequality in
(15). This completes the proof.

One is now in a position to formulate the main result of the current section.

Theorem 2.15 (Global invertibility via strict estimators). Let f : Rn −→ Rn be a
continuous mapping and let µ ≥ 0. Suppose that for every x ∈ Rn f admits a strict
µ-estimator hx, which is strongly regular around x, and such that

σf = inf
x∈Rn

lop(hx;x) > µ. (21)

Then,

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is Lipschitz continuous on Rn with constant (σf − µ)−1.

Proof. For every x ∈ Rn, in the light of Proposition 2.14, hx is metrically injective
and, by virtue of condition (21), taking into account inequality (15) one has inj(hx;x) ≥
lop(hx;x) > µ. So hx satisfies hypothesis (ii) of Proposition 2.12 for every x ∈ Rn. The
same mappings play the role of a strict µ-estimator of f at x, satisfying hypothesis
(iii) of Proposition 2.12. These facts make it possible to invoke that result, wherefrom
all the assertions in the thesis follow.

12



As a first comment about Theorem 2.15, let us observe that it can be regarded
as a kind of ’globalization’ of the local invertibility condition expressed in terms of
estimators by [4, Theorem 1E.3]. As its local counterpart, the quantitative condition
tying the parameter µ and the bound of linear openness plays a crucial role. Roughly
speaking, this condition says that as higher is σf as looser can be the estimate of f
provided by the family of mappings {hx : x ∈ Rn}. Furthermore, the difference σf −µ
takes a transparent part in the estimate of the Lipschitz constant of f−1.

Another point deals with the scope of Theorem 2.15. It offers a starting point for
establishing more specific global inversion results beyond differentiability. An example
is provided in considering the following corollary, which is derived by replacing C1

smoothness with existence of strict first-order approximations. Its proof follows at
once on account of Example 2.4.

Corollary 2.16. Let f : Rn −→ Rn be a continuous mapping. If for every x ∈ Rn f
admits a strict first-order approximation Af(x; ·) at x, which is strongly regular around
x, with

αf = inf
x∈Rn

lop(Af(x; ·);x) > 0,

then

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is Lipschitz continuous on Rn with constant α−1

f .

Example 2.17. Consider the function f : R −→ R, defined by

f(x) =

 sgn (x)
√
|x|, if |x| ≤ 1,

x, if |x| > 1,
where sgn (x) =

 −1, if x < 0,
0, if x = 0,
1, if x > 0.

Such a function is continuous in R, but fails to be locally Lipschitz in R because, as
one readily sees, inequality (1) does not hold in any neighbourhood of 0. Moreover, f
lacks of differentiability at x = 0 and at x = ±1. These pathological features make f to
fall out from the scope of application of Theorem 1.2 and Theorem 1.3. Nevertheless,
by direct inspection one can check that f is globally invertible, with f−1 : R −→ R
being given by

f−1(y) =

 sgn (y)y2, if |y| ≤ 1,

y, if |y| > 1.

Besides, since it holds

|f−1(y1)− f−1(y2)| ≤ 2|y1 − y2|, ∀y1, y2 ∈ R,

then, in contrast to f , function f−1 turns out to be Lipschitz continuous in R with
constant ` = 2. Let us illustrate how such an instance can be put in the framework of
global invertibility via strict estimators, where Theorem 2.15 comes into play. To start
with, observe that f admits strict 0-estimators at each point of R. More precisely, for
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all those points x ∈ R at which f is strictly differentiable one can choose as strict
0-estimator the affine functions hx = f(x) + Df(x)(· − x). Thus, it results in

hx(t) =


f(x) +

t− x
2
√
|x|
, if 0 < |x| < 1,

t, if |x| > 1.

For the point x = 1, one can choose h1 : R −→ R, given by

h1(t) = 1 + max

{
t− 1

2
, t− 1

}
.

