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Abstract.

Algorithms are vulnerable to biases that might render their deci-
sions unfair toward particular groups of individuals. Fairness comes
with a range of facets that strongly depend on the application do-
main and that need to be enforced accordingly. However, most miti-
gation models embed fairness constraints as fundamental component
of the loss function thus requiring code-level adjustments to adapt
to specific contexts and domains. Rather than relying on a procedu-
ral approach, our model leverages declarative structured knowledge
to encode fairness requirements in the form of logic rules capturing
unambiguous and precise natural language statements. We propose
a neuro-symbolic integration approach based on Logic Tensor Net-
works that combines data-driven network-based learning with high-
level logical knowledge, allowing to perform classification tasks
while reducing discrimination. Experimental evidence shows that
performance is as good as state-of-the-art (SOTA) thus providing a
flexible framework to account for non-discrimination often at a mod-
est cost in terms of accuracy.

1 Introduction

Ensuring just algorithmic decisions is directly tied to the more ambi-
tious intent of protecting the rights of individuals and avoiding harm.
As society becomes more attuned to issues of discrimination and jus-
tice, there is a major focus on ensuring that Al systems are designed
and deployed in ways that are fair and equitable. Governments and
regulatory bodies around the world are increasingly requiring organi-
zations to guarantee that their Al systems do not discriminate; busi-
nesses not paying attention to such constraints could face legal and
reputational consequences.

This burst of interest has fueled the research in the field: literature
has proposed a number of bias mitigation strategies that may apply
according to different fairness definitions [32, 37, 39, 5] - and the
corresponding metrics [6]. Nonetheless, most mitigation approaches
expect fairness constraints to be embedded within the loss function,
hindering the feasibility to make modifications and adapt to the spe-
cific domain’s purpose. In turn, the option to express natural language
fairness constraints into logical predicates allows for a wider leeway
while addressing the task. The ability to embed declarative logical
statements into neural models is one of the key features of neuro-
symbolic integration (NSI) and introduces the chance to account for
symbolic rules, in contrast to a mere procedural data-driven process.
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This work explores the potential of employing a NSI approach to
fairness leveraging on Logic Tensor Networks in the context of bi-
nary classification tasks based on numerical features (thus excluding
Large Language Models). We focus on group fairness, and specifi-
cally, we aim to meet the requirement imposed by statistical parity,
which expects an equal predicted positive rate among groups iden-
tified by sensitive attributes. Our contributions rely on a first-order
logic axiomatization of fairness constraint, along with a solid theoret-
ical discussion about the choice of optimal fuzzy logic operators for
connectives and quantifiers. Experimental evidence shows that our
approach reaches results that often outperform SOTA models while
providing the additional advantage of greater flexibility and ease of
constraint declaration. The novelty of our approach, in fact, lies in
that the user can specify fairness constraint in a unique logic pred-
icate, whose impact on the model as a whole, can be incrementally
controlled by a corresponding weight. While implementing LTN in
the fairness domain, we have observed a strong impact of the log-
ical connectives and quantifier interpretation on the model efficacy
and inference task. On this specific aspect, we propose a discussion
that indeed provides a contribution in the field of neural-symbolic
applications.

To the best of our knowledge, literature proposes a single work
in the direction of NSI for fairness [36] that primarily insists on it-
erative querying to inspect biases through Shapely values and pro-
poses interactive continual learning by adding knowledge through
LTN. Conversely, this paper precisely focuses on fairness enforce-
ment in binary classification tasks through first-order logic clauses
instilled through LTN. Code and models trained in the experiments
will be released to ensure replication.

The remainder of the paper is organised as follows. In Section2, we
examine the literature on algorithmic fairness providing an overview
of the key concepts and techniques proposed so far. We explore the
reasons behind the idea of approaching fairness through an NSI ap-
proach along with a review of recent developments in the field. In
Section3 we introduce our approach after introducing key features
of LTN. In Section 4, we present our results and compare them with
similar approaches in the literature, and we end the paper with con-
clusions and future work.

2 Background and related work
2.1 Fairness

The complex and dynamic nature of the topic has been reflected in a
consistent response from the scientific community in the attempt to
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fill the gap between ethical and regulatory demand and the increasing
adoption of Al at scale. The most harmful impacts of Al on individ-
uals arise when opportunities are unjustly denied or resources are
unfairly distributed as a consequence of algorithmic decisions [3, 7].
This work focuses on feature-based binary classification tasks, whose
relevance has fostered extended research [29] since in this circum-
stance fairness can be actually quantified by a number of different
metrics [6]. The proliferation of fairness definitions reflects the in-
creasing need of ensuring that Al models at scale avoid replicating
or amplifying biases learned from training data, potentially impact-
ing individuals even in the sphere of fundamental rights[31].

