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ofAbstract

The purpose of advanced Brain-Computer Interfaces (BCIs) is to connect the

human brain with an external device without using the muscular system. To

do this, they must effectively process mental activity and infer information on

the users’ intentions and directives. This work proposes a novel and explainable

BCI system capable of recognizing P300 deflection in single-trial EEGs with

higher accuracy compared to the literature gold standard. Moreover, the pro-

posed deep-learning approach allows us to go beyond the mere P300 detection,

which is, to our best knowledge, the current state of the art. Indeed, we first

identify the P300-related signal in the single-trial EEG signal, and then, we fur-

ther discriminate the ERPs associated to the detected P300 between visual and

auditory stimuli-related. To do this, we employ a CNN-LSTM neural network,

which manages a 3D data representation of the acquired EEG signals. The per-

formance of the approach is tested on experiments carried out on 22 subjects,

revealing a 82.4% F1-score in P300 identification and 82.4% discriminating be-

tween visual and auditory stimuli. The employed algorithmic procedure also

reports the most relevant each EEG channels in determining the predictions,

adding interpretability to the proposed AI-based tools. These results pave the

way for more sophisticated BCIs, capable of extending the set of available ac-

tions for the patients. The project was pre-approved by the Research Assessment

Committee of the Department of Psychology (CRIP) for minimal risk projects,

under the aegis of the Ethical Committee of University of Milano-Bicocca, on

May 27th, 2019, protocol number RM-2019-193.

Keywords: Brain-Computer Interface (BCI); EEG; Deep learning;

Classification

1. Introduction and Background

Brain-computer interfaces (BCIs) address systems that directly bridge the

human brain with external devices without requiring peripheral muscular activ-
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ofity (Wolpaw et al. (2002)). BCIs were first introduced for medical purposes. In-

deed, they were employed as visual or auditory spellers to allow patients affected5

by severe muscular diseases, such as locked-in syndrome and amyotrophic lateral

sclerosis, to communicate with the external world. Recently, the widespread of

this technology paved the way also for non-medical applications (Müller et al.

(2008)). As result, to date, BCIs are vastly employed, as mental state con-

trol (Blankertz et al. (2010)), drunkness recognition (Malar et al. (2011)), au-10

tonomous vehicles control (Waibel (2011)), gaming (Royer et al. (2010)), and

authentication (Nakanishi et al. (2013)).

Regardless of the specific application, a BCI aims to identify specific patterns

in a patient’s cognitive processes and translate them accordingly to provide the

corresponding machine commands. Although several methods can be leveraged15

to measure brain processes, over 80% of BCI publications rely on the electroen-

cephalogram (EEG) (Mason et al. (2007)). In detail, it describes the cogni-

tive processes reporting the average activity of the dendritic currents measured

over time by electrodes placed on the scalp according to standardized configura-

tions. Therefore, it is an economical, non-invasive, and high temporal resolution20

technique compared to alternative approaches such as functional near-infrared

spectroscopy, functional magnetic resonance imaging, and electrocorticogram

(De Venuto & Mezzina (2021)).

It follows that by leveraging an ad-hoc defined experimental setup, it is

possible to elicit specific patterns in the subject’s brain that can be detected by25

the BCI system from the EEG analysis. The procedure of the experimental setup

depends on the target application; however, three are main elicited patterns

that are effective in BCI applications: motor imagery (MI), steady-state visual

evoked potential (SSVEP), and P300 (Chan et al. (2015)).

MI deals with the mental rehearsal of physical movement tasks, such as30

raising a hand. Motion planning induces a synchronous increase or decrease of

the neuronal population, affecting the energy content of EEG frequency bands

depending on the moved limb. The BCI can detect these phenomena, called

event-related synchronization (ERS) or desynchronization (ERD), recognizing

3
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ofthe specific motion and performing the associated action. Usually, this action35

consists of moving a real or a virtual object according to the users’ direction of

motion. It follows that the primary applications of MI-based elicitation schema

include wheelchair (Huang et al. (2012)) and screen cursor control (Huang et al.

(2009)).

SSVEPs, instead, are elicited by triggering a subject with a visual stimulus,40

e.g. flashing light, repeated at a specific frequency. They induce an increase

of EEG energy at the corresponding frequency. According to this paradigm,

several visual stimuli are presented to the subject, flickering with different fre-

quencies. A priori is established a mapping between the set of available actions

and the flickering frequencies. The user must focus on the visual stimulus whose45

frequency corresponds to the intended action. As a result, the EEG energy

increases accordingly; the BCI recognizes the SSVEPs-induced peak, gets the

corresponding frequency, and performs the associated action (Zhu et al. (2010)).

Finally, P300 represents one of the most significant event-related brain po-

tentials (ERP) components, consisting of time-locked responses to a specific50

class of stimuli. Since it is easy to trigger and measure compared to other ERP

components, P300 is the target of most ERP-based BCIs (Allison et al. (2020)).

Also, although the overall ERP trend depends on the specific stimulus that

elicited it, the P300 component shape is deterministic. In detail, P300 consists

of a positive deflection occurring 300 ms after the recognition of a target stim-55

ulus (Polich (2012)). According to psychophysiological literature, as (Proverbio

& Zani (2003)) and (Polich (2020)), the P300 component would reflect context

updating processes (Fonken et al. (2020)), elicited by stimulus-driven atten-

tion, if anterior, and voluntary attention allocation, if posterior (Polich (2007)).