Indeed, fixed an arbitrary ε ∈ (0, 1), by setting δε = ε2+2ε
(ε+1)2 , one finds

|(f − h1)(x1)− (f − h1)(x2)| ≤ ε|x1 − x2|, ∀x1, x2 ∈ (1− δε, 1 + δε),

so lip(f − h1; 1) = 0. The above inequality is obviously true if x1, x2 ∈ [1, 1 + δε). In
the case x1, x2 ∈ (1 − δε, 1], since the function x 7→

√
x − [1 + 1

2(x − 1)] is C1 in an
open set containing [1− δε, 1], by the mean-value theorem one can write

|(f − h1)(x1)− (f − h1)(x2)| ≤ sup
x∈[1−δε,1]

∣∣∣∣ 1

2
√
x
− 1

2

∣∣∣∣ |x1 − x2|

=
1

2

∣∣∣∣ 1√
1− δε

− 1

∣∣∣∣ |x1 − x2|

=
ε

2
|x1 − x2|, ∀x1, x2 ∈ (1− δε, 1].

In the case x1 ∈ (1−δε, 1) and x2 ∈ [1, 1+δε), by exploiting again the above inequality
for the pair x1, 1 ∈ (1− δε, 1], one has

|(f − h1)(x1)− (f − h1)(x2)| ≤ |(f − h1)(x1)− (f − h1)(1)|
+ |(f − h1)(1)− (f − h1)(x2)|

= |(f − h1)(x1)− (f − h1)(1)| ≤ ε

2
|x1 − 1|

≤ ε

2
|x1 − x2|.

Similarly, one sees that for the point x = −1 it is possible to take h−1 : R −→ R, given
by

h−1(t) = −1 + min

{
t+ 1

2
, t+ 1

}
.

Finally, for x = 0 one can choose the strict 0-estimator h0 : R −→ R

h0(t) = sgn (t)
√
|t|.

One has now to show that, by virtue of the above choices, each function hx is strongly
regular around x, then to provide an estimate of each lop(hx;x), and finally to check
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that condition (21) is fulfilled, namely σf > 0. To this purpose, notice that, in the case
0 < |x| < 1, as hx are affine and invertible, they are strongly regular around every
point. In particular, if setting lx(t) = t

2
√
|x|

, one has

lop(hx;x) = lop(lx; 0) = reg(lx; 0)−1 =
1

2
√
|x|
≥ 1

2
, ∀x ∈ R : 0 < |x| < 1. (22)

Analogously, in the case |x| > 1, as a linear invertible function hx are strongly regular
around each point, with

lop(hx;x) = 1 ≥ 1

2
, ∀x ∈ R : |x| > 1 (23)

(remember Example 2.10). In the case x = 1, as h1 is globally invertible, having inverse
which is Lipschitz continuous in Rn with lip(h−1

1 ; 1) = 2, it is strongly regular around
x = 1, and in the light of (14) one has

lop(h1; 1) =
1

2
. (24)

The case x = −1 can be treated in a similar manner, after noticing that gph f is
centrally symmetric (f being an odd function). To prove that h0 is strongly regular
around 0 it suffices to observe that h−1

0 coincides with its graphical single-valued

localization h]0 (actually defined all over R), given by

h]0(y) = sgn (y) · y2,

which is locally Lipschitz around 0. To estimate lop(h0; 0) it is useful to notice that,

since h]0 is C1 around 0, with Dh]0(y) = |2y|, a straightforward application of the
mean-value theorem gives

lip(h]0; 0) ≤ 2.

Consequently, one obtains

lop(h0; 0) ≥ 1

2
. (25)

Inequalities (22), (23), (24) and (25) allow one to deduce that σf ≥ 1/2. Thus, it is
possible to apply Theorem 2.15. Its thesis leads to conclusions that are consistent with
what one can directly check.

3. Invertibility via pairs of convex compacta

In order to illustrate how Theorem 2.15 may interact with constructive elements of
nonsmooth analysis, let us recall the following notions from quasidifferential calculus.

Definition 3.1. According to [21, Definition 2.1], a mapping g : Rn −→ Rm is said to
be scalarly quasidifferentiable (for short, scalarly q.d.) at x̄ ∈ Rn if for every w ∈ Rm
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the scalar function 〈w, g〉 : Rn −→ R, i.e. x 7→ 〈w, g(x)〉 = w>g(x), is quasidifferen-
tiable at x̄ in the sense of Demyanov-Rubinov.

