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Abstract

The urgent need to transition to a green economy has generated significant inter-
est in ammonia as an effective hydrogen carrier due to its high hydrogen content
and ease of storage. To make this possible, efficient routes for extracting hydro-
gen via ammonia decomposition must be found. Ammonia thermal decomposition
on iron-based catalysts has received much interest in the past decades, as iron of-
fers an attractive balance between catalytic efficiency and sustainability. However,
an atomic-level understanding of the reaction mechanisms, particularly under high-
temperature operando conditions, has not been fully elucidated. Traditional models,
often based on static representations of catalytic surfaces, fail to capture the dy-
namic nature of surface reactions, which is crucial for explaining catalytic activity
and long-term stability. In this Thesis, we present a comprehensive computational
investigation of ammonia decomposition on iron and iron-cobalt alloy catalysts, ad-
dressing these challenges via molecular dynamics simulations powered by machine
learning and enhanced sampling techniques.

We first investigated ammonia decomposition on Fe(1 1 0) and Fe(1 1 1) surfaces,
representing the two limiting cases of the low miller index surfaces, characterized
by differing atomic densities and reactivities. Our simulations revealed that dynamic
effects at operando temperatures critically influence all reaction stages. We demon-
strated how the mobility of surface atoms influences adsorption, diffusion, and de-
hydrogenation processes, leading to an ensemble of reactive pathways rather than
a well-defined static one. Nonetheless, we found a unified description of the reac-
tion mechanism through charge transfer analysis along these pathways, providing a
comprehensive understanding of the catalytic behavior of iron surfaces.

After the dehydrogenation steps in the low surface coverage limit, we studied the
fate and influence of adsorbed nitrogen (N*) on the surface morphology and activity.

For Fe(1 1 0), we investigated the nitridation mechanisms during ammonia de-
composition in collaboration with experimentalists, who observed the formation and
decomposition of iron nitrides during catalyst activation and ammonia decompo-
sition. Our molecular dynamics simulations provide insights into the early stages
of nitridation by showing that nitrogen migration into the iron bulk catalyst is
favored over recombinative desorption, affecting nitrogen storage and release dy-
namics. In particular, we showed that when finite coverage effects are considered,
the N* dissolution process, which leads to bulk nitride formation, is enhanced.
Similarly, we studied the influence of a finite N* coverage on ammonia synthesis, par-
ticularly on the molecular nitrogen cleavage step for the Fe(1 1 1) surface. We found
that N* atoms stabilize triangular surface structures, a sign of a frustrated phase
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transition at the surface. We discovered that N* lateral interactions reduce, but not
eliminate, iron atom mobility. Here, the effects of dynamics are even more relevant
and counter-intuitive, as the reduction in the number of active sites is counterbal-
anced by an increase in their lifetime, resulting in the molecular nitrogen dissociation
barrier remaining essentially unchanged across the studied coverages.

Leveraging the knowledge gained from iron catalysts, we then investigated iron-
cobalt alloys, particularly FeCo, which have recently been proposed as an alternative
to iron because of the higher activity shown in ammonia decomposition. Due to its
complexity and prohibitive computational cost, this alloy has never been investigated
via atomistic simulations. Thus, we developed a novel data-efficient protocol for con-
structing reactive machine learning potentials, focusing on dataset construction by
targeting all relevant, particularly reactive, configurations. This is achieved by com-
bining enhanced sampling methods, Gaussian processes, and graph neural networks
to generate and select critical configurations based on local environment uncertainty.
As a result, we could characterize the mechanisms of several reactions involved at
operando temperatures also accounting for lateral interactions, with only a fraction
(∼1/20) of the usual computational effort. Our simulations showed substantial simi-
larity between the FeCo(1 1 0) and Fe(1 1 0) catalytic mechanisms in the elementary
steps of the reaction. We ascertained a double promotional effect of cobalt, which not
only reduces the reaction’s rate-determining step but also increases the barrier for
nitrogen migration into the bulk, preventing catalyst nitridation. This microscopic
interpretation is confirmed by experimental observations that no bulk nitrides are
formed.

Our findings indicate that it is the delicate balance between different surface
processes that explains catalytic activity, such as the formation of iron surface- or
bulk-nitrides under certain conditions and how iron-cobalt prevents it. This sheds
light on the microscopic promotional effect of cobalt, driven by the synergistic effects
of structural and electronic promotion. In conclusion, our results underscore the
complexity of heterogeneous catalysis and its intrinsic dynamic nature, paving the
way for even more realistic simulations.
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Outline

The global push towards a greener economy has amplified the urgency to identify
sustainable solutions for energy storage and transportation. One of the promising
approaches to enable this transition is through the use of hydrogen as a clean fuel.
However, the challenge lies in finding safe and efficient ways to store and trans-
port hydrogen. Ammonia (NH3) has emerged as a potential carrier due to its high
hydrogen density and ease of liquefaction at moderate conditions. Nevertheless, the
efficient decomposition of ammonia to release hydrogen, especially under industrially
relevant conditions, remains an area requiring further research.

Ammonia decomposition on iron-based catalysts has been a topic of consider-
able interest for several decades, as iron offers an attractive balance between cost
and catalytic efficiency. However, the atomic-level mechanisms governing the ammo-
nia decomposition process, particularly under high-temperature operando conditions,
have not been fully elucidated. Traditional models, which rely on static representa-
tions of catalytic surfaces, fail to capture the dynamic nature of surface reactions,
which are instead crucial in explaining catalyst long-term stability.

This thesis aims to address these challenges by using advanced computational
techniques, including molecular dynamics (MD) simulations, machine learning inter-
atomic potentials (MLPs), and enhanced sampling methods. These techniques allow
for a dynamic and atomistic view of the catalytic processes occurring on iron (Fe)
and iron-cobalt alloy (FeCo) surfaces during ammonia decomposition. An important
focus of this work is to uncover the fate of nitrogen on surfaces, a critical aspect of
both catalyst performance and durability.

The findings from this research offer not only a deeper understanding of ammonia
decomposition but also insights into the design of more efficient catalysts for ammonia
cracking. More importantly, these studies paved the way for the practical application
of MD simulations to study heterogeneous catalysis under operative conditions.

In the following chapters, the motivation of this study (Chapter 1), theoretical
background, and computational methods (Chapter 2) employed will be presented.

Then, in Chapter 3, we will give a detailed analysis of the adsorption and de-
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Outline viii

composition of an NH3 molecule over iron surfaces. Here, the role of dynamics in the
reaction is demonstrated, thus emphasizing the need for an operando temperature
description. In the following Chapters, the description of the ammonia cracking reac-
tion will be expanded, and the remaining reaction steps will be described, as well as
the accounting for lateral interactions. Moreover, we will focus on nitrogen’s compet-
itive processes (Chapter 4), which lead to the nitridation of iron catalysts. Chapter 5
also focuses on nitrogen effects by showing the impact of high nitrogen coverage and
the early tendency of the Fe(111) surface to form nitrides. This results in a beneficial
effect on N2 dissociative chemisorption, a critical step in the Haber-Bosch synthesis.

Finally, in the last chapters, we will discuss the iron-cobalt alloy catalyst. Chap-
ter 6 is devoted to presenting the methodological advancements required for the
study of this complex system. In particular, we will present here a new protocol
that allows for the building of reliable MLPs for in operando catalytic process in a
data-efficient manner. Then, in Chapter 7, we will exploit the new method developed
and the knowledge acquired on iron to simulate, for the first time, all the elementary
steps of ammonia decomposition on FeCo catalysts. Moreover, nitrogen migration
inside the bulk will be investigated, explaining the higher catalytic activity that has
been experimentally observed.



Chapter 1

Introduction

Heterogeneous catalysis plays a vital role in many industrial processes, including the
production of fuels, chemicals, and fertilizers. In this form of catalysis, reactions occur
at the interface between different phases, typically a solid catalyst and gaseous or
liquid reactants. The properties of the catalyst surface largely determine the efficiency
and selectivity of these reactions.

However, studying heterogeneous catalysis under realistic conditions presents sig-
nificant challenges. Industrial reactions often occur under extreme thermodynamic
conditions, such as high temperatures and pressures, leading to complex and dynamic
environments on the catalyst surface. These surfaces can undergo phase transitions
and structural changes and exhibit dynamic rearrangements of atoms during the re-
action. This makes it difficult to capture the true nature of catalysis, as its activity
is influenced by the continuous interaction between the surface and the reactants [1,
2]. The presence of multiple phases and fluctuating surface configurations further
complicates both experimental and computational studies.

While recent experimental advancements have made it possible to study catalytic
processes under operando conditions, where the catalyst is observed in real-time
during the reaction, computational studies have often relied on static models. These
models assume a frozen surface, neglecting the dynamic rearrangements that are
crucial to understanding the reaction mechanisms in detail. This limitation creates a
gap between theoretical predictions and the real behavior of catalysts under operating
conditions.

In this Thesis, we aim to move beyond the static surface picture and develop
simulations that incorporate the dynamics of catalysis in realistic environments. Us-
ing molecular dynamics (MD) simulations, we study the ammonia decomposition
reaction, a key process in hydrogen production, under operando-like conditions. This
chapter provides a brief overview of the fundamental properties of ammonia, its role
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Introduction 2

in the hydrogen economy, and the catalytic processes involved in its decomposition.
In the final section, we will discuss the importance of incorporating dynamics into
computational models of heterogeneous catalysis, explaining the significant efforts
made to push the frontiers of computational investigation toward a fully dynamic
description.

1.1 Ammonia as hydrogen vector

Haber and Bosch’s discoveries more than a century ago paved the way for the in-
dustrial synthesis of ammonia, which has been instrumental in sustaining population
growth through large-scale production of fertilizer [3]. In the Haber–Bosch process,
ammonia (NH3) is produced by molecular nitrogen (N2) and hydrogen (H2) using a
iron metal catalyst:

N2 + 3H2 −−⇀↽−− 2NH3 (1.1)

This reaction is exothermic (∆H = −46.1 kJ/mol) [4] and disfavored in terms of
entropy because four equivalents of reactant gases are converted into two equivalents
of product gas. As a result, high pressures (140-320 atm) and relatively low temper-
atures favor ammonia synthesis at equilibrium conditions. Still, temperatures need
to be high enough (350-550 ◦C) to overcome the relatively high activation energy of
the elementary steps, namely the cleavage of the triple bond of the nitrogen molecule
followed by three hydrogenation steps [5]. The first is believed to be the rate-limiting
one [6, 7]. Currently, more than 180 million tons of ammonia per year are produced
via the Haber-Bosch process [8]. It has been estimated that this accounts for roughly
2% of fossil fuel use worldwide and releases more than 450 million tons of CO2, rep-
resenting close to the 1% of total annual global emissions of the greenhouse gas[8–
10]. For this reason, commercial ammonia is not called green as it encompasses the
steam methane (CH4) reforming process for hydrogen production followed by the
Haber-Bosch [10]. The former process accounts for 90% of the CO2 emission [10] and
is the process widely adopted for H2 production [11]. According to the road map for
the ammonia economy, in the foreseeable future, the Haber–Bosch process is still the
dominant ammonia synthesis technology. However, other emerging technologies such
as electrochemical and photocatalytic synthesis of ammonia are also promising for
the production of so-called green ammonia [8, 12, 13].

At the same time, ammonia has high potential roles in a hydrogen economy
[14]. With the impending arrival of the energy transition, hydrogen technologies are
gaining importance, and the generation of hydrogen from ammonia decomposition
is an attractive pathway to produce highly pure and carbon-free hydrogen on-site
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and on-demand [15]. Ammonia has a significant weight fraction of hydrogen (17.65%
of its mass) and offers a significant advantage over molecular hydrogen since, at
atmospheric pressure, its liquefication temperature is as high as -33 ◦C, making it
much easier to store and transport [16, 17]. However, the development of efficient
methodologies for extracting hydrogen from ammonia is needed for this process to
be economically viable.

1.2 Thermocatalytic decomposition

Among the different techniques for generating hydrogen from ammonia, here we
focus on the most employed one, namely thermal decomposition (or catalytic crack-
ing). Thermocatalytic decomposition of ammonia is the reverse of the Haber-Bosch
ammonia synthesis [18]. Compared to the synthesis process, the decomposition re-
action is favored by higher temperatures and lower pressures, e.g., the operational
temperatures for catalytic cracking on iron at 1 atm lie in the range of 400-750 ◦C
[15].

A variety of catalysts have been tested in this context, and, having in mind indus-
trial applications, most of the attention has been focused on non-noble metals like
Fe, Co, and Ni and their alloys [18]. On metals, ammonia decomposition is believed
to proceed through a series of dehydrogenation steps followed by recombination of
nitrogen and hydrogen [19]. On Fe, Co, and Ni, the last step is believed to be the
rate-limiting one, while dehydrogenation becomes limiting over other metals such as
Ru, Ir, Pd, Pt, Cu [20].

Even if Ru shows the best catalytic activity among the one component cata-
lysts [21], non-noble metals, mainly Fe, Co, and Ni, are more sustainable and thus
are better candidates as industrial catalysts [18, 22]

1.2.1 Iron catalysts

Iron is a prototypical thermocatalyst in both the Haber-Bosch process and its in-
verse. The catalyst can be derived from the iron oxides magnetite (Fe3O4), wustite
(Fe1–xO), or hematite (Fe2O3). Significant advancements have been achieved since
the pioneering work of A. Mittasch [23], who developed the original Fe-based NH3

synthesis catalyst from Swedish iron ore containing magnetite and several impuri-
ties. Recent progress has been summarized by Humphreys et al. [3], which mainly
concerns multiply promoted wustite-based catalysts. During the synthesis of NH3,
the formation of surface nitrides plays an important role, which was observed after
the exposure of Fe single crystals to N2 in ultra-high vacuum (UHV) experiments
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in the seminal studies by G. Ertl and co-workers [24], which obtained activation
energies of N2 desorption for Fe(100) and Fe(111) of 243 kJ/mol and 213 kJ/mol,
respectively. Later, they also reported the activation energy for N2 desorption from
the Fe(110) surface amounting to 238 kJ/mol [25]. In a recent work [26], B. Lu et al.
reviewed recent experiments on the role of nitride phase during NH3 decomposition,
highlighting that the reported active phases are quite divergent with even a not nec-
essarily negative role of catalyst nitridation. However, a poisoning effect due to bulk
nitridation of the catalyst is well-established [18, 27]

Still, in spite of more than a century of efforts, a comprehensive characterization
of the Haber-Bosch and its reverse process remains elusive due to extreme operando
conditions, which make both experiments and simulations challenging. Indeed, the
operational temperatures for catalytic cracking on iron at 1 atm lie in the range of
400-750 ◦C [15]. Experimental information about the reaction intermediates has thus
been obtained in conditions far from the operando regimes [28, 29], or extrapolated
through indirect temporal analysis of products (TAP) measurements [30]. These
reactions are known to be highly structure-sensitive, with Fe(110) and Fe(111) rep-
resenting two limiting cases among the low-index surfaces. In fact, the former is
characterized by high density and stability but low catalytic activity, while the lat-
ter has an open structure and high activity [24, 25, 28, 29, 31, 32]. This sensitivity has
been reported both for the decomposition reaction [28, 29], similarly to what was ob-
served in the synthesis process [32, 33]. Only very recently has direct operando prob-
ing of synthesis reaction intermediates been performed [34], confirming the structure
sensitivity of the reactions and showing non-trivial temperature dependency in the
rate-limiting step.

From a computational perspective, there is a large number of theoretical studies
on ammonia decomposition based on T=0 K density functional theory (DFT) calcu-
lations[26, 30, 35–43]. However, the results are obtained in conditions far from the
operative ones, and the extrapolated activation energies are highly dependent on the
frozen model property and the different types of correction applied.

In a recent work [44] on N2 dissociative chemisorption on Fe(111), L. Bonati et
al. demonstrate the need for a dynamic description of the reaction, showing that
the behavior of active sites cannot be inferred from the static calculation. In this
Thesis, we followed these results and conducted an extensive study on ammonia
decomposition with a full dynamic description. Moreover, we will extend Bonati’s
work [44] in order to account for lateral interactions and coverage effects.
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1.2.2 Bimetallic alloy catalysts

In recent years, bimetallic alloys, especially non-noble ones, have emerged as promis-
ing candidates for ammonia decomposition [30, 45–51]. These alloys are suggested
to offer optimal binding energies for the reaction intermediates, enhancing their cat-
alytic performance [20]. However, a simple explanation in terms of vulcano shape
[19, 52] is not always possible. In fact, Nørskov et al. proposed an activity volcano
for ammonia decomposition based on dissociative N2 adsorption energy [21]. They
suggested that the optimal binding energy (the Ru one) can be obtained by com-
bining weak and strong binding elements, and they proposed CoMo as an optimal
combination. However, during ammonia decomposition, the alloy forms bulk nitrides
(Co3Mo3N) [53].

Here, we focus on alloying iron with cobalt, which has been reported to have a
superior catalytic activity for ammonia decomposition compared to the monometal-
lic iron activity [30, 49, 51]. However, an atomistic understanding is still lacking. In
Ref. [30], while the experiments were performed on Fe-Co alloys, the computational
analysis was limited to pure Fe and Co systems. The authors have attributed the
improved activity of FeCo alloy to the presence of Co and suggested that the reaction
mechanism on FeCo would likely resemble an ideal average between the monometallic
catalysts. In particular, they suggest that the free energy barriers would likely resem-
ble the Co ones, but with a reduction of the hydrogen formation barrier, considered
limiting on monometallic Co. On the other site, S. Chen et al. [51] reported different
Fe-Co alloys supported on MgO, with the optimal catalytic activity observed for a
Fe-Co ratio of 1:1. Based on the experimental data (XRD and operando XAS mea-
surements), the authors argued that the active phase of the catalyst is the metallic
Fe-Co surface, and particularly the (110) surface. These results suggest FeCo alloys
remain stable during ammonia decomposition and do not lead to nitride formation,
contrary to what is reported for iron. The higher activity of the alloy was attributed
again to the different binding energies of nitrogen to FeCo compared to pure Fe,
calculated at the DFT level. However, they do not report any information on the
mechanism. In summary, there is experimental evidence of improved catalytic activ-
ity of FeCo alloy for ammonia decomposition [30, 51]. Still, no theoretical modeling
of the reactions has been attempted because of the difficulties involved.

The lack of microscopic interpretation motivated us to study the operation of
FeCo alloys under operating conditions. Because of the high computational cost of
metallic and ferromagnetic calculations, we developed a new data-efficient scheme
(see Chapter 6) and used it to simulate the mechanism and reconstruct the free
energy profiles of the NH3 decomposition (Chapter 7), unrevealing the difference
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with iron catalyst and thus rationalizing the promotional effect of Co.

1.3 Dynamical modelling of heterogeneous catalysis

Traditional studies of heterogeneous catalysis often focus on static pictures of cat-
alyst surfaces and reaction intermediates. However, recent advancements in both
experimental and computational techniques have highlighted the importance of dy-
namics in catalytic processes. To be more precise, recent technological advancements
have led to the spread of recognition of its role, but the idea that dynamics is crucial
comes from the past. More than 40 years ago, Spencer offered a picture of hetero-
geneous catalysis that is far from static and requires establishing a dynamic steady
state [54]. More recently, Schlögl has emphasized the dynamic nature of catalytic
surfaces under operando conditions, where surface atoms and adsorbates are con-
stantly in motion, and redefined heterogeneous catalyst as “a functional material
that continually creates active sites with its reactants under reaction conditions” [1].

This crucial role is clearly emerging in recent simulations [44, 55–65], thanks to
advancements in computational tools. In particular, the effects of dynamics under
operating conditions can manifest themselves in many different ways, for example,
surface dynamics and reaction-induced changes can be found in the literature, with
notable examples being the activation of the copper surface by carbon monoxide [56]
and the destabilization of lithium imide [64, 66] and barium hydride [65] surfaces
under ammonia decomposition. Focusing on ammonia over metal surfaces, Gerrits
et al. [59] have highlighted the role of dynamics on the first dehydrogenation step
Ru(0001) surface through ab initio molecular dynamics (AIMD) simulations [59].
Moreover, Bonati et al. revealed the dynamic change of the Fe(111) surface, with the
active sites for the N2 dissociation acquiring a finite lifetime, getting continuously
formed and broken during surface dynamics [44].

In this Thesis, we propose a fully dynamic description of ammonia decomposi-
tion on Fe and FeCo. To achieve this, we perform large-scale MD simulations on
long timescales. These simulations are made possible by several methodological ad-
vancements, particularly the development of machine learning potentials (MLPs)
and enhanced sampling techniques. Furthermore, we have developed new strategies
to construct accurate MLPs in a data-efficient manner, which is crucial for studying
the bimetallic alloy. To study the highly dynamic environment, we employ a range
of advanced analysis tools, such as ML-based partial charge predictions and transi-
tion state (TS) analysis. These methods will be reviewed in detail in the following
chapters.



Chapter 2

Computational Methods

The driving idea of this work is to move beyond a static description of heteroge-
neous catalysis using molecular dynamics and advanced simulation techniques. The
possibility of using molecular dynamics to study complex catalytic processes such
as ammonia decomposition or the Haber-Bosch process lies in the recent progress
in the field, particularly by extensive exploitation of machine learning, supported
by the increasing availability of computational resources. This extended chapter will
present the computational methods employed to simulate catalytic processes at oper-
ating temperatures. The first sections are dedicated to molecular dynamics, machine
learning-based interatomic potentials, and advanced sampling techniques. Then, we
will introduce the analysis techniques for retrieving information within the complex
simulation environment. Of particular importance here is the ability to track atomic
charges during large-scale simulations. At the end of the chapter, we provide all the
computational details necessary to reproduce the results of this thesis.

2.1 Molecular Dynamics

Molecular dynamics (MD) is a computational technique that allows us to simulate
the temporal evolution of a system of atoms. It is the atomistic simulation technique
that most closely resembles experimental techniques, as it can act as a microscope
with both atomic spatial resolution and potentially infinite temporal resolution. The
equilibrium and dynamic properties of the system can be calculated as ensemble av-
erages once the initial conditions and the interatomic potential between the particles
are known.

In classical MD, the positions and velocities of each atom at every moment in time
after the initial time t0 are calculated by numerically integrating the classical equa-
tions of motion. A fundamental approximation, considered valid in most molecular

7
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dynamics schemes, is the adiabatic Born-Oppenheimer approximation. This approx-
imation allows the decoupling of the motion of nuclei and electrons, i.e., separating
the variables corresponding to nuclear motion and the electronic coordinates in the
Schrödinger equation associated with the system’s Hamiltonian. The adiabatic Born-
Oppenheimer approximation is based on the fact that typical electronic velocities are
orders of magnitude higher than nuclear velocities. It also assumes that the lighter
electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any
time in their instantaneous ground state. This approximation has been demonstrated
to be accurate even for metallic systems [67–69].

The reliability of the simulations is primarily related to the accuracy of the cal-
culation of forces acting between atoms. The different methodologies for calculating
these forces will be discussed later.

Once the acting forces are defined, the temporal evolution of each atom is deter-
mined by Newton’s equation of motion:

MI r̈i = Fi (2.1)

where Mi, r̈i, and Fi are the mass, acceleration, and force acting on the i-th nucleus,
respectively. The solution of equation 2.1 is obtained through a finite difference nu-
merical algorithm. Time is discretized in time steps ∆t of the order of femtoseconds,
and the system moves from a certain configuration at time t to a new configuration
at t +∆t. The integration algorithm used in this thesis is the Velocity Verlet (VV)
[70, 71]. In this scheme, the position ri of the i-th atom at time t+∆t is calculated
from the position ri, velocity vi = ṙi, and acceleration ai = r̈i = Fi ({ri})/Mi at
time t. Once the new ionic configuration {ri} at time t + ∆t is defined, the forces,
and thus the acceleration, can be obtained at this timeframe. The new velocities at
time t+∆t are calculated by considering the acceleration at both times t and t+∆t.
The VV algorithm ensures an error less than ∆t4 for the positions ri and less than
∆t3 for the velocities vi.

ri (t+∆t) = ri (t) + vi (t)∆t+
1

2
ai (t)∆t

2 +O
(
∆t4

)
,

vi (t+∆t) = vi (t) +
ai (t) + ai (t+∆t)

2
∆t+O

(
∆t3

)
.

(2.2)

The algorithm is time-reversible and generates trajectories in the microcanonical
ensemble (NVE), where the total energy (kinetic energy plus potential energy) is
conserved within numerical integration errors. The configurations visited during the
dynamics, while deviating from the real physical trajectory, form a collection of states
(q, p) consistent with the microcanonical probability distribution ρ(p, q), where q
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and p represent positions and momenta following the standard notation of statistical
mechanics. Under this assumption, known as the ergodic hypothesis, which is valid
at dynamic equilibrium, the ergodic theorem holds:

Aobs = ⟨A⟩ =
∫
dqdpρ(q, p)A(q, p) = lim

τ→∞

1

τ

∫ τ

0
dtA ({ri(t)} , {vi(t)}) (2.3)

which ensures that the value of a generic observable Aobs which is an ensemble
average ⟨A⟩ is equivalent to the time average over the trajectories. In practice, we
can approximate the time integral average to a discrete average over samples:

Aobs ≈
1

nk

nk∑
k=1

Ak (2.4)

where nk is the number of samples of the trajectory, and Ak is the value of the
variable A at the frame k [72]. Therefore, an average over MD trajectories provides
a measure of the experimentally observable macroscopic quantity Aobs.