Moreover, recent evidence suggest that P300 responses directly reflect context60

updating and learning (Polich (2020)). Again, the P300 component would also

reflect working memory processes (Linden (2005)), categorization’s certainty

(Polich (2007)), conscious processing, stimulus recognition and coding (Dehaene

& Changeux (2011)), stimulus arousal, and valence (Proverbio et al. (2020)),

stimulus familiarity (Herron et al. (2003)). In other words, the greater the P30065
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ofamplitude evoked by a stimulus, the more distinctive and consciously vivid

would be its mental representation, as well as its subsequent memory. It is

evident why the P300 component of ERPs represents a precious tool for BCI

technology, as it directly reflects the brain activation supporting the conscious

mental representations of a stimulus. Also, it is highly effective as a plethora of70

experimental paradigms can elicit it.

SSVEP and P300 are often employed in spellers, i.e., BCIs allowing the

user to communicate letter after letter. However, SSVEP range of different

stimuli is limited, as the characteristic frequencies must be non-harmonic and

compliant with the monitor refresh rate (Volosyak et al. (2009)). On the other75

hand, P300-based spellers are robust to this issue and also compliant with dif-

ferent stimuli. Indeed, despite most of them relying on visual stimuli (Farwell &

Donchin (1988)), auditory spellers are proposed to allow communication also for

patients incapable of controlling eye muscles (Schreuder et al. (2010)). There-

fore, considering BCI-based communication systems, P300 represents the most80

effective pattern elicited in the subject’s brain.

However, regardless of the stimulation, P300 is characterized by a low signal-

to-noise ratio (SNR) (Schomer & Da Silva (2012)). Therefore, BCIs usually rely

on P300 obtained from grandaveraged ERPs. Indeed, synchronously averaging

the multiple EEG signals concerning the same stimulus allows for improving85

SNR, as the background brain activity, which acts as a zero-mean Gaussian

noise, is attenuated downstream of the process. Even if grandaverage improves

BCIs robustness, it adds a temporal overhead in the elicited pattern recognition

process. It follows that it may not be compliant with real-time applications

requirements, burdening the end-user’s communication process.90

Therefore, approaches are needed to allow a BCI to identify not averaged

P300 from a single stimulus repetition accurately. This achievement is essential

in designing an effective system that enables real-time communication.

Moreover, the literature approaches aims at detecting the ERPs evoked by a

specific stimulus, performing the so-called target vs. non-target binary classifi-95

cation. Accordingly, the pool of actions available for the patients is reduced. To
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leveraged, in order to train the classifiers to detect the ERP and also the elicit-

ing stimulus, e.g., distinguishing it by visual or auditory based on its temporal

trend. This allows for expanding the dictionary of possible actions available to100

the subject, paving the way for more sophisticated and effective BCIs.

1.1. Related Works

The literature presents several approaches to detect the P300 in the EEG

signal. Considering those based on single-trial experiments, independent com-

ponent analysis (ICA) was initially set as one of the most promising techniques,105

reducing the processing time and improving the information transfer rate. Based

on this method, Li et al. designed a BCI system capable of detecting the P300

with a 76.67% accuracy (Li et al. (2009)).

However, considering the unfavorable SNR, the EEG non-stationarity over

time, and the inter- and intra-subject variations, the advent of machine-learning110

provides algorithms that soon overcame traditional approaches, given their com-

putational efficiency and the capabilities of data-driven modeling of complex

phenomena (Müller et al. (2008)). It follows that recent literature approaches

mainly rely on machine learning-based approaches. The most widely used in-

cludes linear classifiers, linear discriminant analysis (LDA), and support vector115

machines-based (SVM) approaches, which still are, the most popular choice in

real-time EEG based-BCIs (Lotte et al. (2018)). Considering visual speller,

Shrinkage LDA achieves remarkable performances, assessing an online accuracy

of about 70% (Blankertz et al. (2011)). Regarding auditory spellers, instead, the

state-of-the-art performances were reported by Lelievre, who achieved 71.4% ac-120

curacy using SVM. (Lelievre et al. (2013)). Despite the linear classifiers’ undis-

puted effectiveness, their classification capabilities are limited when the data

is not linearly separable. Accordingly, non-linear approaches such as the dis-

criminative canonical pattern matching are proved to outperform LDA results,

assessed as a promising algorithm for BCI systems based on P300 (Xiao et al.125

(2019)).
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ofHowever, the development of artificial neural networks (ANN) soon revealed

their compliance with BCI applications, being nowadays the most adopted

choice. The first attempt was presented by Cecotti et al. (Cecotti & Graser

(2010)) who, leveraging convolutional neural networks (CNN), outperformed130

the BCI competition winners, considering the same P300-speller dataset. Also,

Kshirsagar et al., in a recent work, proposed a weighted ensemble of CNNs to

detect P300 from online single-trial BCI, assessing 92.64% accuracy (Kshirsagar

& Londhe (2020)). From then, several networks architectures were proposed,

like recurrent neural networks (RNN) (Tal & Friedman (2019)), and long-short135

term memory networks (LSTM) (Joshi et al. (2018)), despite CNN proves to

represent the most effective solution (Vareka (2021)). Indeed, although great

performance is achieved by RNN-based approaches (Fedjaev (2017)), they fail

in taking advantage of EEG spatial characteristics, leveraging only temporal

dependencies information. CNNs are suitable for the EEG data since they can140

account for their spatio-temporal structure. Also, CNN achieves outstanding

performances in features extraction, preventing from selecting them in a man-

ual, handcrafted process (Lotte et al. (2018)). The first CNN-based approaches,

such as Cecotti’s, leverage a 2D matrix representation of the EEG data since

these networks are designed to handle image-like structures. Each row corre-145

sponds to a time instant and each column to a channel. In 2017 a novel 3D data

representation was presented, allowing to represent more effectively the EEG

information to the CNN (Carabez et al. (2017)). Each matrix encodes the EEG

channels’ spatial distribution according to the proposed data structure, while

the third dimension represents time. Therefore, the EEG signal can be repre-150

sented as a series of 2D matrices representing the electrodes configuration on the

patient scalp, tracing from time to time the voltage measured by each channel in

the respective matrix cell. CNN is also used in recent work by De Venuto et al.