In fact, if one defines the scenario that leads to an unfavourable
outcome and identifies the socio-demographic features that might
give cause for discrimination, bias can be measured and eventually
mitigated. The concept of fair classification can be considered under
an individual or a group connotation[10, 38].

Under an individual interpretation, fairness is informed by the
principle that similar individuals should be treated similarly[10].
In this perspective, irrelevant differences between people’s features
should not lead to significant differences in the model outcome [12].
To bring an example, in a financial lending application, this principle
requires that the model predicts similar outcomes for male and fe-
male applicants characterised by similar features, except for gender.

Alternatively, the group interpretation of fairness aims to equalise
statistical quantities over groups of individuals identified by pro-
tected attributes, such as gender or ethnicity[38]. In practice, this
can be formalised in terms of properties of the joint distribution of
the sensitive attribute, the classifier, the target variable, and, in some
cases, other features. For instance, one could require an equal pre-
dicted positive rate among groups, in all those cases where the model
outcome is supposed to be independent of the sensitive attribute, re-
flecting the notion of an even distribution of resources. Resuming to
our running example, this principle can require an equal acceptance
rate of credit requests among male and female applicants. In other
circumstances, especially when the target variable is supposed to be
unbiased, fairness can be determined in terms of the difference in er-
ror rates between groups. In this case, the rate of negated opportuni-
ties arising from predicting a negative response to worthy individuals
shall be equally high among groups identified by gender.

None of the individual and group approaches comes with no short-
comings: if the first formalization suffers its heavy reliance on the
definition of a distance metric to measure similarity between indi-
viduals, the latter introduces the possibility of undesirable outcomes
[38] when unqualified individuals are assigned a positive outcome for
the sole reason of belonging to an unprivileged group [2]. In addition,
the profusion of existing definitions could be sometimes misleading
and makes it theoretically impossible to satisfy even a few of them at
once except in highly constrained special cases [19].

The existing means of mitigating algorithmic bias can be framed
within three methods: pre-processing, in-processing, and post-
processing, according to the step of the Al life cycle they operate
on. Pre-processing is meant to reduce or eliminate bias in the dataset
[40] by relabelling the target variable Y to satisfy a certain fairness
measure [16, 25], by reweighting [4, 20] or resampling [17] repre-
sentative but unbiased instances or by learning an intermediate rep-
resentation that satisfies fairness constraints while preserving helpful
information [38, 11]. In some cases, the latter approach is often as-
cribed to a form of implicit in-processing since several approaches
do involve learning, e.g. the use of variational autoencoder [24] or
adversarial learning [26]. All things considered, pre-processing tech-
niques often lack the ability to achieve a user-defined trade-off be-

tween fairness and accuracy [35] and are not well suited to circum-
stances where the problem is caused by the algorithm.

Post-processing strategies have the advantage of being model-
agnostic and do not require access to the training procedure [23].
Loosely speaking, they function by changing the predicted labels
on a subset of samples, appropriately selected to meet fairness con-
straints. Proposed methods differ in the rationales behind the choice
of the instances that undergo a switch in the predicted labels: some
approaches construct randomised decision rules [14, 33], others oper-
ate on the uncertainty boundary or the disagreement region of ensem-
ble models [17] or imposing separate thresholds for different groups
[8, 30].

If the mitigation is designed to be enforced at training time, it
comes down to learning unbiased models on biased training data
[16]. Algorithms are then designed to maximise accuracy while min-
imising discrimination constraints. A prejudice remover regulariser
has been proposed by [18], which enforces a classifier’s indepen-
dence from sensitive information, to be integrated into the loss func-
tion of a logit model. A fair neural network classifier (FNNC) was
introduced by [32] and incorporates fairness constraints into the loss
in the form of Lagrangian multipliers.

Leveraging on a novel measure of decision boundary (un)fairness,
[37] implemented two complementary approaches that maximise
Disparate Impact and accuracy, respectively. Taking into account
tree-based classifiers, [5] presents FFTree, a method to find fair splits
designed to work with different criteria and metrics.

Although characterised by different connotations, all the above-
mentioned approaches rely on the idea of hard-coding the fairness
notion as a building block of the loss function. Nonetheless, the need
to ensure fair outcomes in a diversity of application domains requires
a meticulous choice among the broad availability of definitions, or
even the urge to devise a bespoke constraint. This makes it difficult to
conceive and implement models able to respond to the most diverse
requirements unless it is possible to leverage declarative knowledge,
rather than procedural. When analysing results in Section 4.1, our
approach will be experimentally compared against feature-based (bi-
nary) classification models that account for group fairness at training
time (in-processing) [32, 6, 26, 37], or that involve learning while
retrieving a fair representation of the dataset [26, 38]. Specifically,
we will take into account the major and most promising approaches
that optimise Statistical Parity Difference or Disparate Impact, which
will be further discussed in Section 4. Finally, one approach has been
proposed that models fair classification using NSI as we do propose
in this paper; we discuss the relationship with this previous work in
Section 2.2.