To control the system temperature, it can be coupled to a thermal bath that
ensures the average temperature is close to the desired temperature, Text. When this
is done, the equations of motion are modified, and the system no longer samples the
microcanonical ensemble. At equilibrium, the trajectories instead sample the canon-
ical ensemble (NVT). In this way, MD simulations can further mimic experimental
conditions.

Fixing the temperature alone does not ensure that a simulation samples the in-
tended canonical ensemble. For example, rescaling the particle velocities at every
step results in a constant kinetic temperature, Text, as calculated by the equiparti-
tion theorem. However, this contradicts the expected fluctuations in Text predicted by
the Maxwell-Boltzmann distribution. A good thermostat should not only control the
temperature but also conserve certain quantities to confirm that the correct ensemble
is being sampled and to ensure ergodic behavior. In the ’80, Andersen [73] introduced
the first thermostat, based on a stochastic process where particles randomly collide
with a thermal bath, altering their velocities. Later, Berendsen et al. [74] proposed
an algorithm to rescale the velocities to bring the system temperature to Text. How-
ever, this thermostat suppresses kinetic energy fluctuations and, therefore, does not
guarantee proper canonical ensemble sampling. Although both methods are simple
and relatively stable, they have drawbacks and should be avoided for production
runs.

More advanced thermostats have been proposed to correctly generate trajectories
consistent with a canonical ensemble, e.g., the widely known Nosé–Hoover one [75,
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76] and its andvancement [77]. Here, we adopt the Bussi–Donadio–Parrinello ther-
mostat [78] that could be considered an extension of the Berendsen one. In this
scheme, the temperature is controlled through velocity rescaling but in a stochastic
approach, which allows the kinetic energy to fluctuate naturally according to the
Maxwell-Boltzmann distribution. This ensures both accurate temperature control
and proper sampling of the ensemble without artificially fixing the kinetic energy,
thus fulfilling the ergodic condition. The algorithm is also computationally efficient
and stable over long simulations. The details of MD simulations are reported in
Section 2.7

2.1.1 Interatomic Force Description

As previously mentioned, in classical MD, a key aspect is the description of the forces
between atoms, which are described by the so-called interatomic potentials. In this
section, we will explore various methods for calculating these forces, starting from the
most accurate, ab initio molecular dynamics (AIMD), and progressively introducing
more approximate models.

2.1.1.1 Ab Initio Molecular Dynamics (AIMD)

In AIMD, the term “ab initio” indicates that the forces are computed from first
principles, without relying on empirical or fitted potentials. This is a powerful simu-
lation technique that directly incorporates quantum mechanical (QM) calculations of
electronic structure to describe atomic interactions. However, solving the Schrödinger
equation for many-body interactive electronics is impossible, and approximations are
required. In modern AIMD, the electronic structure method most commonly used is
the Kohn–Sham formulation of density functional theory (DFT).

Density Functional Theory (DFT) DFT is the cornerstone of AIMD, as it
allows for the calculation of electronic energies and forces with a favorable balance
between accuracy and computational cost. The fundamental idea behind DFT is that
the ground-state properties of a many-electron system can be described by a func-
tional of the electron density, ρ(r), instead of the much more complex many-body
wavefunction. This simplification drastically reduces the complexity of the quantum
mechanical problem. The central equation of DFT is the Kohn-Sham equation, which
maps the many-electron problem onto an auxiliary system of non-interacting elec-
trons moving in an effective potential, Veff(r). This potential includes contributions
from the external potential (e.g., nuclei), electron-electron Coulomb repulsion, and
the exchange-correlation functional, Exc[ρ], which encapsulates all the many-body
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quantum effects: [
− ℏ2

2m
∇2 + Veff(r)

]
ψi(r) = ϵiψi(r) (2.5)

Here, ψi(r) are the Kohn-Sham orbitals, and ϵi are the corresponding eigenvalues.
The electron density is then obtained as:

ρ(r) =
∑
i

|ψi(r)|2 (2.6)

where i runs over the occupied states. The total energy of the system is expressed
as:

Etot[ρ] = Ts[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ] (2.7)

where:
• Ts[ρ] is the kinetic energy of the non-interacting electrons,

• Eext[ρ] is the external potential energy (nuclei-electron interaction),

• EH[ρ] is the Hartree energy, representing the electron-electron Coulomb repul-
sion,

• Exc[ρ] is the exchange-correlation energy, which contains the many-body effects
of exchange and correlation.

Solving the Kohn-Sham equations self-consistently yields the ground-state electron
density and the corresponding forces on the nuclei. These forces are then used to
update the positions of the nuclei during the molecular dynamics simulation, follow-
ing Newton’s equations of motion (Eq. 2.1). The accuracy of DFT crucially depends
on the choice of the exchange-correlation functional, Exc[ρ]. Since the exact form of
this functional is unknown, several approximations are commonly used. The simpler
approximation is the Local Density Approximation (LDA), where Exc[ρ] is approxi-
mated by assuming that the electron density locally behaves like a uniform electron
gas. LDA works reasonably well for systems with slowly varying densities, such as
simple metals, but can be less accurate for systems with rapidly varying densities. An-
other widely used approximation is the Generalized Gradient Approximation (GGA),
which improves upon LDA by including not only the local value of the density but
also its gradient, ∇ρ(r). This allows for better treatment of inhomogeneous systems,
such as molecules and surfaces. In this thesis, when QM calculations are required
to be performed, we will adopt this level of theory, in particular, using the Perdew-
Burke-Ernzerhof (PBE) [79] functional. All the details are reported in Section 2.7
These two approximations are widely used, but they have limitations, particularly
in describing systems with strong electronic correlations or excited states. To ad-
dress these, more advanced methods have been developed, such as hybrid function-
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als (e.g., B3LYP [80] or PBE0 [81]) or meta-GGAs (e.g., SCAN [82]). Furthermore,
other corrections such as DFT+U (for strongly localized electrons) [83–85], many-
body perturbation theory, time-dependent DFT [86] (to deal with excited states),
or DFT-D [87, 88] (to include dispersion correction) have been proposed. However,
the applicability criteria of these corrections are highly debated and not suitable for
ferromagnetic metallic surfaces [89, 90]. Moreover, when going up to the so-called
“Jacob’s ladder” of density functional approximations[91], the computational cost of
these methods increases, becoming prohibitive for the systems we studied.

AIMD is particularly powerful for simulating systems where the electronic struc-
ture is critical to the dynamics, such as chemical reactions, phase transitions, cat-
alytic processes, and materials under extreme conditions. Its ability to account for
electronic effects on the fly makes it indispensable in scenarios where traditional force
fields fail, particularly in cases involving bond-breaking and bond-forming events.
However, due to its high computational cost, AIMD is typically limited to relatively
small systems (up to a few hundred atoms) and short simulation timescales (hundreds
of picoseconds).

2.1.1.2 Semi-Empirical Methods

Semi-empirical methods offer a faster and computationally cheaper alternative to
fully ab initio approaches, making them an attractive choice when large systems or
long timescales are involved. While these methods are still grounded in QM princi-
ples, they achieve significant speed-ups by simplifying the calculations. This is done
by neglecting certain integrals that are computationally expensive and considered
less critical for describing the system’s overall behavior. To compensate for these
approximations, empirically derived parameters are introduced, which are optimized
using experimental data or high-level ab initio results. This makes this method not
universally applicable since they are highly dependent on how well the empirical
parameters represent the system under study. Despite being slightly different from
the majority of semi-empirical methods based on molecular orbit theory [92], the
Tight Binding approach [93] can also be considered in this category. In summary,
semi-empirical methods provide a practical middle ground between fully ab initio
approaches and purely empirical models. Yet, they are generally inadequate for de-
scribing systems such as ferromagnetic metals and, at most, their interaction with
small molecules, as in the case under study.
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2.1.1.3 Empirical Force Fields

Moving further up the approximation scale, empirical force fields describe the forces
between atoms using pre-defined analytical expressions. These models are based on
fitting experimental data or high-level quantum calculations and do not involve solv-
ing the electronic structure problem directly. Instead, they represent the potential en-
ergy of the system as a function of atomic positions using relatively simple functional
forms. The most simple form of force fields are the pair potentials, where the potential
energy is described only in terms of the distances between couples of atoms. Some
well-known examples of empirical force fields include the Lennard-Jones potential
and the Morse potential. The complexity increases when angular (three-body) terms
are included in the potential, as in the case of the Stillinger-Weber potential [94].
Further complexity arises with many-body potentials, which account for interactions
involving multiple atoms. A notable example for metals (though not applicable to
ferromagnetic ones) is the Embedded Atom Model (EAM) potentials [95]. Nowadays,
there are hundreds of complex empirical force fields available, such as CHARMM [96],
AMBER [97], and OPLS [98], to name just a few. These are widely used in biologi-
cal and material science simulations. These methods allow simulations of very large
systems (millions of atoms) and long timescales (microseconds or longer), but they
often sacrifice chemical accuracy, especially in scenarios where bond formation or
breaking occurs. To address such events, several modifications have been proposed,
including Reactive Force Fields (reaxFF) [99]. However, the number of parameters
in these models can grow excessively with the complexity of the systems, and in
many cases, DFT remains a more practical solution. The main drawback of these
empirical force fields is their poor transferability, which means that the reliability
of simulations decreases significantly when applied under conditions different from
those for which the potential was originally constructed. However, it is important to
acknowledge that these potentials, being optimized to reproduce experimental data,
can be even superior to DFT in capturing thermodynamic properties.

2.2 Machine Learning Interatomic Potentials

Machine Learning Potentials (MLPs) provide a computationally efficient means of
representing the potential energy surface (PES). These potentials rely on machine
learning models trained on data obtained from high-level QM calculations, allowing
for the prediction of atomic interactions with near-quantum accuracy but at a frac-
tion of the computational cost. MLPs are especially useful for simulating large sys-
tems or long timescales, where traditional ab initio methods would be prohibitively
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expensive. In MLPs, the PES is represented by a machine learning model, such as a
Neural Network (NN) or Gaussian process (GP), that maps atomic configurations to
energies and forces. These models are trained on a dataset composed of atomic con-
figurations (energies and forces), typically generated using DFT or other high-level
QM methods. The goal is to create a model that can accurately interpolate the PES
for new atomic configurations not included in the training set.

The idea of representing the PES through neural networks (NN) originated in
1995 with the work of Blank et al. [100], where feed-forward NNs were used to define
relationships between the system’s structure and the desired properties. In these
networks, the energy E is calculated by the NN from the atomic positions. However,
this approach limits applications to systems with fixed dimensionality.

Figure 2.1: Schematic of a high-dimensional neural network according to the method
proposed by Behler and Parrinello [101].

A method to generate NN potentials for high-dimensional systems containing
thousands of atoms was proposed by Behler and Parrinello in 2007 [101]. In this
approach, the conceptual limitations of traditional NN potentials are overcome by
using a feed-forward NN for each atom in the system (Figure 2.1). Each “atomic NN”
provides the contribution to the energy Ei of atom i as a function of its surrounding
chemical environment, and the total energy E of the system is obtained as the sum
over the total number of atoms N :

E =
N∑
i=1

Ei =

Nelem∑
µ=1

Nµ∑
i=1

Eµ
i (2.8)

where Nelem is the number of chemical species, and Nµ is the number of atoms of the
µ-th species. It must hold that

∑Nelem
µ=1 Nµ = N . For a given chemical element, the

architecture of the atomic NN is fixed, meaning that the number of hidden layers,
nodes, and their corresponding weights are all predetermined. The input vector Gi

of each atomic NN describes the local environment of the atom up to a certain cut-
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Dataset Descriptors Architecture

Figure 2.2: Graphical representation of the three basic building blocks characterizing
recent high-dimensional MLPs. The snapshot in the dataset block, as all the snap-
shots reported in the Thesis, was obtained with Ovito visualization software [102].

off distance. To ensure that the number of inputs (i.e., the dimension of the vector
Gi) is independent of the number of neighbors of each atom, the local environment
is not described in Cartesian coordinates but through special many-body functions
called “symmetry functions”. These functions contain all the information regarding
the radial and angular distribution of the neighbors around the atom on which they
are calculated. These functions, which depend on the Cartesian coordinates of each
atom within the cut-off distance, are computed for every atom i and form the input
vector Gi of the atomic NN.

This description of the local environment through symmetry functions provides
two fundamental advantages: first, it analytically introduces invariance of the NN
potential with respect to particle exchange and roto-translational symmetry. Sec-
ondly, it eliminates the dependence of atomic NNs on the number of neighbors, thus
allowing for the treatment of systems with arbitrary and non-fixed sizes.

This seminal work lays the foundation for all modern MLPs, particularly high-
lighting the three key ingredients needed to construct a machine learning potential:
data, descriptors, and architectures (Figure 2.2).

2.2.1 Dataset

Data are the cornerstone of MLPs. The data constitute the training set, which must
contain all the local environments that we want our potential to be capable of describ-
ing. The construction of the training set can follow very different paths. Generally,
this is also the aspect that most interests a user of MLPs who, like in our case, does
not develop the MLP but trains it to study a specific system.

The construction of the potential typically represents the most expensive aspect
of a study, as all the configurations in the training set must be labeled (i.e., as-
signed energies, forces, and possibly other properties like stress, magnetic moment,
or charge) using the highest possible level of theory (DFT or higher). Recently, the
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dataset construction has been done progressively alongside the potential building
process in the so-called active learning (see Section 2.3). However, most of the pro-
posed methods are based on solid knowledge of the reaction under study or/and
require too many QM calculations. Initially, we adopted a standard active learning
scheme to collect the data for Fe reactions. The same scheme could not be applied to
FeCo, where the cost of QM calculations turned out to be prohibitively expensive.
Thus, we develop a new protocol for efficiently collecting structures for the training
set, in particular with a novel data-efficient active learning (DEAL). We will discuss
this aspect extensively in Chapter 6.

In this study, we constructed two training sets to investigate reactive chemical
processes related to ammonia on Fe and FeCo surfaces. Both potentials were built
using active learning processes. For Fe, we initially collected 110k configurations
for the study of ammonia decomposition, then expanded the training set to about
220k configurations to account for lateral interactions. For FeCo, thanks to the new
protocol developed here, we collected only 8K configurations to cover all reactions,
including lateral interactions. The details of the training set composition are reported
at the end of this chapter.

2.2.2 Descriptors

Once the dataset is assembled, the next critical step, which has a significant im-
pact on the accuracy of the MLP, is the conversion of spatial configurations into
an ML dataset through the use of descriptors. Descriptors are many-body functions
of atomic coordinates G=G(Ri). As demonstrated with the Behler-Parrinello atom-
centered symmetry functions (ACSF) [101], this approach allows for decoupling the
dimensionality of the systems in the dataset from the target property we aim to
predict. The choice of descriptors directly influences the highest level of accuracy
the MLP can achieve, as machine learning algorithms are then employed to closely
approximate the desired results (typically E, ∇E). After defining the descriptors, es-
sential tasks such as data cleaning, preprocessing, and normalization are required. As
mentioned before, an effective descriptor includes the main physical property of the
system, that is, spatial translation invariance (isometry of space), rotational invari-
ance (isotropy of space), and permutation invariance (QM invariance). Furthermore,
it must be continuous and unique to avoid degeneracy, and it is preferable to be
parsimonious in order to minimize complexity and enhance computational efficiency.

With the expanding use of MLPs, dozens of types of descriptors have been pro-
posed in recent years, along with their respective architectures. Here, we will briefly
describe the two types of descriptors used in these studies, while directing interested
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readers to specialized literature [103–106].

DeepPot-SE Descriptor The Deep Potential Smooth Edition (DeepPot-SE) de-
scriptor [107] is a core component of the DeePMD framework, designed to map the
atomic environment into a continuous and differentiable function that neural net-
works can use to predict the potential energy surface (PES). Rather than deciding
a functional form of the descriptors, as in the case of Behler Parrinello ACSF, the
descriptors themselves are learned using a neural network function. The atomic po-
sition R ∈ RN×3 is mapped to an N atomic centered matrix of local coordinates
Ri ∈ RNc×4 (where Nc is the maximum number of neighbors expected). The row j

of Ri can be written as:
Ri

j = [s(rij), x̂ij , ŷij , ẑij ] (2.9)

where rij = rj − ri = (xij , yij , zij) is the relative coordinate, x̂ij = s(rijxij)/rij , and
s(r) ∼ r−1 is a scalar and differentiable weighting function which goes to 0 at r = rc.
Additionally, DeepPot-SE descriptor includes an embedding matrix Ji ∈ RNc×M ,
which consists of M nodes from the output layer of an NN function Ne:

Ji
j = Ne(s(rij)) (2.10)

Then the embedding matrix Ji, is decomposed in two matrix Ji1 ∈ RNc×M1 and
Ji2 ∈ RNc×M−M1 by taking the first and last columns of Ji respectively. The atomic
descriptor Gi ∈ RM1×M2 is constructed by taking a combination of Ji and Ri in
order to maintain invariances by using symmetry-preserving transformations:

Gi = (Ji1)TRi(Ri)TJi2. (2.11)

The use of the pairwise embedding neural network enables automatic learning of
descriptors, providing flexibility and efficiency. By combining these properties, the
DeepPot-SE descriptor achieves high accuracy in modeling complex systems, while
also being computationally efficient, making it suitable for large-scale MD simula-
tions.

ACE Descriptors The Atomic Cluster Expansion (ACE) [108] is a framework
designed to efficiently and systematically describe the potential energy surface (PES)
of atomic systems. Unlike other descriptors that rely on predefined functional forms,
ACE provides a general and systematic way to represent atomic environments by
considering many-body interactions through an expansion in terms of local basis
functions. This approach is grounded in the idea that the PES can be expressed as
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a sum of contributions from atomic clusters of increasing order, starting from single
atoms, to pairs, triplets, and higher-order clusters.

Mathematically, the ACE descriptor represents the local environment of an atom
i through a set of local basis functions ϕα(σi, σj) that depend on the relative positions
of neighboring atoms j, where σi is the vector of properties of atoms i, that is position,
chemical species, and other learning parameters, and α a set of coefficients. ϕα) can be
generally written as the product of a radial and angular (as the spherical harmonics)
and general function that encodes other properties like the chemical species. The
first element of the expansion of atom i can be written as:

Ai,α =
∑

j∈N (i)

ϕα(σi, σj) (2.12)

Where N (i) are the neighbors of atom i. The body ordered expansion of the site
energy Ei = V (1)(ri) +

1
2!

∑
j V

(2)(ri, rj) + . . . can be rewritten as:

Ei = E
(0)
i +

∑
α

c̃(1)α Ai,α +
∑
α1,α2

c̃(2)α1α1
Ai,α1Ai,α2 + . . . (2.13)

This representation needs to be further adjusted to include the rotational symmetry;
we refer the reader to the original paper [108] for the complete mathematical descrip-
tion. Since the basis functions capture both radial and angular dependencies, this
allows ACE to account for complex many-body interactions in a computationally
efficient manner. The strength of ACE lies in its systematic nature, which allows for
a controlled increase in accuracy by including higher-order terms in the expansion.
Furthermore, ACE has shown excellent transferability, allowing it to generalize well
across different atomic configurations, making it an optimal descriptor to be used in
MLP.

2.2.3 Architectures

The architecture, also called the ML model or regressor, forms the backbone of an
MLP. Its role is to represent the PES starting from the input features, which are
the descriptors extracted from the dataset of atomic configurations. The effective-
ness of the architecture in mapping these descriptors to potential energies and forces
directly impacts the performance of the MLP. Various MLP models have been pro-
posed for this purpose. Among the most prominent and widely used architectures in
modern MLPs are artificial neural networks (NNs), graph neural networks (GNNs),
and kernel-based methods such as Gaussian Processes (GPs).
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2.2.3.1 Neural Networks

As previously mentioned, NNs are one of the most widely adopted machine learning
architectures in the development of MLPs. These models consist of layers of intercon-
nected nodes (neurons) that process the input features, or descriptors, and map them
to the target properties, such as potential energy and atomic forces. The fundamen-
tal concept behind NNs is to approximate any nonlinear function by adjusting the
weights and biases of the neurons through a process called training. They are indeed
universal interpolators, that is, NNs are able to approximate any multi-input/ouput
function

The output of a single neuron is given by applying an activation function f to a
weighted sum of its inputs, x:

y = f

(∑
i

wixi + b

)

where wi are the weights, xi are the inputs, and b is a bias term. The higher the
number of nodes (that are distributed in the hidden layers), the higher the flexibility
of the network and its cost. Since f is a simple analytical nonlinear function, the
propagation of the message across layers makes the NN capable of capturing arbi-
trary complex relationships in the data. The learning process of an NN is driven
by minimizing a loss function, which measures the difference between the network’s
predicted outputs and the true values (e.g., energies or forces). One common loss
function for MLPs is the Mean Squared Error (MSE), which, for a dataset with M

training samples, is given by:

L =
1

M

M∑
i=1

(
Epred

i − Etarget
i

)2
, where Epred

i are the predicted values from the NN, and Etarget
i are the target values

in the training set one, typically from QM calculations. To minimize the loss function,
the network adjusts its weights and biases using an optimization algorithm such as
gradient descent. The gradients of the loss function with respect to the weights are
computed via backpropagation, allowing efficient updates of the network parameters:

wnew
i,j = wold

i,j − η
∂L
∂wi,j

where η is the learning rate, controlling the step size during the optimization process.
A notable example of how NNs are used in MLPs is the DeepMD framework [109,
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110], which utilizes neural networks in combination with the DeepPot-SE descriptors
to efficiently represent the PES of large-scale systems. Today, DeePMD is one of the
most popular MLPs. We have employed it to train the MLP for iron. The details are
reported in Section 2.7.

2.2.3.2 Graph Neural Networks

Graph Neural Networks (GNNs) extend the flexibility and expressiveness of tradi-
tional neural networks by utilizing graph-based structures to represent atomic en-
vironments. Unlike conventional NNs, which process fixed-size input vectors, GNNs
handle varying numbers of atoms and neighbors naturally by treating the system as
a graph, where atoms are represented as nodes and interatomic interactions as edges.

GNNs capture local environments by passing messages along the edges, thus
propagating information across neighboring atoms. The message-passing framework
enhances the ability of GNNs to model atomic interactions by increasing the receptive
field of the network, allowing it to incorporate both local and non-local interactions.

In this work, we employed MACE [111], one of the state-of-the-art GNN architec-
tures, to study the ammonia decomposition process on FeCo surfaces. MACE excels
in both in-domain and out-of-domain predictions, demonstrating remarkable data ef-
ficiency [112]. This architecture is built on a higher-order equivariant message-passing
scheme related to the Atomic Cluster Expansion (ACE), which enables MACE to
accurately model complex atomic interactions while maintaining computational effi-
ciency. The specific parameters for the MACE network used in our simulations are
detailed in Section 2.7.4.3.

2.2.3.3 Kernel-Based Methods

Kernel methods are widely used in machine learning for regression tasks, especially
when the dataset is small but the problem requires flexibility in modeling complex
relationships. The core idea of kernel methods is to project the input data into
a higher-dimensional feature space, where the relationships between points become
more linear. This is achieved through a kernel function, which measures the similarity
between pairs of data points.

In kernel-based regression, we aim to predict the output y based on the similarity
between the input x and the training data points {xi}:

y(x) =
N∑
i=1

αiK(x,xi)

where K(x,xi) is the kernel function, and αi are the learned coefficients from the
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training process. A common choice for the kernel function K is the Gaussian Kernel:

K(x,xi) = exp

(
−∥x− xi∥2

2σ2

)
This kernel measures similarity based on the Euclidean distance between data points
and is widely used due to its flexibility. Another common choice used is the polyno-
mial kernel, which takes the dot product between the input vectors and raises it to
the power p:

K(x,xi) = (x · xi)
p

with the special case being the linear one with p = 1. Once the kernel function
is chosen, kernel-based methods like Gaussian Process Regression (GPR) or Kernel
Ridge Regression (KRR) fit the model by finding the optimal coefficients αi that
minimize a loss function, usually based on the difference between predicted and true
outputs.

Starting with the Gaussian Approximation Potential (GAP) method [113], GPs
have been successfully used for representing the potential energy surface of extended
systems. In this work, we used the sparse GP implementation of FLARE (Fast Learn-
ing of Atomistic Rare Events) [114, 115], to study ammonia decomposition on FeCo
surfaces. Similarly to the Behler-Parrinello high-dimensional NN, the energy is mod-
eled as a sum over atomic contributions that depend on all atom-centered local
environments of the system: E =

∑
i ϵi. These environments are characterized by a

set of invariant descriptors obtained as the product of equivariant ones [115] based
on the atomic cluster expansion (ACE) [116]. What distinguishes GPs from other
ML methods is their ability to provide confidence intervals on the predictions. Be-
cause of the energy decomposition, we can also measure the variance associated with
each atomic contribution ϵi, obtaining a measure of the uncertainty of local envi-
ronments, i.e., how different they are with respect to the training ones. Another key
feature of GPs, is that they allow for the gradual inclusion of new atomic configu-
rations into the training set, improving the model’s accuracy without the need to
retrain hyperparameters at every step. This makes kernel-based methods ideal for
on-the-fly learning, particularly in situations where new environments are continu-
ously encountered. However, a notable drawback is that the computational cost of
making predictions increases as the size of the training set grows, which can become
a limitation for large datasets. The specific parameters for the FLARE network used
in our simulations are detailed in Section 2.7.4.2.
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2.2.4 Uncertainty Quantification in MLPs

In machine learning potentials (MLPs), it is essential to estimate the uncertainty of
predictions to ensure reliable simulations, particularly when exploring new atomic
configurations not covered in the training set. In this section, we present the ap-
proaches we used to quantify uncertainty in both neural networks (NNs) and graph
neural networks (GNNs), as well as Gaussian Processes (GPs). The ability to quan-
tify uncertainty enables active learning schemes, where uncertain predictions can be
used to query new data points from high-fidelity calculations, as we will discuss in
Section 2.3 and Chapter 6.