(De Venuto & Mezzina (2021)), which leverages an autoencoder-(1D)CNN to

extract the features of the signals acquired by a 6-channels EEG and detect the155

presence of the P300, achieving a 70.0% F1-Score. Leveraging this effective EEG

data representation allows for achieving high performances in P300 detection,

7
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vLSTM network (Joshi et al. (2018)). This configuration proves to be suitable

for EEG-based BCI, requiring minimal channels pre-processing, and efficiently160

processing spatial and temporal information, combining the advantages of the

two standard networks architectures.

However, poor interpretability often affects ANN-based approaches, repre-

senting the main barrier in adopting these systems (Molnar (2020)). Indeed,

linear classifiers are easy to be interpreted, allowing for investigating their165

decision-making process and promoting a better understanding of the moni-

tored processes (Du et al. (2019)). Therefore, to provide insight into the neural

networks decision-making process, techniques have been proposed, such as the

permutation importance (Altmann et al. (2010)). Such metrics can rank the

provided features based on their importance in determining predictions.170

In addition, the P300-based BCI systems presented so far address binary

classification problems, aiming to recognize the presence or absence of the target

response in the single-trial EEG signal. Although the produced spellers improve

locked-in patients’ life quality, bridging them to the outside world and extending

the pool of recognized stimuli would further increase BCI capabilities, providing175

them with a more comprehensive set of possible actions. Recent studies, such

as the one proposed by Wirth et al. (Wirth et al. (2020)), demonstrate that,

as ERPs are lock-in stimulus-specific responses, it is possible to classify the

induced response based on the eliciting stimulus. In detail, they distinguish two

different types of error-related potential, i.e., a particular ERP elicited when180

the subject perceives a mistake in executing a task, with 68% accuracy.

Therefore, the literature overview concerning machine learning-based BCI

systems reveals that these techniques effectively detect the P300, despite the

unfavorable SNR, which paves the way for further distinguishing the eliciting

stimulus, extending the pool of BCI provided actions. However, new approaches185

are required to increase these systems’ explainability and accuracy, especially

concerning classifying the domain of belonging for the eliciting stimuli.

8
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In this work, we propose an accurate and explainable deep-learning-based

BCI system able to detect not averaged P300 in single-trial EEG and further190

distinguish them respect to the sensorial domain of belonging, i.e., visual or

auditory. In detail, three innovative contributions are provided:

1. A hierarchical classifier capable of recognizing the sensorial domain of the

eliciting stimulus related to the detected P300;

2. An experimental methodology to collect a single-trial EEG dataset re-195

ferred to P300 elicited by more than one kind of stimulus;

3. A procedure to explain the classifier decision-making process.

Concerning the first innovative contribution, starting from state-of-the-art so-

lutions, we produce a BCI able to go beyond the traditional P300 detection for

the very first time. To this extent, we design a hierarchical classifier combining200

two CNN-LSTM networks. The first one aims to identify, in the single-trial

EEG, samples referred to a P300, similar to the literature approaches. But

then, a second neural network further distinguishes the detected ERP associ-

ated with the P300 concerning the eliciting stimulus, which can be visual or

auditory. To the best of the authors’ knowledge, this is the first time a BCI205

system can manage more than one stimulus and recognize the sensorial domain

of belonging. Indeed, state-of-the-art approaches rely on a single stimulus and

identify the elicited P300 in the EEG signal. Therefore, we also designed a novel

experimental procedure to collect a dataset referred to P300 elicited by stimuli

belonging to different sensorial domains. This was kay to produce a dataset on210

which resorting to evaluate the performances of our BCI system. Accordingly,

we collected data considering 22 volunteers triggered by visual and auditory

stimuli and leveraged it to assess our BCI system’s performance. In this pro-

cess, two indicators were considered: the F1-Score in detecting the P300 and

recognizing the ERP’s sensorial domain and the interpretability of the classifier’215

decision-making process, which was measured according to the so-called permu-

tation importance (Altmann et al. (2010)). Moreover, the proposed BCI is

9
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tigating if providing training data concerning multiple subjects may improve the

learning process. The last innovative contribution concerns the interpretability220

of the classifier’s decision-making process provided by the combination of the

hierarchical classifier structure with the leveraged 3D data structure, inspired

by that proposed by Carabez et al. (Carabez et al. (2017)). Leveraging a

hierarchical structure allows dividing the classification task in two steps: P300

detection and eliciting stimulus’ sensorial domain recognition. The permutation225

importance method was applied to the two CNN-LSTM networks separately;

therefore, for each one a features ranking is provided, based on their relevance

in the respective neural network predictive process. The 3D data structure was

key to provide interpretability, as let the features be the EEG channels. Accord-

ingly, the ranking returned by the permutation importance provides information230

about the importance of each EEG channel in determining the predictions, pro-

viding insights into the brain regions most involved in the ERPs recognition

process.

This study paves the way for more sophisticated BCIs, both for medical and

non-medical applications, allowing to extend the pool of recognized stimuli, i.e.,235

the set of actions available for the users.

