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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Over the past two decades, extensive studies, particularly in cancer analysis through large

datasets like The Cancer Genome Atlas (TCGA), have aimed at improving patient therapies

and precision medicine. However, limited overlap and inconsistencies among gene signa-

tures across different cohorts pose challenges. The dynamic nature of the transcriptome,

encompassing diverse RNA species and functional complexities at gene and isoform levels,

introduces intricacies, and current gene signatures face reproducibility issues due to the

unique transcriptomic landscape of each patient. In this context, discrepancies arising from

diverse sequencing technologies, data analysis algorithms, and software tools further hinder

consistency. While careful experimental design, analytical strategies, and standardized pro-

tocols could enhance reproducibility, future prospects lie in multiomics data integration,

machine learning techniques, open science practices, and collaborative efforts. Standard-

ized metrics, quality control measures, and advancements in single-cell RNA-seq will con-

tribute to unbiased gene signature identification. In this perspective article, we outline some

thoughts and insights addressing challenges, standardized practices, and advanced meth-

odologies enhancing the reliability of gene signatures in disease transcriptomic research.

Perspective

The current scenario on gene signatures

The Cancer Genome Atlas (TCGA) is a comprehensive resource that provides a wealth of

genomic and clinical data for various types of cancer [1]. Tens of thousands of “gene signature”

scientific papers have been published since the proposal of gene signature by Eric S. Lander in

1999 [2].

If one searched “TCGA signature” on Google Scholar, about 90 thousand studies would

pop up into the screen (Fig 1A). Currently, TCGA contains multiomics data from 69 primary

cancer sites [1], which may mean that each cancer type has been analyzed over 1,000 times. A

“gene expression signature” was originally defined as a single gene or a panel of altered genes

with validated specificity in terms of diagnosis, prognosis, or prediction of therapeutic

response [3]. Over the past 25 years, a large number of gene signatures have been generated

for human diseases (Fig 1B) [4]. In 2024, gene expression signatures continue to play a pivotal
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role in cancer research and clinical applications. These signatures, comprising patterns of gene

activities, offer valuable insights into prognosis, treatment response, and patient stratification.

Recent studies, such as those evaluating the PAM50 gene expression signatures in older

breast cancer patients [5], underscore their prognostic capacity. Additionally, the Tumor

Inflammation Signature (TIS), consisting of 18 genes, developed by Merck in collaboration

with NanoString, has demonstrated utility in identifying patients who may benefit from spe-

cific cancer treatments [6].

Several gene signatures are clinically available, such as Oncotype and Prosigna [7].

With integrated larger datasets and modern algorithms, better gene expression signature

was proposed to improve these commercial platforms [7,8]. Furthermore, advancements like

patient-derived gene expression signatures induced by cancer treatment are contributing to a

deeper understanding of treatment effects at the molecular level [9].

As technology and research progress, gene expression signatures remain indispensable

tools, providing actionable information for personalized medicine and enhancing our compre-

hension of cancer biology. Key characteristics of those recent gene signatures contain tens of

genes that represent the different biological functions of diseases. For example, the 18 genes of

TIS cover four areas of biology related to T and natural killer cells, antigen-presenting cells,

interferon gamma biology, and T cell exhaustion [6].

Fig 1. Factors influencing the discovery of new genetic signatures. Thousands of publications about cancer gene signatures have been published in the last 25

years; however, reproducibility is not always possible. (A) Publication counts for years 1999–2023. (B) Wordcloud shows the frequently mentioned words in

publications. (C) Factors that can influence and improve the signature reproducibility. The inward arrows indicate factors that may influence the

reproducibility of gene signatures, including different sequencing technologies, inherent randomness, sample heterogeneity, and complex regulatory networks.

The outward arrows indicate strategies that may help improve the reproducibility of gene signatures, including state-of-the-art algorithms, deep learning

techniques, open repositories for datasets and metadata, data and code sharing, collaborative efforts, and training and education.

https://doi.org/10.1371/journal.pcbi.1012512.g001
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Still today, many biological process-related gene signatures have been proposed, such as

cuproptosis, necroptosis, ferroptosis, inflammation, epithelial–mesenchymal transition

(EMT), interferon gamma–related gene signatures [10–14].

The ultimate aim of gene signatures is to help improve patient therapies and to accelerate

precision medicine [15]. However, there are only a small number of overlapping genes across

gene signatures, and sometimes even contradictions are observed [16], hindering clinical

applications [15]. Similar issues were raised recently in single-cell RNA-seq differential expres-

sion analysis [17]. The high rate of false discoveries in single-cell RNA-seq differential expres-

sion analysis, as discussed in recent literature [17], poses significant challenges for the clinical

application of gene signatures.