While NNs (including GNNs) are highly expressive, they do not inherently pro-
vide uncertainty estimates. To address this, a common approach is to use an ensemble
of models (referred to as a committee) trained on different partitions or permutations
of the training dataset. Each model in the committee makes independent predictions,
and the variability among these predictions serves as a proxy for the uncertainty
of the model. Specifically, in this work we calculate the standard deviation of the
predicted forces across the committee. For a force component α on atom i, the un-
certainty σi,α is computed as:

σi,α =

√√√√ 1

NNN

NNN∑
k=1

(
f
(k)
i,α − f̄i,α

)2

where f (k)i,α is the force predicted by the k-th model in the committee, f̄i,α is the
average force across all models, and NNN is the number of models in the commit-
tee. To monitor the overall uncertainty of a configuration, we track the maximum
uncertainty for each configuration:

σ(NN)
max = max

i,α
σi,α (2.14)

This metric is used to identify configurations that should be re-labeled at the high
level of theory, in a process known as query-by-committee selection [117]. In this
work, we used this approach for both NNs and GNNs, to ensure the reliability of the
simulations.

On the other hand, GPs naturally provide uncertainty estimates as part of their
predictions. In GPs, the predicted variance for each atomic contribution reflects the
model’s confidence in its prediction. The energy of a system is expressed as a sum over
atomic contributions, and for each atomic environment, the GP provides not only
the predicted energy ϵi but also the variance σ̃ϵi , which represents the uncertainty of
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the prediction. For each configuration, we monitor the maximum local uncertainty:

σ(GP)
max = max

i
σ̃ϵi (2.15)

In FLARE σ̃ϵi is rescaled by the kernel hyperparameters to obtain a dimensionless
quantity that ranges between 0 and 1 [115].

This feature allows GPs to perform uncertainty-aware MD. In this approach, the
GP model continuously monitors its uncertainty during MD simulations. If the un-
certainty of a prediction is low, the MD step is done using the GP forces otherwise,
if it exceeds a predefined threshold, the system automatically switches to a higher-
level QM calculation (e.g., DFT) to ensure accurate results. The GP model is then
updated with the new data, improving its predictions as the simulation progresses.
This active learning loop, where the model refines itself based on the predicted un-
certainty, allows for efficient on-the-fly learning.[114].

In this thesis, we will adopt both the two schemes, but we will also combine them
in a new protocol to build MLP in a highly data-efficient way (see Chapter 6)

2.3 Building machine learning potentials for chemical re-
actions

Simulating catalytic reactivity under operative conditions poses a significant chal-
lenge due to the dynamic nature of the catalysts and the high computational cost of
electronic structure calculations. As we discussed in the previous Sections, MLPs [103]
have emerged in recent years as promising tools to address the accuracy-efficiency
trade-off. They are optimized to reproduce energies and forces from a dataset of
reference calculations, typically performed at the DFT level. Hence, their effective-
ness depends on the quality of the training dataset, which must include not only the
equilibrium structures but also the relevant high-energy ones. In fact, as discussed
in Section 2.2.1, the dataset is the basic building block of our MLP, and even with
perfect descriptors and architecture, the quality of the ML prediction relies on the
goodness of the dataset. This is especially crucial for transition state geometries,
whose energies are connected to reaction rates through an exponential relationship
(see Eq. 2.20). However, the identification of these structures in a complex and dy-
namic environment remains elusive, especially under operating conditions where an
ensemble of TS configurations often exists [58, 118], as we will across this thesis
results.

The training set construction typically involves active learning procedures [117,
119, 120], in which an ML model is trained on an initial dataset and used to generate
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new structures (e.g., via molecular dynamics). A subset of these configurations is then
labeled with single-point DFT calculations and added to the training set, proceeding
iteratively until convergence. In the field of computational catalysis, such schemes
have also been employed in combination with nudged elastic band [121] and minima
hopping [122] to accelerate the calculation of energetic barriers and adsorbate geome-
tries. However, we cannot rely on these static approaches to simulate the dynamics
under operating conditions (e.g., T=700-1050 K for ammonia decomposition [15]),
since the mechanism and the relevant environments may deviate significantly from
the calculations performed at T=0K. In fact, the effects of dynamics under operat-
ing conditions can manifest themselves in many different ways [55, 58, 60], including
the dynamic change of the surface (e.g., see Fig. 3.1) and the emergence of a broad
ensemble of reactive pathways (e.g., see Figs. 3.9 and 7.4), which would be impossible
to capture by sampling the potential energy landscape with static calculations. As
we will see in Section 2.4, enhanced sampling techniques are better suited to sample
the reactive landscape at finite temperatures and to collect a diverse set of atomic
environments [123, 124]. By integrating these sampling techniques with active learn-
ing strategies, it has been possible to construct ML potentials for a wide variety of
rare events, from phase transitions [125–127] to chemical reactions [128–137], and
catalytic processes [44, 63, 64]. This is the strategy we adopted in the case of Fe, as
we will discuss in the next section.

Recently, these techniques have been also used to enhance the model uncertainty
to explore high-uncertainty configurations [138–141], but with the complexity of the
system under study, we did not explore this direction.

2.3.1 Active learning via query-by-committee

In Figure 2.3, we report the basic flowchart of active learning strategy.
In the active learning procedure, we want to use the MLP to generate config-

urations that could potentially be added to the dataset. However, an initial set of
configurations is still required to train a first model that provides reasonable predic-
tion. It is common practice to use AIMD simulations to generate these configurations.
Due to the limited timescales accessible with AIMD, enhanced sampling techniques,
such as metadynamics or umbrella sampling, can be combined to explore the relevant
regions of phase space more efficiently. However, AIMD configurations are highly cor-
related due to the temporal proximity between successive snapshots. One solution
is extracting configurations less frequently, typically every 3 to 5 ps, significantly
reducing redundancy. This implies discarding at least 70% of the generated con-
figurations to avoid overrepresenting similar structures in the dataset, a substantial
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Figure 2.3: Flowchart of reactive MLP construction workflow via active learning. The
icons of the principal software used during the active learning cycles in the case of
Fe studies [110, 142–145]

computational waste. Another common approach is to generate initial configurations
by randomly displacing atoms within the system. While this method allows for gen-
erating sparse and more varied configurations, it may lead to unphysical structures,
and care must be taken when this approach is employed.

After collecting the first set of configurations, we enter the active learning cycle.
In each iteration, a new MLP is trained and then used to sample new configurations
through MD simulations. Then, a subset of these structures is selected, and single-
point DFT calculations are performed. These data are then incorporated into the
training set to optimize a new potential, which will be used to sample new configu-
rations.

There are two crucial aspects of this procedure. The first is the sampling done
through MD simulation, which should cover as much as possible of the phase space as
possible relevant to the process under study. The use of advanced sampling methods,
which we employed later for studying catalytic reactivity, can significantly enhance
this active learning procedure. Indeed, they allow us to harvest uncorrelated struc-
tures, especially reactive ones. Generally, this is done by iteratively expanding the
explored region. In the case of a reaction, in the first cycles, only metastable states
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are sampled, and then high energy configuration and reactive paths should be sam-
pled. In this stage, simulations are performed to only sample new configurations to
be added to the training set and not for recovering observable expectation values.
So, using the enhanced sampling techniques that ensure the quasi-static regime, such
as OPES, is not strictly required, while Umbrella sampling and Metadynamics can
also be used (see Section 2.4).

The second key element of this active learning cycle is the selection criteria.
We would like to add to the training set only configurations that have not already
been described well by the MLP. One way to do this is via the query-by-committee
approach [117]. As we discussed in Section 2.2.4, from the prediction of a committee
of models we can define an uncertainty σ = σ

(NN)
max (see Eq. 2.14) and, thus, using

it as a proxy for the prediction error. In Figure 2.4a, we report a possible selection

l u
Forces uncertanty ( )

Di
st

rib
ut

io
n

Acceptance
region

Selection
region Rejected region

Query-by-committee selection scheme

Figure 2.4: Query-by-committee selection. Typical distribution of the uncertainty
of NN forces predictions σ = σ

(NN)
max using a committee of models (see Eq. 2.14). A

common choice of the different regions used to query the configuration based on σ is
reported. See text for details.

criterion based on the uncertainty σ [63]. Starting from the distribution of σ, a lower
(σl) and an upper σu limit are defined. The lower bound σl is typically set to a
value slightly higher than the peak of the distribution and defines the acceptance
region. Instead, the higher threshold σu is defined in order to avoid the selection of
nonphysical configurations in which atoms are too close or correspond to improbable
chemistry. Typically is defined as σl + [0.2 ∼ 0.3] eV Å−1. Then, a random fraction
of the configuration with σ ∈ [σl, σu] is selected to be relabeled at the QM level. This
fraction depends on the total number of configurations in the distribution in order
to limit the number of QM calculations to be performed.

This procedure is very effective for many cases, however, it has been shown that
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it does not always adequately describe all reactive pathways, being unbalanced on
reactants and products [129]. This is particularly true for very fast reactions such
as dehydrogenation. For this reason, additional selection criteria based on collective
variables that focus the selection on the TS region are adopted.

The active learning procedure (sampling, selection, QM relabelling, training) is
iterated until a reliable potential for describing the full reactive pathways is obtained.

We applied this methodology to build the reactive potential for ammonia synthe-
sis/decomposition on Fe. The total amount of configurations we collected was ∼110k
(Table 2.1) for the studies on pristine surfaces, which became ∼250k (Table 2.4)
when we included lateral interactions. To these configurations, we have to add the
discarded configuration from AIMD. These are two times the ones included in the
dataset, ∼120k (see Table 2.2), only for the case of pristine surfaces.

This strategy is effective but not efficient and cannot be applied to the compu-
tationally expensive FeCo catalyst. Thus, before studying this system, in Chapter 6
we will focus on the development of a method that allows us to train reliable MLP
for chemical reactions in dynamic environments but requires a few QM calculations.

2.4 Free energies and enhanced sampling

Despite the acceleration provided by MLPs, numerous reactive processes, such as
chemical reactions, unfold over timescales that surpass the limits of conventional
simulations. Consequently, a spectrum of advanced sampling methods has been de-
vised to facilitate the simulation of rare events, addressing the challenge posed by
these extended timescales. We can categorize these methods into three main cate-
gories. The first family of techniques relies on the identification of collective variables
(CVs) and introduces an external potential to enhance their fluctuations, thus reduc-
ing the free energy barriers along them, as in the case of Umbrella Sampling [146,
147], Metadynamics [148, 149] and Variationally Enhanced Sampling [150, 151]. In
the second group, the equilibrium distribution is broadened in a more generic way,
as in the case of replica exchange molecular dynamics [152] or generalized ensem-
bles [153, 154]. Finally, the third category aims at sampling reactive paths by doing,
for example, a Monte Carlo simulation in trajectory space[155]. We refer the inter-
ested reader to the review by Henin et. al. for a comprehensive overview of enhanced
sampling methods [156].

In this section, we will briefly introduce the basic principle of the first category.
In particular, we will focus the techniques that we used in this thesis, namely the
CVs-based method On-the-fly Probability Enhanced Sampling (OPES) [157, 158],
implemented in the open-source PLUMED plugin [144, 159]. At the end of the sec-
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tion, we will describe the main CVs adopted across the studies.

2.4.1 Probabilities, free energies, and manipulating it

Probability and free energy profiles. Before talking about enhanced sampling,
an introduction to the concept of probability and free energy profiles in MD simula-
tions is required. In a canonical ensemble, this probability is related to the potential
energy U(x) of the system through the well-known Boltzmann distribution

p(x) =
e−βU(x)

Z
with Z =

∫
dx e−βU(x) (2.16)

where β = 1/kBT is the inverse temperature (kB the Boltzmann constant), and Z

is a normalization constant called configurational partition function. The outcomes
of an MD simulation conducted within the canonical ensemble are expected to be
distributed accordingly to Eq. 2.16. Since this probability lives in a 3N dimensional
space, where N is the number of atoms, it is convenient to understand the system
in terms of a smaller set of degrees of freedom, the CVs. These CVs are, in general,
functions of the atomic coordinates of the system s = s(x), and, in the same spirit
of reaction coordinates in chemistry or order parameters in physics, are intended to
capture the progress of the molecular process under study. Defined one or a few CVs,
one can define the probability of observing a given value of s during the simulation
as the marginal distribution of p(x) along s

p(s) =

∫
dx δ(s − s(x))p(x). (2.17)

The logarithm of this probability, which is called the free energy surface (FES) or
free energy profile as a function of the CVs s:

F (s) = − 1

β
log p(s) (2.18)

This quantity can provide numerous insights into the processes studied: the free
energy minima correspond to the metastable states, and the free energy barriers
correspond to the transition states between them. To get out of a metastable state,
the system must overcome free energy barriers where the probability of being in that
state is exponentially suppressed.

Furthermore, the relative stability between two metastable states, A and B, can
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be measured by the free energy difference

∆F = FB − FA =
1

β
ln
pA(s)

pB(s)
=

1

β
ln

(∫
A ds e

−βF (s)∫
B ds e

−βF (s)

)
(2.19)

where the integration domains correspond to the regions in CV space assigned to
each metastable state. Note that the difference in free energy ∆F is hardly affected
by the choice of CV, provided it can distinguish between the two minima [160].
However, more care should be taken to extract the free energy barrier from FES, as
the profiles depend on the choice of CV [161]. A general rule of thumb when choosing
a CV among a set of ones is the higher the barrier, the better the CV.

Free energy barrier and chemical reactions. Free energy can be related not
only to ensemble quantities but also to experimentally observable quantities. In par-
ticular, the rate constant k of a chemical reaction (A → B) can be calculated from
transition state theory using the Eyring-Polanyi equation:

k = κ
kBT

h
e−

∆G‡
RT (2.20)

where κ is transmission coefficient, h is Planck’s constant, ∆G‡ is the Gibbs free
energy of activation, and R is the universal gas constant. From the reaction rate, we
can calculate the half-life t1/2 of the reaction (assuming non reversible reactions):

t1/2 = ln (2)k−1, (2.21)

which is the time it takes for half of the reactants to be converted to products. This
equation connects the rate of a chemical reaction to the free energy barrier between
the reactants and the transition state ∆G‡. Note that, while the equations are often
presented in terms of the Gibbs free energy, in cases where pressure and volume are
constant, the Helmholtz free energy can be used as an equivalent substitute.

In general, we will estimate reaction rates and not even present the results in these
terms. However, it’s good to remember that even without knowing all the parameters,
such as the transmission coefficient, these equations provide an estimate of the times
at which reactions occur, allowing us to assess whether a reaction is fast or slow
under specific conditions. In particular, it is useful for comparing different reactions
and evaluating how changing the conditions of the system alters the probability of
observing an event.



Computational Methods 30

Alter the probability through enhanced sampling. In CVs-based methods,
an external potential that depends on the atomic coordinates through the CVs,
i.e., V (x) = V (s(x)), is added to the system to decrease the free energy barriers
along the CVs and increase their fluctuations [162]. Notable examples of algorithms
that utilize this principle include Umbrella Sampling [146] and Metadynamics [148].
From the probability perspective, the addition of the bias potential determines a
new probability distribution which is sampled during the simulation, which is called
biased distribution:

pV (x) =
e−β(U(x)+V (s(x)))

ZV
with ZV =

∫
dx e−β(U(x)+V (s(x))) (2.22)

Reweighting An essential part of the enhanced sampling technique is the require-
ment to evaluate the properties of the original system (e.g., its free energy surface)
from the samples obtained via the modified distribution pV . This necessitates imple-
menting a correction method known as reweighting. We have already seen that under
the ergodicity hypothesis, a generic observable’s ensemble average is equivalent to its
time average over trajectories (see Equation 2.3). This hypothesis holds in the case
that the bias potential V is static (or can be approximated as such), which means
that it is known and independent from time. With some math, we can compute the
ensemble average ⟨O(x)⟩ under the original Boltzmann distribution using samples
that are distributed according to pV (x):

⟨O(x)⟩ =
∫
dx O(x)p(x) =

∫
dx
(
O(x)

p(x)
pV (x)

)
pV (x) =

⟨O(x)eβV (s(x))⟩V
⟨eβV (s(x))⟩V

(2.23)

where ⟨·⟩V =
∫
dx · pV (x) denotes the average under the biased distribution. For

a sufficiently long trajectory, we can use Equation 2.4 to rewrite this quantity as a
weighted average of the observable along the trajectory:

⟨O(x)⟩ ≈
nk∑
k=1

O(xk)w(xk) with w(xk) =
eβV (s(xk))

Zw
(2.24)

where xk are the samples obtained in the biased MD, and w(xk) are weights of the k-
th configuration of the trajectory which are normalized for Zw =

∑
k e

βV (s(xk)). The
reweighting procedure then corresponds to correcting the weight of each sample to
match that of the original distribution. In particular, we can use Eq. 2.24 to estimate
the unbiased probability distribution p(s), and consequently the free energy profile
(Eq. 2.18). To do this, we note that the definition of the marginal of the density
along s (Eq. 2.17) can be rewritten as the ensemble average of a delta function, i.e.,
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p(s) = ⟨δ(s − s(x))⟩. Therefore, we obtain the following expression for the unbiased
probability:

p(s) ≈
nk∑
k

δ(s − s(xk))w(xk) (2.25)

2.4.2 On-the-fly Probability Enhanced Sampling (OPES)

Now, we describe the On-the-fly Probability Enhanced Sampling (OPES) method
that we primarily adopted for biasing simulation in this thesis. OPES was developed
not only to accelerate simulations but also to do so in a way that makes it easy
to retrieve unbiased statistical information about the system. To do this, OPES
adds a bias potential V (x) to target a distribution ptg(x), which still retains a good
overlap with the original distribution p(x) in configuration space. Thus, one can
efficiently perform reweighting and obtain statistical information about p(x). Since
the distribution p(x) is unknown at the beginning of the simulation, the bias is
optimized in a self-consistent way, at convergence hold:

V (x) =
1

β
log

p(x)
ptg(x)

(2.26)

As in Metadynamics, the bias potential is time-dependent, constantly updating the
bias as new samples are collected. The iterative scheme aims at quickly reaching a
regime of quasi-static bias. This way, most of the MD time can be used for statistical
analysis. Many different variants of OPES have been proposed, depending on bias
construction and target probability. Here, we focus on OPES-Metad [163] which is
the original OPES formulation. Here, the target ptg is chosen as the well-tempered
distribution in CV space pWT (s) [149] that aims to broaden the equilibrium proba-
bility p(s):

pWT (s) ∝ [p(s)]1/γ (2.27)

where the parameter γ (called bias factor) regulates the magnitude of the smooth-
ing. This pWT (s) is the same distribution that is sampled asymptotically in Well-
Tempered Metadynamics [149]. In terms of free energy, the effective barriers in this
distribution are decreased by a factor γ. The intuitive idea is to stay as close as
possible to the original distribution, p(s), while reducing the barriers enough to ob-
tain frequent transitions. The bias is iteratively optimized after the estimation of
the unbiased probability p(s) through reweighting. A trick that makes OPES par-
ticularly efficient is employing a weighted kernel density estimation (KDE) to make
p(s) continuous and differentiable. In practice, the main parameters that we have to
set in simulations are the pace, that is the stride of the bias, the barrier parameter
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∆E ∼ γβ−1, which represents the expected height of the highest free barrier, and
the sigma, that is the initial width of the deposited kernels (if not specified, it is esti-
mated adaptively by the OPES algorithm in the initial 10×pace steps). The specific
parameters adopted in simulations are reported in Section 2.7.

OPES-Flooding In our simulations, we will also use a recent variant of OPES,
named OPES-Flooding [164, 165]. This variant was developed for efficiently collect-
ing unbiased transition and studying kinetic rates by combining the OPES biasing
scheme and the ideas of conformational flooding [166, 167] and hyperdynamics [168].
In this work, we do not attempt to use the flooding scheme to statistically recover
the unbiased kinetics of the process [165, 169]. Instead, we used it to generate unbi-
ased reactive trajectories escaping from a known metastable state and characterize
transition states. In practice, OPES-flooding is a modification of OPES-Metad that
realizes straightforwardly the requirement of not perturbing the transition state due
to its flexibility. The OPES-Flooding idea is to build a bias V (s) along a CV s that is
aimed at only partially filling one of the metastable states, increasing the probability
of escaping from the minima but leaving TS region bias-free. The introduction of an
additional parameter ensures this last condition, the so-called excluded region sexc,
and imposing that no bias is deposited for s ∈ sexc.

It is important to remember that in addition to the external bias aimed at in-
creasing the fluctuation along specific CVs, one often has to add bias to confine the
system to a certain state. This is done by applying a so-called constraint or wall. In
this thesis, we have always utilized harmonic constraints, which act by applying an
external potential of harmonic type when the variable s exceeds a certain threshold
st:

Vwall(s) =

0 if s ≤ st

k( s−st
si

)2 if s > st
(2.28)

where k is the spring constant and si a regularization parameter. A similar definition
can be used for lower bounds. Multiple bias walls can be defined, and they should
be included in the reweighting procedure. Generally, it is only used to confine the
system’s dynamic during MD and the configuration where the wall act is discarded.

2.4.3 Collective variables

A key element in enhanced sampling methods is the choice of collective variables
(CVs). The efficiency of enhanced sampling relies heavily on high-quality CVs; poorly
chosen variables can significantly reduce the method’s effectiveness. Properly chosen
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CVs can accelerate sampling exponentially by targeting all relevant degrees of free-
dom.

CVs must satisfy two important requirements: continuity and differentiability
across the configurational space, and respect for the symmetries of the system (such
as rotational and translational invariance, and occasionally permutational symme-
try). The biasing potential is applied based on the force f = −∇xV (s(x)), which
depends on both the derivative of the bias with respect to the CVs, s, and the
derivative of the CVs with respect to atomic positions, x.

Moreover, CVs should facilitate dimensionality reduction. Most biasing methods
work best with a small number of CVs, and these CVs need to distinguish between
different metastable states and encode slow modes that hinder sampling. For instance,
CVs must be able to differentiate transition states from metastable ones.

Typically, CVs are chosen based on physical or chemical intuition, often relying
on descriptors such as bond distances. While effective for simple systems, this method
fails in more complex environments, such as dynamic catalytic reactions where mul-
tiple degrees of freedom are involved. To address these challenges, data-driven ap-
proaches have emerged, leveraging machine learning and statistical techniques to
identify CVs directly from high-dimensional data.

It must be remembered that CVs are useful also besides adding bias to the system.
Indeed, they are a powerful analysis tool, and even if bias is applied to a CV or several
CVs, free energy need not be projected only onto those CVs. In the case CVs are
not implied for biasing, the differentiability constraints can be relaxed. In this study,
we used only traditional variables. In fact, the system’s geometry is quite simple
since the reactions of interest are related to NHx molecules. However, we want to
remember that while the description may be geometrically simple, a few light atoms
on a metal substrate represent a drop in a bucket, making the study of these reactions
challenging. In addition, the free energy barriers we’re going to encounter are of the
orders of several kBT , making sampling even more complex. Now we will give an
overview of the CVs that we have used during this work; the specific parameters are
reported in Section 2.7

The distance between two atoms is the most elementary, but also powerful CV
that we use in this work. It is very useful for the definitions of walls, but also for
accelerating bond breaking. It can also be decomposed in its vectorial components
to define, for example, a planar distance.

Other simple CVs are the vectorial components of the center of mass of a group
of atoms (generally a molecule), which can be applied to enhance and study the
diffusion of a molecule on the surface.

An important CV used for both enhancing sampling and analysis is the coor-
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dination number between one or a group of atoms X atoms and another group of
atoms Y , computed in differentiable form as:

CX,Y =
∑
i∈X

∑
j∈Y

s(rij) , s(ri) =
1− ( ri−d0

r0
)n

1− ( ri−d0
r0

)m
(2.29)

where rij is the distance between the i-th atom of X specie and the j-th atom of J
specie, r0, d0, n, and m, are tunable parameters. This is one of the key CVs that we
will use in almost all of our studies.

To study the diffusion of atomic/molecular species over (1 1 0) surfaces, we con-
struct CVs that embed the cristal. In particular, we define the position on the plane
of the center of mass of the atom/molecule expressed in terms of the lattice vector
direction:

v11̄1 =
1

a
√
3 cosα sinα

(x sinα+ y cosα)

v11̄1̄ =
1

a
√
3 cosα sinα

(−x sinα+ y cosα)

(2.30)

where x and y are the coordinates of the center of mass (or the position along the
[0 0 1] and [1 1 0] directions, α is the angle between [1 1 1] and [1 1 0] directions, and
a is the lattice parameter.