2. Method

This section details the methodology proposed to design a BCI capable of

detecting P300 in single-trial EEG, further distinguishing the belonging ERP

based on the sensorial domain of the eliciting stimulus. First, we describe the240

pre-processing phase, aimed at discharging negligible EEG channels and im-

proving SNR. Then, we present the 3D EEG data representation. Finally, we

detail the architecture of the novel hierarchical classifier produced to further

classify the sensorial domain of the eliciting stimulus.

10
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The main novelty of the proposed approach was to further distinguish the

detected P300 components of ERPs based on the sensorial domain of their elic-

iting stimulus (i.e., visual vs. auditory).

Indeed, as reported in Section 1, literature approaches only perform target vs.

non-target binary classification. It follows that the public EEG dataset reposito-250

ries, e.g., (OpenBCI), concern experiments in which a single stimulus is repeat-

edly provided to a subject. Therefore, as we need an ad-hoc dataset to evaluate

our system performances, we designed an experimental setup including both vi-

sual and auditory stimulation. The produced dataset collected data referred to

22 healthy subjects, 11 men and 11 women, aged between 19 and 30 years. All of255

them proved to be right-handed, according to the proposed Oldfield Inventory

test (Oldfield (1971)). To take part in the experiment, volunteers gave their

written and informed consent under the Declaration of Helsinki (BMJ 1991;

302: 1194), and with the approval of the Ethics Committee of the University of

Milan-Bicocca (prot. N◦. RM-2019-193).260

During the experiment, each subject sat comfortably in an acoustically

shielded and faradized cubicle, wearing an elastic cap equipped with 126 elec-

trodes, arranged according to the international standard defined by the Oosten-

veld 10-5 system (Oostenveld & Praamstra (2001)). Participants were asked to

fixate a red dot located at the center of a screen, placed 114 cm from their eyes.265

To each volunteer, 11 different experimental runs were administered randomly

mixed. 8 of them, provided a visual stimulation and lasted 2 min and 5 s each,

while 3 of them provided an auditory stimulation and lasted 1 min and 50 s

each. The whole stimulus set comprised 360 images belonging to 9 categories

(40 images per category) and 120 auditory stimuli belonging to 3 categories270

(40 sound files per category). Each stimulus was presented for 1500ms while

the inter-stimulus interval (ISI) randomly varied between 500±100ms. In detail,

visual stimuli consisted of static pictures presented at the center of a white back-

ground. They might belong to 9 different categories, based on their depicted

content, namely: faces of adults, infants, and animals, dressed bodies, tools, ev-275

11
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as visual target stimuli. Auditory stimuli consisted in short fragments belonging

to 3 sub-categories: emotional vocalizations, words, and piano music. Natural

sounds were used as auditory target stimuli. Each audio clip lasted 1500ms. Au-

dio stimuli were normalized and leveled in intensity. Volunteers were required280

to press a response key as accurately and quickly as possible whenever an infre-

quent target related to nature was detected (e.g., pictures of natural landscapes

or sea waves sounds, depending on the sensorial domain involved). Responses

were provided by pressing a response key with the index finger of either the left

or right hands. Hand order was alternated throughout the recording session.285

The hand order and task conditions were counterbalanced across subjects. For

each experimental run, the target number varied pseudo-randomly between 3-5.

Fictitious, rare targets were used to avoid contaminating the evoked potentials

of interest (non-targets) with the motor potential artifacts linked to the motor

response (Proverbio et al. (2020, 2011)). Therefore, the rare targets acted as290

fictious fillers for keeping the subjects’ attention on the stimulation.

2.2. EEG Pre-Processing

EEG signals were acquired and analyzed via EEProbe recording software

(ANT Neuro system, Enschede, The Netherlands). Stimuli presentation and

triggering was performed using EEvoke Software for audiovisual presentation295

(ANT Neuro system, Enschede, The Netherlands). Digital amplifiers Synamps

were used. The EEG was continuously recorded from 126 scalp sites at a sam-

pling rate of 512 Hz. Horizontal and vertical eye movements were also recorded.

Averaged ears served as the reference lead. The EEG and electro-oculogram

(EOG) were amplified with a half-amplitude band pass of 0.016–70 Hz. Elec-300

trode impedance was kept below 5 kΩ,. Signals coming from hEOG, vEOG, M1,

and M2 electrodes were discarded in that not relevant for classification purposes.

Baseline correction was applied to each EEG channel. This procedure consists

of subtracting from each channel the average voltage recorded in the 200 ms

preceding the stimulation. Since P300 is a low-frequency component, an offline305

12
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tifacts rejection was performed, thresholding channels amplitude to ±50 µV ,

according to standard guidelines (Luck (2014); Zani & Proverbio (2003)).

2.3. 3D EEG Data Representation

Given the outstanding performances achieved allowing a neural network to310

automatically extract features, compared to handcrafted processes (Lotte et al.

(2018)), in the proposed BCI an ANN performs this task. Nevertheless, data

representation affects ANN performances in extracting features. As mentioned

in Section 1, 3D data representation outperforms the 2D one, accounting for

both spatial and temporal EEG dependencies. Therefore, we encode data in315

a series of 21x21 matrices, as reported in Figure 1. In detail, each matrix

represents the 2D projection of the electrodes cap. Accordingly, the pixel corre-

sponding to an electrode collects the measured voltage in the instant the matrix

is referred; pixels that do not correspond to an electrode are zero-padded. It

follows that considering an ordered series of matrices allows for accounting also320

for EEG temporal evolution. As introduced in Section 1, resorting to this data

structure was key to provide classifier’s decision-making process interpretabil-

ity. Indeed, according to it, each feature consists of an EEG channel. Also, it

effectively represents the spatio-temporal information characterizing the single-

trial EEG datum. Indeed, EEG temporal information determines the signal325

morphology, which the neuroscientist primarily considers associating an ERP

to the corresponding eliciting stimulus. Considering the spatial information, it

provides insights into the activity of the respective brain area, which is funda-

mental to inferring the sensorial domain of the eliciting stimulus.