Here 〈·, ·〉 denotes the Euclidean inner product of Rm and w> the transpose vector
of w.

On the base of [3,15], Definition 3.1 amounts to say that, for every w ∈ Rm, 〈w, g〉 is
directionally differentiable at x̄, in any direction v ∈ Rn, and there exist two elements
g+
w , g

−
w ∈ S(Rn) such that

〈w, g〉′(x̄; v) = 〈w, g′(x̄; v)〉 = g+
w (v)− g−w (v), ∀v ∈ Rn. (26)

According to the Minkowski duality ς : K(Rn) −→ S(Rn), the functions g+
w and g−w

can be dually represented by means of elements of the semigroup (K(Rn),+) through
their support functions, namely

g+
w (v) = ς

(
v; ∂g+

w (0)
)
, g−w (v) = ς

(
v; ∂g−w (0)

)
, v ∈ Rn.

(see, for instance, [16]). It is well known that the representation in (26) can not be
unique and hence so does the dual pair (∂g+

w (0), ∂g−w (0)) ∈ K2(Rn) = K(Rn)×K(Rn).
To restore the uniqueness, and with that the preliminary condition for a well defined
and effective calculus, the following equivalence relation ∼ ⊆ K2(Rn) is employed,
which was already introduced by L. Hörmander:

(A,B) ∼ (C,D) if A+D = B + C.

Let us denote by [∂g+
w (0), ∂g−w (0)]∼ the equivalence class containing the pair

(∂g+
w (0), ∂g−w (0)). Thus, whenever g is scalarly q.d. at x̄ one can consider the mapping

D̃∗g(x̄) : Rm −→ K(Rn)2/∼, which is well defined by

D̃∗g(x̄)(w) =
[
∂g+

w (0), ∂g−w (0)
]
∼ .

The above generalized differentiation concept inherits from K(Rn)2/∼ a rich calculus.

Remark 4. In view of next nonsmooth analysis constructions, it is convenient to
notice that, since for every λ > 0 it holds

〈λw, g〉′(x̄; v) = λ〈w, g〉′(x̄; v) = λg+
w (v)− λg−w (v)

= ς
(
v;λ∂g+

w (0)
)
− ς

(
v;λ∂g−w (0)

)
, ∀v ∈ Rn,

and, by known calculus rules in K(Rn)2/∼, it is[
λ∂g+

w (0), λ∂g−w (0)
]
∼ = λ

[
∂g+

w (0), ∂g−w (0)
]
∼ ,

then it results in

D̃∗g(x̄)(λw) = λD̃∗g(x̄)(w), ∀λ > 0, ∀w ∈ Rm.

To carry out the further construction needed for the present analysis, recall that,
given two subsets A, B ∈ K0(Rn) = K(Rn) ∪ {∅}, the operation ∗ : K0(Rn) ×
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K0(Rn) −→ K0(Rn) defined by

A ∗ B = {x ∈ Rn | x+B ⊆ A}

is known as ∗ (or Pontryagin) -difference of compact convex sets (see, for instance,
[20]). As other difference operations employed in nonsmooth analysis (e.g. the De-
myanov’s difference [20]), actually it can be regarded as a particular instance of a
more general approach to defining algebraic operations over elements of K(Rn) (see,
for more details, [16,19,20]). One is now in a position to introduce the tool to be used
in formulating a global invertibility condition for nonsmooth mappings.

Definition 3.2. Given a mapping g : Rn −→ Rm, suppose that g is scalarly q.d. at

x̄ ∈ Rn. The set-valued mapping D̃
∗
g(x̄) : Rm ⇒ Rn, defined as being

D̃
∗
g(x̄)(w) = ∂g+

w (0) ∗ ∂g−w (0), (27)

is called ∗ -coquasiderivative of g at x̄.

