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Abstract

The price and the exchanged quantity volatility observed in real-world markets

may be explained, according to the existing empirical literature, in terms of the

endogenous fluctuations generated by the presence of nonlinearities. We then

replace with a sigmoid adaptive best response mechanism the linear partial ad-

justment best response rule considered in Mamada and Perrings (2020), where

the effect produced by quadratic emission charges on the dynamics of a Cournot

duopoly model with homogeneous goods was investigated. Moreover, the sig-

moid nonlinearity, in addition to being well suited to describe the bounded

output variations caused by physical, historical and institutional constraints,

makes the model able to generate interesting, non-divergent dynamic outcomes,

despite the linearity of the demand function and of marginal costs. Additionally,

following the suggestion in Mamada and Perrings (2020), we deal with the more

general case of differentiated products. Beyond analytically studying the sta-

bility of the unique steady state, coinciding with the Nash equilibrium, and the

effect produced by the main parameters on the stability region, we perform two

comparative dynamics investigations which allow to evaluate the environmental

policy efficacy when the Nash equilibrium is not stable and thus the standard
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comparative statics technique does not fit for the purpose. In particular, the

former analysis, which is based on a comparison of emissions for different lev-

els of charges, shows that, also in case the Nash equilibrium is not stable, the

considered environmental policy may be effective both with complements and

with substitutes. The latter investigation, consisting in a comparison of emis-

sions along non-stationary trajectories and along the equilibrium path, in the

proposed experiments highlights that emissions are larger along non-stationary

trajectories. This gives us the opportunity to show how to act on the level of

the asymptotes of the sigmoid adjustment mechanism to reduce output varia-

tions, reaching at one time a complete stabilization of the system and limiting

pollution.

Keywords: Cournot duopoly, emission charges, environmental policy efficacy,

comparative dynamics

1. Introduction

According to the existing empirical literature (see e.g. [1, 2, 3]) the main

variables, i.e., good prices and exchanged quantities, connected with real-world

markets, especially those for agricultural commodities, display chaotic and er-

ratic behaviors, including volatility. In particular, those empirical studies sug-

gest that the therein identified dynamic phenomena may be explained in terms

of the endogenous fluctuations generated by the presence of nonlinearities. Also

the experimental literature (cf. for instance [4]) concerning the real markets

dynamics underlines the emergence of oscillatory behaviors in good prices and

exchanged quantities. Hence, in proposing a model to describe those contexts,

also in connection with ecological issues, firstly we have to guarantee that it is

able to generate interesting, i.e., non-stationary, non-divergent, dynamic out-

comes, so as to be “up to the task of adequately addressing the implications of

these complex system dynamics and the unpredictability which seems to be their

hallmark ”, quoting [5] in regard to ecological economics. Secondly, if we are in-

terested in investigating the effect produced by an environmental policy scheme
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on the generated pollution, we have to explain how the environmental policy

efficacy can be evaluated in the case of non-stationary trajectories. Namely,

the classical comparative statics technique, applied to the system equilibrium,

which is a steady state, is not empirically grounded in such a context, in which

the steady state is rarely stable. Thus, the need to develop alternative, dynam-

ical solutions arises, based for instance on the behavior of the time series of the

cumulative aggregate emission. In this manner, the environmental policy effi-

cacy, to be measured in relation to an emission reduction, could be implied by

a negative variation of cumulative emissions over the considered time interval

as a consequence of an increased strictness of the environmental policy scheme.

We tackle both issues by revisiting the framework in [6], where the effects pro-

duced by emission charges on the dynamics of a Cournot duopoly model were

investigated. In more detail, motivated by the two points described above, we

replace the linear partial output adjustment rule considered therein, whose lin-

earity causes a discrepancy between the simulative outcomes and the empirical

data, with a gradual sigmoid version of the best response mechanism, character-

ized by the presence of two horizontal asymptotes, which help avoid diverging

trajectories and negativity issues. The same sigmoid formulation has been used

in different macro contexts e.g. in [7, 8], but, to the best of our knowledge, this

is the first time that such nonlinearity is introduced in the decisional mechanism

within a game theoretical framework. We stress that the sigmoid output adjust-

ment rule, in addition to opening the door to complex dynamics and to giving

us the opportunity to perform the above mentioned investigations to test the

environmental policy efficacy, is also sensible from an economic viewpoint, since

it is well-suited to describe the bounded output variations caused by physical,

historical and institutional constraints. Namely, when the difference between

the best response and the current output level of a firm is positive, capacity

constraints will bound the increase in the production volume, because of the

limited expansion from time to time of capital and labor stock. When instead

the difference between the best response and the current output level of a firm

is negative, capital cannot be destroyed proportionally to that difference as the
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only factors that may lower productivity are attrition of machines from wear,

time, and obsolescence. Additionally, the labor factor imposes constraints, too:

indeed, due to the presence of trade unions, it is difficult, or impossible, to reduce

employment below a certain threshold level. Notice that the proposed sigmoid

adjustment mechanism is suitable to describe also the gradual output variations

deriving from the limits imposed by an environmental policy scheme aiming at

containing pollution by bounding production, due to the direct proportional-

ity linking them. In fact, acting on the levels of the horizontal asymptotes we

obtain a further tool to contain pollution, which stabilizes the dynamics, too.

The latter aspect turns out to be particularly relevant when emissions are larger

along non-stationary trajectories than along equilibrium paths. In such cases,

reducing output variations by lowering the distance between the asymptotes

allows at one time to decrease the system dynamic complexity and to limit pol-

lution. Moreover, with respect to the original setting in [6], where the goods

produced by the two firms were homogeneous, we assume that firms produce

differentiated goods, following the suggestion contained in the concluding sec-

tion of their work. On the other hand, in regard to emission charges, we stick

to the quadratic formulation considered therein.

As concerns the existing literature, we stress that in [9] we extended the setting

in [6] by introducing differentiated goods, but without altering the output ad-

justment rule, while the effect played by the introduction of differentiated goods

and of a nonlinear output adjustment mechanism in the framework in [6] has

been investigated in [10]. However, in the latter work goods can be just substi-

tutes, not complements, and the quadratic emission charges can only be convex,

without the linear term considered in [6], so that the environmental policy is

always effective in the setting in [10]. Furthermore, in their context the non-

linearity is represented by output dependent factors that replace the constant

adjustment coefficients in the best reply mechanism in [6], implying that the

system admits two boundary equilibria, in addition to the internal equilibrium

corresponding to the one in [6]. Moreover, the authors in [10] deal with the case

in which marginal production costs do not coincide across firms and analyze,
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among other issues, the conditions for market transitions between duopoly and

monopoly.

Turning back to the here considered setting, in studying it we start by ana-

lyzing the stability of the unique steady state, which coincides with the Nash

equilibrium, common to the framework in [9], as well as its bifurcations and

the role played by the main model parameters. We find that the equilibrium is

stable when the two goods are nearly independent, while complex dynamics can

arise when the interdependence degree between the two goods is strong enough,

depending also on the intensity of the reactivity of the adjustment mechanism

and on the distance between the asymptotes of the sigmoid map, despite the

linearity of the demand function and of marginal costs. We recall that when the

steady state is unstable in [6] the output quantities produced by the two firms

tend instead to become unbounded, positive or negative. Furthermore, due to

the introduction of the sigmoid adjustment mechanism, the equilibrium stability

region is reduced in the here analyzed context with respect to [9]. On the other

hand, as long as the Nash equilibrium is stable in our framework, and we can

thus rely on the classical comparative statics approach, we find a confirmation

of the static results obtained in [9], which showed that the considered environ-

mental policy becomes detrimental when emission charges increase too slowly

with production. In order to deal with the cases in which the Nash equilibrium

is not stable, we perform two alternative, comparative dynamics investigations

to evaluate the environmental policy efficacy, based either on a comparison of

emissions for different levels of charges or on a comparison of emissions along

non-stationary trajectories and along the equilibrium path. The proposed so-

lutions are mainly numerical in nature, involving non-stationary orbits. The

former analysis shows that, also when the Nash equilibrium is not stable, the

considered environmental policy may be effective in reducing pollution, both

with complements and substitutes. In regard to the latter investigation, since

in the proposed experiments it happens that emissions are larger along non-

stationary trajectories than along the equilibrium path, we explain how to act

on the levels of the asymptotes of the sigmoid in view of reducing output vari-
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ations, reaching a complete stabilization of the system and limiting pollution,

without modifying the equilibrium position.

Looking at the numerical simulations that we perform to illustrate our analyti-

cal results about the steady state stability loss and the bifurcations that occur

on varying the main model parameters, we notice that the attractors obtained

for certain parameter configurations lie on the diagonal of the phase space, but

this is not always the case. In order to try to understand why such phenomenon

may occur, we study the one-dimensional dynamical system corresponding to

the restriction of the planar system to the diagonal, which is invariant under its

action, by the symmetry of the setting we propose. Namely, if we assume that

the initial conditions for the output of the two firms coincide, then their future

choices will be identical in each time period. The analysis we perform highlights

that there are both analogies and differences between the 1D and the 2D frame-

works. In particular, it can happen that the steady state of the one-dimensional

setting is stable when the dynamics of the planar model are quasiperiodic or

chaotic. This fact has important consequences from a policy viewpoint. In-

deed, focusing just on the behavior of the steady state via comparative statics

exercises prevents the consideration and the understanding of the system out-

of-equilibrium dynamics, while, as explained above, a comparative statics result

is economically grounded if it concerns an equilibrium which is asymptotically

stable and thus orbits converge towards it after a transient period. Moreover, if

agents are completely homogeneous, so that also their past choices, summarized

by the output initial conditions, coincide, even an environmental policy maker

who were aware of the limits of the equilibrium analysis could erroneously believe

that the equilibrium is stable, thus relying on comparative statics tools, while

the steady state is actually unstable in the 2D framework. Hence, in addition

to being implausible that firms are identical from an evolutionary viewpoint,

the assumption that initial conditions for their output coincide can make the

use of the comparative statics technique apparently grounded, when it is not.

Thus, in the comparative dynamics investigations that we propose to evalu-

ate the environmental policy efficacy when the Nash equilibrium is not stable,
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we will always consider heterogeneous initial conditions for the output of the

two firms. In this respect, we recall the concept of “path dependence” in [11],

according to which the initial conditions, representing a summary of agents’

history, matter in determining the evolution of the system. Still in regard to

the role played by symmetric vs asymmetric initial conditions, as well as by

identical vs quasi-identical parameter values, we refer the interested reader to

[12], where the authors find very different dynamic outcomes in consequence of

small parameter variations, in contrast to the argument, widespread in the eco-

nomic literature [13], that small heterogeneities among agents can be neglected,

which is often employed to justify the representative agent assumption (see for

instance [14, 15, 16] for further discussion on the topic).

We conclude by underlying that, to the best of our knowledge, the existing liter-

ature on ecological economics is either static [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]

or, even when the proposed models are dynamical in nature, the focus is on the

behavior of the steady state [6, 27, 28, 29, 30] and the investigation of the efficacy

of the considered environmental policy in non-stationary regimes is neglected.

A partial exception is represented by [10], where the authors study the dynamic

outcomes of their nonlinear model, while the environmental policy efficacy is

granted by the assumptions made therein. Notice that the nonlinearities con-

sidered in the present work and in [10] concern the decisional mechanism, even

if in a different manner, as explained in Section 2, where we present the setting

that we consider. In Section 3 we perform the stability and bifurcation analysis,

both for the planar model and for its one-dimensional restriction to the diagonal

of the phase space. In Section 4 we investigate the efficacy of the environmental

policy from a dynamic viewpoint. In Section 5 we briefly discuss our results and

describe possible developments of the here studied framework.

2. The model

The extension to differentiated goods of the context in [6] has been briefly

presented in [9]. For the reader’s convenience and in order to add some impor-

tant aspects in its derivation, in what follows we describe the main steps related
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to its static part, turning then to illustrating the sigmoid best response mecha-

nism, which allows us to keep the same Nash equilibrium found in [9], solving

at the same time the issue with diverging trajectories when equilibrium stabil-

ity is lost in the linear framework. Namely, the new formulation choice allows

for more realistic dynamic outcomes, suitable to mimic the volatility displayed

by the variables involved in real-world markets. Moreover, from the modeling

viewpoint, the sigmoid adjustment mechanism is appropriate to describe the

gradual output variations caused by material, historical and institutional con-

straints in the production side of an economy, as well as by the limits imposed

by an environmental policy scheme on production levels, due to their direct

proportionality with emissions.3

Denoting by qi,t+1 the output level of firm i at time t + 1 and by qej,t+1 the

output level of firm j at time t + 1 expected by firm i at the end of period t,

with i 6= j ∈ {1, 2}, we assume that in time period t+1 ∈ N\{0} firm i ∈ {1, 2}

maximizes the expected profit function

πe
i,t+1 = (p− βiqi,t+1 − γqej,t+1)qi,t+1 − cq2i,t+1 − Ci,t+1 (2.1)

where p, c are positive parameters and Ci,t+1 is the emission charge, faced at

time t + 1 by firm i, that we will describe in (2.2). For the parameters βi and

γ, as usual in the case of differentiated goods, we suppose that |γ| < βi, with

i ∈ {1, 2}.

We recall that, according to [31], the expression for the inverse demand function

entering (2.1) can be derived by assuming that in an economy with a monop-

olistic sector with two firms, each one producing a differentiated good, and a

competitive numeraire sector, there is a continuum of consumers of the same

3Indeed, in Section 4 we shall show that acting on the position of the sigmoid map asymp-
totes may represent a form of direct intervention on output and emission levels through a
modification in the bound to the strategy variation between one period and the following
one, in contrast to the indirect nature of the pollution control obtained by means of emission
charges in (2.2). Furthermore, by varying the position of the asymptotes we will make the
system converge toward the Nash equilibrium in (2.8) - whose position remains unchanged -
starting from a situation characterized by the presence of a different (periodic or complex)
attractor, so that comparative statics results become economically grounded.
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type with a utility function U separable and linear in the numeraire good, so

that there are no income effects on the monopolistic sector, and it is possible to

perform partial equilibrium analysis. In symbols, the representative consumer

has to maximize in each time period U(q1, q2) − ρ1q1 − ρ2q2, i.e., the utility

function subject to the budget constraint, where ρi is the price of good i and

U(q1, q2) = p1q1 + p2q2 − 1
2

(
β1q

2
1 + β2q

2
2 + 2γq1q2

)
, with pi and βi positive,

β1β2 − γ2 > 0 and piβj − pjγ > 0 for i 6= j ∈ {1, 2}. Dealing, like in [6], with

the simplified case in which p1 = p2 = p and β1 = β2 = β, the utility function

reads as U(q1, q2) = p(q1 + q2) −
β
2

(
q21 + q22

)
− γq1q2, with p and β positive,

and |γ| < β, as supposed above. In particular, if γ > 0 utility decreases when

consuming the two goods together, i.e., they are substitutes; if γ < 0 utility

increases when consuming the two goods together, i.e., they are complements;

if γ = 0 utility is not affected by a joint consumption of the two goods, i.e., they

are independent. The homogeneous good framework is obtained in the limit

case γ = β = k, where k is the price-depressing effect of oligopoly. Taking the

FOC of U(q1, q2)−ρ1q1−ρ2q2, it is straightforward to obtain ρi = p−βqi−γqj

for i 6= j ∈ {1, 2} as inverse demand functions. Further details can be found in

[31, 32].