2.2 Neural-symbolic Integration

The success of network-based machine learning is attributed to its
ability to learn from complex and high-dimensional data by auto-
matically extracting relevant features [22]. However, the flexibility
to learn from examples becomes a disadvantage when data is lim-
ited or when (user-defined) explicit knowledge needs to be incorpo-
rated. Symbolic Al can handle these limitations by leveraging logical
reasoning and explicit representation of knowledge and generalises
through logical rules without requiring large amounts of data, yet
loosing efficiency when learning from noisy information. As a re-
sult, NSI, which combines elements of symbolic reasoning with neu-
ral network-based machine learning, is introduced to support each
other and overcome their respective limitations. Embedding tech-
niques can enable the representation of relational knowledge in a dis-
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tributed neural network, allowing for reasoning to take place through
matrix computations over distance functions. This can potentially
provide a bridge between distributed and localist representations for
reasoning[13], allowing for the integration of learning and reasoning
in a principled way.

The coupling of such two different views has resulted in the emer-
gence of multiple approaches that can be broadly partitioned into
three main categories[1]:

e frameworks exploiting neural architectures for logical reasoning

e methods that provide logical specifications of neural network ar-
chitectures

e architectures designed to integrate inductive learning and deduc-
tive reasoning into a unique and differentiable network

For the intent of this paper, we concentrate on the latter class that,
in turn, includes a number of implementations that significantly dif-
fers from each other in terms of the semantics of the logical language,
richness of expressivity and the mechanism of integration.

Clauses enforcement, in fact, can be achieved by tweaking the pre-
diction of the network through additional layers, as presented in Deep
Logic Model (DLM) [28] that relies on fuzzy logic but only consid-
ers propositional connectives. Knowledge Enhanced Neural Network
(KENN) [9] adopts a similar approach and introduces a function that
modifies the predictions of a base NN exerting weighted constraints.
Yet, it does not support full first-order logic and it is limited to uni-
versally quantified clauses.

An alternative technique consists in applying logical reasoning
to the predictions of a neural network, as proposed in Deepproblog
[27], which combines neural networks with expressive probabilistic-
logical modeling and reasoning by associating facts and rules with
probability values.

A third class of methodologies expects the knowledge to be in-
fused as a part of the model optimization process. [15] encapsulates
logic rules into the network parameters performing an iterative train-
ing based on the satisfiability of a joint loss. At each step, a student
network learns from training data while a teacher network provides
feedback based on the encoding of logical rules. Among its limita-
tions, the model only supports universally quantified formulas. The
potential of fully expressive first-order logic knowledge has been un-
locked by Logic Tensor Networks (LTN) [34, 1] and its generaliza-
tion LYRICS [28]. Here, low-level perception and high-level reason-
ing are tightly integrated and influence each other.

For this work, we choose to employ LTN over other approaches
due to the following reasons:

o Expressiveness: LTN is based on differentiable first-order logic
with fuzzy semantics, supporting different interpretations of logi-
cal connectives and quantifiers, which enables the use of the full
expressiveness of FOL and several modeling choices.

e Undirected graphical models: LTNs, along with LYRICS, use
undirected graphical models, which view logic as a constraint on
a predictive model rather than focusing on causal relationships.
This aligns better with the notion of fairness being viewed as a
constraint on the model.

o Clause weighting: LTNs allow for the specification of fixed or
learnable weights on clauses, which can be highly beneficial when
dealing with conflicting tasks. This capability is particularly useful
in balancing competing objectives and in our domain, to retain
control over the desirable fairness level.

e Versatility: LTNs allow to mix predicates whose interpretation is
learned from the data and predicates whose interpretation is fixed

into individual formulas, which we found relevant to model fair-
ness.

To this extent, if natural language facts or constraints, can be for-
malised into logical statements, then fairness can be instilled through
a neural-symbolic approach and, interestingly enough, little research
has been conducted in this direction.