As a first comment to Definition 3.2 let us remark that the equality in (27) singles
out a uniquely defined derivative object (in K0(Rn)), which is independent of the rep-
resentation of the scalarized coquasiderivative. This happens because the ∗ -difference
is an operation which turns out to be invariant with respect to the equivalence relation
∼, namely

(A,B) ∼ (C,D) implies A ∗ B = C ∗ D

(see, for instance, [20, Chapter 5]). Another feature to be pointed out is that, as a

set-valued mapping, D̃
∗
g(x̄) turns out to be p.h..

Condition (C) A mapping g : Rn −→ Rm, which is scalarly q.d. in a neighbourhood
U of x̄, is said to satisfy condition (C) around x̄ provided that the set-valued mapping
GS : U ⇒ Rn, given by

GS(x) = D̃
∗
g(x)(S) =

⋃
v∈S

D̃
∗
g(x)(v),

is u.s.c. at x̄, i.e. for every open set O ⊇ D̃
∗
g(x̄)(S) there exists δO > 0 such that

D̃
∗
g(x)(S) ⊆ O, ∀x ∈ B[x̄; δO].

The above elements enable one to establish the following sufficient condition for the
linear openness around 0 of the class of those continuous p.h. mappings with scalar-
izations in DS(Rn) (for short, scalarly d.s.), which may be of independent interest.

Proposition 3.3 (Linear openness of scalarly d.s. mappings). Let h : Rn −→ Rm be
a p.h. mapping. Suppose that:

(i) for every w ∈ Rm, 〈w, h〉 ∈ DS(Rn);
(ii) h satisfies condition (C) around 0;
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(iii) [
∗

0 (h) = dist
(
0, D̃

∗
h(0)(S)

)
> 0.

Then, h is linearly open around 0 and

lop(h; 0) ≥ [
∗

0 (h). (28)

Proof. A short way of proving this proposition is to apply [21, Theorem 4.1], which
provides sufficient conditions for the metric regularity of scalarly q.d. mappings in
terms of ∗ -coquasiderivative. To see how, let us start with observing that, as h acts
between finite-dimensional Euclidean spaces, the assumption on the Fréchet smooth
renorming of the range space as well as the assumption on the trustwortiness of the
domain space are automatically fulfilled. Then, notice that, by virtue of hypothesis
(i), h is in particular scalarly q.d. at each point of Rn. Moreover, the former property
entails that h is continuous in Rn (in particular, each component of h is an element of
DS(Rn)).

Now, by virtue of condition (C), fixed an arbitrary ε ∈ (0, [
∗

0 (h)), for a proper
δε > 0 one has

D̃
∗
h(x)(S) ⊆ B(D̃

∗
h(x̄)(S); ε), ∀x ∈ B[x̄; δε].

As a consequence, one obtains

inf
{

dist
(
0, D̃

∗
h(x)(S)

)
| x ∈ B[x̄; δε]

}
≥ [

∗

0 (h)− ε > 0.

The last inequality ensures that also hypothesis (1) in Theorem 4.1 is fulfilled. Thus
h is metrically regular/linearly open around 0. Furthermore, a perusal of the proof of
[21, Theorem 3.2], on which Theorem 4.1 relies, reveals that it holds

lop(h; 0) ≥ [
∗

0 (h)− ε.

The arbitrariness of ε enables one to achieve the estimate in the thesis.

By combining Proposition 3.3 and Theorem 2.15 it is possible to achieve the fol-
lowing sufficient condition for the global invertibility of a special class of nonsmooth
mappings.

Theorem 3.4 (Global invertibility via ∗ -difference of convex compacta). Let f :
Rn −→ Rn be a continuous mapping and µ ≥ 0. Suppose that:

(i) for every x ∈ Rn, f admits a strict µ-estimator of the form h̃x = f(x)+hx(·−x);
(ii) for every w ∈ Rn, 〈w, hx〉 ∈ DS(Rn);

(iii) for every x ∈ Rn, hx satisfies condition (C) around 0;

(iv) [
∗

f = infx∈Rn dist
(
0, D̃

∗
hx(0)(S)

)
> µ;

(v) for every x ∈ Rn, inj(hx; 0) > µ.