Analogously, we define another transformation of the coordinates of nitrogen
on the (1 1 0) surfaces to describe the migration inside direction. Here we have to
consider also the z position:

ṽ11̄1 =
1

a
(x+

1√
2
y +

1√
2
z)

ṽ11̄1̄ =
1

a
(−x+

1√
2
y +

1√
2
z)

v01̄0 =

√
2

a
(−y + z)

(2.31)

were [0 1 0] is the migration inside direction. Here, we also redefine the ṽhkl to include
also the layer dependence trough z. This set of CVs is able to efficiently describe the
diffusion “channel” the N follows inside the Fe/FeCo (considering a slab exposing the
(1 1 0) plane)

To simulate the first dehydrogenation step we use a set of 3 CVs: the CN,Fe, the
CN,H , and a geometrical CV based on the angular distribution function defined as
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follows:

Θ =

∫ β

α

∑
ij∈H

s(ri)s(rj)
1√
2πw

exp

(
−(θ − θij)

2

2w2

)
(2.32)

where θij are the HNH angles, r are the NH distances, α = 0.55π, β = 0.65π, and
w = 0.5(α − β). The latter parameters are used to define the angular windows in
which the reaction occurs effectively. This is important to effectively simulate the
back-and-forth of the reaction.

To conclude this section we want to anticipate that we will use an additional set
of CVs to analyze the reactions, no longer based on geometric but rather chemical
considerations, as we will discuss in the next section.

In this work, we will often project the free energy surface in two dimensions,
find the minimum energy paths, and compute the free energy profile along these.
For finding these paths, we have used the Minimum Energy Path Surface Analysis
(MEPSA) code [170].

2.5 Machine learning for partial charges

In complex chemical environments, relying solely on CVs derived from geometri-
cal configurations can be problematic due to the high variability and complexity of
atomic arrangements. Traditional machine learning potentials MLPs focus on pre-
dicting only energies and forces, often overlooking crucial electronic information,
which is essential for an accurate description of chemical processes. Moreover, the
structures predicted by MLPs are typically too large to directly solve the electronic
structure. In these cases, direct electronic calculations using QM methods (e.g. DFT)
would be prohibitively expensive, making it impractical to perform post hoc charge
analysis after simulations.

To address this issue, Bonati et al. [44] developed a surrogate MLP that retains
the same descriptors and architecture used in energy and force predictions but is
trained to predict atomic charges instead of energy or forces. Since partial charges
are a per-atom property, the neural network can be trained on smaller systems and
subsequently applied to predict charges for arbitrarily large systems.

Following the methodology developed in [44], we trained a second NN to predict
partial charges based on atomic positions and chemical species. Reference values were
obtained from a subset of the Fe dataset (approximately 75,000 structures) using the
Bader charge decomposition scheme [171, 172].

We utilized the deep tensor neural network architecture SchNet [173], a GNN,
with the same parameters as in [44]: 5 interaction layers, pairwise distances expanded
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on 30 Gaussians, 64 atom-wise features, 3.5 Å cosine cutoff, and an atom-wise module
with 2 hidden layers and [64, 64] nodes per layer. The loss function was the root mean
square error (RMSE) between predicted charges {qi} and reference charges {qDFT

i }:

L =
1

Nat

∑
i

(qi − qDFT
i )2 (2.33)

The dataset was split into training and validation subsets with an 80:20 ratio, and
the model was optimized using the ADAM optimizer [174] with a learning rate of
0.001 and an early stopping criterion. This approach achieved an RMSE of 10−4 e

on the validation set.
The charges transferred between atoms were expressed as deviations from their

nominal valence charge qV (8e, 5e, 1e for Fe, N, and H, respectively). The total
charge transferred from the metallic substrate to the NxHy species was calculated
as:

qNxHy =
∑

i∈NxHy

(qi − qVi ). (2.34)

This quantity has been used as a CVs in our studies.
At this stage, we do not report results on charge transfer for FeCo, as those studies

are still ongoing. In these ongoing studies, we are extending the approach to compute
charges alongside energy and forces using the same descriptors, integrating charges
into the MACE framework. As a future perspective, this methodology would provide
access to analytical derivatives of the charges with respect to atomic coordinates.
Although this is not a physical observable, the output from the NN preserves the
bias-CVs requirement, and this could be used to bias simulations directly, turning
atomic charges into an active simulation tool rather than just an analysis feature.

2.6 Other analysis tools

2.6.1 Transition states characterization

To obtain an unbiased characterization of the transition states (TS), no bias po-
tential should be added in this region [175, 176]. This has been done for studying
the dehydrogenation steps on both Fe and FeCo. To this aim, we adopt the OPES-
flooding scheme described in Section 2.4.2. Briefly, in this method, the OPES barrier
parameter ∆E is properly chosen to a value lower than the effective barrier, and the
transition state region is excluded from any bias potential modifications. In such a
way, dehydrogenation events are observed to be bias-free. These simulations enable
us to collect statistics on the reactive pathways and characterize the TS ensemble
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without any prior assumptions about the location of the transition and final states.
The same CVs of the standard OPES simulations are applied to describe each de-

hydrogenation step, but with lower barrier parameters and no harmonic constraints
applied. For Fe(1 1 0), the OPES barrier parameters ∆E are set equal to 50(60),
20(65), and 65(50) kJ mol−1for each step respectively, while no bias is added in the
region where CN,H is lower than 2.82, 1.85, 0.9. For Fe(1 1 1), the OPES barrier pa-
rameters ∆E are set equal to 60, 65, and 50 kJmol−1.
Analogously, for the FeCo(1 1 0), we exclude from bias deposition the same re-
gion, and we use the coordination CN,H as bias-CV with ∆E equal to 70, 30, and
80 kJmol−1 for the three hydrogenation steps. All simulations were stopped once
the reaction occurred, terminating the simulation when the maximum NH distance
exceeded 1.9 Å.

One hundred simulations of dehydrogenation events were performed for each step
and surface. We then defined the TS as the configuration in which the bonding dis-
tance between the N atom and the reactive H atom, dN,H , is closest to the maximum
free energy of the dehydrogenation barrier. In the study of Fe, to characterize the TS
ensemble, we apply the k-medoids cluster analysis as implemented in the kmedoids

Python library [177] to identify at least two classes of TS geometry for each dehy-
drogenation step on both surfaces by using the coordination coordinates CN,Fe and
CH,Fe

2.6.2 Surface analysis

Here, we present the analysis tools that we used for the study of the morphology and
dynamics of Fe(1 1 1) under N∗ coverage.

To examine the structure and movement of the iron surface, we initially em-
ploy the Alpha-Shape technique [178], which is implemented in OVITO [102], to
reconstruct the surface based on the atomic positions. This method utilizes a virtual
sphere with a radius of 2 Å to create a three-dimensional surface mesh that distin-
guishes the accessible volume (void) from the inaccessible volume (slab). By doing
so, it becomes feasible to identify the atoms associated with the surface at each time
step and focus the subsequent analysis solely on these atoms, despite their temporal
variations resulting from their high mobility at operando conditions (T = 700K).

2.6.2.1 Environment Similarity

To assess the similarity of the environment surrounding an atom with a reference, we
use the Environment Similarity measure introduced by Piaggi and Parrinello [179].
This can be considered as a variation of the widely used SOAP (Smooth Overlap of
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Atomic Positions) kernel [180], but without rotational invariance. Initially, we define
a smooth local density around the central atom by applying Gaussian fitting to the
position of each neighboring atom i:

ρx(r) =
∑
i∈χ

exp(−| ri − r |2

2σ2
) (2.35)

where σ is a broadening parameter and ri is the position of atom i with respect
to the central atom. The environment similarity between χ and a reference χref is
subsequently defined as follows:

S(χ, χref ) =

∫
drρx(r)ρxref (r) =

1

n

∑
i∈χ

∑
j∈χref

exp(−| ri − r |2

4σ2
) (2.36)

where n represents the number of atoms in the environment χref . After perform-
ing integration, we normalize the kernel such that S(χref , χref ) = 1.

𝜒! 𝜒"#!∗
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Figure 2.5: Representative of χ7 and χFe∗3
local environments. Iron atoms are colored

based on their z coordinate, as shown in the scale bar.

The reference environments chosen here are the active sites on (111) surface (χ7)
and the triangles forming on top of the vacancy (χFe∗3

), see Figure 2.5. The χ7 is
the environment of a surface atom of the third layer corresponding to the cavity in
which the N2 is adsorbed in the α′ state, surrounded by 7-coordinated Fe atoms.
While for χFe∗3

, the reference environment is chosen with one of the three iron atoms
as the central atom. We also considered the locally deformed χ7 by the presence of
1-3 N∗ in its vicinity as the references for the cases with finite N∗ concentration and
the best match was taken. Regarding the computational parameters, we considered
all neighboring Fe atoms within a distance of 3.5 Å to construct the local density.
To mitigate the effects of thermal fluctuations, we applied a moving average to the
atomic positions using a window size of 2.5 ps. We used a broadening parameter of
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σ = 0.185 at T = 700K, identical to the one used by Bonati et al. [44].
After obtaining the environment similarity values for each surface atom, we iden-

tify the sites C7 and Fe∗3 as those with a similarity score, κ(χ, χ7) and κ(χ, χFe∗3
),

respectively, equal to or greater than a threshold. The selection of these threshold val-
ues is determined based on the minima of the distributions of κ(χ, χ7) and κ(χ, χFe∗3

)

for each N∗ concentration, reported in Figure 2.6.

(a) (b)

Figure 2.6: The distribution of the environment similarity for the surface iron atoms
of various N∗ covered surfaces with (a) χ7 and (b) χFe∗3

at 700K. The threshold
value to determine the density of C7 is chosen based on the minima of the histogram
in a) as denoted by dashed vertical lines. For Fe∗3, the threshold value of 0.7 is chosen
as indicated by vertical dashed lines in b).

2.6.2.2 Mean Square Displacement

We calculate the mean square displacement (MSD) of Fe(1 1 1) surface atoms and
N∗ atoms separately using the following Einstein relation [181] :

MSD(t) = ⟨ 1
N

N∑
i=1

| rd(t)− rd(t+ τ) |2⟩τ (2.37)

where N is the number of equivalent particles the MSD is calculated over, r are
their coordinates, d is the desired dimensionality of the MSD and τ represents the
lag time. MSD is averaged over all possible lag-times τ ≤ τmax, where τmax is the
length of the trajectory. To calculate the MSD, we utilized the MDAnalysis package
[182–184].

The first 20 ns of the trajectory were discarded as considered equilibration time.
The diffusion coefficients (D) for the self-diffusion of Fe(1 1 1) surface atoms and N∗

atoms on the xy-plane are determined by fitting a straight line between 20 ns and
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40 ns of MSDxy (MSD in xy-plane) vs t and using the following correlation:

D =
MSDxy

4t
. (2.38)

2.7 Computational details

In this section, we report all the details needed to reproduce the results in our
simulations that have not yet been reported. To avoid possible misunderstandings,
we decided to separate this section according to the different studies conducted in this
thesis work. First we will present the details of the studies of ammonia decomposition
on iron. Then those employed for the study of lateral interactions and nitridation.
Finally those for the study of FeCo-related reactions. The order we present here
does not reflect the order in which the results will be presented. For the sake of
completeness in reporting all details, some repetition may be present.

2.7.1 NH3 decomposition on iron

2.7.1.1 MD simulations

Classical molecular dynamics simulations were performed using the Large-scale Atom-
ic/Molecular Massively Parallel Simulator (LAMMPS) software [142], supplemented
by DeepMD-kit 2.1 [109] and PLUMED [144]. The time step was set to 0.5 fs, and
the temperature was controlled with a stochastic velocity scaling thermostat [78]
with a coupling constant of 100 fs.

Small surfaces containing 40 to 108 Fe atoms and up to 10 adsorbates (N/H)
were simulated during the active learning phase.

After having optimized the potential, longer simulations of at least 20 ns were
performed using an 8× 10× 10 Fe(110) slab (800 atoms) along with an NHx (x=1-
3) molecule to simulate adsorption and dissociation. Analogously, an 8 × 8 × 12

Fe(1 1 1) slab (768 atoms) along with an NHx (x=1-3) molecule were simulated. For
the (1 1 0) and (1 1 1) slabs, two and three layers of the slab were fixed to create
a boundary condition that imitates that of a semi-infinite slab. Periodic boundary
conditions were utilized in the x- and y-directions. At the same time, a reflecting
wall was implemented over the surface in the z-direction, in order to prevent the
NH3 molecule from flying away. The distance between the wall and the top layer was
set such that the volume accessible to the ammonia molecule when detached from
the surface is similar to the average volume of NH3 in the gas phase at 1 bar. This
is the pressure normally used in ammonia decomposition [15].



Computational Methods 41

2.7.1.2 Data set compositions

The dataset was composed through an active learning scheme (see, Section 2.3.1).
The resulting dataset comprises about 110k configurations. These include some of
the calculations we collected for the ammonia synthesis studies on Fe [44, 185], along
with many others made specifically for this work to ensure that all of the following
physical scenarios of interest were considered:

• long-term dynamics of Fe surfaces

• surface with nitrogen hydrides (NHx, where x ranges from 3 to 1)

• diffusing hydrides

• reactive configurations of all dehydrogenation steps.

The detailed composition is reported in Tables 2.1 and 2.2.

2.7.1.3 ML-based potential details

To fit the potential energy we employed the Deep Potential Molecular Dynamics
(DeepMD) [107, 186] method. Here, we report the technical details. Three hidden
layers with [30, 60, 120]/[240, 240, 240] nodes each were used respectively for the
embedding and fitting network. A cutoff radius of 6.0 Å (with 0.3 Å switching function
for continuity) was set for interacting atoms. We check that decreasing the cutoff up
to 5.0 Å doesn’t affect the structural property of iron. In the training phase, an
exponential-type learning curve was applied to decrease the learning rate from 0.001

to 3.5 × 10−8. The decay step was set to 2 epochs, and the models were trained
for 200 decay steps. The performance was evaluated on energy and forces with a
weighted root mean square error (RMSE) loss function. The weights of the energy
and forces were adjusted during the optimization from 0.02 to 1, and from 1000 to
1, respectively. In the active learning procedure, an ensemble of 4 different models is
optimized in parallel on permutations of the training and validation datasets to assign
an uncertainty to the configurations. At the end of the active learning procedure, the
RMSE achieved for energy and forces are 1meV/atom and 50meV/A, respectively
(see Figure 2.7)

2.7.1.4 Reliability of ML-based potential

Furthermore, to benchmark the reliability of the potential, we used it to calculate
the potential energy barriers for all dehydrogenation steps. The dimer method was
used to identify the transition states [187, 188]. A 4×6×5 Fe(110) slab (120 atoms)
and a 4 × 4 × 6 Fe(111) slab (96 atoms) along with an NHx (x=1-3) molecule were
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Surface Formula Adsorbate N. config. Surface Formula Adsorbate N. config.

110

Fe40 - 353

111

Fe45HN NH 1067

Fe40H2N
N–H 1176 Fe45N N 2423

NH–H 2182 Fe45N2
N 2399

NH2 1013 N2 6285
Fe40H3N NH3 1054 Fe45N4 N 2388
Fe40H4 H2 1870

Fe54H3N
NH–H 1000

Fe40H8 H2 1887 NH2 –H 998
Fe40HN NH 1010 NH3 1000
Fe40N N 2423

Fe54H6N2

NH–H–NH3 500

Fe40N2
N 2351 NH2 –H–NH3 500
N2 3362 NH3 1000

Fe72H2N NH2 1500 Fe72 - 630
Fe72H3N NH3 1000 Fe72H10N2 N–H 100
Fe72HN NH 1500 Fe72H12 H2 3741

Fe80H12N4 N–H–H2 –N2 444 Fe72H12N N–H 286
Fe80H18N6 N–H–H2 –N2 109 Fe72H12N2

N–H 100
Fe80H7N3 N–H–H2 –N2 1500 N2 –H 1233
Fe80H8 H2 1069 Fe72H12N4 N–H 542

Fe80H8N NH 664 Fe72H20N4 N–H–N2 563

Fe80H8N2
N–H 298 Fe72H30N6 N–H–N2 –H2 251
N2 –H 1232 Fe72H6N2 N2 –H 420

Fe80H8N3 NH2 1500 Fe72H7N2 N2H–H 584
Fe80H8N4 N–H 512 Fe72H8N2 N–H 598

Fe80N N 1611 Fe72N N 990
Fe80N2 N 1292 Fe72N2

N 836
Fe80N4 N 72 N2 994

111

Fe45 - 4370 Fe72N4 N 92
Fe45H12 H2 374 Fe96HN NH 497

Fe45H12N N–H 1604 Fe96H2N NH2 497
Fe45H12N2 N–H 1550 Fe96H3N NH3 497
Fe45H12N4 N–H 1533 Fe108 - 2456
Fe45H20 H2 656 Fe108H8N2 N–H 600

Fe45H2N
N–H 1017 Fe108N N 859

NH–H 1793 Fe108N2 N 854
NH2 1036

211

Fe48 - 674

Fe45H2N2

N–H 762 Fe48HN NH 1114
NH 720 Fe48H2N NH2 1116

NH–N–H 1925 Fe48H3N NH3 1060

Fe45H3N
NH2 –H 1463 Fe48N2 N2 1939

NH3 4586
Fe72H3N

NH–H 994
Fe45H4N N–H 2003 NH2 –H 1000
Fe45H4N2 N–H 1774 NH3 992
Fe45H4N4 N–H 1596

100 Fe54H3N
NH–H 1000

Fe45H8N N–H 1902 NH2 –H 1000
Fe45H8N2 N–H 1875 NH3 996
Fe45H8N4 N–H 1592

Table 2.1: Dataset composition. Composition of the configuration in the dataset for
training and validation of the potential divided by surface, chemical formula, and adsorbate
type.

implied at this stage. Geometries were optimized using a force-based conjugate gra-
dient method in all calculations. The lowest two and three Fe layers were kept fixed
during optimization and MD calculations for (110) and (111) surfaces, respectively.
Saddle points and minima were considered convergent when the maximum force in
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Group subdivision

Surface N. config. Adsorbate N. config. Driver N. config.s

110 32984 - 8483 from AIMD 58601
111 71911 NH3 13648 active-learning 58179
211 8889 NH2 14135
100 2996 NH 19286

N 18590
N2 12580
H2 9597
combinations 20461

Table 2.2: Dataset composition, summary. Summary of the Composition of the con-
figuration in the dataset for training and validation of the potential.

each degree of freedom was less than 0.01 eVÅ−1. Then, we recalculated the energy
difference between the structures obtained at the DFT level. Table 2.3 shows the re-
sults achieved. The activation energies are in excellent agreement, with a maximum
discrepancy of 0.07 eV.

EDFT
a − ENN

a [eV ]

Fe(110) Fe(111)

NH∗
3 → NH∗

2 +H∗ 0.01 −0.01

NH∗
2 → NH∗ +H∗ −0.07 0.06

NH∗ → N∗ +H∗ 0.01 −0.07

Table S2.3: Validation of NN potential. Difference between the activation energy Ea for
all the dehydrogenation steps computed with our NN potential and DFT-PBE, according
to Section 2.7.1.4. The maximum discrepancy obtained is 0.78 meV/atom, consistently with
the expected accuracy of the potential

2.7.1.5 DFT calculations

All the single-point DFT calculations used to build the reference database were
performed using the PWscf code of Quantum ESPRESSO (QE) [145, 189, 190].
Exchange-correlation effects have been treated within the generalized-gradient ap-
proximation with the Perdew-Burke-Ernzerhof (PBE) functional [79]. We employed
ultrasoft RRKJ pseudopotentials [191] along with plane-wave basis with a 640 and
80 Ry cutoff for wave-function kinetic energy and charge density, respectively. The
Marzari-Vanderbilt cold smearing technique[192] with a Gaussian spreading of 0.04
Ry was used to treat the state occupations. Collinear-spin polarization was included.
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Figure 2.7: Accuracy of energy and force predictions. Left panel, the histogram of the errors
in the forces (top) and energies (bottom) in the test set. Right panel, we decomposed the error
distributions according to the chemical formula. The violin plot represents the error distributions
on the forces and energies of the configurations grouped by chemical formula. The lines represent
the mean value for each system. The test set contains 100 configurations for each formula. The
average root mean square errors (RMSE) are 55 meV/Å and 1.3 meV/atom for forces and energies,
respectively. We choose to test on an unbalanced set with respect to the training one to assess
the reliability of the potential on the different scenarios. The RMSEs on the balanced test on the
studied system are 46 meV/Å and 1.0meV/atom for forces and energies, respectively.

In the QE program, the starting spin polarization of iron was set to 0.6 (site mag-
netization per valence electron). Thus, only ferromagnetic iron structures were con-
sidered. To mimic bulk-terminated structures, the lowest two Fe layers were kept
fixed during optimization and MD calculations for (100) and (110) surfaces, and the
lowest three layers for the (111) and (211) surfaces. A vacuum layer of at least 10
Å was included in the z-direction of all the slab models to prevent a self-interaction



Computational Methods 45

effect. The Brillouin zone was sampled using a 2 × 2 × 1 Monkhorst-Pack k-point
grid[193].

The preliminary AIMD simulations were performed in a constant volume and
temperature (NVT) ensemble using the stochastic velocity rescaling thermostat[78]
with a time step of 1.0 fs at temperatures ranging from 600 to 800 K. In addition,
enhanced sampling simulations (see Section 2.4) were performed to simulate the
reactive events and to explore a broader configurational space.

2.7.1.6 CV and OPES specification

We report here the specific parameters of the CV and OPES parameters used in the
study of NH3 decomposition.

The set of CVs implied both as bias-CVs as analysis tool is the coordination
number between the nitrogen atom and iron/hydrogen atoms, as defined in Eq. 2.29
for the definition). When used as a CV with OPES, the parameters are set as follows:
r0 = 3.0 (0.8)Å, d0 = 0.0 (0.7)Å, n = 6 (5), and m = 10 (7) for CN,Fe (CN,H). In the
analysis context, the following set of parameters is adopted for the CN,Fe: r0 = 1.5Å,
d0 = 1.0Å, n = 6, and m = 12. This latter choice allows us to identify a sharper
coordination number related to only the first neighborhood shell.

Analogously, for inspecting the dehydrogenation events and their transition state
(see Section 2.6.1), we define the coordination between the reactive H and Fe atoms
CH,Fe with the following parameter: r0 = 1.5Å, d0 = 0.5Å, n = 6, and m = 12.

To study the diffusion of NH over Fe(1 1 0), we use as CVs v11̄1 and v11̄1. We set
OPES barrier parameter ∆E equal to 40 kJ mol−1 and the OPES bias was updated
every 500 steps. Harmonic restraints with an elastic constant of 10000 kJ mol−1were
applied on both the two CVs when |v| ≥ 1.6. In such a way, we restrict the number
of accessible metastable states without reducing the size of the supercell. The same
restraints were applied to study the diffusion of NH3 and NH2, while no biases were
applied due to the small diffusion barriers.

To simulate the first dehydrogenation step we use a set of 3 CVs: the CN,Fe,
the CN,H , and Θ The OPES barrier parameter was set at 60 (80) kJ mol−1 for the
(1 1 0) ((1 1 1)) surface and the OPES bias was updated every 1000 steps. A harmonic
restraint was applied when CN,H ≤ 2.5, utilizing an elastic constant of 2000 kJ mol−1.
This restraint, which acts immediately after the dehydrogenation occurs, is aimed
at facilitating reversible sampling, eliminating the need to wait for hydrogenation to
take place.

For the following dehydrogenation steps, we use as biased CVs the CN,Fe, and the
CN,H coordination numbers. The OPES barrier parameter was set at 40 (90) kJ mol−1and
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80 (50) kJmol−1for the second and third dehydrogenation steps over the 110 (111)
surface, respectively. The bias was updated every 1000 steps in all the simulations
and a harmonic restraint with an elastic constant of 2000 kJ mol−1was applied when
CN,H ≤ 1.5 or CN,H ≤ 0.5.

2.7.2 Effect of N∗ on Fe(111)

2.7.2.1 Atomistic models

We modeled the (1 1 1) iron surface with a slab of a BCC oriented along the: a =

[110](x), b = [112](y), and c = [111](z). This model consisted of 768 Fe atoms
distributed across 16 atomic layers in the x-direction, 24 atomic layers in the y-
direction, and 12 atomic layers in the z-direction, see Figure 2.8(a). The bottom
three layers were kept fixed at their equilibrium positions. We studied three different
concentrations of N∗ on the (111) surface: 12.5%, 25%, and 50% of a Fe monolayer.
Figure 2.8 describe the initial structures, where the N∗ were arranged in ordered
patterns. In the case of 25% concentration, the N∗ arrangement is the one suggested
by Bozso et al. [24].

2.7.2.2 DFT calculations

Density functional theory (DFT) calculations were performed with the same param-
eters as the previous study, see Section 2.7.1.5.