As mentioned above, a first approach to neural-symbolic integra-
tion to fairness was proposed by [36] that, differently from our ob-
jectives, primarily focuses on the continuous interaction between the
model and the human in the loop. Using explanatory features pro-
vided by Shapeley values, the authors recursively inspect bias in
model outcomes and address it accordingly by injecting background
knowledge. This work is based on a previous version of LTN that
is no longer available and that differs from the current version[36]
in a number of relevant theoretical and code-level aspects, and does
not investigate the role of different axioms and interpretations of log-
ical operators. By contrast, with our work, we propose an original
axiomatization of fairness that, to the best of our knowledge, is un-
seen in literature, and provide a meticulous investigation of the role
played by different mathematical interpretations of universal quanti-
fiers and implication operators. In our experiments, we find that in
settings similar to fair classification, non-default interpretations have
a great impact on the effectiveness of the approach; therefore, we
believe that our findings are interesting for the NSI, also beyond its
application to fairness.

3 Modeling Fair Classification in LTN

Within this work, we concentrate on binary classification models
where one of the possible outcomes represents an unfavourable deci-
sion towards groups of individuals identified by socio-demographic
attributes. LTN [34] relies on Real Logic, a fully differentiable first-
order knowledge representation system based on the manipulation
of real-valued vectors, combined with data-driven machine learning.
LTN can represent and compute tasks of deep learning - including
classification - while taking into account logic-based constraints. We
first summarize the main features of LTN and Real Logic and intro-
duce the problem settings. Then we present the axioms, we discuss
the interpretation of logical connectives and the universal quantifier,
and provide a summary of the proposed approach.

3.1 Preliminaries and Problem Setting

Real logic constitutes a major component of LTN and its description
can be summarized as follows (we emphasize the most distinguishing
features in italics and refer to [1] for details).

e Syntax: Real Logic is defined on a first-order language £ with
a signature that contains a set C of constant symbols, a set F of
function symbols, a set P of relation symbols (predicates), and a
set X' of variable symbols. Terms are constants and variables (ob-
jects), sequences of terms, and function symbols applied to terms.
Objects, functions, and predicates are typed: a function D assigns
types to the elements of L to the corresponding domain symbol D.
Formulas are defined as in FOL, provided that typing constraints
are preserved: if ¢1,t2, and ¢ are terms and P is a predicate, then
t1 = t2 and P(t) are atomic formulas; complex formulas can be
defined inductively as usual with logical connectives.

e Semantics is inspired by standard abstract semantics of FOL and
based on a grounding function G, which provides the interpreta-
tion of the domain symbols in D and the non-logical symbols in
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L. G associates a tensor of real numbers to any term of £, and
a real number in the interval [0, 1] to any formula ¢. Intuitively,
G(t) are the numeric features of the objects denoted by ¢, and
G (¢) represents the system’s degree of confidence in the truth of
¢; the higher the value, the higher the confidence. There are a
few aspects of LTN semantics that are relevant to our work. The
tensor operation that grounds a predicate P can be implemented
with an arbitrary neural network; the semantics of logical con-
nectives is based on the semantics of first-order fuzzy logic, for
which different interpretations have been proposed (e.g., different
t-norms and t-conorms for conjunction and disjunction), thus mak-
ing LTN highly dependent on the selection of specific semantic
interpretations; if domain knowledge, in our case fairness, highly
depends on universally quantified implications, the interpretation
of fuzzy implication have a deep impact on modeling (e.g., Godel
vs Lukasiewicz); different parametric interpretations of the uni-
versal quantifiers are possible: the truth value of a formula ¢ such
as VrA(z) (where A(x) represents an arbitrary formula with a
free variable x) estimates the truth value of ¢ based on some ag-
gregation of the truth values estimated for instantiated formulas
A(c) found in the training data.

e Learning is mainly governed by grounding that plays a key role
in the task of inductive inference. After fixing some choices,
e.g., interpretation of connectives, interpretation of quantifiers,
and boundaries of domain grounding, the parameters that under-
pin the representations of language elements can be learned in
such a way as to maximize the satisfiability of a set of axioms,
which include factual propositions available in a training set as
well as generalized propositions encoding general constraints. The
learning process eventually searches the optimal set of parame-
ters from a hypothesis space that maximises the satisfiability of
atheory T = (K, Gg) namely the tuple composed by the set of
closed predicates K defined on a set of symbols, and the paramet-
ric grounding for symbols and logical operators Go.

In modeling fair classification, we leverage an explicit and fixed
grounding of constants, which model instances with known features
that must be classified, and concentrate on the key learning task of
finding the optimal grounding of logical predicates, which encode the
separation of instances in groups based on their label. Observe that,
since the choice of operators that interpret connectives and quanti-
fiers deeply impacts the grounding of the formulas, this choice also
impacts significantly on the satisfaction of predicates, and, eventu-
ally, on the performance of a classifier that depends on predicates’
grounding. Therefore, another focus of our paper is on finding the
choices that better fit modeling fair classification.