Concerning Ci,t+1, in [6], followed by [9], the authors propose the quadratic

formulation for emission charges

Ci,t+1 = bui,t+1 +
1

2
du2

i,t+1, (2.2)

with b > 0, d ∈ R and where, denoting by ε > 0 the emissions per unit output4,

ui,t+1 = εqi,t+1 are emissions by firm i ∈ {1, 2} at time t + 1. In [6] d is

used as bifurcation parameter, finding that it has a stabilizing effect on the

system equilibrium in the case of homogeneous goods. Moreover, the sign of d

4In the analysis performed in the present paper, also in view of comparing our results with
those obtained in [9], we assume, as in [6], that emissions per unit output coincide across
firms. On the other hand, in order to test the robustness of our findings, in a future work we
will deal with firm-specific emissions per unit output, similar to what done e.g. in [21] in a
homogeneous good framework with non-point source (NPS) pollution.
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determines if the marginal emission charge

dCi,t+1

dui,t+1
= b+ dui,t+1

is positive or negative. Since the marginal emission charge cannot be negative,

when d < 0 the constraint

0 < qi,t+1 <
−b

εd
(2.3)

emerges. Notice that, ceteris paribus, an increase in d produces a raise in emis-

sion charges in (2.2) both when starting from positive or negative values for d.

However, when d is positive the marginal emission charge increases with u, while

when d is negative it decreases with u. In such eventuality, according to (2.3),

the maximum value u can assume is given by −b/d. See Fig. 1 for a graphical

illustration.

(A) (B)

Figure 1: In (A) we draw the graph of Ci in (2.2) as a function of u for b = 1, and d = −2 in
blue, d = −1 in cyan, d = 0 in green, d = 1 in yellow, d = 2 in orange. In (B) we represent

the corresponding marginal emission charges dCi
du

as a function of u, using the same color
distribution as in (A).

Turning back to (2.1), since

∂πe
i,t+1

∂qi,t+1
= p− bε− (2(β + c) + dε2)qi,t+1 − γqej,t+1 (2.4)

for i 6= j ∈ {1, 2}, expected profits are strictly concave when

2(β + c) + dε2 > 0. (2.5)
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This condition is satisfied when Ci in (2.2) is convex for i ∈ {1, 2}, i.e., for d ≥ 0,

as well as for d ∈
(
− 2(β+c)

ε2
, 0
]
, in which case Ci is concave, but production

variations lead to emission charge variations close to those that we would have

in the linear case, corresponding to d = 0. Assumption (2.5) will be maintained

along the manuscript. Moreover, setting ∂πe
i,t+1/∂qi,t+1 in (2.4) equal to 0 we

obtain

Ri,t+1(q
e
j,t+1) =

p− bε− γqej,t+1

2(β + c) + dε2
(2.6)

as best response function for i 6= j ∈ {1, 2}, representing the optimal strategy

for firm i in period t + 1, given the strategy for firm j expected by firm i for

that same period. Notice that Ri,t+1(q
e
j,t+1) is well defined under (2.5).

Imposing like in [6] that firms have static expectations, it holds that qej,t+1 = qj,t,

so that (2.6) can be rewritten as

Ri,t+1(q
e
j,t+1) = Ri,t+1(qj,t) =

p− bε− γqj,t
2(β + c) + dε2

. (2.7)

Hence, calling (q∗1 , q
∗

2) the solution to the system




q1 = R1(q2)

q2 = R2(q1)

which arises by supposing that both firms simultaneously produce the best re-

sponse output to their opponent’s strategy, we find like in [9] that the unique

(symmetric) Nash equilibrium is given by

(q∗1 , q
∗

2) =

(
p− bε

2(β + c) + dε2 + γ
,

p− bε

2(β + c) + dε2 + γ

)
. (2.8)

In order to avoid negativity issues, we can assume that p > bε and that 2(β +

c)+dε2+γ > 0, similar to what done in [6] in the case of homogeneous products,

or we can suppose that p < bε and 2(β+c)+dε2+γ < 0. Like in [9], taking into

account also (2.5), we will need to split the model analysis in Section 3 according

to those two scenarios in the case of complements, while with substitutes the

numerator and the denominator of the Nash equilibrium can just be positive.

As mentioned at the beginning of the section, we will deal with a sigmoid

best response mechanism, which on the one hand allows for nontrivial and realis-

tic erratic dynamic outcomes, and, on the other hand, is suitable to describe the
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gradual output variations deriving both from the limits imposed by an environ-

mental policy scheme aiming at containing pollution by bounding production, as

well as from the technical and institutional constraints that pertain the produc-

tion side of an economy. Namely, when the difference between the best response

and the current output level is positive, capacity constraints will bound the in-

crease in the production volume, due to the limited expansion from time to time

of capital and labor stock; when instead the difference between the best response

and the current output level is negative, capital cannot be destroyed propor-

tionally to that difference as the only factors that may reduce productivity are

attrition of machines from wear, time, and obsolescence. Furthermore, also the

labor factor imposes limits: indeed, due to the presence of trade unions, it is

difficult, or impossible, to reduce employment below a certain threshold level.

In more detail, firms, due to an adjustment capacity constraint, in [6, 9] modify

their output level according to the size and the extent of the difference between

the best response and the current output level in just a partial way. However,

due to the above recalled reasons related to dynamic outcomes and economic

significance of a sigmoid adaptive best response mechanism, rather than the

linear formulation adopted in [6, 9]

qi,t+1 = qi,t + λ(Ri(qj,t)− qi,t), (2.9)

where the reactivity parameter λ varies in (0, 1) and, to lighten notation, Ri(qj,t)

stands for Ri,t+1(qj,t), i.e., the best response function in (2.7) of firm i at time

t+ 1 to the output qj,t produced by firm j at time t, for i 6= j ∈ {1, 2}, we will

now consider

qi,t+1 = qi,t + δ

(
υ + δ

υ e−σ(Ri(qj,t)−qi,t) + δ
− 1

)
. (2.10)

Moving qi,t to the left-hand side of (2.10), we obtain that the output variation

of firm i 6= j ∈ {1, 2} between the next period and the current one is described

by the sigmoid map

g(x) := δ

(
υ + δ

υ e−σx + δ
− 1

)
, (2.11)
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with x measuring the difference between the next period optimal strategy and

the current output volume, so that (2.10) can be rewritten as

qi,t+1 − qi,t = g(Ri(qj,t)− qi,t). (2.12)

Before looking at the features of g, let us introduce the concept of relative

variation, that we will denote by RV , and which at time t for firm i is defined

as

RVi,t :=
qi,t+1 − qi,t
Ri(qj,t)− qi,t

, (2.13)

with i 6= j ∈ {1, 2}, i.e., as the ratio between the output variation in a given

period and the difference between the optimal output and the current strategy.

Thanks to such notion, we will be able to compare in a more formal manner our

adjustment mechanism in (2.10) with that in (2.9), considered in [6], as well as

with the nonlinear updating rule adopted in [10], which reads as

qi,t+1 = qi,t +Kqi,t(Ri(qj,t)− qi,t), (2.14)

for i 6= j ∈ {1, 2} and K ∈ (0,+∞).

Computing the relative variation in the three different scenarios, we obtain

RVi,t = λ in relation to (2.9),RVi,t = Kqi,t in relation to (2.14), whileRVi,t has

no explicit formulation in connection with (2.10), but we will derive below some

qualitative properties for it. The common feature for the relative variation in the

three settings is that it is always linked with the reactivity, given just by λ for

(2.9), byK for (2.14), and by σ for (2.10). Of course, the connection between the

relative variation and the reactivity is different in each case. Indeed, in [6] the

two notions coincide, the relative variation being constant, while in the setting

in [10], that may be considered as an extension of the former framework, the

relative variation proportionally increases with the current production volume,

linked with the firm size, the proportionality factor being given by the reactivity.

Also in regard to the sigmoid adjustment rule in (2.10), the relative variation is

not constant, depending on the current production level.

Turning back to the mechanism in (2.12), we notice that g in (2.11) is increasing

and that it passes through the origin. Moreover, it is bounded from below by
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−δ and from above by υ. The presence of the two horizontal asymptotes helps

avoid diverging trajectories and negativity issues. In particular, by raising (resp.

lowering) υ and δ we obtain an increase (resp. decrease) in the possible output

variations, which have to be contained in the interval (−δ, υ). Accordingly, we

can call δ and υ potential reactivities as they determine the size of the interval

in which output variations have to lie in each time period. In more detail, notice

that acting on υ (resp. δ) produces an effect when the best response is above

(resp. below) the current production level. We show the graph of the sigmoid

function g for different values of the reactivity σ in Fig. 2, where we denote by

y the output difference between tomorrow and today output levels by firm i.

Namely, σ is a non-negative parameter describing the intensity with which the

difference between the best response and the current output level determines the

output variation. For σ = 0, firms are completely insensitive to that difference

and they keep their output unchanged in time, so that qi,t+1− qi,t = 0 for every

t. In the limit σ → +∞, the sigmoid approaches a piecewise constant function,

taking just the lowest and the highest possible values: indeed, the value of g

coincides with −δ for negative values of the signal Ri(qj,t) − qi,t and with υ

for positive values of Ri(qj,t) − qi,t. Moreover, as observed above, σ influences,

together with υ and δ, the relative variation in connection with (2.12), that,

recalling (2.13), is given by

RVi,t =
g(Ri(qj,t)− qi,t)

Ri(qj,t)− qi,t
. (2.15)

Notice that, looking at (2.10) and recalling the meaning of variable x introduced

after (2.11), x = 0 corresponds to the Nash equilibrium (q∗1 , q
∗

2) in (2.8), as

the best response function formulation is still the one in (2.7). Since g is an

increasing map passing through the origin, x = 0 coincides also with the unique

steady state for (2.10). Some features of RVi,t easily follow from (2.11) and

(2.15), observing that: (I) g(x)/x → 0+ when x → ±∞;

(II) g(x)/x is an even map when υ = δ;

(III)
g(x)

x
→ σ̃ :=

υδσ

υ + δ
when x → 0. (2.16)
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Namely, (I) implies that for us there is no direct proportionality between RVi,t

and qi,t, contrary to what occurs in the setting in [10], where with (2.14) the

relative variation proportionally increases with the current production volume.

Indeed, with (2.10) RVi,t tends to vanish when the production volume is far

from the current optimal output level. In particular, due to (II), such decrease

in RVi,t is symmetric with respect to positive or negative values of the signal

Ri(qj,t) − qi,t that have the same modulus if the upper and lower asymptotes

of g are at the same distance from the horizontal axis. Finally, by (III) in

(2.16) the relative variation at the steady state coincides with σ̃, which, taking

into account the joint effect of σ, υ and δ, will be called joint reactivity in

what follows. Notice that σ influences σ̃, without modifying the value of the

asymptotes and that, like in the linear framework proposed in [6] it would be

possible to consider different values of the reactivity parameter λ for the two

firms, also in the present nonlinear setting we could assume personalized values

of the sensitivity parameter σ. However, since this hypothesis would overburden

the analysis, making the interpretation of the results less neat, similar to [6],

where the reactivity parameter is homogeneous for the two firms, we prefer to

deal with the case in which the value of σ coincides for firms.

(A) (B) (C)

Figure 2: The graph of the sigmoid function g in (2.11), for a low (in (A)), intermediate (in
(B)) and high (in (C)) value of σ.
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3. Local stability and bifurcation analysis

Let us start by investigating how the presence of the sigmoid adjustment

mechanism influences, with respect to the linear framework with differentiated

goods considered in [9], the local stability of the Nash equilibrium for (2.10),

which for i 6= j ∈ {1, 2} may be explicitly written as





q1,t+1=q1,t + δ
(

υ+δ

υ e−σ(R1(q2,t)−q1,t)+δ
− 1
)
=q1,t + δ

(
υ+δ

υ e
−σ

(
p−bε−γq2,t

2(β+c)+dε2
−q1,t

)

+δ

− 1

)

q2,t+1=q2,t + δ
(

υ+δ

υ e−σ(R2(q1,t)−q2,t)+δ
− 1
)
=q2,t + δ

(
υ+δ

υ e
−σ

(
p−bε−γq1,t

2(β+c)+dε2
−q2,t

)

+δ

− 1

)

(3.1)

Calling F : (0,+∞)2 → (0,+∞)2 the planar map associated with the above

dynamical system, in Subsection 3.1 we will deal with the cases of substitutable

and independent goods, in which γ ∈ [0, β), so that the framework with homo-

geneous goods, corresponding to γ = β, is encompassed as limit case, while in

Subsection 3.2 we will focus on complements, with γ ∈ (−β, 0).