Then,

(t) ∃f−1 : Rn −→ Rn;

(tt) f−1 is Lipschitz continuous on Rn with constant ([
∗

f − µ)−1.
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Proof. Fix x ∈ Rn. Owing to assumptions (ii), (iii) and (iv), the mapping hx is linearly

open around 0 with lop(hx; 0) ≥ [
∗

0 (hx). Consequently, as the Euclidean distance in

Rn is invariant under translation, the mapping h̃x is linearly open around x, with

lop(h̃x;x) = lop(hx; 0) ≥ [
∗

0 (hx). For the same reason, h̃x is metrically injective

around x, with inj(h̃x;x) = inj(hx; 0) > µ by hypothesis (v). Thus, according to

Proposition 2.14, h̃x turns out to be strongly regular around x. Moreover, by hypothesis
(iv), one has

inf
x∈Rn

lop(h̃x;x) ≥ inf
x∈Rn

[
∗

0 (hx) = [
∗

f > µ,

which says that also condition (21) is satisfied. Thus, the thesis follows from Theorem
2.15.

Remark 5. The reader who remembers Remark 2(i) will observe that, because of
hypotheses (i) and (ii), f is implicitly supposed to be locally Lipschitz around each
x ∈ Rn. Therefore Theorem 3.4 is less general than analogous existent results, which
are expressed by constructions allowing for a more general approach (for instance,
in the case of pseudo-Jacobians, consider [10, Corollary 3.10]). Nonetheless, utmost
generality is not the feature aimed at in Theorem 3.4. Instead, it focuses on a special
class of possibly nondifferentiable mappings, admitting approximations with a special
structure. Such a structure paves the way to the employment of all the benefits given
by the calculus in K2(Rn)/∼, when hypothesis (iv) must be checked. Take into account

that D̃
∗
hx(0)(S) = ∂(hx)+

w(0) ∗ ∂(hx)−w(0) is expected to be computed easily enough,
as hx is p.h..

4. Global invertibility via regular coderivatives

Theorem 2.2 enables one to formulate further conditions for global invertibility of
nonsmooth mappings, even in the lack of local Lipschitz continuity, without a direct
employment of Theorem 2.15. This can be seen by selecting adequate nonsmooth
analysis tools. An highly successful approach to generalized differentiability relies on
the geometry of normals and graphical differentiation, which was initiated in [12]. It
revealed to be effective in providing characterizations for those properties discussed in
Section 2 that are fundamental for the approach at the issue. Let us briefly recall the
elements needed for the present analysis.

Given a mapping f : Rn −→ Rm and x̄ ∈ Rn, the regular coderivative (a.k.a.

prederivative) of f at x̄ is the set-valued mapping D̂∗f(x̄) : Rm ⇒ Rn defined by

D̂∗f(x̄)(v) = {u ∈ Rn | (u,−v) ∈ N̂((x̄, f(x̄)); gph f)}, v ∈ Rm.

Here, given W ⊆ Rp and w̄ ∈ W , the subset

N̂(w̄;W ) =

{
v ∈ Rp

∣∣∣∣ lim sup
w∈W
w→w̄

〈
v,

w − w̄
‖w − w̄‖

〉
≤ 0

}

stands for the regular normal cone to W at w̄. Whenever f is Fréchet differentiable
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at x̄, its regular coderivative becomes single-valued, taking the form D̂∗f(x̄)(v) =
{Df(x̄)∗[v]} (see [13, Theorem 1.38]). In the case in which f is locally Lipschitz around
x̄, the following scalarized representation of the regular coderivative is valid (see [14,
Exercise 1.70(ii)]

D̂∗f(x̄)(v) = ∂̂〈w, f〉(x̄), ∀w ∈ Rm,

where, given a function ϕ : Rn −→ R ∪ {∓∞} and x̄ ∈ domϕ, the set

∂̂ϕ(x̄) =

{
v ∈ Rn

∣∣∣∣ lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0

}
is the regular subdifferential of ϕ at x̄ (see [14, Chapter 1.3.4]).

In combination with the above nonsmooth analysis constructions, the following
monotonicity property for set-valued mappings plays a crucial role in the present
context.