3.2 Classification with Known Instance Features

Framing a classification task in LTN requires the definition of the
knowledge base along with encoding the dataset features and clas-
sification labels using Real Logic. To begin with, let Instances
denote the domain of the examples in the dataset. If the training ex-
amples are described by n features, then the grounding of the domain
can be expressed as

G(Instances) C R" (1)

Therefore, each example k£ of domain Instances is a con-
stant symbol whose grounding G (k) is represented by a tensor in
G(D(k)) = R™. We can then introduce a variable x that represents

a finite sequence of m individuals, each described by n features:

To retrieve information about the target variable, we introduce the
function Label that maps each instance k to its corresponding label
y € 0, 1. This helps in identifying two variables x+ and z_ indicat-
ing respectively the sequence of positive and negative training exam-
ples. The grounding of the variable indicating positive instances can
be expressed as follows:

Gws) = (d € G(x) | Label(d) = 1) 3)

Finally, we introduce a set of predicates that operate on the do-
main. The classification task is accomplished by C'(z), a trainable
classifier with grounding

G(C|0): x — sigmoid(MLPg(z)) “)

where MLP is a Multilayer Perceptron with learning parameters
0 and single output neuron that returns values between 0 and 1, in-
terpreted as truth values. The learning process is meant to optimise
the parameters of the predicate functions C'(z) while satisfying the
following constraints:

Vo C(z4)

Vo_—Clz_) )

The grounding of instances remains stable and is not subject to
training. This possibility is encompassed by the framework we use
and could be explored in the future; for the intent of this work how-
ever, we focus on a pure in-processing technique without learning a
(fair) representation of instances.

3.3 Fairness Axiom and Interpretation of Connectives

After expressing the classification task, we finally introduce sym-
bolic knowledge to encode fairness constraints. As mentioned above,
we focus on group fairness and specifically, we begin accounting for
statistical parity. In addition to reflecting the notion of equality and
even distribution of resources, it has convenient technical properties,
and it is frequently discussed in legislative contexts related to dis-
parate impact[11] thus providing a common ground for comparison
to other bias mitigation strategies. This principle is based on the as-
sumption of independence and requires that the probability of a pos-
itive prediction, given a sensitive attribute, should be equal across all
groups. Formally, this can be expressed as:

P{Y=1,A=a}=P{Y =1,A =10} (©6)

where A = a, b corresponds to different groups identified by pro-
tected attributes whose symbolic representation needs to be encapsu-
lated within the domain. To this end, we introduce a pair of first-order
logic (FOL) predicates identifying whether an instance belongs to the
privileged - or unprivileged - subgroup: Priv(z) and Unpriv(z).

Precisely, Priv(z) and Unpriv(x) are non-trainable predicates
that map each example z to a truth value based on whether the exam-
ple belongs to the privileged or non-privileged group, respectively.

At this point, the knowledge base holds all the essential elements
required to render the probabilistic formulation of statistical parity
into a first-order logic axiom. Precisely, it takes the form of an equiv-
alence between two implications:

Vz(Priv(z) = C(x)) +— Yz (Unpriv(z) — C(z)) (7)
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The axiomatization captures an equivalence between the probabil-
ity of a privileged group (denoted as Priv(x)) being assigned a par-
ticular target label and the probability of an unprivileged group (rep-
resented by Unpriv(x)) being assigned the same target label, by pro-
viding a satisfiability interpretation for it in Real Logic. This formal-
ization aims to ensure fairness by asserting that the predicted target
C(x) is applied equally to both privileged and unprivileged groups.
For instance, in the context of recidivism prediction, if Recid(z)
represents the likelihood of recidivism and W hite(z) and Black(z)
denote two racial groups, the axiomatization asserts that the proba-
bility of assigning a recidivism label should be equivalent between
these groups:

Va(White(x) — Recid(z)) «— Va(Black(x) — Recid(z))

By establishing this equivalence, the axiom states unbiased recidi-
vism label assignment, regardless of an individual’s racial back-
ground. It is worth noting that such a simple, intuitive, and easy-
to-interpret axiom is also the one that performs better, among a few
variants we tested (omitted for space constraints).

Given that the bias mitigation strategy we propose in this paper
strongly relies on Axiom 7, it is noteworthy to delve into the details
concerning its implementation and pose a theoretical background be-
hind our choice of the fuzzy implication operand. Broadly speak-
ing, implications are employed in two well-known rules of infer-
ence: modus ponens and modus tollens. Considering the implication
Vap(x) — (x), Modus ponens states that if ¢(x) is known to be
true, then () is also true. Modus tollens instead, poses its accent
on the consequent and when —#)(x) is known to be true, then —¢(z)
is true as well, this is because if the antecedent were true, the conse-
quent should have been true as well.