2.4. Hierarchical Classifier330

The main contribution provided in our work consists of designing an explain-

able BCI able to distinguish further its ERPs referred to the detected P300,

basing on the sensorial domain of the eliciting stimulus. Therefore, a two-step

hierarchical classification architecture was designed; a first classifier is trained to

13
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(a) Temporal Evolution

(b) 2D Electrodes Representation (c) EEG Frame Structure

Figure 1: EEG 3D Data Representation. This Figure represents the 3D data representation

employed in this work. Accordingly, EEG can be considered as a sequence of frames referred to

the brain activity. Each frame reports pixels indicating the voltage measured by the respective

electrode on the scalp. Therefore, mapping the 2D scalp representation in a pixels grid allows

to represent also the spatial information contained in EEG data.

14
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the ERPs referred to the detected P300, as elicited by a visual or an auditory

stimulus. To the best of the authors’ knowledge, this is the first time a hier-

archical architecture has been leveraged in the P300 detection process. It was

key to overcome the literature approaches, further distinguishing the sensorial

domain of belonging for the stimuli that elicited the detected ERPs. Moreover,340

it provides modularity to our system. Indeed, provided that a consistent dataset

is collected, additional binary splits can be included, further discriminating the

eliciting stimuli. The hierarchical classifier architecture is reported in Figure 2.

Figure 2: Hierarchical Classifier Architecture. This Figure shows the hierarchical classifier

designed in this work. It allows detecting the P300 in single-trial EEG data and recognizing

the sensorial domain of the eliciting stimulus.

Both spatial and temporal dependencies characterize EEG data. Despite

producing an effective 3D representation to enhance its structure, leveraging345

15
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performances in features extraction and P300 classification, given their effective-

ness in capturing spatial information. Also, LSTM proves to recognize P300,

despite being capable of focusing on temporal information. Therefore, we de-

cide to combine the two architectures, producing a CNN-LSTM network. In de-350

tail, the produced hierarchical classifier comprises two instances of CNN-LSTM

networks, each corresponding to a split node. This is the first time that the

combination of these two networks’ structure has been used for P300 detection;

however, it has been diffusely used in motor imagery recognition task achieving

outstanding performances (Garcia-Moreno et al. (2020); Li et al. (2022)), given355

its capability in resorting both on spatial and temporal EEG dependencies. Ac-

cordingly, this network structure allows mimicking the neuroscientists procedure

in detecting and recognizing the deflection caused by eliciting stimuli belonging

to a different sensorial domain, enhancing the a posteriori interpretation of the

classifier’s decision-making process.360

An instance of the employed CNN-LSTM network is reported in Figure 4.

In both CNN and LSTM structures, several layers were explicitly introduced to

improve network performances. Max pooling 2D and dropout layers are used

to reduce data dimensionality, preventing overfitting (Srivastava et al. (2014)).

Also, ReLU (Ide & Kurita (2017); Krizhevsky et al. (2012)), and batch normal-365

ization (Liu et al. (2018); Ioffe & Szegedy (2015)) layers are leveraged, given

their assessed capabilities in speeding up the learning convergence and in re-

ducing the sensitivity to initialization settings. The CNN portion structure is

composed of an input layer, which passes input matrices to the convolutional

layer, composed of 8 filters of size 3x3. Then, batch normalization and ReLU370

layers are applied. Each batch size is set to 64 samples. The activations pro-

duced by the following max pooling 2D layer are proposed as inputs to the

LSTM structure, which learns the temporal data dependencies. This part of

the network comprises a sequence input layer, which passes the instances to

the following LSTM layer, composed of 512 units. Then a dropout of 0.5 is375

applied, and instances undergo another LSTM layer of 256 units. Finally, the
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the input coefficients and adds a bias vector; then, a non-linear softmax layer

produces the actual predictions. During the training procedure, the learning

rate was set to 1e−4, and Adam’s method was used as the optimizer. Accord-380

ingly, the two CNN-LSTM networks composing the hierarchical classifier were

trained. The first network aims at detecting P300 in the proposed data; the

second one distinguishes ERPs-related instances between elicited by a visual or

an auditory stimulus. Resorting to a hierarchical structure was key to divide

the classification task in two steps: P300 detection and ERP’s sensorial domain385

recognition. This was essential for enhancing the decision-making process in-

terpretability, allowing for inspecting the two processes separately. To provide

the reader a better understanding of the proposed BCI functioning, a scheme is

reported in Figure 3. Accordingly, the subject is required to focus, among the

available stimuli, on the one corresponding to the intended action. Therefore,390

the associated ERP is elicited in the brain. The P300 is detected at the first

level of the hierarchical classifier. Then, the second one recognizes the sensorial

domain of the stimulus. This allows the BCI actuator to perform the action

intended by the subject.

Figure 3: Presented BCI Working Pipeline. This Figure illustrates the functioning of the

proposed BCI system.

3. Results395

This Section first defines the metrics employed to evaluate the proposed

BCI in terms of accuracy and interpretability. Then, the obtained results are
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Figure 4: CNN-LSTM Network Architecture. This Figure depicts the structure of a single

CNN-LSTM network. The hierarchical classifier employs two networks, one in each split

note. It is composed of a series of convolutional layers, i.e., convolutional, composed of

8 3x3 filters, batch normalization (BN), and max pooling 2D (MP2D), with 2 as the pool

size. Then, two LSTM layers follow, of 512 and 256 units, interspersed by a dropout one.