The variability and noise intrinsic to single-cell RNA-seq data can lead to differential

expression results that are inconsistent with bulk RNA-seq data, which is commonly used in

clinical practice. This discrepancy might result in gene signatures that are less reliable and

reproducible when applied to heterogeneous tissue samples, thereby limiting their clinical

effectiveness.

In this perspective article, we take a snapshot of the overall landscape of gene signatures in

bioinformatics, outlining the main challenges and resources within this scientific domain.

The biology of gene signatures

The inherent dynamic nature of the transcriptome underscores the complexity and continuous

fluctuations in the abundance of RNA molecules within a cell or tissue (Fig 1C). Various fac-

tors, including cellular composition, tissue origin, and developmental stages, could influence

gene expression patterns. Therefore, gene signatures identified from one disease might not

work in other diseases.

Gene signatures should not only be functionally annotated but also be bundled with

detailed metadata, such as how sampling was performed and which age, sex, and tissue are in

the origin cohort [18]. A large fraction of differential gene lists were found to be nonspecific,

reflecting shared biology rather than technical artifacts or ascertainment biases [19]. The con-

stant interplay of transcription, RNA processing, and degradation processes adds layers of

intricacy to the transcriptomic landscape. Moreover, the diversity of RNA species, such as

messenger RNA (mRNA), noncoding RNA (ncRNA), and various splice variants, adds

another layer of complexity to the detection process [20].

Moreover, most of current gene signatures are mainly at the gene level, and not at the iso-

form level. Gene functional complexity includes its diverse roles across tissues, interactions

with partners, and multifaceted functions. An example is TGF-β that functions as a tumor sup-

pressor during the initial stages of epithelial carcinogenesis [21].

However, in advanced stages, TGF-β transforms into a tumor promoter, as cancer cells

develop resistance to its growth-inhibitory effects through various mechanisms, including

alterations in TGF-β signaling components [16]. The impact of TGF-β on cancer cells can be

detrimental or beneficial depending on the cellular context [22,23].

However, there are many multifaceted genes within the genome. The current gene signa-

ture panel may not consider the effect of combinations of different genes on prognostic perfor-

mance [24].

It is worth noting that multiple current studies rely on gene signatures from the same biol-

ogy process. The single biology process-related genes may contain redundancy. An example is

the gene coexpression analysis, which focuses on sets of genes but not individual genes and

helps to reduce the redundancy [25]. To obtain a better inference of differential gene expres-

sion for lowly expressed genes, additional gene coexpression data were integrated to enhance
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the power of differential analysis [26]. Compared to individual genes, gene coexpression mod-

ules have been identified as stable units in cancer cell lines [25]. This may be due to the com-

plexity of gene interactions and gene redundancy.

The dysfunction of different genes may induce the same disease, but the same disease does

not always involve dysfunction of the same group of genes. For personalized treatments, a

drug that works effectively for a patient might not demonstrate similar efficacy for another

patient with the same disease, as the two patients might not share the same dysregulated tran-

scriptome. This aspect might explain why the behavior of a gene signature in one cohort is not

always reproducible in another cohort. It has been recognized that each patient is unique [27]:

unique life history, unique lifestyle, unique genetics, unique health habits, and so on.

Precision medicine emphasizes tailoring medical care to the specific characteristics of each

patient, including genetic makeup, lifestyle, and environmental factors. This approach recog-

nizes that individuals with the same disease may respond differently to treatments based on

their unique health profile [28]. Therefore, it is not surprising to observe that gene signature

identified in one dataset demonstrates lower accuracy in new datasets [29]. This may partially

explain the fact that more than 90% of drug candidates fail during clinical trials, which may

take effect only in patients with the exact signature [30].

Technologies, methods, and best practices

Different sequencing technologies can contribute to discrepancies in the observed gene expres-

sion profiles. This variability may arise from differences in sequencing chemistry, sequencing

depth, read length, error rates, and other platform-specific features [31]. Consequently, the

lack of uniformity in data generation across platforms poses a challenge in achieving consistent

and reproducible gene signatures. Researchers need to consider these platform-related factors

critically when interpreting and comparing transcriptome data. This issue emphasizes the

importance of careful experimental design and analytical strategies to enhance the reliability of

findings across different sequencing platforms. New data analysis methods were also devel-

oped to perform platform-independent analysis [1–3,32,33].

Variability in gene signatures may be worsened by the utilization of diverse data analysis

algorithms and software tools. The choice of different analytical methods, parameter settings,

and statistical approaches in fact can introduce significant differences in the interpretation of

transcriptomic data: Factors such as normalization techniques [34], differential expression cri-

teria [35], and the handling of batch effects [36,37] contribute to the disparities observed in

gene signatures.