When the classification predicate predicts a scenario with a false
implication, there are multiple ways to rectify it. Consider the fol-
lowing implication from the left-hand side of Axiom 7:

Va(Priv(z) — C(x))

This formula implies that all privileged examples are positive ex-
amples. Four categories emerge: positive privileged examples (PPE),
negative non-privileged examples (NNPE), positive non-privileged
examples (PNPE), and negative privileged examples (NPE). Assum-
ing an NPE is observed, which is inconsistent with the background
knowledge, there are two options:

o Modus Ponens trusts the observation of a privileged example and
believes it is a positive example (PPE). The truth of the consequent
is believed if the antecedent is true.

e Modus Tollens trusts the observation of a negative example and
believes it is a non-privileged example (NNPE). The antecedent is
believed to be false if the consequent is false.

Given that the predicate Priv(x) has a fixed grounding, opting for a
modus ponens reasoning is a preferable alternative. In a differentiable
fuzzy logic setting, this means that when the antecedent is high, the
consequent is increased. The modus tollens reasoning would be inef-
fective since it operates by decreasing the antecedent, which cannot
be changed due to its inherent fixed nature.

If in FOL the implication has a well-defined semantic, we dis-
cussed how its interpretation can vary in fuzzy logic. There are two
primary classes of implications generated from the fuzzy logic oper-
ators for negation, conjunction, and disjunction:

e Strong implications are dfined using a fuzzy negation and fuzzy
disjunctionas ¢ — y = -~z V y.

o Residuated implications are defined using a fuzzy conjunction and
can be understood as a generalization of modus ponens, where the
consequent is at least as true as the (fuzzy) conjunction of the
antecedent and the implication.

Consequently, the latter represents the most suitable alternative,
and we opt for the Godel implication, defined as follows:

I(z,y) = {1’

y, otherwise

ife <y ®)

This implication makes strong discrete choices and increases at
most one of its outputs. The Godel implication increases the con-
sequent whenever is smaller than the antecedent, which, in turn, is
never changed [21]. Moreover, as the derivative of the negated an-
tecedent is always 0, it can never choose the modus tollens correc-
tion, as intended.

A last choice concerns the aggregation function used in universal
quantifiers, for which we choose the parametric A, z[1]. With this
choice, universal quantifiers are represented by the generalised mean
w.r.t the error that measures to what extent each value deviates from
the ground truth:

Ay )=1 <1i<1 )p>; ©)
ME\Z1,...,Zn) = — — — Xy
! n =1
retrieving the arithmetic mean for p = 1. On the other hand, given
the same input and increasing p, the value for the quantifier starts
diminishing as A, converges to the min operator. Consequently,
the parameter p provides flexibility in formulating more or less strict
formulas, thereby accommodating or limiting the impact of outliers.
Our approach is summarized in Figure 1. The only trainable predi-
cate is C, the one that models the classification outcomes. Its param-
eters are trained to jointly optimize the satisfiability of the facts in
the training set (via Axiom 5) and the fairness constraint specified by
Axiom 7, whose compositional interpretation is shown in the figure.

Terms Predicates Axioms

A
Fesines G{Priv) I =0

G Priv(z)) 6 p=1
o o G Priv(z)) p=1
inen 6lz)
Neranas )

" Prieiz) + ) ) o Ve | He
i -

G{Unpriv(z))
s

P T Unprin(e)  C(a)) L)
G(C(x)) -

o Ay —{sAT
Gi(C)
e | ¢ Gizs)

G(C(z.))

Glx ) G(C(=-)

Figure 1. Conceptual representation of the elements of Real Logic and
their role within the proposed approach. Classification task and Fairness
constraints are declared separately through their respective axioms.

4 Experiments and Results

This section collects the results of our experiments and aims at eval-
uating to what extent our approach is able to optimise observational
group fairness metrics derived from eq. 6 without excessively yield-
ing on accuracy. In particular we account for Statistical Parity Dif-
ference and Disparate Impact

SPD=P{Y =1,A=a}—P{Y =1,A=0b} (10
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I P{Y =1,A=a}

P{Y =1,A=0b}

for all demographic groups a,b. Optimum values for SPD are

close to zero while DI implies equity for values close to one. De-

spite at first sight the two metrics may seem interchangeable, it is

important to remark that one might be more suitable than the other

depending on the specific context: in applications where the rate of

positive labels is extremely low (e.g. fraud detection), minimising

SPD is not an advisable choice since its value would be indeed neg-
ligible ever for very diverse values of IP’{Y = 1} among groups.

Our mitigated model will be confronted with a baseline model im-
plemented in LTN with ho fairness constraint to verify the eventual
drop in accuracy while optimising non-discrimination. In addition,
debiased results will be compared against SOTA in-processing ap-
proaches proposed in the literature and metrics for accuracy, SPD
and DI will be checked against.