3.1. Substitutable and independent goods

In the present subsection, we deal with the case γ ∈ [0, β). Since (2.5) has

to be satisfied, it follows that 2(β + c) + dε2 + γ > 0. Hence, the positivity of

the Nash equilibrium (q∗1 , q
∗

2) in (2.8) requires that

p− bε > 0, (3.2)

similar to [6]. Consequently, the following result, which highlights the destabi-

lizing role of the joint reactivity σ̃ = υδσ
υ+δ

introduced in (2.16), as well as the

stabilizing effect of parameter d entering the formulation for emission charges

in (2.2), holds true:

Proposition 3.1. When γ ≥ 0, under (2.5) and (3.2), (q∗1 , q
∗

2) in (2.8) is ad-

missible according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is

locally asymptotically stable for System (3.1) when d > − 2β+2c−γ
ε2

and σ̃ <

2
1+ γ

2(β+c)+dε2
.
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Proof. We are going to derive the local stability conditions for our system at

the steady state by using Jury conditions in [33]

(i) det(J) < 1;

(ii) 1 + tr(J) + det(J) > 0;

(iii) 1− tr(J) + det(J) > 0,

(3.3)

where J = JF (q
∗

1 , q
∗

2) is the Jacobian matrix for F computed at (q∗1 , q
∗

2), which

reads as

JF (q
∗

1 , q
∗

2) =




1− σ̃ − σ̃γ
2(β+c)+dε2

− σ̃γ
2(β+c)+dε2

1− σ̃


 (3.4)

and that is well defined by (2.5). Since as expressions for the determinant and

for the trace of J we respectively find

det(J) = σ̃2

(
1−

γ2

(2(β + c) + dε2)2

)
− 2σ̃ + 1, tr(J) = 2− 2σ̃,

condition (iii) reads as

1−
γ2

(2(β + c) + dε2)2
> 0, (3.5)

so that, setting A := 1− (γ2/(2(β+ c)+dε2)2), we have that A has to lie in the

interval (0, 1). Condition (i) is then equivalent to

σ̃ <
2

A
, (3.6)

while condition (ii) holds if and only if

Aσ̃2 − 4σ̃ + 4 > 0. (3.7)

It is straightforward to check that (3.6) and (3.7) are jointly satisfied when

σ̃ <
2

1 + γ
2(β+c)+dε2

. (3.8)

Moreover, since (3.5) can be equivalently rewritten as

(2(β + c) + dε2 − γ)(2(β + c) + dε2 + γ) > 0 (3.9)
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and by (2.5) it holds that 2(β + c) + dε2 + γ > 0, then (3.5) is equivalent to

2(β + c) + dε2 − γ > 0 (3.10)

as well, which can be rewritten as

d > −
2β + 2c− γ

ε2
. (3.11)

Since, by (2.5), the conditions in (2.3) lead to

d > −
b(2β + 2c+ γ)

εp
, (3.12)

the desired conclusion follows from (3.8), (3.11) and (3.12). �

Comparing the above result with the findings obtained in [9], Proposition 3.1

highlights an overall reduction in the stability region for (q∗1 , q
∗

2) with respect

to Proposition 3 therein due to the introduction of the sigmoid adjustment

mechanism in (2.10). Indeed, under (3.2) in the nonlinear context we observe

stricter conditions for stability than in its linear counterpart, where just (3.11)

was present5, describing the stabilizing role of d. Namely, when d is positive,

or at least not too negative, i.e., when the policy intensity degree is sufficiently

high, production is reduced, as it is evident from the best response functions

in (2.6), and this may favor the equilibrium stability. On the other hand, with

the sigmoid adjustment mechanism in (2.10), in order to have (q∗1 , q
∗

2) in (2.8)

locally asymptotically stable for System (3.1), in addition to (3.11), we need a

further condition (cf. (3.8)), arising from the destabilizing role played by the

joint reactivity σ̃. In this respect, we stress that all parameters encompassed in

the expression of σ̃ in (2.16) positively affect the joint reactivity, as a raise in

δ, υ or σ makes σ̃ increase.6 Hence, δ, υ and σ have a destabilizing effect on

5We recall that in [6] the only found stability condition, i.e., d > − k+2c
ε2

, coincides with
(3.11) in the limit case γ = β, corresponding to homogeneous goods.

6Namely, dividing e.g. by δ the numerator and the denominator of σ̃, we obtain for
the latter the reformulation σ̃ = (υσ)/

(
υ
δ
+ 1

)
, which shows that the joint reactivity is

directly proportional to δ. We can proceed in an analogous manner with υ, while the direct
proportionality between σ̃ and σ is even more apparent. Hence, in the main dynamic results
along the manuscript (cf. Propositions 3.1, 3.2 and 3.3) we analyze the role played on the
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the steady state, fact which can be easily explained by observing that a raise

in any of them increases the possible output variations qi,t+1 − qi,t between two

consecutive periods. Namely, since from (2.10) it follows that

qi,t+1 − qi,t = δ

(
υ + δ

υ e−σ(Ri(qj,t)−qi,t) + δ
− 1

)
, (3.13)

the left-hand side is increasing in σ, bounded from below by −δ and from above

by υ. Thus, in the present context, not only the reactivity σ, which plays a

destabilizing role also in the case of the linear formulations considered, with

minor differences, e.g. in [10, Section 4] and in [34], but even the parameters

regulating the level of the two asymptotes, i.e., δ and υ, favor the equilibrium

destabilization, through a violation of (3.8). Specifically, when (3.8) is violated,

a period-doubling bifurcation occurs at the steady state,7 possibly opening the

door to interesting dynamic phenomena. We illustrate two different scenarios,

according to the sign of d, in Fig. 3, where we let σ vary.

More precisely, for a positive value of d, if (3.2) holds true, the only condition

in Proposition 3.1 that can be violated is the last one, i.e., that in (3.8). Indeed,

for the parameter configuration considered in Fig. 3 (A), where d = 0.1, (3.8)

reads as σ̃ < 1.413 or, equivalently, as σ < 4.176, since δ = 0.4 and υ = 2.2.

In fact, in that bifurcation diagram σ varies in (0, 6.4) and (q∗1 , q
∗

2) in (2.8)

is stable for low values of σ, while above the stability threshold we observe

a cascade of period-doubling bifurcations leading to chaos. The presence of

chaotic dynamics for σ > 5.675 is confirmed both by the plot of the maximal

equilibrium stability by the joint reactivity, both in view of simplifying computations and due
to its representativeness, as such analysis clarifies also the effect of the parameters defining
σ̃. However, in the bifurcation diagrams illustrating those results we will use σ, i.e., the
reactivity, since this is the parameter most commonly considered in the literature in relation
to adjustment rules (see e.g. [10, 34]), even if choosing δ or υ as bifurcation parameters would
produce analogous numerical outcomes.

7According to [35], page 249, this is a consequence of the fact that a violation of (3.8) occurs
when condition (ii) in (3.3) becomes an equality, so that the Jacobian matrix in (3.4) admits
a real eigenvalue equal to −1. Analogously, a period-doubling bifurcation occurs at the steady
state with complements when (3.18) in the proof of Proposition 3.2 is violated. Of course, the
same is still true when (3.8) and (3.18) are rewritten in order to make explicit a parameter
different from σ̃, such as d or γ. In this respect, we remark that a period-doubling bifurcation
occurs on increasing σ̃ or |γ| (cf. Corollaries 3.5 and 3.6 for γ), while a period-doubling
bifurcation occurs on decreasing d (see Corollaries 3.1 and 3.3). We can then equivalently say
that a period-halving bifurcation occurs on increasing d.
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Lyapunov exponent against σ in Fig. 3 (B), as well as by the non-periodic

attractor that we witness in the phase plane for σ = 6.38 in Fig. 3 (C). Namely,

in regard to the former we recall that there exists evidence for periodic behavior

when the maximal Lyapunov exponent is zero, while it becomes slightly positive

with quasiperiodic motions and assumes higher positive values in the presence

of chaos. As concerns the attractor in (C), we notice instead that, despite the

asymmetric initial conditions, it lies on the diagonal of the phase plane, i.e. on

∆ := {(q1, q2) ∈ (0,+∞)2 : q1 = q2}, due to the symmetry of the model, but

this is not always the case, as we shall see for different sets of parameters in Fig.

5 (C) and (F), as well as in Fig. 7 (C) and (G). We will investigate why these

dissimilar outcomes arise by analyzing in Subsection 3.4 the one-dimensional

system obtained by setting q1 = q2 in (3.1), which describes the behavior of the

restriction of the planar system to ∆. Indeed, due to the symmetry of (3.1), if

also initial conditions for the output of the two firms coincide, then their future

choices will be identical in each time period, and thus the planar model behaves

like the one-dimensional setting in (3.21).

On the other hand, when dealing with negative values for d, no condition in

Proposition 3.1 is granted. In particular, in Fig. 3 (D) we fix d = −0.4 and,

for the chosen parameter set, conditions (2.5) and (3.2) are fulfilled, as well

as the stability condition in (3.11), which reads as d > −0.480, while (3.8)

reads as σ̃ < 1.089, or equivalently σ < 3.217. Hence, like in (A), also in this

case the steady state is stable for low values of σ. On the other hand, since

the admissibility condition in (2.3) leads to8 qi < 0.370 for i ∈ {1, 2}, it is

fulfilled just for σ ∈ (0, 3.660). This is indeed the interval for σ depicted in Fig.

3 (D), where we have to interrupt the bifurcation diagram before the cascade

of period-doubling bifurcations (cf. also Footnote 7). We stress that, both

in (A) and in (B), orbits do not diverge when the steady state is not stable,

thanks to the introduction of the sigmoid adjustment mechanism, differently

8Notice that, when the Nash equilibrium is unstable, (2.3) has to be satisfied by all pro-
duction levels, not just by those computed at the equilibrium.
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from what happens with the linear adjustment rule considered in [6, 9]. Notice

that for the parameter configurations in Fig. 3 (A) and (D), disregarding the

parameters not encompassed in the model linear formulation, (q∗1 , q
∗

2) in (2.8)

is stable for the dynamical system analyzed in [9] since the stability condition

in (3.11), common to that framework (cf. Proposition 3 therein), is fulfilled.

We also stress that considering γ = β = 3.1 in Fig. 3 (A) and (D), so that

goods are homogeneous, we obtain dynamics analogous to the ones detected in

those bifurcation diagrams, where the interdependence degree between goods

is already very high. In particular, for the parameter configurations in Fig. 3

(A) and (D) except for γ = β = 3.1, (q∗1 , q
∗

2) in (2.8), which in the case of

homogeneous goods reads as

(q∗1 , q
∗

2) =

(
p− bε

3β + 2c+ dε2
,

p− bε

3β + 2c+ dε2

)
,

is stable for the dynamical system considered in [6] since the stability condition

in (3.11), which becomes d > −β+2c
ε2

, is fulfilled for those parameter values.

(A) (B) (C) (D)

Figure 3: The bifurcation diagram of q1,t+1 in (3.1) with respect to σ and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ =
3, and d = 0.1 in (A), d = −0.4 in (D). For the parameter configuration considered in (A), we
plot in (B) the maximal Lyapunov exponent against σ and in (C) the attractor in the phase
plane for σ = 6.38.

In regard to comparative statics, we remark that the same conclusions contained

in Propositions 1 and 2 in [9], showing that, with substitutable and independent

goods, under (3.2), the components of the Nash equilibrium in (2.8) decrease

when b, d or ε increase in the model linear formulation, hold true with the

sigmoidal adjustment mechanism, too. Hence, the efficacy of the environmental

policy described by the emission charges in (2.2) would seem not to be affected

by the nonlinear output adjustment rule introduced in the present work. On
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the other hand, as underlined in [9], a comparative statics result is economically

grounded if it concerns an equilibrium which is asymptotically stable and thus

orbits converge towards it after a transient period. Due to the above highlighted

destabilizing role played by σ̃, that concerns the case of complements, too (cf.

Subsection 3.2), we can then say that the significance of the comparative statics

analysis is reduced when dealing with the model nonlinear formulation in (3.1),

rather than with its linear counterpart. Accordingly, in Section 4 we will perform

alternative, comparative dynamics investigations to evaluate the environmental

policy efficacy, based either on a comparison of emissions along non-stationary

trajectories and along the equilibrium path or on a comparison of emissions for

different levels of charges in (2.2), described by increasing values of d.

Still in regard to d, we observe that it is possible to rewrite the statement of

Proposition 3.1 in order to make its role explicit starting from (3.8) as follows: 9

Corollary 3.1. When γ ≥ 0, under (2.5) and (3.2), (q∗1 , q
∗

2) in (2.8) is admis-

sible according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is locally

asymptotically stable for System (3.1) for σ̃ < 2 and

d > max

{
−2(β + c)

ε2
+

γ

ε2
,
−2(β + c)

ε2
+

γ

ε2
(
2
σ̃
− 1
)
}
.

Hence, similar to what happened with the model linear formulation in [6], in

the case of homogeneous goods, and in [9], with substitutable and independent

products, under (2.5) and (3.2) parameter d plays just a stabilizing role on

the Nash equilibrium - since by raising it we make the policy intensity degree

higher, hence favoring a decrease in production - when it influences its stability.

Namely, it can also happen that, under (2.5) and (3.2), the equilibrium in (2.8)

is stable for any admissible value for d according to (2.3). However, with respect

to [6, 9], due to the sigmoid adjustment mechanism in (2.10), we now have one

extra stability condition, involving the joint reactivity σ̃, which has to be not

9We stress that, similar to what occurs in [9] (cf. Footnote 3 therein), also in the present
framework b, differently from d, does not influence the system stability, being not present in
the Jacobian matrix in (3.4).
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too large due to its destabilizing role (see (3.13) and the related comments), and

thus more frameworks may arise. We represent the three main possibilities10 in

Fig. 4, where we take d as bifurcation parameter and the various values of p and

σ allow for a different ordering among the thresholds contained in Corollary 3.1.