Finally, the prediction is computed through a fully connected (FC) layer and a soft-max (SM)

activation function. CNN network part accounts for electrodes spatial dependencies, while

LSTM for temporal ones.

presented and discussed. In detail, evaluation is performed considering two

scenarios; in the first one, the system is trained and tested for each volunteer.

Therefore, 22 hierarchical classifiers were trained and evaluated according to 10-400

fold cross-validation procedure. Instead, the second scenario involves training

the hierarchical classifier on a dataset extracted according to a volunteers-based

stratified procedure. Therefore, the data of all the participants are both in

training and the test set. Both scenarios are key to investigate the proposed

BCI performances. Indeed, the first one provides insights about the classifier405

efficacy in learning patterns to predict new data of the same user. On the other

hand, the second scenario allows understanding whether merging data from

multiple subjects enhance the classifier’s predictive capabilities.

3.1. Evaluation Metrics

Each CNN-LSTM network and the overall hierarchical classifier performances

are evaluated according to 10-fold cross-validation with respect to accuracy, pre-

cision, recall and F1-Score. Let true positives (TP) be the number of instances

belonging to the positive class correctly predicted, and false positives (FP) the
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negative (FN) can be defined for the negative class. Accuracy can be computed

as:

Acc =
TP + TN

TP + TN + FP + FN
, (1)

representing the percentage of correct predictions. Precision is instead defined

as the accuracy on the positive class:

Pre =
TP

TP + FP
, (2)

while recall represents the percentage of instances belonging to the positive class

which are correctly detected:

Rec =
TP

TP + FN
. (3)

Also, F1-score is computed as the harmonic mean of precision and recall:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
. (4)

We decide to consider both F1-score and accuracy, as the first highlights, the410

results respect to false negatives and false positives, while the latter concerns

Figure 5: Features importance. This figure shows features importance esti-

mated leveraging permutation importance approach for the P300 vs baseline

classifier (left), and for the visual versus auditory ERP classifier (right). It

turns out that P300 detection is a more complex task, which requires infor-

mation provided by more electrodes.
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robust metric when considering an unbalanced dataset.

As mentioned in Section 1, the complex network architecture complicates

understanding their decision-making processes. Nevertheless, interpretability is415

becoming mandatory, favoring trust in machine-learning applications (Molnar

(2020)), and providing additional knowledge about the investigated problem

(Du et al. (2019)). In the ensemble classifiers, insights into the decision-making

process are provided by reconstructing a ranking of the employed features based

on the impact assumed in determining the predictions. As reported in Section420

1, the most employed metric is permutation importance. According to its def-

inition, feature importance can be estimated considering the decrease in per-

formance caused by randomly shuffling its values. The underlying rationale is

that a random permutation of a feature’s values mimics its removal from the

model. So, the higher the performances drop, the more the classifier relies on425

the considered feature values in its decision-making process. Considering EEG

channels, values shuffling also causes the loss of signal temporal dependencies,

forcing the signal to be meaningless. Permutation importance is computed for

each CNN-LSTM network in the produced hierarchical classifier. In detail, at

each split node, this metric is computed considering the CNN-LSTM network430

fitted on the non-shuffled features in the training set. Iteratively, a specific

EEG-channel is shuffled in all the validation set instances, while the others are

left unchanged.

The produced set is provided to the CNN-LSTM network, which predicts the

output classes. The performances drop is estimated using the loss rather than

the accuracy, being more robust. The loss is calculated using binary categorical

cross-entropy, as each CNN-LSTM network splits the data in two classes:

Lossi = −
∑N

k=1 yklogŷk + (1− yk)log(1− ŷk)

N
(5)

where i = 1, ..., nfeatures, Y collects the actual labels, Ŷ the predictions, and N

is the validation set size. Thanks to the employed 3D data structure, detailed in435

Section 2, each feature corresponds to an EEG channel. Therefore permutation
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depth information about which electrodes are most informative in detecting the

P300 and recognizing the sensorial domain of the associated eliciting stimuli.

This information is key to interpreting the hierarchical classifier decision-making440

process regarding the most involved brain regions.

Table 1: CNN-LSTM Subject-Specific Evaluation. This Table reports the performance, in

terms of accuracy F1-score, recall, and precision, at each level of the hierarchical classifier

with respect to 10-fold cross-validation. Training and testing were conducted according to the

subject-specific scenario.