The MLP that implements the grounding of the classification pred-
icate C' is composed of a two-layered feed-forward network with
(100, 50) hidden neurons, for all the datasets. Due to their statisti-
cal nature, observational group fairness measures only make sense
when calculated across samples containing a number of instances
from both the sensitive groups, we approximate group fairness met-
rics (SPD and DI) using batch training. All the results presented in
this paper are averaged over a 5-fold cross-validation.

Our model is trained and evaluated on three benchmark datasets
used in the fairness domain [29], available from the UCI ML-
repository:

a1

e Adult income dataset has 45,222 instances. The target variable in-
dicates whether or not income exceeds $50K per year based on
census data, with gender as the protected attribute.

e German credit risk dataset is composed by 1,000 entries and is
meant to classify bad credits based on a set of attributes encom-
passing demographic and financial information, including gender,
that is used as a protected attribute.

o COMPAS dataset includes 7,918 records collecting demographics
and criminal history to predict someone’s recidivism. Here, race
is considered the protected attribute - restricted to white and black
defendants.

The inherent bias corresponding to different metrics computed on
the three datasets is reported in Table 1

Table 1. Inherent bias over the dataset under examination
Dataset - Protected Attribute
Metric ~ Adult - Gender Compas - Race  German - Gender
SPD 0.200 0.095 0.067
DI 0.362 0.805 0.907

We train our model to enforce the fairness clause formalised in
Axiom 7, along with the classification task expressed in Axiom 5.
The weight associated with the classifier is kept fixed, while we vary
the weight of the fairness constraint: in principle, our approach al-
lows for a fine-grained control on the degree of fairness given that
the fairness axiom can be associated with a weight determining its
relevance within the overall computation of the satisfiability. Hence,
we investigate how accuracy and bias metrics vary according to dif-
ferent weights. We establish our baseline to be a plain classifier based
on LTN, with no additional constraints. Being our model optimised
on the probabilistic formulation of statistical parity and not on the

associated metrics, we are interested in evaluating fairness both in
terms of statistical parity difference and disparate impact.

= Accuracy
-—SPD
—DI

Axiom weight

Figure 2. Mitigation results on Adult Income Dataset

In observing results, we wish to remark that enforcing fairness
principles like statistical parity, which do not condition on the true
target label, cannot reach perfect accuracy even with a perfect model
since in that case, one would retrieve the inherent fairness level.
Therefore, in these cases, there needs to be a trade-off between fair-
ness and accuracy, which shall be taken into account while analysing
the results from the mitigation. We perform a thorough analysis of
the Adult dataset as it has a stronger inherited bias and represents the
most interesting scenario to evaluate in terms of room for fairness
improvements. For the remaining dataset, we report performance and
fairness metrics for the optimal parameter configuration. According
to what emerges from Figure 2, increasing fairness axiom weight
does have an impact both on SPD and DI, simultaneously, that reach
almost perfect equality for weights close to 2.7. Despite the inherent
bias of the Adult dataset being rather severe and one would expect
a significant drop in accuracy as a result of the mitigation, the plot
shows that accuracy remains relatively stable. This reveals a highly
efficient optimization process: to equalise statistical parity, a signif-
icant number of predictions shall be changed, increasing the rate of
positive predictions among the unprivileged group. If this relevant
adjustment merely impacts accuracy, the model is mainly changing
predictions to individuals that were incorrectly classified in the first
place and that most likely were assigned a predicted probability close
to the decision boundary.

Despite the architectural optimization of the network and its pa-
rameters falling outside the scope of this paper, it is noteworthy to
remark that this tuning has not resulted in significant improvements
in model outcomes in terms of accuracy. Indeed, the satisfiability of
logical clauses - and consequently the learning process - strongly de-
pends on the choice of the operators approximating the connectives
and quantifiers. Taking into account that some first-order fuzzy se-
mantics are better suited for gradient-descent optimization, the best-
performing implementation for conjunction uses the product t-norm
T'p with its dual t-conorm Sp for disjunction, together with standard
negation N.

We also evaluate the impact of parameter p used in the Apn e
interpretation of the universal quantifier (see Equation9). In a learn-
ing setting, assigning an excessively high value to p may lead to a
"single-passing" operator that overly focuses on outliers at each step.
This can result in gradients overfitting one input at that step, which
may adversely affect the training of other inputs. This can be exper-
imentally observed in Figure 3 where we observe values of DI and
accuracy for different values of p.