In particular, calling d1, d2 the stability thresholds therein, da the admissibility

threshold coming from (2.3) and dc the threshold coming from (2.5), i.e.,

d1 := −2(β+c)
ε2

+ γ
ε2
, d2 := −2(β+c)

ε2
+ γ

ε2( 2
σ̃
−1)

,

da := − b(2β+2c+γ)
εp

, dc := − 2(β+c)
ε2

,

(3.14)

for the parameter configuration in Fig. 4 (A) it holds that dc = −0.892 <

d2 = −0.754 < d1 = −0.480 < da = −0.469. Since the stability thresholds

d1 and d2 are below the admissibility threshold da, the Nash equilibrium is

stable for all values for which it is admissible, as highlighted by the bifurcation

diagram in Fig. 4 (A), that we draw for d ∈ (−0.469, 0). Moreover, the steady

state is decreasing with d, in agreement with Proposition 1 in [9]. On the

other hand, for the parameter values considered in Fig. 4 (B) it holds that

da = −1.005 < dc = −0.892 < d2 = −0.754 < d1 = −0.480. Hence, although

this time both stability thresholds d1 and d2 are larger than da and satisfy (2.5),

which imposes d > dc, also the admissibility condition in (2.3), that leads to

qi < − 0.4
2.7d for i ∈ {1, 2}, since d varies, has to be taken into account. It is

straightforward to check that (q∗1 , q
∗

2) is admissible at the stability threshold

d = d1, since q∗i = 0.053 < − 0.4
2.7d1

= 0.309 for i ∈ {1, 2}. Hence, by continuity,

it should be possible to represent the corresponding bifurcation diagram for

values of d in a left neighborhood of d1. However, due to a monotone divergence

phenomenon which occurs as soon as d is below d1, in Fig. 4 (B) we draw the

bifurcation diagram for d ∈ [−0.480,−0.450) only, where the Nash equilibrium is

10Notice indeed that no crucial differences emerge when the smaller between the two stability
thresholds d1 and d2 in (3.14) lies above or below the admissibility threshold da. In regard
to the comparison between d1 and d2, with substitutes we have that d1 < d2 for σ̃ > 1. In
particular, this remark applies to the limit case in which γ = β, i.e., when we are dealing with
homogeneous goods. We finally stress that d1 and d2 coincide when products are independent.
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locally asymptotically stable.11 We stress that at d = d1 = −0.480 a saddle-node

bifurcation occurs.12 In regard to the divergence issue, we recall that by (3.13)

the sigmoid adjustment mechanism bounds in each period the output variation

and thus lowers the speed of divergence of the orbits, sometimes completely

preventing divergence, like e.g. in Figs. 3 and 7. However, this is not always

the case, as shown by Fig. 4 (B). Finally, in Fig. 4 (C) we have da = −1.005 <

dc = −0.892 < d1 = −0.480 < d2 = −0.467, so that also in such framework both

stability thresholds d1 and d2 are larger than da and satisfy (2.5), too. Recalling

that, in the considered framework, the admissibility condition in (2.3) reads as

qi < − 0.4
2.7d for i ∈ {1, 2}, a numerical check shows that we can represent the

corresponding bifurcation diagram e.g. for d ∈ (−0.478,−0.450). This is indeed

the choice made in Fig. 4 (C), which confirms that the Nash equilibrium is stable

for d > d2, whereas for values of d slightly smaller than d2 we observe a cyclic

behavior, since at d = d2 a period-halving bifurcation occurs (cf. Footnote 7).

Similar to (B), also in this case it would be possible to consider a wider range

of values of d. However, since the values of q1 raise very rapidly for decreasing

values of d ≈ −0.480, we focus on a small variation interval for d in Fig. 4 (C),

in order to better focus on the steady state stability recovery.

Notice that, differently from d, parameter b plays no role on the stability of the

Nash equilibrium, being not present in the Jacobian matrix in (3.4).

Starting again from Proposition 3.1 and making this time explicit the effect of

γ on the stability of the Nash equilibrium, we obtain the following result, which

11Actually, it would be possible to represent the bifurcation diagram in Fig. 4 (B) e.g. for
d ∈ [−0.480, 0), but, in order to better highlight what occurs in the proximity of the stability
threshold d = d1, we focus on a smaller interval of values for d. A similar remark applies to
the choice of the range for d in the bifurcation diagram in Fig. 4 (C).

12According to [35], page 249, when condition (iii) in (3.3) becomes an equality, and thus the
Jacobian matrix in (3.4) admits a real eigenvalue equal to +1, then a saddle-node, a pitchfork
or a transcritical bifurcation occurs. Since condition (iii) in (3.3) becomes an equality just
when (3.11) is violated, we are in one of those three cases for d = d1. In particular, we can infer
that a saddle-node bifurcation occurs for the parameter configuration considered in Fig. 4 (B),
since, according to the chosen initial conditions, the production of one firm positively diverges,
while the production of the other firm negatively diverges. As we shall see in Subsection 3.2,
with complements, depending on the parameter values we deal with, (iii) in (3.3) is either
always or never fulfilled and thus no fold, pitchfork or transcritical bifurcations can occur in
that framework.
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(A) (B) (C)

Figure 4: The bifurcation diagram of q1,t+1 in (3.1) with respect to d and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = 3, and
p = 3, σ = 1.478 in (A), p = 1.4, σ = 1.478 in (B), p = 1.4, σ = 3 in (C).

shows that an increasing degree of interdependence between goods, measured

by |γ|, is destabilizing when we deal with substitutes:

Corollary 3.2. When γ ≥ 0, under (2.5) and (3.2), (q∗1 , q
∗

2) in (2.8) is admis-

sible according to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, (q∗1 , q

∗

2)

is locally asymptotically stable for System (3.1) when σ̃ < 2 and

0 ≤ γ < min
{
2(β + c) + dε2,

( 2
σ̃
− 1
) (

2(β + c) + dε2
)}

. (3.15)

Hence, in our duopoly setting with emission charges we obtain a conclusion

contrasting with the destabilizing role of the degree of substitutability between

commodities found in [34], in a Cournot duopoly framework with differentiated

goods and nonlinear demand functions. Namely, in [34], where goods can be just

substitutes, the degree of substitutability/differentiation between the commodi-

ties is denoted by α and it is assumed to vary in the interval (0, 1), with goods

that are perfect substitutes for α = 1 and independent for α = 0, similar to

what occurs with our γ, which however varies in (0, β) in the case of substitutes

(cf. Section 2). Since the dynamic results in [34] are interpreted for increasing

values of the product heterogeneity, i.e., for decreasing13 values of α, the desta-

bilizing role of the degree of substitutability between commodities found in [34]

13We stress that a similar choice is made e.g. in [36], in a Cournot duopoly framework
with differentiated goods, in which commodities can be substitutes or complements. We shall
compare our findings with those in [36] in Subsection 3.3, where we will deal with complements,
too. Namely, like in [36], in the case of complements we will interpret our stability results
by looking at what happens for decreasing values of γ, i.e., when the interdependence degree
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on the unique steady state is in contrast to Corollary 3.2, according to which the

equilibrium destabilization is obtained on raising γ, so that decreasing values

of γ would be stabilizing. Our result can be easily explained by recalling that

|γ| for us represents the interdependence degree between goods and by noticing

that, when the two goods are almost independent, a price variation in one of

them does not influence much the demand of the other. If however their interde-

pendence degree raises, the demand for each commodity becomes more heavily

affected by a price variation in the other good, making fluctuations increase and

leading, for large enough values of σ̃, to the system instability, due also to the

already observed destabilizing effect of the joint reactivity. In this respect, we

more precisely stress that, according to Corollary 3.2, if σ̃ is too high, exceeding

2, then the equilibrium is stable for no values of γ ∈ (0, β), while the thresh-

old value γ2 :=
(

2
σ̃
− 1
) (

2(β + c) + dε2
)
in (3.15) lies in the interval (0, β),

thus becoming effective, for large enough values of σ̃ ∈ (0, 2). Moreover, calling

γ1 := 2(β + c) + dε2 the other threshold value in (3.15), we notice that γ1 < γ2

if and only if σ̃ ∈ (0, 1), while the opposite inequality holds true for σ̃ ∈ (1, 2).

Rather than illustrating Corollary 3.2, we will show in Fig. 7 possible bifur-

cation diagrams drawn for positive and negative values of γ, in relation to the

findings in the more general Corollary 3.5, which encompasses both the case of

substitutes and (Scenario I) of complements.

3.2. The case of complements

In the present subsection, we deal with the case γ < 0. Accordingly, under

(2.5), two different scenarios ensure the positivity of the Nash equilibrium in

(2.8), i.e.,

p− bε > 0, 2(β + c) + dε2 + γ > 0, (3.16)

or

p− bε < 0, 2(β + c) + dε2 + γ < 0. (3.17)

between goods, measured by |γ|, raises. Indeed, the dependence of the stability/instability of
the steady state on the absolute value of γ will more clearly emerge in Subsection 3.3, where
we will combine our results for substitutes, obtained in the present subsection, with those for
complements, that we shall obtain in Subsection 3.2.
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The former scenario, in which (2.5) is granted and that occurs either when d ≥ 0

or for not too negative values for d and γ, leads to findings similar to, but not

coinciding with, those described in Subsection 3.1. In the latter scenario, that

occurs for negative enough values for d and γ, (2.5) needs to be imposed, being

not guaranteed, and outcomes will be drastically different from those detected

in the other cases. In order to easily refer to the scenarios related to (3.16) and

(3.17), in what follows we will call them Scenario I and Scenario II, respectively,

and we will analyze them separately.

3.2.1. Analysis of Scenario I

The dynamic result, which represents the counterpart to Proposition 3.1,

reads as follows:

Proposition 3.2. When γ < 0, under (3.16), (q∗1 , q
∗

2) in (2.8) is admissible

according to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is locally

asymptotically stable for System (3.1) when σ̃ < 2
1− γ

2(β+c)+dε2
.

Proof. Using Jury conditions like in the proof of Proposition 3.1, we find again

(3.5), equivalent to (3.9), as well as (3.6) and (3.7). However, this time, since γ

is negative, (3.6) and (3.7) are jointly fulfilled when

σ̃ <
2

1− γ
2(β+c)+dε2

. (3.18)

Moreover, by (3.16), (3.9) is equivalent to (3.10) and to (3.11). Since, still by

(3.16), the conditions in (2.3) lead to (3.12) and it holds that

−
b(2β + 2c+ γ)

εp
> −

2β + 2c+ γ

ε2
> −

2β + 2c− γ

ε2
,

the assertion follows by (3.12) and (3.18). �

Similar to what happened with substitutes, we notice that although the same

conclusions about comparative statics contained in Propositions 4 and 5 in [9],

according to which the components of the Nash equilibrium in (2.8) decrease

when b, d or ε increase, hold true with the sigmoidal adjustment mechanism,
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too, the significance of the comparative statics analysis is reduced when deal-

ing with the model nonlinear formulation in (3.1), since the stability region in

Proposition 3.2 for (q∗1 , q
∗

2) in (2.8) is reduced with respect to Proposition 6 in

[9], obtained for the model linear formulation. Indeed, in that setting the Nash

equilibrium is stable under (3.16) anytime it is admissible according to (2.3),

i.e., when (3.12) holds true, while with the sigmoidal adjustment mechanism the

extra condition in (3.18), highlighting the destabilizing role played by the joint

reactivity σ̃, is required for stability. As explained in relation to Proposition

3.1, this occurs because raising the value of any of the parameters defining σ̃,

i.e., δ, υ and σ, increases the possible output variations between two consecu-

tive periods (see (3.13)). Concerning Proposition 3.2, two different scenarios,

according to the sign of d, are illustrated in Fig. 5, where we let σ vary, finding

outcomes which bear resemblance to those detected in Fig. 3, as well as some

differences.

Namely, for the parameter configuration considered in Fig. 5 (A), where d = 0.1,

since (3.16) holds true and (3.12) is guaranteed by the positivity of d, the only

condition in Proposition 3.2 that can be violated is the one in (3.18), which reads

as σ̃ < 1.413 or equivalently as σ < 4.176, since υ = 2.2 and δ = 0.4. Indeed,

in that bifurcation diagram σ varies in (0, 20) and (q∗1 , q
∗

2) in (2.8) is stable

for low values of σ, while after the period-doubling bifurcation occurring at

σ = 4.176 (cf. Footnote 7), we observe a secondary Neimark-Sacker bifurcation

at σ = 5.112, at which the period-two cycle loses stability and quasiperiodic dy-

namics emerge, followed by chaotic motions for larger values of σ. The presence

of complex dynamics is confirmed both by the plot of the maximal Lyapunov

exponent against σ in Fig. 5 (B), in which values are positive for σ > 5.67,

except for the periodicity windows that we observe in (A), where the maximal

Lyapunov exponent becomes null or negative, as well as by the chaotic attractor

that we observe in the phase plane for σ = 9.9 in Fig. 5 (C).

When considering negative values for d, no condition in Proposition 3.2 is

granted. In particular, in Fig. 5 (D) we fix d = −0.1 and, for the chosen

parameter set, condition (3.16) is fulfilled, while (3.18) reads as σ̃ < 1.316, or
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equivalently σ < 3.888. Hence, like in (A), also in this case the steady state is

stable for low values of σ. On the other hand, since the admissibility condition

in (2.3) leads to qi < 1.481 for i ∈ {1, 2}, it is fulfilled just for σ ∈ (0, 5.334).

This is the interval for σ depicted in Fig. 5 (D), which is sufficient to witness

the secondary Neimark-Sacker bifurcation of the period-two cycle, followed by

quasiperiodic dynamics,14 whose presence is confirmed by the positive values

for σ > 5.156 in the plot of the maximal Lyapunov exponent against σ in Fig.

5 (E) and by the shape of the attractor that we observe in the phase plane for

σ = 5.247 in Fig. 5 (F). Differently from Fig. 5 (B), the maximal Lyapunov

exponent against σ in (E) never vanishes or becomes negative for σ > 5.156,

due to the lack of periodicity windows in (D). Moreover, we notice that, unlike

what occurs in Fig. 3 (C), despite the symmetry of the model, the attractors

in Fig. 5 (C) and (F) do not lie on the diagonal of the phase plane. We will try

to clarify the reason behind such discrepancy by means of the 1D analysis that

we shall perform in Subsection 3.4.

We also remark that both in Fig. 5 (A) and (D) orbits do not diverge after the

steady state stability loss, differently from the linear framework considered in

[6, 9], thanks to the introduction of the sigmoid adjustment mechanism.

We stress that the threshold values in Fig. 3 (A) and in Fig. 5 (A) for σ coincide

because in the two bifurcation diagrams we considered the same parameter

values, except for γ = 3 in the former, and γ = −3 in the latter, so that

|γ| = 3 in either case.15 Namely, we will see in Corollary 3.6 in Subsection 3.3,

which encompasses the frameworks of substitutes and of complements, that,

since d > 0 in Figs. 3 (A), 5 (A) and (3.2) holds true in both frameworks, then

14In this respect we remark that choosing a more negative value of d would allow us to
draw the bifurcation diagram for a smaller interval of values for σ. For instance, for d = −0.15
we should interrupt the diagram in Fig. 5 (D) just after the secondary Neimark-Sacker
bifurcation. The same remark applies to Fig. 3. Namely, in (D) therein we have to truncate
the bifurcation diagram just after the period-doubling bifurcation with d = −0.4, while if we
chose d = −0.1 in Fig. 3 (D), we would obtain a bifurcation diagram more similar to the one
in Fig. 3 (A), encompassing complex dynamics.