2.7.2.3 ML interatomic potential details

To perform long-timescales and large system sizes simulation, we trained a machine
learning potential on an extensive dataset comprising ab initio molecular dynamics
and single-point DFT calculations. We started from the potential developed by Bon-
ati et al. [44] and we expanded it via an active learning strategy to describe also high
N∗ and H2 coverages, up to 100% of a monolayer on the Fe(111). For the fitting
of the potential, we used the Deep Potential Molecular Dynamics Smooth Edition
scheme [107, 186], as implemented in the DeePMD-kit software [110] using the same
settings of Ref. [44]. To collect the relevant configurations to be labeled with DFT
single points, we used an active learning scheme combined with enhanced sampling
methods. We used a query-by-committee algorithm (Section 2.3.1), in which, at each
iteration, five potentials were optimized on different permutations of the training and
validation datasets. Then, MD simulations were performed with one of the potentials
and the standard deviation of the predictions was used as a proxy for the uncertainty.
This allows us only to select configurations for DFT labeling that are not already
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Figure 2.8: Snapshots from the top view of the 0 K minimized Fe (111) structures
with various N∗ concentrations: a) 0 %, (b) 12.5 %, (c) 25 %, and (d) 50 % of the
monolayer Fe concentration along the [111] direction. Fe atoms are color-coded based
on their height along the [111] axis, as indicated by the color bar, while N atoms are
depicted in blue.

well described by the potential. This strategy was used with both standard MD sim-
ulations and enhanced sampling ones. The usage of enhanced sampling simulations
is crucial for this stage to ensure sufficient sampling of all the thermodynamically
relevant configurations, including molecules adsorption/desorption, dissociation, and
atomic species diffusion. It also enables to collect configurations not only from local
minima but also along the entire reactive pathways [44, 125, 126, 129]. The active
learning procedure was iterated eight times until we had a reliable potential. The
final potential was trained on more than 200k configurations; the detailed compo-
sition is reported in Table 2.4. Figure 2.9 shows the distribution of errors in forces
and energies on the validation sets of pure and nitrogenated Fe(1 1 1) without the N2

(Fe − N∗) and with N2 (Fe − N∗ − N2). The final potential achieves a root mean
squared error (RMSE) of 1.3 meV/atom for the energy and 54 meV/Å for the forces



Computational Methods 48

on the validation set of Fe−N∗. In the validation set of Fe−N∗−N2, we obtained
an RMSE of 1meV/atom for energy and 50 meV/Å for forces.

System Surface Training Validation

Fe (111) 10600 3700
Fe− 11%N∗ (111) 7800 2200
Fe− 22%N∗ (111) 7200 2000
Fe− 25%N∗ (111) 4000 1500
Fe− 44%N∗ (111) 3600 1200
Fe− 50%N∗ (111) 2000 500
Fe− 75%N∗ (111) 3200 800
Fe− 100%N∗ (111) 2900 700
Fe−N2 (111) 5900 1500
Fe− 75%N∗ −N2 (111) 2100 400
Fe− 22%N∗ −H2 −N2 (111) 4400 800
Fe−H∗ (111) 10000 2400
Fe−N∗ −H∗ (111) 33200 11800
Fe−H∗ −N2 (111) 16300 400
Fe−N∗ −H∗ −NHx (111) 17800 5100
Fe (110) 800 200
Fe−N∗ (110) 24300 7200
Fe−H∗ (110) 13800 3400
Fe−N∗ −H∗ (110) 7200 1700
Fe−N2 (110) 4400 1300
Fe−N∗ −N2 (110) 2600 600
Fe−H∗ −N2 (110) 6000 1500
Fe−N∗ −H∗ −N2 (110) 2900 600
Fe−N∗ −H∗ −NHx (110) 11500 3500

Table 2.4: Composition of the dataset of ab initio calculations used to train the
machine learning potential. % content of N∗ refers to the percentage of monolayer
Fe concentration along the surface direction. NHx is equivalent to NH3−NH2−NH

2.7.2.4 MD simulations

Once we obtained a reliable interatomic potential, we utilized the Large-scale Atom-
ic/Molecular Massively Parallel Simulator (LAMMPS) [142] program, integrated
with DeepMD-kit 2.1 [110] and PLUMED [144], to perform MD simulations. Simu-
lations were performed using a constant volume and temperature (NVT) ensemble
at 300K and 700K with a timestep of 0.5 fs. The stochastic velocity scaling thermo-
stat [78] with a coupling constant of 100 fs was used to control the temperature. To
investigate the effect of N∗ on surface dynamics, simulations with a duration of 50 ns
were performed. The bottom three layers were held in a fixed position to establish a
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Forces Energies

Figure 2.9: Histogram of the error in forces (left) and energies (right) on the validation
set (20%) of Fe−N∗ and Fe−N∗−N2. The histogram is normalized with respect to
the total number of data points. For forces, each component is considered separately.
Please refer to the Table 2.4 for the various N∗ coverages used in the training and
validation data sets.

boundary condition that simulates a semi-infinite slab. Periodic boundary conditions
were applied in the x- and y-directions.

CV specification To build the OPES bias we used the N-N interatomic distance
(d) and the coordination number between Fe and N atoms (CN,Fe) as CVs, which
were identical to those used by Bonati et al. [44] in their study on N2 adsorption
and dissociation on clean Fe(111) surface. The coordination number was calculated
following Eq. 2.29. The chosen parameters were as follows: r0 = 2.5 Å, n = 6, and
m = 12. The update of the OPES bias was performed every 1000 steps, with an
initial kernel width of 0.025 for d and 0.25 for CN,Fe. The barrier parameter was set
at 80 kJ/mol. A harmonic restraint was applied when d ≥ 2 Å, utilizing an elastic
constant of 2000 kJ/mol/Å2. This restraint aimed to facilitate the reversible sampling
of adsorption states and the dissociation barrier, eliminating the need to wait for re-
combination to take place. MD simulations within OPES framework were performed
for 25 ns and 75 ns at 300K and 700K, respectively, for all N∗ concentrations.

2.7.3 The fate of nitrogen on Fe(110)

2.7.3.1 MD Simulations

MD simulations were performed using the MLP trained on the expanded database,
see Section 2.7.2.3.

A (5 × 8 × 10) slab of Fe, with Miller indexes (110) and 400 atoms was simulated,
where the three bottom layers were kept fixed to simulate a bulk-terminated surface,
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and periodic boundary conditions were applied on the x and y directions. We also
repeated the simulations with a larger system of 800 atoms to rule out possible
finite-size effects. Still, the initial simulation to study the interaction of nitrogen and
hydrogen with the surface (4.1) was performed on the larger slab. MD simulations
were performed using the LAMMPS MD software [142], using the canonical sampling
through velocity rescaling thermostat with a target temperature of 700K [78], an
integration time step of 0.5 fs and a length of 10 ns.

2.7.3.2 CV and OPES specifications

To study the diffusion of N and H over Fe(1 1 0), we use as CVs v11̄1 and v11̄1, as we
have done for NH. For N , we set OPES barrier parameter ∆E equal to 45 kJ mol−1,
and the OPES bias was updated every 500 steps. Harmonic restraints with an elastic
constant of 1000 kJ mol−1 were applied on both the two CVs when |v| ≥ 1.6. In such
a way, we restrict the number of accessible metastable states without reducing the
size of the supercell. The same restraints were applied to study the diffusion of H,
while no biases were applied due to the small diffusion barriers.

Similarly, the same OPES parameters were adopted to study the diffusion of N
and H in the presence of another N∗. Here, for an effective sampling, we applied a
reflective wall at |vhkl| < 2.55, hlk = 11̄1, 11̄1̄, displayed in Figure 4.5 with a black
line. Similarly, to avoid the diffusion of the central nitrogen, we applied another wall
at |vhkl| < 0.55, hlk = 11̄1, 11̄1̄.

To study the nitrogen recombination, we use the N-N distance as a bias CV.
Here, some particular wall based on the lattice position was adopted to confine the
N∗ in the precursor state of the recombination. See Section 7.1.2 for the details.
The OPES barrier parameter was set to 200 kJ mol−1 with a pace of 100 steps.
The same parameters were adopted to perform the simulation at finite monolayer
coverage except for the barrier parameter that was decreased to 195 kJ mol−1 and
190 kJmol−1 for the coverage of 20% and 40%, respectively.

Finally, we exploited the CV defined in Equations 2.31 to study the nitrogen
migration inside the bulk. Specifically, v01̄0 was set as bias-CV, with an OPES
barrier parameter of 170 kJ mol−1 and a pace of 100 steps. To constrain the sim-
ulation to a single “diffusion channel”, walls are placed when ∥ṽ11̄1∥ > 0.55 and
∥ṽ11̄1̄∥ > 0.55, with the same harmonic parameter adopted for surface diffusion.
Analogously to nitrogen recombination studies, OPES barrier parameters were de-
creased to 160 kJ mol−1 and 150 kJ mol−1 as coverage increased.
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2.7.4 Ammonia decomposition on iron-cobalt

2.7.4.1 DFT calculations

All DFT calculations used to build the reference database were performed using the
PWscf code of Quantum ESPRESSO [145, 189, 190]. Exchange-correlation effects
were treated using the generalized-gradient approximation with the Perdew-Burke-
Ernzerhof (PBE) functional [79]. We employed ultrasoft pseudopotentials selected
from the SSSP PBE Precision v1.3.0 library [194] with 1, 5, 16, and 17 valence
electrons for H, N, Fe, and Co, respectively. The wave function and the charge den-
sity cutoff were set at 90 and 1080 Ry. The Marzari-Vanderbilt cold smearing tech-
nique [192] with a Gaussian spreading of 0.04 Ry was used to treat the collinear spin-
polarised electronic occupations. Initial spin polarizations were set to 0.6 for Fe|Co.
To ensure the consistency of the dataset, spurious high-energy non-ferromagnetic
configurations were removed from the dataset. A vacuum layer of at least 12 Å was
included in the z-direction of all the slab models to prevent self-interaction effects.
The Brillouin zone was sampled using a Monkhorst-Pack k-point grid [193] with a
maximum k-spacing of 0.25 Å−1, and the SCF convergence threshold was set to 10−6

Ry.

2.7.4.2 GP specification (FLARE)

The local environments are described through the ACE B2 descriptors, using a basis
expansion with Nmax = 8, and lmax = 3. We used a cutoff equal to 5.5 Å for Fe and
Co and 4 Å for the interaction with the other species. The kernel used to compare
the environments was a normalized dot product, squared.

2.7.4.3 GNN specification (MACE)

All the GNN models in this work were constructed using MACE version 0.3.0 [195].
The models employed a cutoff radius of 6 Å for the atomic environments with 256
channels and L=0, finding a balance between accuracy and computational efficiency.
The dataset was split into training/validation subsets with a ratio of 95:5, and the
model was optimized with AMSGrad using a learning rate of 0.01 and a batch size
of 4. The performance was evaluated on energy and forces with a weighted root
mean square error (RMSE) loss function. The weights of the energy and forces were
initially set to 1 and 100, respectively. In the last ∼25% epochs, the weight of energy
has been increased by a factor of 10 three times. The optimization was interrupted
via an early stopping criterion with a patience of 200 epochs.
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2.7.4.4 Datasets compositions

The dataset was composed first via incremental and then through an active learning
scheme (DEAL) in a highly data-efficient way. The protocol adopted during the con-
struction of the dataset employed to study the decomposition of NH3 on FeCo(110) is
detailed in Chapter 6. Then, the dataset was expanded to study lateral interactions
using DEAL as described in Section 7.3.1. This results in a final dataset that com-
prises about 8200 configurations. The detailed composition is reported in Table 2.5,
while its composition during each phase of the construction will be reported later in
Tables 6.1 and 7.2.

2.7.4.5 Molecular dynamics

MD simulations were performed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) software [142], supplemented by FLARE [196], MACE
v0.3.0 [195], and PLUMED v2.9 [144]. The canonical sampling through velocity
rescaling thermostat [78] with a coupling constant of 50 fs was employed to control
the temperature in all the simulations. During the construction of the preliminary
reactants potentials, we simulated FeCo slabs cut along the (1 1 0) surface containing
60 (3x4x5) and 144 (4x6x6) atoms. A vacuum region of at least 12 Å, was added in
all configurations to avoid self-interaction effects. The slab was simulated in both
bulk-terminated (by fixing the two bottom layers) and double-interface (by fixing
a central layer) conditions. In the latter, adsorbate molecules were placed on both
sides. The surface dynamics was simulated at 700 K and then 800K, while the in-
teraction with the different reaction intermediates (NH3, NH2, NH, N/N2, H) was
simulated at 700 K. At this stage, atomic interactions were described by FLARE,
and the timestep was set to 1 fs. In the reaction discovery stage, as well as during
the GNN active learning and the final simulations, we simulated 120 atoms (4x6x5)
bulk-terminated (2-fixed layers) FeCo(110) slabs at T = 700K. Periodic boundary
conditions were applied in the x and y directions, while a reflecting wall was im-
plemented over the surface in the z-direction. For the final simulations, we repeated
the simulations with larger systems (up to 800 atoms), using the identical setups we
used in the case of Fe for the sake of comparability.

2.7.4.6 CV and OPES specification

In the preliminary step, we used OPES to enhance a) the exploration of the different
adsorption states by using as CV the coordination between N and Fe/Co atoms and
b) the diffusion of the adsorbed molecule by using the x and y components of its
center of mass.
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FeCo original dataset composition

Formula Adsorbate N. config. Formula Adsorbate N. config.

Co30Fe30H2 H 251 Co60Fe60HN NH 618
Co30Fe30H2N2 NH 301 Co60Fe60N N 10
Co30Fe30H4N2 NH2 173 Co60Fe60N2 2 N 84
Co30Fe30H6N2 NH3 125 Co60Fe60N2 N 17
Co30Fe30N2 N 275 Co60Fe60N2 N2 86
Co30Fe30N4 2 N 157 Co60Fe60N4 2 N 53
Co30Fe30N4 N2 140 Co60Fe60N4 N2 9
Co60Fe60H2 H 13 Co72Fe72 – 130
Co60Fe60H2N NH2 1236 Co72Fe72H4N2 NH2 130
Co60Fe60H2N2 NH 25 Co72Fe72H6N2 NH3 129
Co60Fe60H3N NH3 886 Co72Fe72N N (1)181
Co60Fe60H4N2 NH2 8 Co72Fe72N2 2 N 130
Co60Fe60H6N2 NH3 29

Total 5193

Dataset expansion for later interaction study

Formula N. config. Formula N. config.

Co60Fe60H12N 29 Co60Fe60H8N 28
Co60Fe60H12N2 34 Co60Fe60H8N2 14
Co60Fe60H2N3 3 Co60Fe60H9N4 45
Co60Fe60H2N4 15 Co60Fe60H9N5 568
Co60Fe60H3N2 2 Co60Fe60N10 7
Co60Fe60H3N3 26 Co60Fe60N13 7
Co60Fe60H3N5 54 Co60Fe60N6 3
Co60Fe60H4N 3 Co60Fe60N9 8
Co60Fe60H4N2 4 Co72Fe72H2N3 3
Co60Fe60H4N5 9 Co72Fe72H3N2 3
Co60Fe60H4N6 170 Co72Fe72H3N4 25
Co60Fe60H5N7 301 Co72Fe72H4N5 82
Co60Fe60H6N3 14 Co72Fe72H5N6 277
Co60Fe60H6N4 103 Co72Fe72H6N3 44
Co60Fe60H6N7 83 Co72Fe72H6N7 234
Co60Fe60H6N8 309 Co72Fe72H7N4 47
Co60Fe60H7N5 99 Co72Fe72H9N4 376

Total 3029

Table 2.5: FeCo dataset composition. Composition of the configuration in the
dataset for training and validation of the potential divided by chemical formula and
adsorbate type. The first block refers to the original data collected following what
is described in Section 6.1. The second part refers to the database expansion for the
study of lateral interaction, see Section 7.3.1.
(1): Configuration collected to study N migration inside the bulk. These configura-
tions are not included in Table 6.1.
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In the exploratory stage, we iteratively performed OPES-flooding simulations to
harvest an ensemble of reactive pathways. For N2 dissociation, we used the distance
between the two N atoms dN,N and the coordination CN,Fe|Co as CVs, while for
the hydrogenation steps, we used the inverse of the planar distance between N and
one H atom. The probability estimate was updated every 50 steps, and the barrier
was chosen to be 50 kJmol−1, in order to apply the bias only in the reactant region.
Simulations were interrupted after the occurrence of the reaction, namely when dN,N

exceeded 2.5 Å, or when the coordination CN,H was decreased by 1 with respect to
the equilibrium value.

During the active learning stage with MACE and the final production simula-
tions, we used OPES with the standard well-tempered target distribution. To study
nitrogen recombination, we use the distance dN,N as CV. The barrier parameter was
set to 200 kJ mol−1, and the bias was updated every 200 steps. For the first dehydro-
genation step (NH3 →NH2+H), we biased the simulation along three CVs: CN−H ,
CN,Fe|Co, and the angular variable Θ defined in Eq. 2.32. For the second reaction
(NH2 →NH+H), we used CN,H and CN,Fe|Co, while for the last step (NH→N+H),
we employed the distance dN,H and CN,Fe|Co. The barrier parameters were set equal
to 80, 60, and 100 kJ mol−1, respectively, and the bias was updated every 200 steps.
Harmonic restraints were applied in all reactions to facilitate reversible sampling.
For the 2N→N2 process, the restraint was applied if dN,N ≤ 1.2 or dN,N ≥ 3.2Å,
while for the dehydrogenation steps if dN,H ≤ 2.5Å , with an elastic constant of
5000 kJmol−1Å−2.

To study the reactive pathways in detail, we perform a set of 100 OPES flooding
simulations for each dehydrogenation step. The CV used for all the steps was the
coordination CN,H . To avoid biasing the TS region, we exclude from bias deposition
the regions where CN,H is lower than 2.82, 1.85, and 0.9 for the three hydrogenation
steps, using an OPES barrier parameter equal to 70, 30, and 80 kJ mol−1, respectively.
All simulations were stopped once the reaction occurred, terminating the simulation
when the maximum NH distance exceeded 1.9Å.

It’s important to notice that the tunable parameters of the coordination numbers
r0, d0, n, and m are set differently for the dehydrogenation studies and the others.
In the former case, for the coordination between N and Fe, Co, and Fe|Co, we set
the parameters d0 = 1Å, r0 = 1.5Å, n = 6, and m = 12, while for the coordination
between H and Fe, Co, and Fe|Co, we used d0 = 0.8Å, r0 = 1.0Å, n = 6, andm = 12.
Finally, for the coordination between N and H, we used d0 = 0.7Å r0 = 0.8Å n = 5,
m = 7. These are the analogous of CN,Fe, CH,Fe, and CN,H used in the study of NH3

dehydrogenation on Fe. In all the other simulations and analyses related to N, for
the coordination between N and Fe, Co, and Fe|Co, we used d0 = 0Å, r0 = 2.5Å,
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n = 6, and m = 12.
The final studies on nitrogen recombination and migration into bulk were con-

ducted using the same CVs as well as the same constraints of the studies on Fe. For
the former reaction, the OPES barrier parameter was set to 195 kJmol−1, and the
bias was updated every 100 steps. In the case of nitrogen migration inside, we use
220 kJmol−1 as the barrier parameter and the same pace parameter. In the case of fi-
nite coverage (20% and 40% monolayer coverage), the barrier parameters for nitrogen
recombination were reduced to 190 kJ mol−1 and 185 kJ mol−1; similarly, for the dis-
solution/segregation process the barrier parameters were decreased to 210 kJ mol−1

and 200 kJ mol−1.



Chapter 3

Ammonia adsorption and
decomposition on iron surfaces

Thermal decomposition, or catalytic cracking, is the technique of choice for generat-
ing hydrogen from ammonia [15]. In the following, we focus on iron, a prototypical
thermocatalyst in both the Haber-Bosch process and its inverse, which is expected to
be a better catalyst than the traditional optimal choices at low ammonia concentra-
tions [20]. These reactions are known to be highly structure-sensitive, with Fe(1 1 0)
and Fe(1 1 1) representing two limiting cases among the low-index surfaces. In fact,
the former is characterized by high density and stability but low catalytic activity,
while the latter has an open structure and high activity[24, 25, 28, 29, 31, 32].

Unfortunately, in spite of more than a century of efforts, a comprehensive char-
acterization of both processes remains elusive due to extreme operando conditions
which make both experiments and simulations challenging. Indeed, the operational
temperatures for catalytic cracking on iron at 1 atm lie in the range of 400-750 ◦C
[15]. Experimental information about the reaction intermediates has thus been ob-
tained in conditions far from the operando regimes [28, 29], or extrapolated through
indirect temporal analysis of products (TAP) measurements [30]. Notably, a high
surface sensitivity has been reported [28, 29], similarly to what was observed in the
synthesis process [32, 33]. Only very recently has direct operando probing of synthesis
reaction intermediates been performed [34], confirming the structure sensitivity of
the reactions and showing non-trivial temperature dependency in the rate-limiting
step.

From a computational perspective, there is a large number of theoretical studies
on ammonia decomposition based on T=0K density functional theory (DFT) cal-
culations[26, 30, 35–43]. However, these studies do not fully consider the influence
of dynamics, which we already argued to be of paramount importance in industrial
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catalysis [1, 54]. This crucial role is clearly emerging in recent simulations [44, 55, 57–
62]. In particular, in the case of ammonia decomposition, Gerrits et al. have high-
lighted the role of dynamics on the Ru(0001) surface through ab initio molecular
dynamics (AIMD) simulations [59].

In this Chapter, we employ the methodologies previously described to investigate
the adsorption, diffusion, and dehydrogenation of nitrogen hydrides (NHx , x=1-3) at
the operando temperature of T=700 K on both the Fe(1 1 1) and Fe(1 1 0) surfaces.
Here, we provide a comprehensive statistical and chemical characterization of these
processes. An indispensable tool in the characterization of these processes is our abil-
ity to monitor the electronic charge distribution at modest computational effort also
in large systems (see Section 2.5). This ability allows the adsorption environments
and the progress of the reaction under evolving surface conditions to be followed.

All the results reported in this Chapter are obtained from MD simulations with
the MLP, which was trained over 110K configuration with DeePMD-kit [107]. The
specifications on the MLP, as well as the details on simulation techniques, are re-
ported in Section 2.7.1.

Given the challenges of studying these systems with MD simulations, we focus
here on the interaction of one single molecule with the hot iron surfaces. Thus, we
do not include the effect of lateral interactions [24, 25, 28, 29, 185] and reagent-
induced surface reconstructions [63, 65, 197, 198]. These two topics will be discussed
in Chapter 4 and 5.

We find that, as in the case of the ammonia formations, the two surfaces be-
have rather differently. The low and high temperatures are similar in the more rigid
Fe(1 1 0) case, where an Arrhenius-type behavior is observed. In contrast, the high
mobility of surface atoms of the less dense Fe(1 1 1) leads to the formation of new ad-
sorption sites and results in a non-Arrhenius behavior. However, despite the different
behavior that manifests itself in a variety of transition states and reaction pathways,
a unified description can still be obtained.

3.1 Fe surface behavior at high temperature

Before discussing the ammonia decomposition-related problems, we briefly describe
the behavior of pristine Fe surfaces. To study the reported surface dependence [28,
29, 32, 33], we simulate both the dense Fe(1 1 0) and the more open Fe(1 1 1) at the
operando temperature of 700 K.

As this temperature is studied above the Hüttig temperature (≈ 550K)[199], the
mobility of surface atoms is expected, hence the diffusion of adatoms and vacancies.
However, the energy for forming surface defects on Fe(1 1 0) is too high to be observed



Ammonia adsorption and decomposition on iron surfaces 58

spontaneously. Thus, the surface atomic arrangement is stable, and we do not observe
any atomic diffusion (see Figure 3.1, left panel). We can anticipate that adsorption
sites remain the same as those found in the low-temperature regime, as shown in
Figure 3.2a. That is why we do not report this surface’s 300 K behavior, which can
be easily deduced from the operando temperature results.

Figure 3.1: Scatter plot of atomic positions of Fe atoms for (1 1 0), on the left, and
(1 1 1), on the right, surfaces at T=300 K (light blu) and 700 K (orange). The atom
positions are recorded every 2.5 ps for 10 ns after 2 ns of equilibration. Both top and
lateral views are reported.

In contrast, for Fe(1 1 1), the energy required for surface defect formation is lower,
making it entropically favorable at a temperature of 700 K. As a result, the diffusion of
surface atoms is observed, although the crystalline order of the surface is maintained,
as discussed in Ref. [44]. This leads to the continuous formation and annihilation of
surface defects, such as adatoms and vacancies. In Figure 3.1, we show the scattered
positions of iron atoms over time, clearly illustrating the aforementioned phenomena.
Furthermore, as we will examine it thoroughly in Chapter 5, the presence of vacancies
on the surface allows the formation of triangular motifs, which are stabilized by
adsorbed nitrogen (N∗). Thus, being the surface behavior rather different from the
low temperature one, we also report the 300 K results for comparison. In particular,
we find that in addition to the low-temperature adsorption sites (Figure 3.2b), several
new ones are available at T=700 K, as shown in Figure 3.2c.
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Figure 3.2: Adsorption Sites. Top view of Fe(1 1 0) (a) at 700 K, Fe(1 1 1) at 300 K
(b) and 700 K (c). Frames are captured from unbiased ML-based simulations where
the atomic positions are 10 ps averaged to suppress the thermal fluctuations. Iron
atoms are colored by layer. Gray-shaded areas mark the primitive unit cell. White-
gray labeled circles are used to denote high-symmetry adsorption sites. (a) For
Fe(1 1 0): sb, short-bridge; lb, long-bridge; h, hollow. (b) For ideal Fe(1 1 1): b11,
bridge between top-layer atoms; b12, bridge between first and second layer. (c) For
high-temperature Fe(1 1 1), we highlight the formation of new adsorption sites due
to the surface roughness: tri1, triangular reconstruction; tri2, high symmetry site
between three consequential layers; db, defective b12. These last two sites exist only
on the defective surface due to the absence of b11 site.

3.2 Interaction between NHx and iron surfaces

We now discuss the results of simulations of the adsorption and diffusion of the
intermediates of the reaction (NH3, NH2, and NH) on Fe(1 1 0) and Fe(1 1 1). In
the dynamic approach adopted, adsorption and diffusion are intimately related and
describe the catalyst’s interaction with the adsorbed species. Two-dimensional free
energy surfaces (FES) projections are used to explore the coordination numbers,
charge transfers, and diffusion pathways.