ID Gender
1stLevel 2nd Level

Acc F1 Pre Rec Acc F1 Pre Rec

1 F 82.0 81.5 73.0 92.2 95.6 95.4 96.8 94.0

2 F 81.7 81.4 75.9 87.7 89.0 82.5 99.9 70.2

3 M 78.9 78.7 81.0 76.5 78.0 75.5 75.9 75.1

4 F 85.0 84.4 82.3 86.7 97.0 96.8 94.5 99.3

5 F 92.7 91.4 84.3 99.8 98.5 97.3 95.4 99.3

6 F 84.9 84.9 81.6 87.3 95.6 95.4 96.8 94.0

7 M 72.1 68.6 87.0 56.6 99.8 98.0 97.0 99.1

8 F 86.1 85.7 77.5 95.8 87.0 85.5 81.6 89.9

9 F 89.7 89.3 86.3 92.5 95.1 95.1 96.7 93.6

10 M 77.1 76.0 76.3 75.8 83.1 92.4 89.9 95.0

11 M 92.7 92.2 86.6 98.6 98.2 97.9 97.2 98.6

12 F 89.3 87.1 78.8 97.3 96.1 92.2 98.4 86.7

13 M 77.1 77.1 80.4 74.1 89.3 86.8 84.4 89.4

14 M 82.0 80.1 79.8 80.5 94.2 93.6 88.6 99.3

15 M 75.0 74.7 71.2 78.5 99.9 99.9 99.9 99.9

16 M 79.9 79.8 71.9 89.6 98.9 98.3 98.9 97.8

17 M 87.9 83.1 73.5 95.5 96.2 91.0 86.2 96.4

18 F 95.0 92.3 87.1 98.1 98.9 98.7 99.3 98.2

19 F 89.0 84.4 80.8 88.4 99.8 99.2 98.9 99.6

20 F 84.5 81.1 75.2 87.9 88.0 87.9 85.2 90.8

21 M 76.0 75.1 71.8 78.7 83.2 82.7 82.6 82.9

22 M 89.3 85.0 79.2 91.7 99.8 99.3 99.8 98.9

Males 80.7 ± 6.6 78.1 ± 5.7 81.5 ± 11.9 79.1 ± 6.2 92.8 ± 8.0 90.9 ± 8.2 93.9 ± 8.1 92.3 ± 8.0

Females 87.3 ± 4.3 80.3 ± 4.7 92.15 ± 4.9 85.8 ± 3.9 94.6 ± 4.5 94.9 ± 6.0 92.3 ± 8.5 94.6 ± 4.5

3.2. Subject-Specific Evaluation

This evaluation scenario, involves training and testing a hierarchical classi-

fier for each volunteer. Table 1 reports the produced results. This evaluation
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terms of accuracy F1-score, recall, and precision, at each level of the hierarchical classifier

with respect to 10-fold cross-validation. Training and testing were conducted according to the

intra-subjects scenario.

ID Gender
1st Level 2nd Level

Acc F1 Pre Rec Acc F1 Pre Rec

1 F 84.1 82.7 75.0 92.2 95.6 95.2 93.1 97.3

2 F 81.5 80.5 75.9 85.6 92.0 91.9 85.1 99.8

3 M 79.8 78.9 81.5 76.5 83.0 82.7 76.3 90.2

4 F 80.1 84.8 83.0 86.7 97.0 97.0 95.8 98.2

5 F 92.7 91.4 84.3 99.8 97.7 97.5 98.1 97.0

6 F 84.9 84.4 81.6 87.3 93.9 93.8 94.7 92.9

7 M 79.1 88.0 86.8 89.2 98.8 98.4 97.9 98.9

8 F 86.3 85.8 77.7 95.8 89.1 87.4 83.5 91.6

9 F 90.7 90.5 86.3 95.2 95.1 94.9 94.5 95.4

10 M 77.2 76.5 77.0 76.0 93.2 93.1 87.8 99.1

11 M 92.9 92.3 86.6 98.6 95.7 95.4 92.2 98.9

12 F 88.2 87.7 79.9 97.3 93.4 92.2 91.2 93.2

13 M 79.3 78.1 81.4 75.1 89.7 89.4 84.9 94.5

14 M 82.0 80.1 79.8 80.5 93.9 93.2 91.8 94.6

15 M 75.9 75.3 72.3 78.5 99.9 99.9 99.9 99.9

16 M 79.9 79.8 71.9 89.6 97.8 97.8 97.5 98.2

17 M 85.6 83.6 74.4 95.5 92.5 91.0 93.3 88.3

18 F 93.0 92.6 87.6 98.1 97.9 97.4 96.8 98.1

19 F 89.0 84.4 80.8 88.4 98.9 98.9 98.7 99.1

20 F 84.5 81.1 75.2 87.9 85.2 84.9 82.8 97.1

21 M 76.2 75.5 71.5 79.9 82.1 81.9 79.0 85.0

22 M 86.3 84.5 78.4 91.7 99.1 99.0 99.0 98.1

Males 84.0 ± 5.3 83.6 ± 5.3 79.5 ± 5.0 88.4 ± 8.4 93.7 ± 5.1 92.8 ± 5.9 90.8 ± 7.7 95.1 ± 5.0

Females 86.7 ± 4.2 86.0 ± 4.1 80.7 ± 4.4 92.2 ± 5.2 94.2 ± 4.1 94.1 ± 3.6 92.2 ± 5.8 96.3 ± 2.7

procedure aimed to investigate, considering our restricted sample, the effects of445

the BCI illiteracy. This well-known phenomenon is one of the BCIs open prob-

lems, and deals with their inapplicability for a non-negligible users segment, due

to the low performances reported (Blankertz et al. (2009)).

The reported results show that, on average, the hierarchical classifier achieves

76.6% F1-Score. In detail, 82.4% is assessed in P300 detection and 82.4% in450

distinguishing the sensorial domain of the eliciting stimulus. Also, the overall

F1-Score is higher than 70.0% for 18 of the considered subjects, which is the
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As reported in Section 1, these results can be compared to the literature only

concerning the first classification level, i.e., target vs. non-target. Indeed, the455

second classification level, i.e., auditory vs. visual ERP, represents one of the

innovative contributions provided by our approach, which, to the best of the

authors’ knowledge, has never been addressed before. Therefore, considering

the target vs. non-target classification, our approach achieves performances

comparable with most of the literature approaches.460

Considering labels representation and available instances for each subject,

it turns out that there is a strong unbalance for subjects 3, 7, 13 and 21. In-

deed, even though all the volunteers undergo the same experimental protocol,

the artifacts rejection phase may discard a different amount of data for each.

Accordingly, we can attribute the performance drop to the smaller number of465

available instances that has not allowed the classifier to learn effective pat-

terns. Also, although the average metrics assessed by the female participants

are slightly higher than male ones, no statistical evidence is deducible, as the

confidence boundaries overlap. So, we can conclude that our BCI system per-

formances on a single subject mostly depend on the amount of training data470

provided.