Lastly, another crucial aspect influencing the training procedure
involves the choice of implication operator, as thoroughly discussed
in Section 3: in contrast to what reported in other contexts and unlike
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= DI = - Accuracy

1 1.5 2 25 31 1.5 2 25 31 1.5 2 25 3
Axiom weight

Figure 3. Different optimization curves for increasing value of parameter
p of the universal quantifier, as a function of the fairness axiom weight.
Optimal results are achieved for A,/ converging to arithmetic mean

authors’ recommendation [1], we argue - and then experimentally
observe, that Godel represents the optimal choice concerning the im-
plication operator.

=—DI = = Accuracy

Reichenbach

Godel tukasiewicz

1 15 2 25 3 1 1.5 2 25 3 1 1.5 2 25 3
Axiom weight

Figure 4. Despite all implementation of implication operator are capable
of optimizing fairness, Godel do not experience a noticeable accuracy
descent in correspondence of the peak in DI.

Wrapping up, the parameters’ space spans three dimensions: fair-
ness axiom weight, implication operator and universal quantifier’s
exponent p. Table 2 reports accuracy and fairness metrics for all the
dataset under consideration, for the optimal configuration identified
by p = 1 and Godel implication operator, while the optimal value
for w varies according to the dataset.

Table 2. Experimental results

Accuracy DI SPD

mitig  baseline  mitig  baseline  mitig  baseline

Adult 0.823 0.805 0.949 0.362 0.012 0.200
COMPAS  0.643 0.631 0.957 0.805 0.020 0.095
German 0.699 0.675 0.966 0.907 0.021 0.067

On each dataset, our approach is able to perform a mitigation that
is close to complete debias, no matter the magnitude of the initial in-
herited bias. On mitigated predictions, the loss in accuracy is negligi-
ble, and in some cases performance increases. A possible explanation
for this phenomenon is that the baseline model is keen on overfitting
and the fairness enforcement act as a regulariser. It is necessary to
take into account that neural-symbolic integration models offer way
different advantages rather than a mere accuracy optimization.

4.1 Comparative results

In this section, we wish to compare our experiments with the results
obtained by similar approaches. Instead of reproducing each model,
we directly report the results from the original papers. It is notewor-
thy that prior studies differ from our approach in that they do not ex-

plicitly enforce SP and DI jointly, whereas they separately formulate
different optimizations. Our model, in fact, reaches the best values
for the two metrics for the same input parameters and configuration,
as evident from Figure 2. Furthermore, literature has often focused on
reporting accuracy for DI > 0.8, not taking into account that inherited
bias in COMPAS and German dataset already satisfy this condition,
which is likely to be replicated by a non-mitigated model. Instead,
in Figure 5 we report results at a higher threshold to better capture
the behavior of our model and show it can reach way higher fairness
values, much closer to perfect equality.

Accuracy for SPD < 0.05 Accuracy for DI > 0.95

9
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Figure 5. Comparative results, FEL refers to the proposed approach of
Fairness Encoding in LTN

In comparing results, we choose the thresholds for SPD to be 0.05,
higher than what reported in other works, in order to include all the
approaches under consideration. This does not affect the soundness
of the comparison since the chosen value is itself very close to the
reachable minimum. Similarly, we deviate from the convention of
evaluating accuracy for DI > 0.8 since, as discussed above, we con-
sider it a too-mild requirement.

As evinced by Figure 5, when evaluated on Adult dataset, our
approach of Fairness Encoding in LTN (FEL) is outperformed by
FNNC [32] in both metrics but is able to keep accuracy higher than
any other model taken into consideration.

5 Discussion and Conclusion

We proposed and explored an approach that encodes fairness con-
straints in a binary classification setting, exploiting the declarative
power of first-order logic and its fuzzy implementation in Logic Ten-
sor Networks, a neural-symbolic integration framework. We instill
the fairness principle based on independence and, to the best of our
knowledge, present the first method that remains at a higher level of
abstraction and optimises on a satisfiability constraint rather than on
a numerical metric. In every setting and configuration, we concur-
rently reach the best values for demographic parity difference and
disparate impact, often at a small cost in terms of accuracy. The ad-
herence to non-discrimination constraint can be incrementally con-
trolled by axiom weight, allowing to achieve the required trade-off
between fairness and accuracy. We provide a theoretical grounding
of the choices in terms of universal quantifier and implication oper-
ator interpretations, which are supported by experimental evidence
and provide conclusive insights on the best choices to model fair
classification with LTN. Experimentally, we contrast our results to
similar models presented in literature, often outperforming SOTA ap-
proaches, despite using a simple formalization of fairness with inter-
pretable semantics. While we focus on two well-known quantitative
definitions of fairness, our model encompasses many others and one
could consider using this framework and extending the axiomatisa-
tion to include equalised odds or predictive parity for instance.
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