3.2.1 Fe(110)

First, we present the results of the Fe(1 1 0). The most energetically stable adsorp-
tion configurations of nitrogen hydrides have already been investigated through DFT
static calculations; top, short-bridge, and hollow sites have been computed as the
minimum energy adsorption sites for NH3, NH2, and NH, respectively [30, 38]. At
T=0 K, our results are in agreement with the previous theoretical work. In the fol-
lowing, we thus focus on the effects of temperature on this more rigid surface.

In Figure 3.3, we report the most probable adsorption state obtained from the
minimum of free energy surfaces (FES) as a function of the nitrogen-iron coordination



Ammonia adsorption and decomposition on iron surfaces 60

number CN,Fe, and the total charge transferred from the metallic substrate to the
NHx species qNHx . This allows the available adsorption sites to be characterized,
from both the geometrical and chemical points of view. In Figure 3.4, the FES are
projected along the two in-plane crystallographic directions [0 0 1] and [1 1 0], from
which we can analyze the diffusion mechanism and the related free energy barrier.

Figure 3.3: Interaction of NHx with Fe(1 1 0) surface. Most stable adsorption
sites for the nitrogen hydrides on Fe(1 1 0) surface at 700K as a function of the
nitrogen-iron coordination number CN,Fe and the total charge transferred from the
metallic substrate to the NHx species qNHx . Ammonia in both the gas and adsorbed
phases is reported. For the adsorbed species, the profiles coincide with the minimum
of their FES within the range 0-2 kBT and are accordingly colored. For NH3

g , the
representation reduces to a point since CN,Fe=0 in the gas phase.

NH3 is preferentially adsorbed on top sites (1-fold coordination). No charge trans-
fer from the substrate to the molecule is observed (Figure 3.3). However, the am-
monia dipole induces a local redistribution of the iron charges, which in a first ap-
proximation can be described as a dipole induced-dipole interaction (Figure 3.4c).
This weak bond allows the NH3 to diffuse easily at 700 K through short bridge sites
(Figure 3.4a-b). The computed free energy barrier for diffusing along this pathway
is 0.15 eV. This diffusion mechanism competes with desorption and the subsequent
physisorption process.

Contrary to NH3, NH2 forms strong chemical bonds with the surface, preferring
bridge to top sites. In these 2-fold coordination sites, the metal substrate transfers a
charge of −0.6 e to the molecule (Figure 3.3). Despite its strong chemisorption energy
(−3.17 eV [38]), NH2 is the most mobile surface species. As shown in Figure 3.4a-b
amide diffuses between short and long bridge sites through hpc sites (3-fold coordi-
nation) with an estimated free energy barrier of 0.05 eV , which is less than 1 kBT .
Thus, we cannot speak of a single adsorption site due to NH2 almost barrierless
diffusion. The temperature effects play an important role even on these hard sur-
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Figure 3.4: Diffusion of NHx* on Fe(1 1 0) surface at 700 K. (a) Free energy
of NHx* interaction projected along the two crystallographic directions [0 0 1] (x-
axis) and [1 1 0] (y-axis). Local minima represent the metastable states, and fuchsia
dashed lines denote the minimum free energy diffusion pathways. (b) Free energy
calculated along the minimum free energy pathways. The high symmetry adsorption
sites are labeled according to Figure 3.2. Different scales are used for the free energy to
highlight the minima. (c) Snapshots of representative geometries of the minimum free
energy adsorption states. Iron atoms are colored according to net charges predicted
by the neural network model.

faces. We can anticipate that the absence of long-lived adsorption states implies a
non-negligible increase in the free energy barrier for dehydrogenation.

Finally, NH lives on the hollow sites (4-fold coordination). In this configuration,
as shown in Figure 3.3, there is a charge transfer of approximately −1 e to the
molecule. Among the nitrogen hydrides, NH is the least diffusive species. As shown in
Figure 3.4a, imide diffuses between two adjacent hollow sites through a short bridge
site. The computed free energy barrier for the diffusion is 0.54 eV (Figure 3.4b),
making the diffusion of NH an activated process. For this species, we can thus speak
a of long-lived (∼ns) adsorption state.

Going from NH3 to NH, there is an increase in interaction strength in terms of
both the charge transfer and coordination (Figure 3.3). However, this is not correlated
with the mobility of the intermediates (Figure 3.4).
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3.2.2 Fe(111)

We now discuss the interaction of nitrogen hydrides with the Fe(1 1 1) surface, con-
trasting, as anticipated, the behavior at T=300K and T=700K. In Figure 3.5, we
show free energy surfaces as a function of the nitrogen-iron coordination number
CN,Fe, and the total charge transferred qNHx for each species in the two different
temperatures. It is important to recall that at T=700 K, the surface iron atoms

Figure 3.5: Interaction of NHx with Fe(1 1 1) surface. Free energies as a function
of the N-Fe coordination and the total charge transferred from the metallic substrate
to the NHx species at T=300K (a,c,e) and T=700 K (b,d,f). In the snapshots, repre-
sentative configurations belonging to the adsorption free energy minima are shown.

become mobile, forming additional adsorption sites (see Figure 3.2c). As shown in
Figure 3.5, all the N exhibit a tetrahedral environment due to the drive of N to
form sp3 hybrid. As a result of surface atom mobility, sp3 hybrid can be achieved in
different ways in high-temperature regimes. In contrast, at low temperatures, such
geometrical environments are not accessible. Such behavior is particularly important
for the last two intermediates (NH2, NH) and has significant implications for dehy-
drogenation, as will be discussed below. As in Fe(1 1 0), NH3 shows on-top adsorption
at low and high temperatures, with no charge transfer associated. However, unlike
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in Fe(1 1 0), NH3 does not diffuse on the surface. This can be rationalized by consid-
ering that the shortest pathway between two on-top sites must visit the lower layers,
passing via configurations less favorable than in the gas phase ones (see Figure 3.2).

As mentioned above, the adsorption of NH2 is very different in the two temper-
ature regimes. At T=300K, the amide is bonded in bridge sites between the first
and second layers (b12, Figure 3.2b). In this configuration, NH2 can move almost
barrierless (≈ 0.04eV) between three equivalent b12 bridge sites via the top-layer
bridge site (b11, Figure 3.2b). This behavior is illustrated in Figure 3.6 and explains
the free energy ring minima between the two- and three-fold coordinated state of
Figure 3.5c. At T=700 K, these low-temperature adsorption sites are no longer ob-

Figure 3.6: Interaction of NH2 with Fe(1 1 1), T=300 K. Free energy(FES) of NH∗
2 in-

teraction with Fe(1 1 1) surface at T=300K. FES is projected along the two crystallographic
directions [1 1 0] (x-axis) and [1 1 2] (y-axis). The three equivalent local minima (b12, see
Figure 3.2b) are separated by free energy barriers of 0.04 eV. Thus, at low temperatures,
NH2 can diffuse between these three b12 sites across the b11, forming a unique “ring” shape
adsorption site. At high temperatures, when the mobility of iron surface atoms breaks the
surface symmetry forming defects, this adsorption pattern is no longer observed.

served, and NH2 is placed only at defective bridge sites (db, Figure 3.2c). In these
configurations, barrierless diffusion of NH2 does not take place, and the adsorbate
is stabilized in this two-fold coordinated state. The fluxionality of NH2 at 700 K is
significantly reduced with respect to 300 K. This counterintuitive effect can be ex-
plained by the availability of the isolated defective two-folded sites in which NH2 is
sp3 hybrid.

Finally, we present the interaction of NH with Fe(1 1 1), which exhibits signif-
icant differences between the high- and low-temperature regimes. At 300 K, NH is
adsorbed at bridge sites (b11, Figure 3.2b), while at 700K, a variety of geometrical
configurations is observed. The most stable sites for adsorption are the three-folded
coordinated ones (tr1 and tri2, Figure 3.2c), but also four-fold coordination defective
ones are still observed. Also on this surface, the iron substrate transfers a charge of
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≈ 1e to NH.
Although the mobility of iron surface atoms does not allow a quantitative anal-

ysis of the diffusion barriers similar to the one carried out for the (1 1 0) surface
(Figure 3.4) to be performed, a detailed analysis of the free energy profiles can pro-
vide information on the dynamics of the reaction intermediates (Figure 3.5). The
free energy surface reflects the probability that a certain state is occupied. In this
low-dimensional representation, each state is projected to a point; and a point of
the two-dimensional space is associated with one or more states. Thus, a broad free
energy minimum reflects the fact that the system visits different environments. Using
this tool, we can compare the free energy surface for NH3 at the two temperatures
(Figure 3.5a-b) which can be almost superimposed, reflecting a similar adsorption
behavior. When we compare the two different temperatures, it is important to ob-
serve that at 700 K, the system can also visit higher free energy regions (yellow and
orange areas of contours). In fact, the probability of visiting a state is exponentially
related to its free energy and the inverse of the temperature (see Equation 2.18). If
we now consider NH2, at 300 K (Figure 3.5c), the free energy minimum is placed in
the coincidence of b12 sites (two-fold coordinated) with a pronounced low free energy
tail that extends to high coordination region (in the occurrence of the b11 sites, Fig-
ure 3.2b). This is a result of the above-described adsorption behavior of NH2, which
is illustrated in Figure 3.6. Instead, at 700 K (Figure 3.5d), the free energy minimum
is well-defined in the two-fold coordinated region, with the other areas characterized
by high free energy. Since diffusion between different two-fold coordination states
necessarily requires going through low- or high-coordination states, this implies that
diffusion proceeds via high free energy states. This is reflected in the fluxionality of
NH2, which results in the paradoxical effect of being reduced at high temperatures,
with more stable adsorption in the two-folded coordination states at the high tem-
perature. A similar analysis can be performed for NH (Figure 3.5e-f). At 300K, the
adsorption free energy minimum presents a long tail in the low-coordination region,
indicating a significant dynamism of this state. If we now consider the adsorption at
700 K, we find that NH can perform much longer excursions than NH3 and NH2.

3.3 Dehydrogenation steps

3.3.1 Reaction mechanism analysis

As outlined in Section 2.6.1, one hundred simulations of dehydrogenation events
were performed for each step and surface at operando temperature, using the OPES-
flooding approach. The statistical sampling of reactive pathways was performed with-
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out preconceived assumptions about the transition and final states.
A visual inspection reveals immediately a variety of reaction pathways, as we will

elucidate in the next section. To get a unified perspective, we use, as in Ref. [44],
the charge transfer to the nitrogen hydrides to describe the reaction processes. The
evolution of the charges in the nitrogen moieties qx during each dehydrogenation
event occurring on both surfaces are plotted in Figure 3.7. We reasonably assume
that the TS is closest to the point where the distance dN,H reaches the breaking
point of 1.40 Å (see Section 2.6.1) and plot the charge variably on a segment of 40 fs
centered around the TS.

Figure 3.7: Dehydrogenation charge variation. Atoms in the molecule charge
variation during reactions as a function of the distance between nitrogen and reac-
tive hydrogen. Each line in the plot (one for each atom) corresponds to a reactive
simulation (100 for each event). For each simulation, 40 fs were plotted around the
transition state (dN,H = 1.40 Å). On the left, we report three snapshots correspond-
ing to the first dehydrogenation step on the Fe(1 1 0) surface.

It can be seen that throughout the reaction, a significant charge variation takes
place only to the H atom that is being reduced. This distinctive behavior is ex-
emplified in the left panel of Figure 3.7, which shows a representative first-step
dehydrogenation event on the Fe(1 1 0) surface.

When the reactions are studied through these Bader charge lenses, a coherent
underlying reaction mechanism becomes evident in spite of the fact that the reaction
evolves following different geometrical trajectories. Strikingly, not only is this shared
between the individual reactions but also across all the different steps and surfaces.
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3.3.2 Transition state ensembles

We now analyze the observed variety in TS configurations. At the operando temper-
ature, the adsorbed molecules and the surface atoms exhibit a pronounced mobility
that gives each reactive event a distinctive geometric character. Therefore, it is not
possible to identify a single transition state (TS); instead, it must be described by an
ensemble of structures [118, 200, 201]. In Figure 3.8, we report the TS coordinations
CN,Fe vs CH,Fe for all reaction steps on the Fe(1 1 0) and Fe(1 1 1) surfaces. These
variables, which provide a coarse geometrical representation of the relevant reactive
structure, exhibit a broad distribution.

Figure 3.8: Transition state ensemble. Distribution of the coordinations between nitro-
gen and iron, CN,Fe, and between reactive hydrogen and iron, CH,Fe, for the transition state
configuration at 700 K. Each TS point is indicated by a cross.

Applying k-medoids analysis, we attempted to rationalize this complexity in a
simple way and partition each TS ensemble into two clusters, as outlined in Sec-
tion 2.6.1. The resulting clusters, along with their respective medoids, are depicted
in Figure 3.9 for both Fe(1 1 0) and Fe(1 1 1) surfaces. In the top panels of Figure 3.9,
we observe for Fe(1 1 0) at least two distinguishable classes of geometries, primarily
differentiated by CN,Fe for the first and third dehydrogenation steps, and by the co-
ordination number CH,Fe for the second dehydrogenation step. A parallel analysis is
conducted for dehydrogenation steps on Fe(1 1 1). As depicted in the bottom panels
of Figure 3.9, the first and second TS ensembles are classified based on CN,Fe, while
the third is distinguished by a combination of the two descriptors. It is interesting to
note that NH2 on Fe(1 1 0) is the only intermediate for almost all events that occur
on a well-defined site (hpc, Figure 3.2a). The TS analysis identified two classes of
reactive events based on how hydrogen is released on the surface. Dehydrogenation
can occur on one of the three top atoms (characterized by a low CH,Fe coordination,
blue cluster) or on one of the bridge sites (characterized by a high CH,Fe coordina-
tion, purple cluster). From an inspection of the translation states, we observe that
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Figure 3.9: Transition state ensemble analysis. Distribution of the coordinations
between nitrogen and iron, CN,Fe, and between reactive hydrogen and iron, CH,Fe, for
the transition state configuration at 700K. For each reaction, data are separated into
two clusters according to the k-medoids analysis (see Section 2.6.1), in which color
gradients represent density. The medoids are indicated with white crosses and shown
in the snapshots. Raw data are reported in Figure 3.8. Iron atoms are colored to guide
the eyes to the difference between clusters: CH,Fe for the second dehydrogenation step
on the Fe(1 1 0) surface and the last one on the Fe(1 1 1) surface; CN,Fe for the others.

hydrogen binds to different bridge bonds, as on the different top atoms, regardless of
the initial adsorption state (long or short bridge). It is noteworthy that the coordi-
nation number CN,Fe at the TS consistently exceeds the value assumed in the stable
adsorption configuration of the reactant (refer to Figures 3.3 and 3.5 for Fe(1 1 0)
and Fe(1 1 1), respectively). We have reported this behavior in Figure 3.10, showing
a reaction segment of 40 fs (centered around the TS) in the two-dimensional space
nitrogen-iron coordination CN,Fe total charge qNHx . As we will see below, since re-
active events occur in the over-coordinated regime, the probability of each species
reaching high-coordinated states is linked to the dehydrogenation barrier.

We want to emphasize once again that we only determined two clusters for each
TS ensemble in order to obtain an economical description of the broad geometric
complexity. This choice was meant to familiarize the reader with the great variety of
TSs encountered and provide an overall description that encompasses all the reactions
treated. A more detailed description of each reaction, such as looking at the electronic
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Figure 3.10: Adsorption and dehydrogenation mechanism. Reaction pathways for
the three dehydrogenation steps for Fe(1 1 0), top panels, and Fe(1 1 1), bottom panels, at
700 K as a function of the nitrogen-iron coordination number CN,Fe and the total charge
transferred from the metallic substrate to the NHx species qNHx . Each line in the plot corre-
sponds to a reactive simulation (100 for each event). For each simulation, 40 fs were plotted
around the transition state (dN,H = 1.40 Å), which are marked by dots. The trajectories
are colored accordingly to clusters, following the k-medoids analysis reported Figure 3.8,
with reducing intensity from the first to the last frame. To relate reactive trajectories with
reactant adsorption, we include in the background the reactant free energy surface (see also,
Figures 3.3 and 3.5), which is colored with grey gradients, from 0 up to 10 kBT (0.6 eV) in
10 levels. Adsorption free energies are recovered from unbiased simulations, while reactive
trajectories are extracted from OPES-flooding simulations.

occupation levels or orbital orientation, is beyond the scope of this work.

3.3.3 Dehydrogenation barriers

In Table 3.1 we present the free energy barriers associated with the dehydrogenation
steps on both surfaces at the operando temperature. The values are obtained from
the corresponding free energy profiles, depicted in Figure 3.11.

Since the reaction mechanism analysis shows that the underlying chemical process
is the same for all reactive events, we would have expected similar reaction barriers
for the various intermediates and surfaces. Instead, differences, even significant ones,
are observed between the different nitrogen hydrides and the two different surfaces.
We can attempt to rationalize these differences in the light of the various aspects of
the dynamics described so far.

Firstly, we have observed how the different reaction intermediates have very dif-
ferent mobilities (see Section 3.2). In particular, for the Fe(1 1 0), we were able to
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Free energy barriers ∆G‡ [eV ] at T=700 K

Fe(1 1 0) Fe(1 1 1)

NH3* −−→ NH2* + H* 1.01 1.14

NH2* −−→ NH* + H* 0.79 1.22

NH* −−→ N* + H* 1.25 1.10

Table 3.1: Free energy barrier. Estimated free energy barrier for each dehydro-
genation step on Fe(1 1 0) and Fe(1 1 1) surface at T=700K. The values are derived
from the associated free energy profiles, illustrated in Figure 3.11, respectively. Con-
sidering the accuracy of the ML potential and the sampling uncertainty of the free
energy calculations, we estimated an uncertainty within the range [0.05-0.1] eV.

Figure 3.11: Dehydrogenation free energy barrier. Free energy profiles of de-
hydrogenation steps on Fe(1 1 0) and Fe(1 1 1) surface at T=300 K and T=700K.
The free energy is projected along the coordination number between nitrogen and
hydrogen atoms CN,H . The free energy of each initial state is set to zero.

calculate the diffusion barriers (Figure 3.4b), which can be directly related to the
dehydrogenation barriers. We have reported this relationship in Figure 3.12. This
phenomenon can be rationalized if we consider that transition states (see Figure 3.10)
have generally higher coordination between N and Fe than the more stable adsorp-
tion states. Intermediates must, therefore, reach these states before they can react.
Moreover, mobility is a fundamental ingredient for the reaction since the removal of
one hydrogen atom is greatly influenced by the kinetics of NHx on the surface (see
Section 3.3.1).

In the case of Fe(1 1 1) surface, calculating the diffusion barrier at operando tem-
perature is more complex due to the mobility of surface atoms, and we have not
attempted to do so. However, in Section 3.2.2, we have described how the shape of
the diffusion free energy surfaces, combined with a visual inspection, provides indi-
rect information about the species’ stability, with broader minima indicating greater
dynamism. In particular, at 700K, NH, which has been argued to have the highest
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Figure 3.12: Correlation between dehydrogenation and diffusion barriers on
Fe(1 1 0) Free energy barrier of dehydrogenation steps as a function of the diffusion bar-
rier on Fe(1 1 0) surface. All the calculations are performed at the operando temperature of
700 K. The gray dashed lines follow the linear trend as a guide to the eye.

mobility, has the lowest dehydrogenation free energy barrier. Thus, also in this case,
albeit indirectly and qualitatively, a correlation between dehydrogenation barriers
and species mobility can be observed.

Even more illuminating is the comparison between the T=300 K and T=700K
behavior. For the more stable Fe(1 1 0), no substantial difference is observed between
the two temperatures. However, it is interesting to observe a small discrepancy for
NH2, with respect to static calculation (see Figure 3.13). We can rationalize this
difference if we consider that static methods probably overestimate the free energy
of reactants due to a failure to consider all accessible states. This discrepancy is, in
fact, more significant in the case of the highly diffusive reagents.

Significant changes in the two different temperature regimes are instead observed
in the case of the Fe(1 1 1) surface. For the first dehydrogenation step, the free energy
profiles at the two temperatures can be almost exactly superimposed. On the other
hand, in the case of the latter two reactions, the catalyst is deactivated at higher
temperatures. An explanation for this phenomenon can be suggested by an analysis
of the behavior of the reaction moieties at the surface. In fact, the adsorption sites for
NH3 are similar, but for NH2 and NH, the Fe(1 1 1) surface atoms mobility forms new,
more stable adsorption sites in which the two nitrogen hydrides can be accommodated
such that the N atom can have a tetrahedral geometry. This discourages these two
species from visiting states with high coordination where the reaction occurs (see
Figure 3.12), leading to an increase in the dehydrogenation barriers. As one might
have anticipated, for this more complex surface, the static method fails in predicting
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Figure 3.13: Static versus dynamic methods. Comparison between free energy barriers
computed: as the difference in internal energy using the dimer method (see Section 2.7.1.4),
dimer (NN) and corrected from finite temperature effects (see below); from the free en-
ergy barrier along the collective variable CN,H and obtained by reweighting the reactive
MD simulations (see Section 2.4), FES. The free barriers are reported at 300 K for surface
111 and at 700 K for both surfaces. In static calculation, finite temperature correction was
included using the harmonic approximation. The vibrational modes are calculated from a
finite difference approximation of the Hessian matrix. We verified that all the minima, as
well as the transition states, are true minima and sella-point of the potential energy surface,
respectively. All calculations were obtained using the same level of theory (the MLP), and
quantum mechanical effects were not included. We can observe that free energy computed
with the static method is in good agreement with the dynamic method at low temperatures.
In particular, the static method is also in agreement at 700 K with the close-packed Fe(1 1 0)
surface, where harmonic approximations are expected to be valid. Nevertheless, a little dis-
crepancy is observed for the highly diffusive NH2, for which these approximations are not
valid. The static method instead misses the temperature effects for the Fe(1 1 1) surface by
overlooking the mobility of iron atoms. It is important to note that these discrepancies are
not equal for all the reactions due to the different effects of the dynamics on the different
moieties (see Section 3.2).

free energy, see Figure 3.13.
Consistent with experimental evidence [28], our calculations predict NH as the

most stable hydrogenated intermediate on the Fe(1 1 0) surface. In the case of Fe(1 1 1),
we observe an interesting change in the rate-limiting step as a function of tempera-
ture. At 300 K, the most stable nitrogen hydride is NH3. Instead, at 700 K, the role
of the most stable intermediate is played by NH2 in encouraging agreement with the
experiments [29]. Overall, the barrier for the limiting dehydrogenation step is com-
parable for both surfaces. Therefore, the different activities of the surfaces should be
addressed to the recombinative desorption steps, which represent the limiting step
for the entire catalytic cycle. This reaction will be described in the next Chapter.
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To summarize, in this Chapter, we have investigated the decomposition of ammo-
nia and described its adsorption, diffusion, and dehydrogenation on two clean iron
surfaces through MD simulations at the operando temperature. All through these
reaction steps, the effects of dynamics manifest themselves pervasively and in multi-
ple ways. Even on the (1 1 0) surface, which is the most compact and stable, we saw
how a dynamic description helps in rationalizing the link between the interaction of
reaction moieties with the metal surface and dehydrogenation events. The effect is
indeed dramatic for the open (1 1 1) surface, where in addition to the intermediate’s
mobility, one has to take into account the iron surface atom diffusivity that, by cre-
ating new adsorption sites, significantly alters the free energy profiles. This aspect
will be further studied in Chapter 5 where, in addition to thermal effects, we also
introduce lateral interactions.

Analyzing the transition states makes it clear that there is not a single, well-
defined one, but rather one has to consider an ensemble of transition states. For each
dehydrogenation step, we are able to identify at least two classes of reactive paths.
This is the case not only for the more “dynamic” surface (1 1 1) but also for the more
“static” (1 1 0).

It is important to note how these dynamical effects result in a non-trivial tem-
perature dependence for the (1 1 1) surface, confirming the gap between the standard
approach based on idealized assumption and what happens in the messier operando
environment, even in the low adsorbate coverage limit. Molecular dynamics and en-
hanced sampling techniques, on the other hand, fully account for entropic effects,
allowing these processes to be studied without any previous assumption. However, it
is interesting to note that the same tools that have allowed us to simulate the com-
plex behavior of the system also permit the unifying of all different dehydrogenation
steps on different surfaces using the charge transfer as a descriptor.

Of course, we recognize that this is a simplified model compared to the actual
industrial catalyst, which should require the entire catalytic cycle and other effects,
such as lateral interactions with adsorbed intermediates and promoter activities, to
be considered. However, it already demonstrates the need for a dynamical descrip-
tion of heterogeneous catalysis. A step toward this complexity will be taken in the
following Chapters.



Chapter 4

The fate of nitrogen on Fe(110)

Once the ammonia dehydrogenation process is complete, relaxed nitrogen (N∗) and
hydrogen (H∗) remain on the surface. These species must undergo recombination
before being released into the gas phase. In this Chapter, we focus specifically on
the fate of nitrogen, particularly examining its behavior on the Fe(110) surface.
This surface is the most prevalent in experimental samples and thus holds the most
significance for industrial applications. The behavior of the Fe(111) surface under
high N∗ coverage, which is of great interest for the Haber-Bosch process, will be
discussed in the next Chapter.

To understand the possible processes nitrogen can undergo on the surface, we
analyze the behavior of isolated N∗ and H∗ atoms on Fe(110). As expected from
previous studies [38], hydrogen weakly interacts with the surface, which is not the
case for N∗. For this reason, we focus on the recombination processes 2N∗ → N2

and explore the competing process of nitrogen migration into the bulk.
The latter process is the first elementary step toward bulk nitride formation.