Definition 4.1. A set-valued mapping F : Rn ⇒ Rn is said to be locally hypomono-
tone around (x̄, ȳ) ∈ gphF if there exist a neighbourhood U × V of (x̄, ȳ) and a
constant γ > 0 such that

〈y1 − y2, x1 − x2〉 ≥ −γ‖x1 − x2‖, ∀(x1, y1), (x2, y2) ∈ gphF ∩ (U × V ).

As a comment to Definition 4.1, it is worth mentioning that all globally hypomono-
tone set-valued mappings, i.e. set-valued mappings F : Rn ⇒ Rn such that F + r id ,
where id stands for the identity operator, is monotone on Rn for some r > 0, are in
particular locally hypomonotone. Moreover, all locally monotone as well as Lipschitz
continuous single-valued mappings are locally hypomonotone (see [14, Chapter 5]).
Local hypomonotonicity in synergy with a positive-definiteness condition expressed
in terms of regular coderivative is known to yield strong metric regularity. As a con-
sequence, the following global invertibility condition can be established via regular
coderivatives.

Theorem 4.2 (Global invertibility via regular coderivatives). Given a mapping f :
Rn −→ Rn, suppose that

(i) f is continuous in Rn;
(ii) f is locally hypomonotone around each x ∈ Rn;

(iii) for every x ∈ Rn there exist positive constants α̂x and ηx such that

〈u, v〉 ≥ α̂x‖v‖2, ∀u ∈ D̂∗f(z)(v), ∀z ∈ B[x; ηx]; (29)

(iv) α̂ = inf
x∈Rn

α̂x > 0.

Then,

(t) ∃f−1 : Rn −→ Rn;
(tt) f−1 is Lipschitz continuous on Rn with constant α̂.

Proof. Observe that the continuity of f at each x ∈ Rn (hypothesis (i)) ensures

the validity of the inequality in (29) for every u ∈ D̂∗f(z)(v) and every (z, f(z)) ∈
gph f ∩ B[(x, f(x)); ηx], up to a proper reduction in the value of ηx > 0. The latter
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condition, along with the hypothesis of local hypomonotonicity of f around x, is
sufficient to guarantee that the mapping f is strongly regular around each x, with
lop(f ;x) ≥ α̂x ≥ α̂, as stated in [14, Corollary 5.15]. By virtue of such a property, f
turns out to be metrically injective and hence locally injective around each x, as well
as α̂-covering at each x. Thus the thesis follows from Theorem 2.2.

Remark 6. By replacing the regular coderivative with the basic (a.k.a. Mor-
dukhovich) coderivative, in the particular case in which f is locally Lipschitz it is
possible to obtain a point-based version of condition (29). Indeed, in such a setting, by
applying the scalarized representation valid for basic coderivatives (see [14, Theorem
1.32]), condition (29) can be reformulated as follows: for every x ∈ Rn there exists a
positive constant αx such that

〈w, v〉 ≥ αx, ∀v ∈ ∂M 〈w, f〉(x), ∀w ∈ Rn\{0},

where ∂Mϕ(x̄) = Limsup
x
ϕ→x̄ ∂̂ϕ(x) denotes the basic subdifferential of ϕ at x̄ ∈

domϕ and Limsup
x
ϕ→x̄ denotes the Painlevé-Kuratowski upper limit of the set-valued

mapping ∂̂ϕ : Rn ⇒ Rn as x → x̄ and ϕ(x) → ϕ(x̄) (see [14, Theorem 5.16] and [14,
Section 5.4]).

5. Conclusions

The investigations exposed in the present paper stem from a recent result about global
inversion of functions in a finite-dimensional Euclidean space setting, which relies on
their metric behaviour. In order to develop the potential of this result, its assumptions
are interpreted in the light of some specific nonsmooth analysis constructions. The
main findings of the paper provide further evidences that generalization of Hadamard’s
inversion theorem to nonsmooth functions not only are possible (what was already
known), but they can be achieved through different paths, which lead to a variety of
conditions expanding their scope. The specific nonsmooth analysis constructions here
considered play a certain role not only in formulating conditions for global invertibility,
but also in providing quantitative estimates for the Lipschitz constant of the inverse,
in the spirit of modern variational analysis.
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