15Notice that in Fig. 5 (D) we had to consider a different value for d < 0 with respect
to Fig. 3 (D) due to the admissibility condition (3.12), with consequent different threshold
values for σ in Figs. 3 (D) and 5 (D) although having |γ| = 3 in both bifurcation diagrams.
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(A) (B) (C)

(D) (E) (F)

Figure 5: The bifurcation diagram of q1,t+1 in (3.1) with respect to σ and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ =
−3, and d = 0.1 in (A), d = −0.1 in (D). For the parameter configuration considered in (A),
we plot in (B) the maximal Lyapunov exponent against σ and in (C) the attractor in the
phase plane for σ = 9.9. Similarly, for the parameter configuration considered in (D), we plot
in (E) the maximal Lyapunov exponent against σ and in (F) the attractor in the phase plane
for σ = 5.247.

|γ| determines the stability threshold value for σ̃, as it follows by making the

latter parameter explicit (cf. (3.20)).

Let us now state the analogues of Corollaries 3.1 and 3.2, which are obtained

by highlighting in the statement of Proposition 3.2 the role of d and of γ,

respectively.

In regard to the former, making d explicit in (3.18), we obtain the following:

Corollary 3.3. When γ < 0, under (3.16), (q∗1 , q
∗

2) in (2.8) is admissible ac-

cording to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is locally asymp-

totically stable for System (3.1) for σ̃ < 2 and

d >
−2(β + c)

ε2
−

γ

ε2
(
2
σ̃
− 1
) .

Hence, similar to what happened with substitutes in Corollary 3.1, also with

complements under (3.16) we find that d plays a stabilizing role on the Nash
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equilibrium, as long as the joint reactivity σ̃ is not excessive, otherwise the

equilibrium is never stable, independently on d. Namely, on the one hand, a

raise in d, making emission charges higher, favors a decrease in production, but

this effect may be neutralized by too large values of the joint reactivity, recalling

that by (3.13) a raise in σ̃ makes output variations increase.

In more detail, when illustrating the different dynamic scenarios compatible

with Corollary 3.3, starting from the threshold values for d in (3.14) related

to Corollary 3.1, we notice that dc and d1 are no more involved, while the

admissibility condition da is still necessary, and, in place of d2, we need to

consider d′2 := −2(β+c)
ε2

− γ

ε2( 2
σ̃
−1)

. Hence, the only two possibilities are given by

d′2 < da and da < d′2. We represent them in Fig. 6 (A) and (B), respectively,

where we take d as bifurcation parameter, for different values of p and σ. In more

detail, with the parameter configuration in Fig. 6 (A) (coinciding with that in

Fig. 4 (A), except for the opposite value for γ) it holds that d′2 = −0.754 <

da = −0.173. Since the stability threshold d′2 is below the admissibility threshold

da, the Nash equilibrium is stable for all values for which it is admissible, as

confirmed by the bifurcation diagram in Fig. 6 (A), that we draw for d ∈

(−0.173, 0). Notice that the steady state is decreasing with d, in agreement with

Proposition 4 in [9]. On the other hand, for the parameter values considered

in Fig. 6 (B)16 it holds that da = −0.471 < d′2 = −0.467. Thus, although this

time the stability threshold d′2 is larger than da, in order to take into account

the admissibility condition in (2.3), that leads to qi < − 0.4
2.7d for i ∈ {1, 2},

since d varies, we can represent the corresponding bifurcation diagram just for

d ∈ (−0.469, 0). However, in Fig. 6 (B) we focus on d ∈ (−0.469,−0.420),

to better highlight that (q∗1 , q
∗

2) is locally asymptotically stable for (3.1) when

d > d′2, whereas for values of d slightly smaller than d′2 we observe a cyclic

behavior, that is replaced by monotone divergence for lower values of d.

16We stress that with the parameter configuration in Fig. 4 (B) and γ = −3 we would have
found again the scenario with d′2 < da in Fig. 6 (B). Hence, in this case, unlike in (A), we
had to consider a different parameter configuration with respect to Fig. 4 (B).
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(A) (B)

Figure 6: The bifurcation diagram of q1,t+1 in (3.1) with respect to d and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = −3, and
p = 3, σ = 1.478 in (A), p = 1.1, σ = 3 in (B).

Making explicit in the statement of Proposition 3.2 the role of γ rather than

that of d, we obtain the next:

Corollary 3.4. When γ < 0, under (3.16), (q∗1 , q
∗

2) in (2.8) is admissible ac-

cording to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, (q∗1 , q

∗

2) is locally

asymptotically stable for System (3.1) when σ̃ < 2 and

0 > γ >
(
1−

2

σ̃

) (
2(β + c) + dε2

)
.

Although this result may seem to provide opposite conclusions with respect to

Corollary 3.2 about the effect played on the Nash equilibrium by γ, looking

destabilizing in that context and stabilizing here, we recall that the interde-

pendence degree between the two goods is measured by |γ|. Namely, since two

goods are independent for γ = 0 and their interdependence degree raises when γ

becomes either positive or negative, the correct way to interpret our findings is

on increasing γ in absolute value. Hence, while discussing Corollary 3.2, where

we dealt with positive values for γ, we considered its role when it raises, in com-

menting Corollary 3.4, where we deal with complements, we focus on its effect

when it decreases. Accordingly, we can conclude that, similar to what occurred

in Corollary 3.2, |γ| = −γ is destabilizing in Corollary 3.4, too, since by raising

|γ| the demand of each good becomes more influenced by a price variation in

the other, favoring oscillations in the produced quantities. However, like with

substitutes, also in Scenario I of complements the effect of γ may be observed
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just for high enough, though not excessive, values for σ̃. Namely, for σ̃ close

to 0 (resp., for σ̃ ≥ 2), the destabilizing role of the joint reactivity becomes so

weak (resp., so strong) that it hides the effect played by the interdependence

degree between goods, with the equilibrium being stable (resp., unstable) for

every value of γ ∈ (−β, β).

We will return on the role of |γ| in Subsection 3.3 where, dealing both with

substitutes and with complements in Scenario I, its effect on the equilibrium

stability will be better highlighted in Corollary 3.5.

Before stating that result, we complete the investigation of what occurs with

complements by focusing on Scenario II.

3.2.2. Analysis of Scenario II

Even under (3.17), the conclusions about comparative statics found in [9]

(cf. Propositions 7 and 8 therein) still hold true with the model nonlinear

formulation, showing that the environmental policy described by the emission

charges Ci in (2.2) is not effective in reducing pollution when d is negative

enough and thus emission charges increase too slowly with production. Namely,

under (3.17), which can be fulfilled just by values of d that are much lower than

0, the components of the Nash equilibrium in (2.8) increase with b, d and ε.

In this scenario however we find confirmation of the dynamic result in [9] (cf.

Proposition 9 therein), too, according to which the steady state is never stable,

when it is admissible. Namely, the counterpart to Propositions 3.1 and 3.2 reads

as follows:

Proposition 3.3. When γ < 0, under (2.5) and (3.17), (q∗1 , q
∗

2) in (2.8) is

admissible according to (2.3) for d < − b(2β+2c+γ)
εp

. If this is the case, (q∗1 , q
∗

2) is

always unstable for System (3.1).

Proof. Using Jury conditions, we find again (3.5), equivalent to (3.9), as well as

(3.6) and (3.7). However, since we are now supposing that 2(β+c)+dε2+γ < 0,

this time from (3.9) it follows that

2(β + c) + dε2 − γ < 0,

33



which contradicts (2.5) with γ < 0. Hence, Jury conditions are never satisfied

for System (3.1) at (q∗1 , q
∗

2) , leading to the assertion. �

The reason behind the lack of stability for the equilibrium in Scenario II of

complements lies in the fact that we are in such framework for negative enough

values for d and γ. Indeed, due to the negativity in d, emission charges Ci in

(2.2) increase too slowly with production, being thus not effective in bounding

the output by firms in a sufficient manner, and the strong negativity condition

on γ leads to fluctuations, being |γ|, i.e., the interdependence degree between

goods, high. Combining such two aspects, we obtain an explanation of why,

even for very low values of σ̃, the Nash equilibrium is never stable in Scenario

II. Namely, differently from the previously considered frameworks (cf. Propo-

sitions 3.1 and 3.2 and the relative comments), in this case the destabilization

is not caused, or at least amplified, by the sigmoid mechanism, as confirmed by

the fact that in Scenario II of complements stability never occurs, also with the

linear adjustment rule formulation considered in [6, 9].

We will not illustrate the dynamics arising on increasing the main model pa-

rameters in this scenario, in which no stability thresholds are present, since

the numerical simulations we performed provided divergent outcomes, with no

emerging attractors.

In order to conclude the local stability analysis, we shall better highlight the role

of γ, as discussed after Corollary 3.4. This will be done in the next subsection.

3.3. The role of the interdependence degree between goods

In view of drawing conclusions valid both for the case of substitutes and of

complements under (3.16), we merge Corollaries 3.2 and 3.4, so as to obtain the

following:

Corollary 3.5. Under (2.5) and (3.16), (q∗1 , q
∗

2) in (2.8) is admissible accord-

ing to (2.3) for γ > −
(
2(β + c) + dεp

b

)
. If this is the case, (q∗1 , q

∗

2) is locally

asymptotically stable for System (3.1) when σ̃ < 2 and

(
1−

2

σ̃

) (
2(β + c) + dε2

)
< γ < min

{
2(β+c)+dε2,

( 2
σ̃
−1
) (

2(β + c) + dε2
)}

.

(3.19)
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Although containing heavy conditions, Corollary 3.5 shows that increasing the

absolute value of γ has a destabilizing effect on System (3.1), in agreement with

the discussion following Corollary 3.4. Indeed, as stressed there, the role of γ

can be witnessed just for intermediate values for the joint reactivity σ̃, neither

too low nor too high, and, under such condition, the equilibrium destabilization

occurs on raising |γ|, because in this manner the demand of each good becomes

more influenced by a price variation in the other, favoring oscillations in the

produced quantities.

In order to compare Corollary 3.5 with the results in [36] where the authors, like

us, deal with a duopoly framework with differentiated goods in which commodi-

ties can be either substitutes or complements, we recall that therein a parameter

d is introduced, named degree of horizontal product differentiation, varying in

the interval (−1, 1) after a normalization. In particular, d is negative in the case

of complements and positive in the case of substitutes, with goods being perfect

substitutes for d = 1 and independent when d = 0, similar to what occurs with

our γ ∈ (−β, β) (cf. Section 2). On the other hand, while the dynamic results

in [36] are interpreted for increasing values of the product heterogeneity, i.e.,

for decreasing values of d, we think of |γ| as interdependence degree between

goods, and we interpret our results on increasing it. Given this starting point,

the authors in [36] find in principle up to two stability thresholds for their pa-

rameter d at the equilibrium and the unique steady state is stable for values of d

in between. However, in [36] it is shown that at most the lower between the two

stability thresholds can lie in the feasible interval (−1, 1), so that an increasing

degree of product differentiation may just destabilize the market equilibrium.

Such result is in partial contrast to Corollary 3.5, which encompasses both the

destabilizing effect proven for γ in Corollary 3.2 for the case of substitutes and

its stabilizing effect shown in Corollary 3.4 for the case of complements in Sce-

nario I. Namely, recalling the different meaning attached to d in [36] and to |γ|

in the present work, the findings in [36] are in disagreement with Corollary 3.5,

and thus with Corollary 3.2, if goods are substitutes, but are in agreement with

Corollary 3.5, and thus with Corollary 3.4, if goods are complements and we
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are in Scenario I.

The statement of Corollary 3.5 is much simplified under the assumption that

d > 0, in which case, being the emission charges in (2.2) strictly convex, there is

no need for the admissibility condition in (2.3), (2.5) is always fulfilled and (3.16)

reduces to (3.2). Moreover, the stability condition (3.10) derived in Proposition

3.1 is granted, and thus we easily obtain the next:

Corollary 3.6. Assuming that d > 0, under (3.2) it holds that (q∗1 , q
∗

2) in (2.8)

is locally asymptotically stable for System (3.1)

• for every value of |γ| < β if σ̃ ≤ η := 4β+4c+2dε2

3β+2c+dε2
;

• for every value of |γ| <
(
2
σ̃
− 1
) (

2(β + c) + dε2
)
if η < σ̃ < 2;

• for no values of γ if σ̃ ≥ 2.

Proof. For d > 0, (3.19) reads as

|γ| <
( 2
σ̃
− 1
) (

2(β + c) + dε2
)
, (3.20)

which can be fulfilled by some values of γ just when σ̃ < 2, since 2(β+c)+dε2 >

0. Recalling that γ ∈ (−β, β), (3.20) imposes stricter bounds on γ exclusively

when
(
2
σ̃
− 1
) (

2(β + c) + dε2
)
< β, i.e., when σ̃ > η := 4β+4c+2dε2

3β+2c+dε2
∈ (1, 2).

The proof is complete. �

Such result clearly shows that, as already observed, the effective role played by

the interdependence degree |γ| between goods depends also on the strength of

the joint reactivity, due to the destabilizing effect of σ̃ on the Nash equilibrium

(cf. (3.13) and the related comments). Namely, for very low values of σ̃, the

steady state is stable for every admissible value of γ. On raising the joint reac-

tivity, the larger the value of σ̃, the smaller the equilibrium stability region with

respect to γ, which becomes empty for σ̃ ≥ 2. Focusing on intermediate values

for the joint reactivity, the steady state is stable for not excessive values of the

interdependence degree between goods, i.e., when goods are substitutes, but

competition is not extremely intense, commodities being far from being perfect
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substitutes, or when goods are complements, but close to the case in which they

are independent.

The three scenarios described in Corollary 3.6 can be obtained for different,

increasing values of σ. For brevity’s sake, in Fig. 7, where in (A) and (E) we

show the bifurcation diagram of q1,t+1 in (3.1) for γ ∈ (−β, β), we focus just

on the second and the third scenarios17, which are the most interesting from a

dynamic viewpoint.