Therefore, comprehending the interplay between these two competing processes is
essential for accurately reflecting the catalyst’s condition during operation. In fact,
as discussed in Section 1.2.1, there are experimental observations of nitride formation
during ammonia decomposition.

Finally, to move towards a realistic surface model, we will study the recombination
and migration processes in the presence of a finite surface coverage of nitrogen and
hydrogen. This allows us to explore how surface dynamics and lateral interactions
impact nitrogen behavior under more industrial-like catalytic conditions, allowing us
to give answers at the microscopic level to the question “which is the fate of nitrogen?”

73
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Figure 4.1: Graphical visualization of the Fe(110) 8×10×10 slab used as a catalyst,
in perspective and top view. The tripod of Cartesian directions (x,y,z) corresponds
to ([0 0 1], [1 1 0], [1 1 0]). Additionally, three vectors representing the variables vhkl,
with [h, k, l] = [1 1 1], [1 1 1], [0 1 0], defined in Equations 2.30,2.31, are displayed.
Note that their magnitude and the point of application do not agree with the slab
depicted in the figure, while their directions are representative.

4.1 Interaction of nitrogen and hydrogen with Fe(110)

Before describing in detail the various interactions, to facilitate the reader, we present
in Figure 4.1 an example of the studied system, where we graphically display the
most relevant directions. In addition to the three Cartesian coordinates (x, y, z),
corresponding to the directions ([0 0 1], [1 1 0], [1 1 0]), we indicate the three vari-
ables vhkl, with [h, k, l] = [1 1 1], [1 1 1], [0 1 0], previously defined in Equations 2.30
and 2.31. These three variables, which capture the crystal geometry and thus its sym-
metries, will be extensively used during the analysis. Additionally, as described in
Section 2.7.3.2, they are employed as collective variables in enhanced sampling simu-
lations to sample all relevant processes. As we will see, all nitrogen-related processes
that we will study here exhibit barriers ranging from ∼10 to ∼40 kBT (T=700 K).
These processes occur over much longer time scales (∼ 104 s) than those accessible
by ML potentials (∼ 10−7 s). To simulate them, it is therefore necessary to apply
advanced simulation techniques, as described in Section 2.4.

All the results reported in this Chapter are derived from MD simulations at the
operando temperature of 700 K. Even though we do not focus directly on the non-
trivial aspects introduced by finite-temperature simulations, we want to emphasize
that the simulation environment is highly dynamic and deviates significantly from
the static one, as mentioned in the previous Chapter. This note is made because
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the figures presented here, static for their nature, may not fully convey the system’s
dynamics.

We begin by presenting the interaction of a single nitrogen and hydrogen atom
adsorbed on the Fe(110) surface. The most energetically stable adsorption config-
urations of nitrogen hydrides have already been investigated through static DFT
calculations; hollow sites have been computed as the minimum energy adsorption
sites for N∗ [38, 41, 43], while the hpc sites are the most stable for H∗ [38, 197].
Regarding the adsorption site nomenclature, we refer to the one presented in Fig-
ure 3.2. At T=0 K, our results are in agreement with previous theoretical work. In
the following, we focus on the effects of temperature on this relatively rigid surface
to obtain a statistical description of the adsorption and related processes.

In Figures 4.2 and 4.3, we present the most probable adsorption states obtained
from the minima of free energy surfaces (FES) projected along the two in-plane
crystallographic directions [0 0 1] and [11̄0]. From the FES, we can also analyze the
diffusion mechanism and the related free energy barrier.

Figure 4.2: On the left panel, free energy of N∗ projected along the two crys-
tallographic directions [0 0 1] (x-axis) and [11̄0] (y-axis). Local minima represent
metastable states, and fuchsia dashed lines denote the minimum free energy dif-
fusion pathways. On the right panel, free energy is projected along the minimum
free energy pathways (MEP). Some snapshots of representative geometries along the
minimum free energy path are also shown. The high-symmetry adsorption sites are
labeled according to Figure 3.2.

Atomic nitrogen is preferentially adsorbed at the hollow (h) sites. In this con-
figuration, N∗ is 4-fold coordinated with four adjacent Fe atoms on the surface or
5-fold coordinated with four adjacent Fe atoms on the surface and the Fe atom di-
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Figure 4.3: Analogous to Figure 4.2, for H∗ interaction with the substrate.

rectly below in the second layer when deeply adsorbed, as we will discuss later. N∗

is firmly bonded to the iron surface, compensating for its valence shell’s lack of three
electrons. To diffuse between two adjacent hollow (h) sites, N∗ passes through a
short-bridge (sb) site with a barrier of 67 kJ/mol (see Figure 4.2).

Atomic hydrogen, on the other hand, is highly mobile. In Figure 4.3, we show
the free energy surface, where it can be observed that hydrogen quickly diffuses on
the surface following a minimum energy pathway similar to that of nitrogen. Un-
like N∗, the minimum energy adsorption site for hydrogen is the hcp site. Diffusion
to adjacent hcp sites occurs either barrierlessly (∆G < 1 kBT ) via long-bridge (lb)
sites or through short-bridge (sb) sites with a small barrier of 16 kJ/mol. In general,
H∗ can explore many surface sites. This can be explained by hydrogen being par-
tially reduced on the metallic surface, which can effortlessly supply only one electron
necessary for bonding in various configurations.

In Figure 4.4, we present the free energy of adsorption for N∗ and H∗ projected
along the two variables v11̄1 and z. Unlike the x and y variables, the variable v11̄1
allows us to identify the most stable adsorption sites along the crystallographic direc-
tion [1 1 1] (which contains the minima and maxima of the MEP), as it is orthogonal
in crystallographic space to the direction [1 1 1] (see Equations 2.30). In this lateral
projection, we can observe the vertical oscillations along the z variable, normal to
the (110) surface. The zero along the z variable is set at the average z coordinate of
the top-layer iron atoms. As can be seen from the free energy profile, N∗ can make
deep vertical excursions much more significant than H∗. In particular, considering
the region most accessible to the adsorbed species (∆G < 3 kBT ), z can vary in the
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Figure 4.4: Free energy of adsorption for N∗ and H∗ projected along two variables,
v11̄1 and z, i.e., along the crystallographic direction [1 1 1] (orthogonal in crystallo-
graphic space to the direction [1 1 1], see Equations 2.30) and [1 1 0], at a temperature
of 700 K. The zero along the z variable is set at the average z coordinate of the top-
layer iron atoms. White dashed lines represent the z values for the lowest energy
adsorption sites at T = 0K [38].

range 0.1-1 Å for N∗, while it varies between 0.6-1.4 Å for H∗. At a temperature of
700 K, the accessible states for N∗/H∗ significantly increase the gap from the mere
0.15 Å difference between the static adsorption sites, represented by the white dashed
lines in Figure 4.4. These results show that H∗ preferentially stays on the surface
rather than within it, unlike what can be stated for N∗.

Before discussing the reactive processes, we want to show how the presence of
another N∗ alters the diffusion of N∗/H∗. In Figure 4.5, we report the FES projected
onto the exact coordinates as in Figures 4.2 and 4.3. To obtain this free energy profile,
we placed a nitrogen atom at the center of the cell (x, y = (0, 0)). We constrained it
to stay in that adsorption site by applying a reflective wall at v11̄1 and v11̄1̄ at ±0.55,
corresponding to the maxima of the diffusion MEP. Additionally, to achieve more ef-
fective sampling, we restricted the region accessible to theN∗/H∗ atom using another
wall at v11̄1 and v11̄1̄ at ±2.55, displayed in Figure 4.5. As can be seen, the presence
of the adsorbed nitrogen atom in the center decreases the probability of finding an-
other N∗ in one of the adjacent adsorption sites (the four hollow sites in the [1 1 1]

direction and equivalent), which present an energy approximately ∼40 kJ/mol higher
than the second-neighbor sites along the same direction. These latter sites represent
the most stable adsorption sites for the second N∗, in agreement with low-energy
electron diffraction (LEED) patterns [25] and previous theoretical calculation [202].
On the other hand, H∗ is less affected by the presence of the nitrogen atom, which
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Figure 4.5: Free energy of N∗ (on the left) and H∗ (on the right) projected along the
two crystallographic directions [0 0 1] (x-axis) and [11̄0] (y-axis), in the presence of
one atomic nitrogen adsorbed in the center. For an effective sampling, a reflective wall
was placed at |vhkl| < 2.55, hlk = 11̄1, 11̄1̄, displayed in the figure with a black line.
Similarly, to avoid the diffusion of the central nitrogen, another wall at |vhkl| < 0.55,
hlk = 11̄1, 11̄1̄.
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only slightly modifies the free energy profile of the adjacent sites.
In light of these results, we focus on studying processes related to nitrogen, specif-

ically its recombination and migration into the bulk. We leave other hydrogen-related
processes for future studies as they have less impact on the catalyst. This choice is
also motivated by experimental evidence. From transient NH3 decomposition exper-
iments, we observe that the release of H2 into the gas phase occurs immediately
following the dissociation of ammonia, unlike what happens for N2. This suggests
that hydrogen released on the surface recombines and desorbs easily without dissolv-
ing into the bulk.

4.2 Nitrogen recombination

Recombination of nitrogen atoms on the Fe(110) surface leads to the formation of
nitrogen molecules (N2). This process is fundamental and necessary to allow the
continuous decomposition of ammonia, as nitrogen adsorbed on the surface inhibits
NH3 adsorption.

To study the recombination process, it is necessary to clearly define the reactant
and product states to identify the free energy barrier of the process correctly. In the
case of 2N∗ adsorption, as shown in Figure 4.5, the reactant state can be defined
as one where the two nitrogen atoms occupy two adjacent adsorption sites (along
the [1 1 1] direction and equivalents). This choice is generally the one adopted in
static calculations [30, 38, 41, 203, 204]. Thus, we have simulated the recombination
process, constraining two N∗ to occupy two adjacent adsorption sites. However, to
avoid forcing the system to explore only two sites, we constructed a reflective wall
tailored to the crystal’s symmetry and centered at the center of mass of the two
nitrogen atoms. Specifically, we defined:

vabshkl = vhkl(∥dx(N,N)∥, ∥dy(N,N)∥) , hkl = 11̄1, 11̄1̄ (4.1)

where vhkl is defined by Equations 2.30, and di(N,N) represents the x and y Carte-
sian components of the distance between the two N atoms. We placed a reflective
wall when vabs

11̄1
> 1.55 and ∥vabs

11̄1̄
∥ > 0.55. Referring to Figure 4.5, we can imagine

sitting on a spatial reference system on one of the N atoms adsorbed in the hollow
site to understand the wall’s action. From this reference system, the second nitrogen
can visit all four adjacent hollow sites. However, it cannot overcome the 12 barriers
(three for each site) at the short-bridge sites to reach more distant adsorption sites.

In Figure 4.6, we show the free energy profile along the distance between the two
nitrogen atoms d(N,N), obtained from MD simulations at a temperature of 700K.
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Concurrent with the formation of the N-N bond, there is a release of charge to the

Figure 4.6: Free energy profiles of recombination steps on the Fe(110) surface at
T=700 K. The free energy is projected along the distance between the two nitro-
gen atoms involved d(N,N). To effectively sample the reaction from the precursor
state (see text), a reflective wall where placed when vabs

11̄1
> 1.55 and ∥vabs

11̄1̄
∥ > 0.55.

Similarly, to avoid molecular nitrogen from desorbing, we limit nitrogen to a highly
coordinated adsorption state by placing another wall for d(N,N) < 1.35 (N2 bond-
ing length is directly correlated with its coordination with iron substrate [44, 202,
204]). Three snapshots captured from the simulation along a reactive event are also
reported. The uncertainty along the free energy profile is computed as the standard
deviation of four independent simulations performed with four different ML-potential
trained. With this protocol, both the error originating from ML-potential and the
one from sampling/reweighting are taken into account.

surface of about 1|e|, which reduces the interaction strength between the adsorbate
and the substrate, thus easily allowing for the desorption of N2. The obtained free
energy barrier is approximately 216 kJ/mol. In the previous Chapter, we showed
that the dehydrogenation steps preceding recombination have free energy barriers
in the 75-120 kJ/mol range. Thus, recombination represents the rate-determining
step in the decomposition of NH3 on Fe, in agreement with recent literature [30,
43]. Moreover, considering nitrogen atoms must occupy adjacent hollow sites before
recombination, the free energy barrier becomes even higher. We have seen that the
free energy of adjacent hollow sites is about 40 kJ/mol higher than that of the more
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stable adsorption sites. Experimental studies, such as TPD, confirm that nitrogen
desorption occurs at elevated temperatures. However, the desorption peaks align with
the decomposition of bulk nitrides, as we will discuss later.

4.3 Nitrogen migration inside the bulk

In addition to surface recombination, nitrogen can also migrate from the surface into
the bulk of Fe(110), contributing to the formation of iron nitrides (Fe4N, Fe2N).
The migration begins with nitrogen atoms penetrating surface layers and occupying
octahedral interstitial sites within the iron lattice.

In Figure 4.7, we report the free energy of one nitrogen atom migrating inside
the bulk at T=700K, projected along the two crystallographic directions [1 1 0] (y
coordinate on the x-axis) and [1 1 0] (z coordinate on the y-axis). From this projection
of the free energy, we can clearly identify the migration direction into the bulk,
coinciding with the crystallographic direction [0 1 0], and effectively described by
v01̄0.

Figure 4.7: Free energy of N∗ dissolution/segregation on Fe(110) slab at 700 K pro-
jected along the two crystallographic directions [1 1 0] (y) and [1 1 0] (x). Local min-
ima represent metastable states. The arrow denotes the [0 1 0] direction of migration
inside.

To better analyze the migration process inside the bulk, we projected the free
energy along one of these “diffusion channels”, as shown in Figure 4.8.
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Figure 4.8: Free energy profiles of nitrogen dissolution/segregation on the Fe(110)
slab at T=700 K. The free energy is projected along the v01̄0 direction. To con-
strain the simulation to a single “diffusion channels”, a reflective wall is placed when
∥ṽ11̄1∥ > 0.55 and ∥ṽ11̄1̄∥ > 0.55. Four snapshots captured from the metastable state
are shown: a) hollow site, b-d) octahedral interstitial. The uncertainty along the free
energy profile is computed as the standard deviation of four independent simulations
performed with four different MLPs. This protocol considers both the errors origi-
nating from the MLP and the ones deriving from sampling/reweighting.

From the surface hollow adsorption site (Fig. 4.8a), the migration proceeds to the
first metastable site (Fig. 4.8b). In this octahedral interstitial site, nitrogen is located
in the middle of a BCC unit cell, forming two shorter bonds with the Fe atoms located
at the vertices of that side (one from the first layer and one from the second layer)
and four longer bonds with the Fe atoms in the center of the BCC (two from the
first layer and two from the second layer). The migration then proceeds to a second
octahedral site (Fig. 4.8c). Here, nitrogen is positioned at the center of the BCC
face, forming two shorter bonds with the Fe atoms in the center of the BCC (both in
the second layer) and four longer bonds with the Fe atoms at the face vertices (one
from the first layer, two from the second layer, and one from the third layer). From
here, it alternates to deeper octahedral interstitial sites (Fig. 4.8d). We emphasize
that, geometrically, all these interstitial sites are equivalent. Additionally, the choice
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to limit our study to the [0 1 0] direction was made to reduce the complexity of the
problem. Indeed, nitrogen can equivalently move from the octahedral interstitial site
to any of the six adjacent octahedral sites along the ⟨1 0 0⟩ directions. We now focus
on the energy barriers associated with the migration process without delving into
the electronic details that were widely covered by static studies [205–207].

To migrate to the first interstitial site (Fig. 4.8b) from the surface hollow ad-
sorption site (Fig. 4.8a), nitrogen must overcome a barrier of about 110 kJ/mol.
Subsequently, to reach the first stable interstitial site (Fig. 4.8c), it must overcome
an additional barrier of 70 kJ/mol (a total of 169 kJ/mol from the surface). From
here, it can reach deeper interstitial sites by overcoming a barrier of 35 kJ/mol and
diffusing into the bulk with barriers of approximately 60 kJ/mol. Once it has passed
through the second Fe layer, nitrogen must overcome a barrier of about 85 kJ/mol
to return to the surface. Considering that there are three net interstitial sites per
bulk Fe atom (6 per unit cell) and the ratio between bulk and surface atoms, the
probability that a nitrogen atom dissolved in the bulk will segregate back to the
surface is very low.

MD simulations reveal that nitrogen migration into the bulk is clearly favored
on pristine Fe(110). Before discussing the implications of these results, we take an
additional step toward modeling a realistic system by introducing a finite coverage
of nitrogen and hydrogen.

4.4 Lateral interaction effects

Lateral interactions between nitrogen atoms adsorbed on Fe(110) play a significant
role in determining the adsorption, recombination, and migration processes. At low
coverage, nitrogen atoms behave independently, but as coverage increases, repulsive
interactions between adjacent nitrogen atoms become more prominent. These inter-
actions influence the adsorption site preferences and can alter the free energy barriers
for both recombination and migration. To confirm our previous findings in a model
in a more realistic scenario that also considers lateral interactions, we performed sim-
ulations with finite coverage of N and H atoms (20% and 40% of a monolayer with
a ratio N : H = 1 : 3). It should be noted that, unlike the approach commonly used
to estimate the effects of coverage through static calculations on small systems, here
we explicitly simulated the dynamics on large systems at the operando temperature
of 700 K.

MD simulations at various coverage levels indicate that the barrier for recom-
bination decreases with increasing coverage (Figure 4.9 left panel). Similarly, the
migration barrier decreases as nitrogen coverage increases (Figure 4.9 right panel).
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Figure 4.9: Free energy profiles of nitrogen recombination (left) and dissolution/seg-
regation (right) on the Fe(110) slab at T=700K at various coverages (0, 20, and 40%
of a monolayer with an N : H = 1 : 3). The free energies are computed identically to
the 0% coverage case, see Figures 4.6 and 4.8.

In particular, it is interesting to observe that there is a reduction in the free energy
differences between reactants and products (2N/N2 and Nhollow/Nbulk, respectively),
particularly remarkable for the N in the deep octahedral interstitial which decreases
from 85 kJ/mol to 45 kJ/mol. By focusing on the migration inside, we see that at low
coverage (20%), there is a first reduction in the free energy barrier for entering inside
the first interlayer interstitial octahedral site (Fig. 4.8a). However, the remaining
free energy profile is mostly unchanged with respect to the pristine Fe case, suggest-
ing that lateral interaction accounts for the destabilization of N in the hollow site
(Fig. 4.8a). Instead, at higher coverage (40%), there is also the additional effect of
stabilizing the first interlayer interstitial octahedral site.

In Figure 4.10, we report the overall free energy barrier for the two processes. The
nitrogen recombination barrier decreases with increasing coverage, from 216 kJ/mol
to around 196 kJ/mol. Similarly, the migration barrier decreases from 169 kJ/mol
to 134 kJ/mol as nitrogen coverage increases. At this coverage ratio (N:H=1:3), the
resulting slope of linear regression (dashed lines in Figure 4.10) are about −5 and
−9 kJ mol−1/10% coverage for the two processes, respectively, showing that lateral
interaction has a more substantial impact on the latter process, with its barrier
decreasing strongly. This makes the competition between the two processes even
more unbalanced in favor of migration into the bulk rather than desorption through
recombination.



The fate of nitrogen on Fe(110) 85

Figure 4.10: Free energy barrier of recombination (red circles) and migration inside
(green squares) as functions of surface coverage, obtained from Figure 4.9. The sur-
face coverage refers to N, H monolayer coverage with an N:H ratio equal to 1:3. The
slope of linear regression (dashed lines) shows that lateral interaction has a more
substantial impact on the latter process, with its barrier decreasing strongly. In the
insets, two snapshots from simulations at 40% ML coverage are reported.

4.5 Discussion and experimental comparison

The full diagram of ammonia decomposition is shown in Figure 4.11, where we present
the comprehensive behavior of nitrogen on Fe(110) at the operando temperature of
700 K. This provides the first complete microscopic map of ammonia decomposi-
tion obtained from MD simulation, highlighting the competition between nitrogen
recombination and migration into the bulk.

Our MD simulations reveal that nitrogen prefers to migrate into the bulk of
Fe(110) rather than recombining on the surface. This finding is consistent with ex-
perimental observations of nitride formation during ammonia decomposition, such
as those presented in Ref. [208]. Of particular interest in comparing our results with
the experimental data are the transient NH3 decomposition measurements. These
experiments show the immediate release of H2 after ammonia decomposition, while
nitrogen remains on the surface and migrates into the bulk, forming nitrides. The
nitrogen is then released only after the formation and subsequent decomposition of
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Figure 4.11: Diagram of NH3 decomposition on Fe(110), with a focus on the fate
of nitrogen on the surface. Insets (a,b) show the free energy profiles for nitrogen
recombination and migration into the bulk, respectively (see Figures 4.6 and 4.8 for
details).

nitrides (Fe4N and Fe2N) at higher temperatures. Our computation results align well
with these findings, both for H that lives on the surface and is easily released for the
migration of nitrogen favored over recombination.

The combination of several experimental techniques, including transient kinetic
measurements and in situ X-ray diffraction (XRD), allowed for the detailed obser-
vation of nitride formation and decomposition. The results of the transient NH3

decomposition show an apparent activation energies of N2 desorption due to nitride
decomposition amounting to 157 kJ/mol (Fe2N) and 172 kJ/mol (Fe4N). In very good
agreement the same apparent activation energy of 173 kJ/mol for NH3 decomposi-
tion was derived, indicating that the decomposition of Fe4N into Fe and N2 is the
rate-determining step of the reaction. Furthermore, temperature-programmed des-
orption (TPD) data on the spent catalyst shows distinct peaks for N2 release at
737 K and 816 K, corresponding to the stepwise decomposition of Fe2N and Fe4N.
In situ XRD measurements confirmed the stepwise iron nitride formation α-Fe ⇌

γ′-Fe4N ⇌ ϵ-Fe3N1.5 and shed light on the different phase transformations that the
catalyst underwent at different temperatures.

It is important to note that a direct comparison between the apparent activation
energies for nitride decomposition and the computed free energy barriers for nitro-
gen migration and recombination is challenging due to the different nature of these
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processes. The computed free energy barriers for nitrogen migration into the bulk
(169 kJ/mol) and recombination (216 kJ/mol) on Fe(110) are not directly comparable
to the experimental activation energies of nitride decomposition due to the complex-
ity of the catalytic system. However, they provide a detailed microscopic picture of
the underlying atomistic processes. Previous studies on the decomposition of Fe4N
to α-Fe and N2 conducted by Ertl et al. [209] report activation energies in the range
from 213 to 238 kJ/mol for unpromoted Fe wires and foils. They concluded that the
decomposition of the surface nitride is the rate-determining step, which prevents
the spontaneous decomposition of the metastable bulk iron nitrides under ambient
conditions. Also, they derive the same conclusion that surface nitride decomposition
is the rate-determining step of the recombinative desorption of N from differently
oriented Fe single crystal surfaces because of the identical activation energies.

Additional flow-switching experiments were performed to obtain further insight
into the active state of the Fe catalyst at different temperatures. At high temperature
(T = 873 K), the active state of the catalyst is most likely α-Fe and not Fe4N because
hardly any release of N2 was observed when switching the gas flow from diluted NH3

to He. Other studies support this view. Arabczyk and co-workers [210, 211] found
that nitride formation negatively affects the NH3 decomposition rate. Additionally,
Chen et al. [51] recently showed that alloying Fe with Co can improve catalytic
efficiency and, more importantly, prevent nitride formation.

These findings have important implications for improving catalytic efficiency.
Suppressing nitride formation while enhancing N2 desorption rates can potentially
lead to better-performing NH3 decomposition catalysts, particularly under higher
pressure. In Chapter 7, we will explore how alloying iron with cobalt could help in
preventing the inward migration of nitrogen and reducing nitride formation, ulti-
mately leading to enhanced catalytic activity.



Chapter 5

Fe(111) under high N∗ coverage

As explored in the previous chapters, for a catalyst to be efficient and durable, it
is crucial that the reaction products do not poison the catalyst. In this chapter, we
study Fe(111) surface behaviors in the presence of atomic nitrogen (N∗) adsorbed.
The presence of N∗ coverage is expected both in the ammonia decomposition or
synthesis context, respectively released on the surface after ammonia or molecular
nitrogen cracking. Here, we focus on the Haber-Bosch synthesis process, where the
rate-limiting step is believed to be the decomposition of nitrogen molecules. On
Fe(111), N∗ can occupy the active sites, and thus, it is important to ascertain how
a high N∗ coverage affects nitrogen dissociative chemisorption.

To answer this question, we study the properties of the Fe(111) surface at different
N∗ coverage both at room and operando temperature. In the latter regime, we already
presented that Fe surface atoms exhibit high mobility, promoting the formation of
adatoms and vacancies, and causing the catalytic centers to acquire a finite lifetime.
We discover that the N∗ coverage reduces but does not eliminate iron mobility.
Remarkably, the N∗ atoms stabilize triangular surface structures associated with
the formation of vacancies, which are a sign of a frustrated drive toward a more
stable Fe4N phase, somehow expected in light of what just seen in Chapter 4. As a
consequence, nitrogen atoms tend to cluster, reducing their poisoning effect. At the
same time, the reduction in the number of catalytic centers is counteracted by an
increase in their lifetime. The combined effect is that the dissociation barrier is not
significantly altered in the range of coverages studied. Another time, these results
bring to light the complex role that dynamics plays in catalytic reactivity under
operando conditions.