Additionally, software-specific features, updates, and algorithmic improvements over time

can impact the consistency of results. To enhance the reproducibility of gene signatures,

researchers should carefully consider the selection of data analysis tools, adhere to best prac-

tices, and conduct robust validation [38–40]. Standardized protocols and benchmarking exer-

cises can aid in evaluating the performance and reliability of different algorithms, ultimately

contributing to more consistent and meaningful outcomes in transcriptomic analyses [41–45].

Reproducible gene signature identification faces several challenges, but advancements in

methodologies and practices offer promising future perspectives: The establishment of stan-

dardized protocols and guidelines for experimental design, sample processing, and data analy-

sis is crucial (Fig 1A). While consensus within the scientific community on best practices will

contribute to increased reproducibility [46], continued efforts in benchmarking different algo-

rithms and software tools will provide valuable insights into their strengths and limitations.

Comparative studies across multiple platforms and algorithms will aid researchers in making

informed choices, promoting transparency and reproducibility, and the integration of
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multiomics data [47], combining information from genomics, transcriptomics, proteomics,

and other layers, can enhance the robustness of gene signature identification [48,49].

ENCODE [50] is an example of a successful multiomics project. Regarding open source soft-

ware packages, mixOmics [51] in R and INTEGRATE [52] in Python are examples of effective

tools for this scope.

This holistic approach might capture a more comprehensive view of molecular changes and

increase the reproducibility of identified signatures (Fig 1C).

Moreover, advancements in machine learning and deep learning techniques hold promise

for improving the accuracy and reproducibility of gene signature identification [53]. These

approaches have the potential to identify complex patterns and interactions within large-scale

omics datasets. Embracing open science practices, such as open data sharing, open source

code sharing, and transparent reporting, can enhance reproducibility. In this context, the

choice of open source programming languages and software packages results being a key pillar

of any reliable bioinformatics project: Using open source software code such as R, Python,

Rust, or Julia, in fact, can guarantee the free, unrestricted reproducibility of the computational

experiments by anyone in the world [54]. Open source popular computational biology projects

such as Bioconductor [55], Bioconda [56], and Galaxy [57] deserve special attention for

bioinformaticians.

Of course, reproducibility can be impacted by software-specific updates, which might

improve the precision of the results but require efforts and energy from researchers to be

installed [58,58]. In the just-mentioned platforms (Bioconda, Bioconductor, and Galaxy),

these problems are mitigated by special focus and attention on documentation [59].

On the other hand, open repositories for datasets and standardized metadata can facilitate

result validation and comparison across studies: Open public online bioinformatics resources

can help researchers both find and release new datasets for signature identification.

Some online resources and search engines for open, unrestricted, deidentified biomedical

data are the following:

• Gene Expression Omnibus (GEO) [60]

• ArrayExpress [61]

• Sequence Read Archive (SRA) [62]

• Zenodo [63,64]

• Kaggle [65]

• University of California Irvine Machine Learning Repository [66]

• Figshare [67,68]

• PhysioNet [69,70]

• Google Dataset Search [71]

• re3data.org [72]

If data availability is pivotal, also the integration of different data formats is a relevant aspect

in this scenario. Collaborative efforts within the scientific community to harmonize data for-

mats, processing pipelines, and analysis workflows and the integration of rigorous quality con-

trol measures at various stages of the experimental and analytical processes is pivotal (Fig 1C).

Also, standardized metrics for assessing data quality, normalization effectiveness, and batch

effect correction can enhance reproducibility, while the utilization of the state-of-the-art
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single-cell RNA-seq and structured ontology information [73–77] with improved statistical

methods can help to identify unbiased gene signatures [78].

Ongoing free training and education initiatives to keep researchers updated on the latest

methodologies and best practices, such as Software Carpentry [79], can contribute to forge

skilled researchers [80,81]. Moreover, initiatives such as the open access Education collection

of the PLOS Computational Biology journal [82] and the free online bioinformatics video

courses on Coursera [83] can be useful for students and researchers worldwide, especially in

developing countries.

Biases for reporting genes associated with higher fold changes should be considered [84],

and novel algorithms for detecting gene signatures should be developed [85]. Comprehensive

and updated gene signature databases should be established, so that researchers can upload

their own gene signatures and compare their results with the published data [86], by using dif-

ferent measures that calculate the degree of overlap between gene signatures [4].

Finally, an evidence-based approach is required to translate gene signatures from the labo-

ratory to clinical practice [87]. All these improvements would help to assess the reliability of

newly identified gene signatures, which can ultimately influence the discovery of better thera-

pies and drugs, which, in turn, can impact positively the lives of patients in the hospitals

(Fig 1C).

In the future, we expect a more frequent adoption of the just-mentioned best practices to

discover novel, more robust, and effective gene signatures for cancer research.
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