In more detail, for the parameter values considered in Fig. 7 it holds that d > 0

and p > bε, so that (3.2) is fulfilled and it is immediate to check that, similar

to the results about comparative statics contained in the above recalled Propo-

sitions 1, 2, 4 and 5 in [9], where the role of b, d and ε was investigated, (q∗1 , q
∗

2)

in (2.8) is decreasing for γ ∈ (−β, β) = (−3.1, 3.1). Moreover, since for the

parameter η introduced in Corollary 3.6 it holds that η = 1.400, when fixing

σ = 5.8 in Fig. 7 (A) we have η < σ̃ = 1.963 < 2, so that the Nash equilibrium

is locally asymptotically stable just for γ ∈ (−0.136, 0.136), according to (3.20),

while when fixing σ = 6 in Fig. 7 (E) we have σ̃ = 2.031 > 2, so that the Nash

equilibrium is stable for no values of γ. We finally observe that, as highlighted

by the bifurcation diagrams in Fig. 7 (A) and (E), when the steady state loses

stability, via period-doubling bifurcations (cf. Footnote 7), because of a high

interdependence degree between goods, complex dynamics may emerge due to

the presence of chaotic or quasiperiodic attractors, but no divergence issues arise

thanks to the bounds imposed by the sigmoidal function in (3.1).

The presence of complex dynamics in Fig. 7 (A) for γ < −2.824 and for

γ > 2.834 is confirmed both by the positive values in the plot of the maxi-

mal Lyapunov exponent against γ in Fig. 7 (B), as well as by the non-periodic

attractors that we observe in the phase plane for γ = −3.038 in (C) and for

γ = 3.038 in (D). Similarly, the positive values in the plot of the maximal Lya-

17We stress that the first scenario in Corollary 3.6, in which the steady state is locally
asymptotically stable for every γ ∈ (−β, β), can be obtained e.g. for σ = 2 in the parameter
configuration considered in Fig. 7, in which case σ̃ = 0.677 < η = 1.400, with η defined as in
Corollary 3.6.
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punov exponent against γ in Fig. 7 (F) and the non-periodic attractors that

we observe in the phase plane for γ = −3.038 in (G) and for γ = 3.038 in (H)

confirm the presence of complex dynamics in Fig. 7 (E) for γ < −2.563 and for

γ > 2.590. In more detail, we notice that the attractors in (D) and (H) lie on

the diagonal of the phase plane, while those in (B) and (F) do not. We will try

to explain such difference by investigating in Subsection 3.4 the features of the

1D setting in (3.21).

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 7: The bifurcation diagram of q1,t+1 in (3.1) for γ ∈ (−3.1, 3.1) and initial conditions
q1,0 = 0.25, q2,0 = 0.2, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, d = 0.1, ε =
2.7, and σ = 5.8 in (A), σ = 6 in (E). For the parameter configuration considered in (A),
we plot in (B) the maximal Lyapunov exponent against γ, and in (C) and (D) the attractor
in the phase plane for γ = −3.038 and γ = 3.038, respectively. Similarly, for the parameter
configuration considered in (E), we plot in (F) the maximal Lyapunov exponent against γ, and
in (G) and (H) the attractor in the phase plane for γ = −3.038 and γ = 3.038, respectively.

3.4. Dynamics on the diagonal of the phase plane

In order to try to understand why in the numerical simulations performed

so far some of, but not all, the attractors lie on the diagonal

∆ := {(q1, q2) ∈ (0,+∞)2 : q1 = q2}

of the phase space, we study the one-dimensional dynamical system correspond-

ing to the restriction of the planar model in (3.1) to ∆, i.e.,

qt+1 = qt + δ

(
υ + δ

υ e
−σ

(
p−bε−γqt

2(β+c)+dε2
−qt

)

+ δ

− 1

)
, (3.21)
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obtained by setting q1,t = q2,t in (3.1). Namely, calling f : (0,+∞) → (0,+∞)

the 1D map associated with (3.21), for the restriction of F to ∆, i.e., for F |∆ :

∆ → ∆, it holds that F (q, q) = (f(q), f(q)), where F : (0,+∞)2 → (0,+∞)2

is the planar map associated with (3.1). We notice indeed that ∆ ⊂ (0,+∞)2

is invariant for F, that is, F (∆) ⊆ ∆, because, by the symmetry of (3.1), if

also initial conditions for the output of the two firms coincide, then their future

choices will be identical in each time period.

We start our study of the 1D setting by observing that the only steady state of

(3.21) is given by

q∗ =
p− bε

2(β + c) + dε2 + γ
(3.22)

so that for the Nash equilibrium in (2.8) it holds that (q∗1 , q
∗

2) = (q∗, q∗) ∈ ∆.

Although in principle the subdivision of the stability analysis depending on

whether goods are substitutes or complements and according to the sign of

the numerator and of the denominator of q∗ should remain unchanged with

respect to the planar setting, Proposition 3.4 shows that in the 1D model the

stability conditions with substitutes and in Scenario I of complements coincide,

although differing from the findings in both the corresponding two-dimensional

frameworks, while Proposition 3.5 confirms that, like in the planar setting, the

steady state is always unstable in Scenario II of complements also for (3.21).

Namely, recalling also the admissibility condition in (2.3), our first stability

result for (3.21) reads as follows:

Proposition 3.4. Under (2.5) and (3.16), q∗ in (3.22) is admissible according

to (2.3) for d > − b(2β+2c+γ)
εp

. If this is the case, q∗ is locally asymptotically

stable for System (3.21) when σ̃ < 2
1+ γ

2(β+c)+dε2
.

Proof. We have that q∗ in (3.22) is locally asymptotically stable for System

(3.21) when

−1 < f ′(q∗) = 1− σ̃

(
2(β + c) + dε2 + γ

2(β + c) + dε2

)
< 1. (3.23)

The right inequality in (3.23) leads to

2(β + c) + dε2 + γ

2(β + c) + dε2
> 0, (3.24)
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which is always fulfilled under (2.5) and (3.16).

The left inequality in (3.23) leads to

σ̃ <
2

1 + γ
2(β+c)+dε2

,

concluding the proof. �

Comparing the above result for the case of substitutes with Proposition 3.1, we

notice that condition (3.11) on d is no more necessary, while condition (3.8) is

still needed in order to have the equilibrium locally asymptotically stable in the

1D framework. Since in Fig. 3 (A) and (D) condition (3.11) is always fulfilled,

we find that those same bifurcation diagrams with respect to σ describe the

dynamics for System (3.21), too, as confirmed by the fact that the attractor in

Fig. 3 (C), obtained for the 2D system for the parameter set in (A), lies on

the diagonal of the phase plane. Namely, for the same parameter configuration

considered in Fig. 3 (A), i.e., p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b =

0.4, ε = 2.7, γ = 3 and d = 0.1, we show in Fig. 8 how the graph of the first

iterate of the map f associated with (3.21) looks like for increasing values of σ.

In more detail, recalling that for such parameter values (3.8) reads as σ̃ < 1.413

or, equivalently, as σ < 4.176, for σ = 3 we obtain in Fig. 8 (A) that q∗ in (3.22)

is locally (actually, globally) asymptotically stable, for σ = 4.8 we witness in

Fig. 8 (B) a stable period-two cycle, composed by the points q′ = 0.049 and

q′′ = 0.299, while in Fig. 8 (C), for σ = 6.1, we find a chaotic attractor.

As concerns Fig. 4, we notice that the bifurcation diagrams with respect to

d in (A) and (C) remain unchanged in the one-dimensional setting, while the

stability threshold that we observe in Fig. 4 (B), arising from (3.11), does not

exist anymore in relation to System (3.21).

On the other hand, focusing on Scenario I of complements, we notice that the

stability condition in Proposition 3.4 is different from the one in (3.18), present

in Proposition 3.2, fact which makes particularly interesting the comparison

between the dynamics generated by Systems (3.1) and (3.21). Indeed, focusing

e.g. on the parameter configuration considered in Fig. 5 (A), i.e., p = 2.5, δ =

0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = −3 and d = 0.1, we
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(A) (B) (C)

Figure 8: The graph of the function f associated with (3.21) for p = 2.5, δ = 0.4, υ = 2.2, β =
3.1, c = 0.15, b = 0.4, ε = 2.7, γ = 3, d = 0.1, and σ = 3 in (A), σ = 4.8 in (B), σ = 6.1 in
(C), with initial condition q0 = −1.3 in (A) and (C), and q0 = 0.049 in (B).

draw in Fig. 9 the bifurcation diagram of q1,t+1 in (3.1) with respect to σ (in

blue), already shown in Fig. 5 (A), together with the bifurcation diagram of

qt+1 in (3.21) with respect to σ (in magenta). Since σ varies in (0, 20) therein,

we observe that the stability threshold for (q∗1 , q
∗

2) in (2.8), which, in agreement

with Proposition 3.2, is given by σ̃ < 1.413 or, equivalently, by σ < 4.176, does

not coincide with the stability threshold for q∗ in (3.22). Namely, the latter,

in agreement with Proposition 3.4, is given by σ̃ < 3.419 or, equivalently, by

σ < 10.101. The different stability thresholds for the 1D and the 2D frameworks

imply that q∗ in (3.22) is still stable when (q∗1 , q
∗

2) in (2.8) has lost stability.

As we shall discuss below, such discrepancy between Systems (3.1) and (3.21)

has important consequences from the policy viewpoint. Even when the steady

state has become unstable in both settings, and chaotic dynamics arise in each

framework, different attractors emerge for the two systems. In order to highlight

such fact, we juxtapose in Fig. 9 (B) for σ = 19 in the phase plane the 2D

attractor for System (3.1), colored in blue, and the one-dimensional attractor

for System (3.21), colored in magenta, that is contained in ∆.

Also when dealing with the parameter values used in Fig. 5 (C), i.e., p =

2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = −3 and d =

−0.1, we observe that the stability threshold for (q∗1 , q
∗

2) in (2.8) differs from the

stability threshold for q∗ in (3.22). Namely, according to Proposition 3.2, the

former is given by σ̃ < 1.316 or, equivalently, by σ < 3.888, while, according to
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Proposition 3.4, the latter is given by σ̃ < 4.165 or, equivalently, by σ < 12.307,

as confirmed by Fig. 9 (C), where we draw together the bifurcation diagrams,

with respect to σ, of q1,t+1 in (3.1) in blue and of qt+1 in (3.21) in magenta.

Notice that, taking into account the admissibility condition in (2.3), which leads

to qi < 1.481 for i ∈ {1, 2} in relation to System (3.1), and to q < 1.481 in

relation to System (3.21), we can draw the former bifurcation diagram just for

σ ∈ (0, 5.334), and the latter for σ ∈ (0, 24.849), only. In relation to both

frameworks, we witness in Fig. 9 (C) the emergence of chaotic dynamics after

the steady state stability loss. However, the destabilization of q∗ in (3.22)

occurs when the admissibility condition in (2.3) for System (3.1) is no more

satisfied, so that q∗ in (3.22) is stable as long as the dynamics of System (3.1)

are admissible. Hence, we find deep differences between the one-dimensional

and the planar settings for the parameter configuration used in Fig. 5 (C),

too, that extend to Fig. 6 (B), as well. Indeed, in that figure we found that

(q∗1 , q
∗

2) in (2.8) is stable for System (3.1) for d > −0.467, but for the same

parameter values used therein we have that q∗ in (3.22) is stable for System

(3.21) whenever it is admissible,18 i.e., for d > −0.471. Also for the parameter

configuration considered in Fig. 6 (A), q∗ in (3.22) is stable for System (3.21)

whenever it is admissible, i.e., for d > −0.173, this time in agreement with what

we observe in Fig. 6 (A) for (q∗1 , q
∗

2) in (2.8). For brevity’s sake, we omit the

bifurcation diagrams of qt+1 in (3.21) with respect to d for the parameter sets

used in Fig. 6.

Crucial differences arise between the 1D and the 2D frameworks with the pa-

rameter configurations used in Fig. 7 (A) and (E), as well. In order to high-

light them, we juxtapose in Fig. 10 the bifurcation diagrams with respect to

γ ∈ (−3.1, 3.1) of q1,t+1 in (3.1) (in blue) and of qt+1 in (3.21) (in magenta)

18Namely, for the parameter configuration considered in Fig. 6 (B), (2.3) reads as q < − 0.4
2.7d

in relation to System (3.21), similar to what occurred for System (3.1), where (2.3) led to
qi < − 0.4

2.7d
for i ∈ {1, 2}. On the other hand, the stability condition with respect to d for q∗

in (3.22) in Scenario I of complements is given by d >
−2(β+c)

ε2
+ γ

ε2( 2
σ̃
−1)

, which differs from

the condition in Corollary 3.3, and that reads as d > −1.316 for the parameter values used in
Fig. 6 (B).
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(A) (B) (C)

Figure 9: For p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, γ = −3, and
d = 0.1 in (A), d = −0.1 in (C), we plot in blue the bifurcation diagram of q1,t+1 in (3.1)
with respect to σ and initial conditions q1,0 = 0.25, q2,0 = 0.2, and in magenta the bifurcation
diagram of qt+1 in (3.21) with respect to σ and initial condition q0 = 0.25. For the parameter
configuration considered in (A), we juxtapose in (B) for σ = 19 the attractors in the phase
plane for System (3.1) in blue and for System (3.21) in magenta.

for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, d = 0.1, ε = 2.7,

and σ = 5.8 in (A), σ = 6 in (B). Moreover, we notice that, as an immediate

consequence of Proposition 3.4, the stability condition with respect to γ for q∗

in (3.22) is given by

γ <

(
2

σ̃
− 1

)(
2(β + c) + dε2

)
, (3.25)

both with substitutes - in which case also the assumption σ̃ < 2 is needed -

and in Scenario I of complements, thus differing from the conditions derived in

Corollary 3.5, and in Corollary 3.6 for the case in which d is positive. In partic-

ular, since the stability threshold in (3.25) can also be negative, this means that

increasing values of γ, rather than of |γ|, play a destabilizing role for System

(3.21).