3.3. Intra-Subjects Evaluation

In the second evaluation scenario, the hierarchical classifier is trained on a

sub dataset extracted according to a subject-based stratified procedure, and its

performances are estimated according to 10-fold cross-validation. Therefore, a475

single hierarchical classifier is trained, considering 70% data from each volunteer,

but is tested on the remaining 30% data of a single subject per time. The

obtained results are reported in Table 2.

Considering the overall performances, the hierarchical classifier assesses 78.1%

F1-Score, 83.6% in detecting the P300, and 93.5% in distinguishing the sensorial480

domain of the eliciting stimulus. Considering gender-based results, the perfor-

mances slightly increase compared to the subject-specific scenario. Also, 20 out
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duce that considering data collected on multiple subjects but according to the

same experimental setup increases classifier learning capabilities.485

Further consideration can be presented regarding the high performances

achieved in recognizing the stimulus’ sensorial domain once the P300 is de-

tected. This outcome is consistent with our a priori knowledge, i.e., visual and

auditory ERPs have a characteristic trend that significantly differentiates them.

Indeed, the differences between visual and auditory ERPs refer to the most ac-490

tive brain areas and their temporal evolution. While early sensorial potentials

tend to be larger over occipital sites in response to visual stimuli, and to central

sites in response to auditory stimuli (Regan (1989)) the topographical distri-

bution changes over time. At P300 latency range brain dynamics moves over

anterior brain regions supporting working memory, (e.g., Brunoni & Vanderhas-495

selt (2014)), and brain potentials tend to be more negative to auditory stimuli

and more positive to visual stimuli (Falkenstein et al. (1995)). It is worth noting

that an expert ERP investigation analyzing the effects of stimulus category on

the amplitude of electrical potentials, based on the same set of stimuli, found

that the sensorial modality (visual vs. auditory) was best assessed at midline500

fronto/central sites (Fz and Cz) at P300 latency level (Proverbio & Tacchini

(2022)). The CNN-LSTM network was ad-hoc designed for learning patterns

effective in predicting, as CNN enhances spatial features and LSTM focuses on

temporal patterns.

3.4. BCI Interpretability505

As reported in Section 1, providing in-depth knowledge of a BCI system

decision-making process is as important as the predictions themselves. There-

fore, we evaluate our system also considering its interpretability, according to

permutation importance. Accordingly, for each CNN-LSTM classifier, a rank-

ing is produced based on each electrode’s significance in determining the pre-510

dictions. To provide reliable results, regardless of the considered subject, we

compute this metric considering the hierarchical classifier trained according to
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Considering the CNN-LSTM classifier aimed at detecting P300, the three

most important channels are FFC3h, C2, and FC3; the three less relevant are515

Oz, OI2h, AFF5h. The channels mainly considered are located in the dorsolat-

eral prefrontal region of the brain, while those neglected in the occipital area.

The classifier that distinguishes the ERPs elicited by visual or auditory stim-

uli considers as the three most important channels F2, FCC1h, and AFp3h,

which suggest the relevance of the fronto-central electrodes in revealing the sen-520

sorial modality of stimulation, at P300 sensorial stage and with these types of

stimuli. In a recent BCI study involving purely visual, purely auditory or audio-

visual stimulation, the best accuracy for P300 classification was instead found

at Pz site, but no frontal electrode was used in that study, so that it cannot

be excluded a more anterior distribution for the P300 potential. Again, in an525

auditory-tactile BCI study it was found that the best site for detecting P300

was indeed Fz electrode (Brouwer & Van Erp (2010)).

The most crucial electrodes are located in the frontal anterior and dorso-

lateral prefrontal area. In the dorsolateral prefrontal zone, few of the available

channels are considered. This proves the CNN dimensionality reduction ca-530

pabilities, as it discharges redundant channels. Also, it can be noticed that

channels importance is more diffuse in the P300 detection classifier, while a

smaller number of channels is considered in distinguishing the ERPs eliciting

stimuli sensorial domain. This result further supports the conclusion that it is

easier to classify the ERPs than to detect them, given the distinctive trend that535

characterizes responses elicited by stimuli belonging to different sensorial do-

mains. Instead, to discriminate the sensorial domain of the stimulus, a reduced

number of channels is considered, as the classifier needs to recognize only the

characteristic spatio-temporal patterns of the observed ERPs.
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In this work, a novel BCI is presented. In addition to detect P300 in a single-

trial EEG, our system can also recognize the sensorial domain of the stimulus

eliciting the considered ERP. The predictions are achieved leveraging a two-step

hierarchical classifier specifically designed. A CNN-LSTM network performs the

predictions at each split node, accounting for both EEG spatial and temporal545

dependencies. Networks’ capabilities are also enhanced by leveraging a suitable

3D data representation. The proposed system is validated on real data, acquired

according to an ad-hoc defined experimental setup. The optimal results obtained

in terms of accuracy and interpretability pave the way for more sophisticated

BCI, capable of providing more actions to their users. Of course, future works550

deal with online testing our method performances in terms of accuracy and

information transfer rate. Also, we aim at performing a sensitivity analysis on

the number of EEG channels to identify the best trade-off between user comfort

and BCI system accuracy.
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dentify ERP deflection in single trial EEG reduces BCI response time;

atricial EEG representation simultaneously express spatio-temporal information;

 CNN-LSTM network detect the ERP and map the stimuli to their sensorial domain;

uditory and visual ERPs are distinguished, increasing BCI potentials.
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