Namely, in Fig. 10 (A) we observe that q∗ in (3.22) is stable for low enough

values of γ, when it is positive, and anytime goods are complements or inde-

pendent, unlike what occurs for System (3.1), in which the equilibrium is stable

when the interdependence degree between goods, measured by |γ|, is sufficiently

weak. However, focusing on the case of substitutes, according to Corollary 3.6

and (3.25), both Systems (3.1) and (3.21) are stable for γ ∈ (0, 0.136), and in

Fig. 10 (A) we witness that the dynamic behavior for the 1D and 2D frame-

works coincides for all values of γ ∈ (0, β) = (0, 3.1).
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The difference between Systems (3.1) and (3.21) becomes stronger for the pa-

rameter configuration in Fig. 10 (B), where, due to a larger value for σ with re-

spect to (A), (q∗1 , q
∗

2) in (2.8) is stable for no values of γ ∈ (−β, β) = (−3.1, 3.1),

since σ̃ = 2.031 now exceeds 2 (cf. Corollary 3.6), whereas q∗ in (3.22) is sta-

ble for γ < −0.110. We stress that the latter dynamic outcome, in addition to

being not coincident with the one that we observe in Fig. 10 (B) for (q∗1 , q
∗

2) in

(2.8), can not occur for System (3.1). Namely, when d is positive like in Fig. 10

(B), according to Corollary 3.6 there are two symmetric stability thresholds for

System (3.1), with q∗ in (3.22) being stable for values of γ in between, rather

than just a negative stability threshold. Despite such crucial difference between

the 1D and 2D frameworks, once that System (3.21) becomes unstable in Fig.

10 (B), its dynamics are identical to those of System (3.1).

(A) (B)

Figure 10: For p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, d = 0.1, ε = 2.7, and
σ = 5.8 in (A), σ = 6 in (B), we plot in blue the bifurcation diagram of q1,t+1 in (3.1) with
respect to γ ∈ (−3.1, 3.1) and initial conditions q1,0 = 0.25, q2,0 = 0.2, and in magenta the
bifurcation diagram of qt+1 in (3.21) with respect to γ ∈ (−3.1, 3.1) and initial condition
q0 = 0.25.

We conclude our local stability analysis for (3.21) by focusing on Scenario II of

complements, so as to obtain the next result:

Proposition 3.5. When γ < 0, under (2.5) and (3.17), q∗ in (3.22) is admis-

sible according to (2.3) for d < − b(2β+2c+γ)
εp

. If this is the case, q∗ is always

unstable for System (3.21).

Proof. The desired conclusion immediately follows by observing that the right

inequality in (3.23) still leads to (3.24), which is however never fulfilled under

(2.5) and (3.17). �
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Hence, according to Propositions 3.3 and 3.5, in Scenario II of complements,

i.e., when emission charges in (2.2) increase too slowly with production and

the interdependence degree between the two goods is high, the steady state is

always unstable for both Systems (3.1) and (3.21).

The above investigation has shown that there are both analogies and differ-

ences between the 1D and the 2D frameworks. In particular, as highlighted by

Fig. 9 (A) and (C), as well as by Fig. 10 (A) and (B), it may happen that

the steady state of the one-dimensional setting is stable when the dynamics of

the planar model are quasiperiodic or chaotic. This fact has important con-

sequences from the policy viewpoint. Namely, focusing just on the behavior

of the steady state via comparative statics exercises prevents the consideration

and the understanding of the system out-of-equilibrium dynamics, while, as we

have argued in Subsections 3.1 and 3.2, a comparative statics result is econom-

ically grounded if it concerns an equilibrium which is asymptotically stable and

thus orbits converge towards it after a transient period. Things worsen when

assuming that agents are completely homogeneous, so that their past choices

coincide, too. Indeed, in such case, even an environmental policy maker that

were aware of the limits of the equilibrium analysis could erroneously believe

that the equilibrium is stable, thus relying on comparative statics tools, while

the steady state is actually unstable in the 2D framework. Hence, in addition

to being implausible that firms are identical from an evolutionary viewpoint,

assuming coinciding initial conditions for their output can make the use of the

comparative statics technique apparently grounded, when it is not. Thus, in the

figures of Section 4, illustrating the comparative dynamics investigations that

we propose to evaluate the environmental policy efficacy when the Nash equi-

librium is not stable, we will always consider heterogeneous initial conditions

for the output of the two firms. In this respect, we recall the concept of “path

dependence” in [11], according to which the initial conditions, representing a

summary of agents’ history, matter in determining the evolution of the system.
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4. Comparative dynamics analysis of the environmental policy effi-

cacy

We now discuss how to evaluate the environmental policy efficacy when the

steady state is not stable. Namely, in introducing our model we stressed that a

growing empirical literature (see e.g. [1, 2, 3]) highlights the chaotic behavior of

the main variables in various markets, and in particular in agricultural markets.

In order to be realistic, our model has to be able to reproduce the dynamic

phenomena identified by those empirical studies, according to which what we

see is the result of the action of underlying nonlinear mechanisms. Starting

then from the framework in [6], we replaced the linear output adjustment rule

considered therein with a sigmoid mechanism in view of obtaining interesting,

i.e., non-stationary, non-divergent, dynamic outcomes. The introduction of the

sigmoid mechanism, in addition to allowing for nontrivial dynamics, shrinks

the steady state stability region. Indeed, comparing Propositions 3.1, 3.2 and

3.3 with the corresponding results in [9], we observe a reduction in the stability

region for (q∗1 , q
∗

2) both in the case of substitutes and of complements in Scenario

I - in the latter framework the Nash equilibrium in [9] was always stable when

admissible - and a confirmation of its unconditional instability in Scenario II,

in consequence of the introduction of the sigmoid adjustment mechanism in

(2.10). Therefore, it is important to understand how the environmental policy

efficacy can be evaluated in the case of non-stationary trajectories. Namely, as

long as the Nash equilibrium is stable, such as in Figs. 4 (A) and 6 (A), the

efficacy of the environmental policy can be assessed using the standard tool,

which is represented by the comparative statics analysis. In this respect, we

recall that, as mentioned in Section 3, according to Propositions 1 and 4 in [9],

which hold true with the nonlinear adjustment mechanism in (2.10), too, the

environmental policy described by the emission charges Ci in (2.2) is effective in

reducing pollution, i.e., the equilibrium pollution level falls with an increase in

b or d, with substitutes or under (3.16), while in agreement with Proposition 7

in [9] it is detrimental under (3.17), since in such case the equilibrium pollution

level raises with an increase in b or d, due to the fact that, under (3.17), emission
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charges increase too slowly with production. Nonetheless, when the steady state

is not stable, or when the considered scenario is characterized by the presence

of an attractor different from the Nash equilibrium, the comparative statics

technique is neither economically, nor empirically grounded. In such cases, we

then need to perform alternative, comparative dynamics investigations, based

for instance on the behavior, for different values of d, of the time series of the

cumulative emissions, defined as the sum, over a certain time interval [0, T ], of

the aggregate emissions Ut := u1,t+u2,t = ε(q1,t+q2,t) produced in time period

t ∈ [0, T ] by both firms, i.e., in symbols CET :=
∑T

t=0 Ut = ε
∑T

t=0(q1,t + q2,t).

In this manner, the environmental policy efficacy could be implied by a negative

variation of cumulative emissions over the chosen time interval as a consequence

of an increase in d. We can use such strategy to investigate the environmental

policy efficacy e.g. in the contexts considered in Figs. 4 (C) and 6 (B), where d

was the bifurcation parameter.

To that aim, for the parameter values used therein we reproduce the two bifurca-

tion diagrams for aggregate emissions Ut+1 in Fig. 11 (A) and (C), respectively,

where we fix three different values of d (colored in blue, red and green), some of

which lie in the interval where the steady state is unstable, while the remaining

ones belong to the stability interval of the Nash equilibrium. We show the corre-

sponding time series of the cumulative emissions CET for T ∈ [0, 100] in Fig. 11

(B) and (D), by using the same colors as in (A) and (C). In particular, in Fig. 11

(A) and (B) the blue color refers to d = −0.477, the red color to d = −0.471 and

the green color to d = −0.465, while in Fig. 11 (C) and (D) the blue color refers

to d = −0.468, the red color to d = −0.443 and the green color to d = −0.418.

The initial conditions in (B) are U0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215 for the

blue and the red time series, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.052 = 0.281 for the green

time series, while in (D) the initial conditions are U0 = 2.7 ∗ 0.45 = 1.215 for

the blue time series, 2εq∗1 = 2 ∗ 2.7 ∗ 0.074 = 0.399 for the red time series, and

2εq∗1 = 2∗2.7∗0.044 = 0.238 for the green time series. Since in (B) and (D) the

cumulative emissions for T ∈ [0, 100] are larger for lower values of d, this means

that increasing emission charges in (2.2) reduce pollution, and thus the consid-
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ered environmental policy is effective. We would find the same conclusion by

performing the just described investigation in the framework in Fig. 4 (B), too,

in agreement with the comparative statics result for Fig. 4 (A) (see Proposition

1 in [9]). Contrasting Fig. 11 (B) and (D), we observe that, although in both

(A) and (C) the considered values of d are equidistant, pollution decreases in

(B) rapidly for higher values of d, while in (D) the efficacy of the environmental

policy, although raising with d, slows down when d increases. In this sense, an

intense increase in d is more useful in (B) than in (D).

(A) (B) (C) (D)

Figure 11: In (A) and (C) we report the bifurcation diagrams of Ut+1 with respect to d for
the same parameter values used in Figs. 4 (C) and 6 (B), respectively. In (B) and (D) we
show the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to the values
of d marked with different colors in (A) and (C), respectively. The initial conditions in (B)
are U0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215, connected with q1,0 = 0.25 and q2,0 = 0.2, for
the blue and the red time series, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.052 = 0.281 for the green time series,
while in (D) the initial conditions are U0 = 2.7 ∗ 0.45 = 1.215, connected with q1,0 = 0.25 and
q2,0 = 0.2, for the blue time series, 2εq∗1 = 2 ∗ 2.7 ∗ 0.074 = 0.399 for the red time series, and
2εq∗1 = 2 ∗ 2.7 ∗ 0.044 = 0.238 for the green time series.

(A) (B)

Figure 12: In (A) and (B) we show the time series of q1,t in dark blue and of q2,t in green
for t ∈ [101, 140], corresponding to the values of d marked in blue in Fig. 11 (A) and (C),
respectively.

In view of better comparing and understanding Fig. 11 (A) and (C), we draw in

Fig. 12 the time series of q1,t in dark blue and of q2,t in green for t ∈ [101, 140],
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corresponding to the values of d marked in blue in Fig. 11 (A) and (C), i.e.,

d = −0.477 and d = −0.468, respectively. We find that, although for the con-

sidered values of d both the bifurcation diagrams of q1,t+1 in Figs. 4 (C) and

6 (B) highlight the presence of a stable period-two cycle, in Fig. 12 (A) we

witness an agreement between the periods of high/low production strategies for

the two firms, so that their outputs give a concordant contribution to aggregate

emissions in Fig. 11 (A), while in Fig. 12 (B) there is discordance between the

high/low output choice timing for the two firms, still giving rise to a decreasing

trend. Such difference between Fig. 12 (A) and (B) is the reason why in the

bifurcation diagram in Fig. 11 (A) we witness a period-two cycle for Ut+1 for

low values for d, like it was in Fig. 4 (C), while in Fig. 11 (C) we do not see

oscillations for Ut+1 even before the stability threshold value, i.e., d = −0.467.

The symmetry that we observe in Fig. 12 (A), and partially in (B), is caused

by the low heterogeneity degree in the model, concerning both the demand side

and the technology, since we are assuming that β1 = β2 = β and ε1 = ε2 = ε,

respectively.

We stress that in the time series in Fig. 12 (A) and (B) we introduced a tran-

sient of 100 periods in order to show the asymptotic behavior of the production

of the two firms. We also remark that the choice of considering T ∈ [0, 100] in

our experiments in Fig. 11 (B) and (D) has no effect on the behavior of time

series for cumulative emissions. Namely, considering a larger time interval, the

distance among the found time series would increase, but their ordering would

not change. Moreover, we underline that the proposed investigation can be

performed in more general frameworks, in which looking at the corresponding

bifurcation diagram with respect to d is not clear what is the effect generated

by an increase in emission charges on produced quantities, and consequently on

emissions.

Hence, thanks to our first analysis based on cumulative emissions we checked

in Fig. 11 the efficacy of the environmental policy introduced in (2.2) for the

parameter configurations considered in Subsection 3.1 and in Scenario I in Sub-

section 3.2, in agreement with the comparative statics results obtained for sub-
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stitutes and complements under (3.16) in Propositions 1 and 4 in [9]. In regard

to Scenario II in Subsection 3.2, in which the Nash equilibrium is always un-

stable when it is admissible, we can say that if the system reached the steady

state and remained on it despite the equilibrium instability, we would find that

emissions raise with an increase in d, in agreement with Proposition 7 in [9], i.e.,

the comparative statics result valid for the case of complements under (3.17).

On the other hand, since in Scenario II in Subsection 3.2 we are always in an

instability regime and the numerical simulations we performed display divergent

outcomes, with no emerging attractors, it is not possible to draw conclusions

about the environmental policy efficacy in that scenario. Namely, related com-

ments can be made just when orbits visit an attractor.

A different extension of the classical comparative statics analysis to the frame-

works in which the steady state is not stable consists in a comparison, for the

given parameter configuration and over a certain time interval, of cumulative

emissions, starting from the unstable Nash equilibrium and from a different

point in the basin of attraction of the stable periodic or complex attractor. We

show what happens in this respect both with substitutes, in Figs. 13 and 14,

and with complements under (3.16), in Figs. 15 and 16, starting in both cases

from Fig. 7 (C) and dealing with positive and negative values for γ, respectively.

(A) (B)

Figure 13: In (A) the bifurcation diagram of q1,t+1 in (3.1) with respect to d ∈ (0.05, 0.15) with
initial conditions q1,0 = 0.1, q2,0 = 0.5, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b =
0.4, ε = 2.7, σ = 6 and γ = 3. In (B) we show the time series of cumulative emissions CET

for T ∈ [0, 100] corresponding to d = 0.1, with initial condition u1,0 + u2,0 = 1.62, connected
with q1,0 = 0.1 and q2,0 = 0.5, for the blue points and 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the
red points.

Namely, in Fig. 13 (A) we draw the bifurcation diagram of q1,t+1 obtained for
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the same parameter values used in Fig. 7 (C) but fixing γ = 3 and letting d

vary in (0.05, 0.15). Since the steady state (drawn in red, dashed line) is always

unstable for the considered parameter values and, according to the value of d ∈

(0.05, 0.15), we observe a periodic or a chaotic attractor (in blue), we contrast

in Fig. 13 (B) the time series of cumulative emissions CET for T ∈ [0, 100]

corresponding to d = 0.1, with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) =

2.7∗0.6 = 1.62 for the blue points and u1,0+u2,0 = 2εq∗1 = 2∗2.7∗0.139 = 0.751

for the red points. We find that the cumulative emissions in the considered time

interval are larger along the non-stationary trajectory than along the equilibrium

path. Hence, we could try to contain emissions and to stabilize the system by

acting on the sigmoid adjustment mechanism, and in particular on the position

of its horizontal asymptotes. In this respect, we recall the bounding role played

by the horizontal asymptotes, whose level, as explained in Section 2, is controlled

by parameters υ and δ. Indeed, reducing υ lowers the upper asymptote, which

plays a role when the best response is above the current production level, while

decreasing δ raises the lower asymptote, which intervenes when the best response

is below current production level. Starting from the framework in Fig. 13 and

acting for instance on υ, we obtain the effect illustrated in Fig. 14, where in (A)

and (C) we show that, as desired, the complexity of the dynamics decreases by

lowering υ. In more detail, fixing the remaining parameters as in Fig. 13 (A), in

Fig. 14 (A) for υ = 1.35 we obtain a periodic attractor (in blue), i.e., a period-

four or a period-two cycle for d ∈ (0.05, 0.15), while the steady state (drawn in

red, dashed line) is always unstable for such values of d. Drawing in Fig. 14

(B) the time series of cumulative emissions for T ∈ [0, 100] corresponding to

d = 0.1, with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.6 = 1.62

for the blue points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the

red points, we find, like in Fig. 13 (B), that cumulative emissions are larger

along the non-stationary trajectory than along the equilibrium path. Reducing

υ further to 0.5 in Fig. 14 (C), we finally obtain the complete stabilization

of the system. This shows that the sigmoid adjustment mechanism can be

effective in reducing pollution, by acting on the maximum allowed production
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variation. As argued above, in consequence of the system stabilization, the

comparative statics analysis becomes economically grounded. We recall that,

for the case of substitutes, the corresponding comparative statics result in [9]

(cf. Proposition 1 therein) states that the equilibrium pollution level falls with

an increase in emission charges. We stress that the outcome about the system

stabilization is independent from the choice of considering T ∈ [0, 100] in regard

to the time frame, as well as from the choice of d = 0.1, since for any value of

d ∈ (0.05, 0.15) we would obtain the same conclusion, whether in Fig. 13 (A)

we observe a periodic or a chaotic attractor.

(A) (B) (C)

Figure 14: In (A) and (C) we report the bifurcation diagrams of q1,t+1 in (3.1) with respect
to d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.1, q2,0 = 0.5, for p = 2.5, δ = 0.4, β =
3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6, γ = 3, and υ = 1.35 in (A), υ = 0.5 in (C), respectively.
In (B) we show the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to
(A) with d = 0.1, with initial conditions u1,0 + u2,0 = 1.62, connected with q1,0 = 0.1 and
q2,0 = 0.5, for the blue points and 2εq∗1 = 2 ∗ 2.7 ∗ 0.139 = 0.751 for the red points.

(A) (B)

Figure 15: In (A) the bifurcation diagram of q1,t+1 in (3.1) with respect to d ∈ (0.05, 0.15)
with initial conditions q1,0 = 0.25, q2,0 = 0.2 for the blue points and q1,0 = 0.1, q2,0 = 0.5
for the green points, for p = 2.5, δ = 0.4, υ = 2.2, β = 3.1, c = 0.15, b = 0.4, ε = 2.7, σ = 6
and γ = −3. In (B) we show the time series of cumulative emissions CET for T ∈ [0, 100]
corresponding to d = 0.1185, with initial condition u1,0 + u2,0 = 1.215, connected with
q1,0 = 0.25 and q2,0 = 0.2, for the blue points, u1,0 + u2,0 = 1.62, connected with q1,0 = 0.1
and q2,0 = 0.5, for the green points, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.325 = 1.757 for the red points.
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In fact, we shall reach analogous conclusions also with complements, when (3.16)

holds true. In this case, starting again from Fig. 7 (C), we draw in Fig. 15

(A) the bifurcation diagram of q1,t+1 obtained for the same parameter val-

ues used therein but fixing γ = −3 and letting d vary in (0.05, 0.15), which

highlights a multistability phenomenon. Since the steady state (drawn in red,

dashed line) is always unstable for the considered parameter values and we

observe two coexisting chaotic attractors (in blue and in green), interrupted

just by some periodicity windows, we contrast in Fig. 15 (B) the time series

of cumulative emissions CET for T ∈ [0, 100] corresponding to d = 0.1185,

with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215 for

the blue points, u1,0 + u2,0 = 2.7 ∗ 0.6 = 1.62 for the green points, and

u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.325 = 1.757 for the red points. We find again

that the cumulative emissions in the considered time interval are larger along

the non-stationary trajectories than along the equilibrium path. Hence, also in

this case we could try to contain emissions and to stabilize the system by acting

on the sigmoid adjustment mechanism, and in particular by lowering the upper

asymptote. Reducing υ we obtain the effect illustrated in Fig. 16, where in

(A) and (C) we show that, as desired, the complexity of the dynamics decreases

when υ becomes smaller. In more detail, fixing the remaining parameters as in

Fig. 15 (A), in Fig. 16 (A) for υ = 1.28 we find (in blue) a quasiperiodic attrac-

tor in two pieces which disappears for increasing values of d ∈ (0.05, 0.15) and a

stable period-two cycle emerges via a reverse Neimark-Sacker bifurcation, while

the steady state (in red, dashed line) is always unstable. Drawing in Fig. 16

(B) the time series of cumulative emissions CET for T ∈ [0, 100] corresponding

to d = 0.1 with initial condition u1,0 + u2,0 = ε(q1,0 + q2,0) = 2.7 ∗ 0.45 = 1.215

for the blue points and u1,0 + u2,0 = 2εq∗1 = 2 ∗ 2.7 ∗ 0.336 = 1.814 for the red

points, we find that the cumulative emissions are larger along the quasiperiodic,

non-stationary trajectory than on the Nash equilibrium. Lowering υ further to

0.5 in Fig. 16 (C), we finally reach the stabilization of the system. This shows

that the sigmoid adjustment mechanism is effective in reducing pollution, by

acting on the maximum allowed production variation, also with complements
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under (3.16). Notice that such outcome is in agreement with the corresponding

comparative statics result in [9] (cf. Proposition 4 therein), stating that the

equilibrium pollution level falls with an increase in emission charges, which be-

comes economically grounded when υ is low enough, so that the steady state

is stable. Again, the stabilization of the Nash equilibrium is independent from

the choice of dealing with T ∈ [0, 100] and d ∈ (0.05, 0.15).

Summarizing, through our first analysis, based on a comparison of emissions

for different levels of charges, we have found that increasing values for d raise

the dynamic efficacy of the considered environmental policy, while the second

study, by means of a comparison of emissions along non-stationary trajectories

and along the equilibrium path, has highlighted that, in order to reduce pol-

lution, guaranteeing the convergence to the Nash equilibrium is preferable to

allowing for complex or periodic behavior in the firms’ output, and that acting

on the asymptotes may correspond to a direct control of emissions, in contrast

to the indirect nature of the pollution control obtained via emission charges in

(2.2). In this respect, we stress that the direct control exerted by acting on

the sigmoid asymptotes stabilizes the Nash equilibrium without inducing any

variation in the output level, contrary to the indirect control described by (2.2)

which, according to Propositions 1 and 4 in [9], induces a negative variation in

output. The above described conclusions have been reached for the parameter

configurations considered in Section 3 both with substitutes and in Scenario I

therein with complements under (3.16). On the other hand, due to the fact that,

according to Proposition 3.3, the Nash equilibrium is never stable under (3.17)

and that divergence issues arise in the numerical simulations we performed for

Scenario II in Section 3, our investigations do not allow us to draw conclusions

about the efficacy of the environmental policy when dealing with complements

under (3.17).
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(A) (B) (C)

Figure 16: In (A) and (C) we report the bifurcation diagrams of q1,t+1 in (3.1) with respect to
d ∈ (0.05, 0.15) with initial conditions q1,0 = 0.25, q2,0 = 0.2 for p = 2.5, δ = 0.4, β = 3.1, c =
0.15, b = 0.4, ε = 2.7, σ = 6, γ = −3, and υ = 1.28 in (A), υ = 0.5 in (C), respectively. In
(B) we show the time series of cumulative emissions CET for T ∈ [0, 100] corresponding to
(A) with d = 0.1, with initial conditions u1,0 + u2,0 = 1.215, connected with q1,0 = 0.25 and
q2,0 = 0.2, for the blue points, and 2εq∗1 = 2 ∗ 2.7 ∗ 0.336 = 1.814 for the red points.

5. Conclusion

In agreement with the results of the growing empirical and experimental lit-

erature (see e.g. [1, 2, 3, 4]), which highlights the chaotic behavior of the main

variables involved in various markets, and in particular in agricultural commod-

ity markets, we proposed a model able to generate interesting, erratic dynamic

outcomes. In more detail, starting from the Cournot duopoly framework with

quadratic emission charges and homogeneous goods in [6], we replaced the linear

partial adjustment best response mechanism considered therein with a sigmoid

adaptive best response rule, which, in addition to help avoid diverging trajec-

tories and negativity issues, is also sensible from an economic viewpoint, being

suitable to describe the gradual output variations caused by material, historical

and institutional constraints in the production side of an economy, as well as

by the limits imposed by an environmental policy scheme on production lev-

els, due to their direct proportionality with emissions. Moreover, following the

suggestion contained in the concluding section of [6], we assumed that firms

produce differentiated goods. Beyond analytically studying the stability of the

unique steady state, which coincides with the Nash equilibrium, and the ef-

fect produced by the main parameters on the stability region, we performed

two comparative dynamics investigations which allow to evaluate the environ-

mental policy efficacy when the Nash equilibrium is not stable and thus the
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standard comparative statics approach does not fit for the purpose. Involving

non-stationary orbits, the proposed solutions are mainly numerical in nature.

In particular, the first investigation, which is based on a comparison of emis-

sions for different levels of charges, showed that, also when the Nash equilibrium

is not stable, the considered environmental policy may be effective both with

complements and substitutes. The second study, consisting in a comparison

of emissions along non-stationary trajectories and along the equilibrium path,

in the proposed experiments highlighted the presence of larger emissions along

non-stationary trajectories. Hence, it gave us the opportunity to illustrate how

an intervention on the sigmoid asymptotes may correspond to a direct control

of emissions - in contrast to the indirect nature of the pollution control obtained

by means of the considered emission charges - that also allows for a complete

stabilization of the system, so that comparative statics results become econom-

ically grounded, starting from a situation characterized by the presence of a

different attractor. In more detail, in making our numerical experiments, we

have not only seen that the position of the asymptotes of the sigmoid is crucial

in determining the system dynamics, but also that small variations in other

parameters, such as the interdependence degree between goods, may generate

important differences in the outcomes. In this respect we mention the work [37],

which suggests that a particularly careful choice of the (e.g. fiscal or environ-

mental) policy to implement is needed when dealing with nonlinear models in

which complex dynamics and bifurcation phenomena can emerge.

We believe that the analyzed setting can be the starting point for other research

works.

At first, we deem it essential to fully develop all dynamical aspects hidden inside

the proposed model, in order to make it more realistic. Two possible extensions

of the studied framework in such direction are represented respectively by the

description of the environment as a sector interacting with the economic sphere

and by the possibility of describing the transition among different market struc-

tures via an evolutive approach based on relative profitability of markets.

Regarding the former extension, in agreement with the seminal work [38], where
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the environment and its neglect are expressed through a dynamic equation, we

could enrich the model by the introduction of one or more dynamic equations

describing the evolution of the environment and its mutual interactions with the

economic sector. In this manner, differently from the standard approach which

depicts the environment in a parametric manner, it would be possible to deal

with dynamical models consisting of coupled equations, in order to make explicit

the effect of the economic activities on the evolution of the environment, as well

as the impact of the environmental features on the economic activities, both in a

direct manner, through consumption and production choices, and in an indirect

way, through environmental policies. The addition of the dynamic equation(s)

describing the environment evolution would make our “semi-dynamic” model

fully dynamic and nonlinear. Usually, in that kind of models complex phenom-

ena emerge, such as bifurcations, chaotic behavior, coexistence among different

attractors. According to [39, 40], the environmental policy efficacy should be

evaluated in those dynamic nonlinear models. In this respect, we stress that

along the paper we measured the efficacy of the considered environmental pol-

icy in terms of its effectiveness in reducing emissions. Of course, a reduction in

emissions is a consequence of an output decrease. A more general evaluation of

an environmental policy scheme would require to deal with an oligopoly model

that takes into account further variables, i.e., the factors of production, such as

the employed labor (see e.g. [41]).

In regard to the latter extension, concerning the transition among different

market structures, we start by recalling that [6] tackle the issue of the market

structure endogeneity, focusing in particular on the conditions that may lead

from duopoly to monopoly, investigated also in [10] under the assumption that

marginal production costs do not coincide across firms. An alternative approach

to the problem of the market structure endogeneity could be evolutive19 in na-

ture, with firms deciding whether to operate or not in a given market on the

basis of a profitability signal, such as the comparison between the profitability

19See [42, 43] for an evolutive approach to environmental policy issues.
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of the market with respect to the average profitability of other markets. In this

manner the number of firms operating in a market would become an endogenous

variable. Such approach would allow to more generally investigate the condi-

tions which lead, possibly in a reversible manner, from a market structure to

another one.

Different extensions of the proposed framework, which would be useful in view

of testing the robustness of the here obtained results, could concern the formu-

lation of the demand functions of firms and their technology heterogeneity in

regard to emissions. In regard to the first point, following e.g. [34, 44], we might

deal with nonlinear demand functions deriving from an underlying CES utility

function. Regarding instead the second point, we recall that emissions per unit

output not coinciding across firms have been considered e.g. in [20, 29]. We will

investigate in a future work the effects of such more realistic assumption, not

only in regard to the local stability analysis, but also from a policy viewpoint,

so as to understand for instance whether the symmetries that we witnessed in

the time series in Fig. 12 persist or not.
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