88
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5.1 Active site for N2 dissociation

In the Haber-Bosch process, the (111) surface is indeed the most active one among
the low miller index iron surfaces, and the cleavage of the di-nitrogen triple bond has
been argued to be its rate-limiting step [24, 25, 31, 32, 202]. At low temperatures, the
dissociative chemisorption process has been deeply experimentally and theoretically
investigated

Nørskov et al. [202] conducted static Density Functional Theory (DFT) calcula-
tions, which confirmed Ertl’s proposed mechanism while adding new atomistic in-
sights. They identified two distinct vertical adsorption sites for N2 (Fig. 5.1), termed
γ and δ, based on whether the molecule was adsorbed on top of a first- or second-layer
atom. Additionally, they predicted two horizontal adsorption sites (see Fig. 5.1). In
one configuration, N2 occupies a bridge position between first-layer atoms (α), while
in the other, it resides in a hollow position atop a third-layer atom (α′). The α′ site is
particularly significant, as it is considered a precursor to dissociation. They suggest
that this precursor state can be accessed either directly from the gas phase or via a
transition through γ → δ → α → α′. Throughout this sequence, the nitrogen triple
bond is gradually weakened. In the α site, a π bond is initially transferred to two
surface atoms, followed by another in the α′ site. At the α′ position, the molecule
interacts with seven-fold coordinated iron atoms (C7), which are more effective in
donating electrons to the N2 molecule [42]. The increased catalytic activity of the
Fe(111) surface has been attributed to its step structure, which stabilizes the α con-
figuration and provides a high density of accessible C7 atoms [31, 32]. The set of Fe
atoms surrounding the N2 molecule in the α′ state is referred to as the χ7 environ-
ment. This arrangement is considered a catalytic site because, as the N2 molecule

Figure 5.1: Different adsorption sites for N2 at 0 K. Adapted with permission from
[44].
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approaches the α′ position, the charge transfer from the iron surface to the nitro-
gen increases. Once within this site, the N2 molecule can rotate through different
orientations until the electronic orbitals are optimally aligned for the reaction.

More recently, in Ref. [44], Bonati et al. have extended the theoretical investi-
gations with MD simulations at the room (T = 300K) and operando (T = 700K)
temperature regimes. Low-temperature simulations confirmed the static predictions,
while high-temperature simulations showed that the C7 sites, which assist the break-
ing of the N2 triple bond, acquire a finite lifetime. This results in an increase in the
free energy barrier for N2 dissociation, which must necessarily pass through highly
coordinated sites. Here, we go on to extend the work of Ref. [44], going on to study
the influence of finite nitrogen coverage on surface dynamics and its effects on N2

dissociation.

5.2 Effect of N ∗ coverage on surface morphology

Ertl and collaborators [24] observed that, at low temperatures, N∗ orders into pat-
terns commensurate with the underlying periodicity of the Fe(111) lattice. Experi-
mental studies with multipromoted industrial catalysts indicate a steady-state cov-
erage of nitrogen-containing intermediates around 50% at T = 723K [212], and a
coverage-dependent increase of the apparent activation energy to dissociation [213].
Therefore, it is important to ascertain whether the dynamic behavior of the (1 1 1)

iron surface persists and whether and how the nitrogen poisons the catalyst, either
by blocking active sites or inhibiting molecular N2 adsorption [214]. To this effect,
we simulate at room and at the operando temperature of 700 K the static, dynamic,
and catalytic properties of Fe(111) for N∗ coverages of up to 50%. As we learned in
previous chapters, the catalyst behaves rather differently in these two regimes. The
MD simulations are performed using the expanded version of the MLP, as described
in Section 2.7.2.

At T = 300K, we find that the ordered patterns of N∗ [24] appear to be stable.
In contrast, at T = 700K, significant surface dynamics set in, leading to a structural
heterogeneity in the nitrogen-covered surface. As for the clean one, this mobility
results in the formation of defective structures. In particular, we observe triangular
Fe motives described by the formula Fe∗3N∗

i i = 1, ..., 4, where the Fe atoms form an
equilateral triangle on top of a vacancy and the N∗ sit either at the corners or at the
center (see Figure 5.2). These Fe∗3 sites exhibited coordination with N∗ ranging from
1 to 4. Triangular Fe structures can be fleetingly observed also on a clean surface,
but they are stabilized by the presence of adjacent N∗ atoms. These structures have
already been described in Section 3.1 in the context of ammonia decomposition and
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Figure 5.2: Snapshot of the Fe(111) surface covered with 25% N∗ during a molecular
dynamics simulation at 700K (center). Fe atoms are color-coded according to their
height along the [111] axis, the N∗ atoms are colored in blue. The Fe∗3 sites, each
surrounded by varying numbers of N∗ atoms, are indicated by red triangles. Different
coordination environments of N∗ are illustrated on the left. In the top right panel
is reported a reference Fe(111) with 25% N∗ coverage, obtained by optimizing the
experimentally suggested structure at 300 K, in which all N∗ occupy four-fold coor-
dinated (C7) sites. On the bottom right panel, a picture of the Fe4N(111) surface
is presented, where the triangles analogous to those observed on the Fe(111) surface
at 700 K are highlighted.

are of particular relevance for the adsorption of NH (see Section 3.2.2).
For the triangular Fe∗3 moiety to be stable, at least one N∗ needs to be coordi-

nated to it. The coordinated N∗ can sit either at the corner of the Fe∗3 triangle and
have five-fold coordination or at its center and have three-fold coordination. The N∗

atoms not coordinated to a Fe∗3 moiety are instead four-fold coordinated and occupy
the C7 catalytic centers; see the snapshots in Figure 5.2. Thus, we can distinguish
the N∗ adsorption sites according to their Fe coordination number. The distribution
of the standard and triangular adsorption sites is reported in Figure 5.3, showing
that about half of the N∗ is associated with triangles, while the other half occupies
the C7 catalytic sites.
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Figure 5.3: Fraction of N∗ within different coordination environments: four-fold
(CN,Fe = 4), triangle (CN,Fe = 3 or 5), and transitional (others) during molecu-
lar dynamics simulations at 700K. The triangle group refers to the N∗ coordination
facilitated by Fe∗3 moieties, with light colors indicating CN,Fe = 3 (center of Fe∗3)
and dark colors representing CN,Fe = 5 (corners of Fe∗3). Coordination numbers
were computed using a cutoff of 2.5 Å. Error bars represent the fluctuation during
the temporal evolution of the system at 700K.

5.2.1 Triangular motives validation with DFT

To ensure that this phenomenon was not an artifact of our machine-learning poten-
tial, we validated it via DFT calculations performed on a small system (144 Fe atoms
supercell) with the same orientation. We considered an initial structure obtained by
introducing a single vacancy on a second layer beneath the surface, as depicted in
Figure 5.4 (a). By performing a DFT relaxation, we observe the formation of a tri-
angular Fe∗3 motif on top of the vacancy, see Figure 5.4 (b). This confirms that the
triangular motives are metastable states induced by vacancies.

Subsequently, we systematically explored various N∗ concentrations ranging from
1 to 4N∗ atoms and their all possible arrangements around the Fe∗3 motif. For each of
them, we performed a DFT relaxation and we reported the results in Figure 5.5. The
first column is the reference configuration, where N∗ atoms reside on conventional
four-fold coordinated sites, which are the preferred locations in the absence of Fe∗3.
The other columns describe the configurations in which N∗ are around the triangular
moiety. These calculations reveal that the arrangement of N∗ atoms around Fe∗3 is
energetically more favorable, and that the relative stability of this configuration
increases as the number of N∗ atoms increases.



Fe(111) under high N∗ coverage 93

𝑉!"

Initial Structure Relax Structure(a) (b)

𝑍!"(Å)
0 -2

Figure 5.4: (a) The initial structure of BCC Fe(111) with the introduction of a single
iron vacancy (marked as VFe) on the second layer. (b) The relaxed structure at 0K
obtained through density functional theory (DFT), illustrating the emergence of Fe∗3
on top of the vacant Fe site. Iron atoms are colored based on their z coordinate as
shown in the scale bar.

5.2.2 N∗ −N∗ pair interaction

We then further investigated the structural properties of the surface in the presence
of adsorbed N*. In particular, we measured the pairwise correlation of N* and its
relationship with the Fe substrate.

MD simulations reveal that triangular complexes induce clustering of adsorbed
atoms, as evidenced by the presence of a peak in the distribution of N∗ distances
at values much lower than the average distance for a uniform distribution (see T =

300K case in Figure 5.6). The strong short-range pair correlation between N∗ atoms
at operando temperature is consistently observed for all of the different coverages
studied (12.5%, 25%, 50%), see Figure 5.7.

The strong short-range pair correlation between N∗ atoms at operando temper-
ature compared to room temperature, can be attributed to two possible origins:

• the formation of Fe∗3N∗
i motifs, leading to the clustering of N∗ atoms;

• the diffusion of N∗ atoms at operando temperature, allowing them to dynami-
cally alter the N∗−N∗ pair interaction, which is absent at room temperature.

To better understand their respective contributions, we segmented the histogram
into two parts: one representing the distribution from N∗ atoms in standard four-
fold coordination and the other from those belonging to triangular motifs, as shown
in Figure 5.6 and Figure 5.7. It is evident that the formation of Fe∗3N∗

i plays a major
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Figure 5.5: Relaxed structures and energetics of all possible configurations (a) 1
N∗, (b) 2 N∗, (c) 3 N∗, and (d) 4 N∗ bound to Fe∗3 using density functional theory
(DFT) calculations at 0 K. The reference structures are derived from arrangements in
which all N∗ are four-fold coordinated, representing their equilibrium configuration
in the absence of Fe∗3. The relaxed energies from these states are used as the energy
reference for each respective N∗ concentration.
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Figure 5.6: Average distribution of the N∗−N∗ distances on the 25% covered Fe(111)
surface at 700 K (see Figure 5.7 for the other concentrations). In the figure are shown
the histograms of distances; between all atoms (solid red line), between all pairs of
atoms in which at least one is coordinated to a Fe∗3 triangle (dashed line), and
between uncoordinated atoms (CN,Fe = 4) using dotted line. We also contrast the
N∗ − N∗ histogram at 700 K (solid red line) with the corresponding histogram at
300K (solid blue line). Above the picture, we report two snapshots highlighting the
distances that contribute to the dominant peaks at low and high temperatures.

12.5%	𝑁∗ 25%	𝑁∗ 50%	𝑁∗

Figure 5.7: Average distribution of the N∗ − N∗ distances on Fe(111) surface with
various N∗ coverages at 700 K. In the figure are shown the histograms of distances;
between all atoms (solid red lines), between all pairs of atoms in which at least one
is coordinated to a Fe∗3 triangle (dashed lines), and between uncoordinated atoms
(CN,Fe = 4) using dotted lines.
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role in the clustering of N∗ atoms. To further confirm this hypothesis, we simulated
an artificial system for 25 % coverage, wherein the iron atoms remained at room
temperature while the N∗ atoms were allowed to diffuse by increasing their tem-
perature to 1200 K, through the application two different thermostats. This strategy
also solves a problem related to simulating the room temperature distribution. In
fact, due to the time scale limitations, the distribution of pair distances at room
temperature is solely determined by the initial arrangement of N∗, since diffusion
can be considered a rare event at low temperatures. We find that the distribution
for N∗ − N∗ pair distances for this artificial system closely resembles the four-fold
case, see Figure 5.8, and as such, it cannot explain the intensity of the first peak.

We can thus conclude that the N∗−N∗ effective interaction is modulated by the
substrate. It also warns against the danger of treating the surface as static, even if
the reagents are allowed to move.

25	%	𝑁∗

Figure 5.8: Average distribution of the N∗−N∗ distances on the 25% covered Fe(111)
surface at 700 K. In the figure are shown the histograms of distances; between all
atoms (solid red lines), between all pairs of atoms in which at least one is coordinated
to a Fe∗3 triangle (dashed lines), and between uncoordinated atoms (CN,Fe = 4) using
dotted lines. We also contrast the histogram of N∗ pair distances (dashed blue line)
for an artificial system where iron atoms are maintained at room temperature while
N∗ adsorbates are heated at 1200 K to allow them to diffuse. The distribution for
this artificial system is similar to the four-fold case.
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5.2.3 Effective N∗ coverage

This clustering leads to a decrease in the effectiveN∗ surface coverage, as evidenced in
Figure 5.9, where the effective coverage at 700 K is shown to be lower than the actual
N∗ coverage. This is determined by accounting for the surface area that remains free
from Fe∗3 clusters and by excluding N∗ atoms that are part of Fe∗3 motifs, which have
coordination numbers CN,Fe ̸= 3 or 5. The solid circles and error bars in the figure
represent the average effective coverage and fluctuations observed during molecular
dynamics simulations. Thus, at high temperatures, the clustering effect reduces the

Figure 5.9: Effective N∗ coverage as a function of the actual N∗ coverage at 700 K,
determined by considering the surface area free from Fe∗3 and excluding N∗ atoms
that are part of Fe∗3 (CN,Fe ̸= 3 or 5). Solid circles and error bars represent the
average value and the fluctuations during molecular dynamics simulations.

poisoning of the surface, leaving a greater portion of the surface available for nitrogen
dissociation.

Moreover, the probability of finding an N∗ atom near a C7 site is significantly
lower at 700K compared to 300 K, as depicted in Figure 5.10. In the figure, we
report the histogram of the distances between C7 sites and N∗ atoms for various
N∗ concentrations at both temperatures. The histogram is normalized based on the
total number of C7 at each timeframe t evaluated,

∑
tNC7(t). The C7−N∗ distance

is much greater at 700 K (represented by the red line) compared to 300 K (blue line).
This indicates that at higher temperatures, the surface dynamics contribute to a
reduced likelihood of N∗ atoms occupying the vicinity of C7 sites, further alleviating
the poisoning effect observed at lower temperatures.
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12.5	%	𝑁∗ 50	%	𝑁∗25	%	𝑁∗

Figure 5.10: Histogram illustrating the distribution of C7 − N∗ distances on the
Fe(111) surface covered with various N∗ concentrations during molecular dynamics
(MD) simulations at 300 K and 700K. The histogram values are normalized based
on the total number of C7 sites (

∑
tNC7(t)). The blue and red lines are used for

300 K and 700K, respectively.

It is important to notice that these triangular motifs are characteristic of the
Fe4N (111) surface, which corresponds to the stable nitride phase under operando
conditions [209]. The observation of these triangular motifs on the Fe(111) surface
under high nitrogen coverage can be interpreted as early-stage precursors of a transi-
tion towards the more stable nitride phase, though this transition remains frustrated
under the conditions studied. This behavior is reminiscent of the hypothesis pro-
posed by Ertl and coworkers [24], who suggested that “surface nitrides” structures
related to but distinct from bulk Fe4N , are formed during nitrogen dissociation on
Fe surfaces.

This behavior turns out to be, although different, intrinsically related to what
was shown in the previous Chapter in the context of ammonia decomposition on
Fe(110) surface. In that case, the “hardness” of the surface does not allow the forma-
tion of the surface nitride phase, and the transition occurs in the bulk, as observed
experimentally. Here, the “softness” of the surface allows a nitride phase to emerge
directly at the surface.

5.2.4 Dynamical properties

Having described the structural changes induced by N∗, we focus on the dynamical
properties of the surface. From a visual inspection of the simulations, the atoms
involved in the Fe∗3Ni motifs have slower dynamics compared to the other atoms.
Thus, we calculate the diffusion coefficientD of Fe surface atoms andN∗ according to
Equation 2.38 (see section 2.6.2.2). In Figure 5.11 we report Fe surface atoms diffusion
coefficient DFesurface as a function of N∗ surface coverage at 700 K. The diffusion
coefficientDFesurface clearly decreases monotonically as the value of coverage increases.
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However, the average iron diffusion remains sizable, allowing surface dynamics to
affect the system behavior also at finite coverages.

Figure 5.11: Diffusion coefficient of Fe surface atoms as a function of N∗ surface
coverage at 700 K.

Given the limited number of N∗, we were not able to get enough statistics to pin
down the value of the N∗ diffusion coefficient with acceptable statistical confidence,
but for the case of the 50% coverage where we could estimate a diffusion coefficient
value of DN∗ = (1.7 ± 0.1) 10−8cm2/s which is one order of magnitude higher than
surface Fe atoms at the same N∗ coverage.

To study the behavior of local structures during simulations, we employ the
Environment Similarity metric as described in Section 2.6.2.1. As the concentration
of N∗ increases, the density of the Fe∗3 triangles increases while that of the C7-like
environments decreases, as can be seen in Figure 5.12. Both surface features have a
finite lifetime, as reported in Figure 5.12 (bottom panel). The lifetime distributions
are non-Gaussian, with long tails towards long lifetimes. It is important to note
for the catalytic activity that the average lifetime of the C7 catalytic environments
increases as a function of coverage.

At the end of this section, we want to make a remark on the complex dynamical
properties of the surface, especially under varying N∗ coverage. First, the dynamics
of the iron atoms enable the formation of triangular Fe∗3Ni motifs, where nitrogen
atoms tend to cluster, while still leaving some C7 catalytic sites free, thus effectively
reducing the surface coverage and mitigating the poisoning effect. Second, as the N∗

coverage increases, the mobility of surface atoms decreases, leading to a general
reduction in surface dynamism. However, this reduction in mobility extends the
lifetime of the remaining free C7 catalytic sites, allowing them to remain active
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(a) (b)

Figure 5.12: Surface density and violin plot of lifetime distribution for a) Fe∗3 and b)
C7 sites. These are calculated using the Environment Similarity metric as described
in Section 2.6.2.1. For the surface density of C7, faded squares indicate the overall
density of C7, while solid circles denote the density of C7 sites unaffected by N∗

poisoning. In the lifetime distribution plots, only Fe∗3 and C7 sites with lifetimes of
at least 100 ps are considered. Sites with lifetimes surpassing 1 ns are indicated by
x markers.

for longer periods despite the high nitrogen coverage. This dynamic balance between
clustering, mobility reduction, and catalytic site preservation is key to sustaining
catalytic activity at elevated coverages, as we will address in the following section.

5.3 Effect of N ∗ coverage on N2 adsorption and decom-
position

In this section, we study how this complex dynamics affects the ability of the N∗-
covered surface to adsorb and dissociate an incoming N2 molecule. In Ref. [44], we
found that two collective variables could well describe the behavior of this process:
the N2 bonding length d and the charge transferred from the metallic surface to
the nitrogen molecule q. As we extensively presented in the previous Chapters, the
changes in q are a rather reliable indicator of the underlying chemical process and
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allow classifying the adsorption states without having to specify explicitly the geo-
metrical arrangement. This quantity is particularly effective also for describing the
N2 dissociative chemisorption at high temperatures [44]. The q values were computed
by training a graph neural network on the data collected in Ref. [44] supplemented
by the new ones obtained here for the covered surface, see Section 2.5.

T = 300 K

Figure 5.13: The free energy is plotted as a function of N-N distance (d(N,N)) and
the partial charge of N2 (q(N2)) at 300 K for various N∗ covered surfaces. The local
minima on the plot correspond to metastable states, and the white dashed lines
indicate the minimum free energy pathway (sm) in this plane. The reference is set
to 0 for the lowest energy state (α).

In Figures 5.13 and 5.14, we report the free energy profiles along d(N,N) and
q(N2) variables (F (d, q)) obtained at the various N∗ surface coverages (0%, 12.5%,
25%, 50%) at 300 K (Figure 5.13) and 700K (5.13). These free energy surfaces pro-
vide a comprehensive description of how the adsorption and dissociation of N2 evolve
as a function of both the N-N bond distance d(N,N) and the charge transferred to
the nitrogen molecule, q(N2). Before going into a detailed description of the process,
we want to note how remarkable it is that the same variables can also be used prof-
itably in the more complex situation described here. The minima observed along the
d − q plane correspond to different adsorption configurations, each with its specific
stability. The metastable states reflect various stages of molecular adsorption before
full dissociation. The free energy landscape suggests that at 300 K temperature (Fig-
ure 5.13), dissociation barriers increase with N∗ coverage, indicating that nitrogen
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T = 700 K

Figure 5.14: Analogous of Figure 5.13, at 700 K.

poisoning effectively hinders the adsorption process. In this scenario, the surface is
less dynamic, and N∗ atoms occupying active sites impede further N2 dissociation.
At 700K, as depicted in Figure 5.14, the scenario changes significantly. The increased
temperature leads to enhanced surface mobility, which, as discussed in earlier sec-
tions, mitigates the poisoning effect caused by N∗ atoms. Despite the presence of
N∗, the dissociation barrier remains relatively unchanged, as shown by the similar
free energy profiles across different coverages. This can be attributed to the dynamic
surface rearrangements that create transient adsorption sites for N2.

The white dashed lines along the free energy surfaces represent the minimum
energy pathway sm on the space (d, q), which indicates the most probable trajectory
that N2 follows during adsorption and dissociation and results very little depending
on the system studied. For clearer readability, we have reported the free energy
profiles along minimum energy pathways F (sm) in a single panel (Figure 5.15b) in
which we also report again the 2D profile at 300 and 700 K for the coverage of 25%
N∗ (Figure 5.15a). At T = 300K, one can recognize the classical adsorption sites of
the low-temperature studies of nitrogen chemisorption on iron [32, 202, 215]. As the
charge transfer increases, the adsorption sites go from a vertical γ/δ to a horizontal
α, and to the precursor horizontal α′ state in which the molecule sits in the second
layer just above the C7 iron atoms. At T = 700K, the overall qualitative behavior is
similar with the notable exception of the instability of the α′ state due to the surface
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(b)(a) T = 300 K

T = 700 K

25% N*

25% N*

T = 300 K

T = 700 K

γ/δ

𝛼

𝛼’

Figure 5.15: (a) The free energy, F (d, q) is plotted as a function of N-N distance and
the nitrogen charge q(N2) (defined as the sum of the partial charges of N atoms) at
300 K and 700 K for a surface covered with 25% N∗. Results for the other concentra-
tions are reported in Figures 5.13 and 5.14. The local minima on the plots correspond
to metastable states, and the white dashed lines indicate the minimum free energy
pathway (sm) in this plane. The snapshots of various adsorption sites (γ/δ, α, and
α′) are shown in the top panel of (a). (b) The minimum free energy profile (F (sm))
computed along the sm in d − q space for the Fe(111) surface at 300 K and 700K.
In plotting the T = 700K, we have not considered those transitions that take place
on the Fe∗3 triangles whose energy barrier is much higher (120 kJ/mol) than the one
associated with the C7 sites. See Figure 5.17 for the free energy profiles computed
using all pathways. The reference is set to 0 for the lowest energy state (α). Note
that, for 10 bar N2 partial pressure, we do not find N2(g) to be a metastable state
at 300 K.

dynamics, already noted in Ref. [44] for the clean surface.
A more punctual comparison between the systems at different temperatures and

coverages can be made via the minimum free energy paths, see Figure 5.15b. In this
representation, the difference between the low and the high-temperature behavior
is more striking. In the T = 300K case, where the atom mobility is close to zero
and the surface structure is ordered, the free energy barrier between the α state and
dissociation increases with coverage reflecting the poisoning effect of the N∗ atoms,
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as observed by Ertl experiments at low temperature on Fe(111) [24]. In noticeable
contrast, at T = 700K, the free energy barrier relative to the α state hardly changes.
Two main physical effects conspire to yield this result:

• the surface atoms mobility, which is reduced but not quenched by the N∗. This
pushes the lifetime of the C7 sites to higher values.

• the looming transition to a nitride phase. This leads to the formation of Fe∗3N∗
i

complexes and to a clustering of N∗ atoms, which reduces the number of N∗

blocking the active sites, see Figure 5.12.

These two effects compensate for the decrease in available C7 environments, leading
only to very small changes in the free energy barrier. On the other hand, the free
energy difference between the gas phase and the α state is affected by the cover-
age, leading for the 50% case to an increase of the apparent activation energy of
∼ 15 kJ/mol, in agreement with the estimate based on the analysis of an industrial
catalyst behavior [213]. Once again, as in the case of the clean surface [44] and the
ammonia decomposition (see Chapter 3), we find that there are two different behav-
iors depending on temperature, and in particular that the effect of lateral interactions
with N∗ at high temperature cannot be derived by extrapolating the results obtained
at low ones.

5.3.1 Reaction pathway analysis

From a detailed observation of the reactive trajectories at operando temperature, we
observe that the adsorption and dissociation of N2 can occur through two distinct
and independent pathways. One pathway closely resembles the low-temperature route
(referred to as the C7 pathway), while the other takes place atop the Fe∗3 moieties
(designated as the Fe∗3 pathway). To discern their respective F (d, q) profiles, we
divide the configurations based on the minimum distance between the N2 molecule
and all three Fe atoms of Fe∗3. If this minimum distance falls within 3.5 Å of all
three atoms of Fe∗3, the configuration is categorized as part of the Fe∗3 pathway;
otherwise, it pertains to the C7 pathway. In Figure 5.16, we depict the F (d, q) curves
along these distinctive pathways for 12.5% N∗ coverage case. Similar results have
been obtained for the other coverages for which we report only the one dimensional
F (sm) (see Figure 5.17). For the Fe∗3 pathway, only one adsorption state emerges as
a metastable equilibrium state, with a q(N2) value resembling the α state in the C7

pathway. On the other hand, the C7 pathway resembles the general (all pathways)
free energy landscape, previously presented in Figure 5.14.
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Figure 5.16: The free energy is plotted as a function of N-N distance (d(N,N)) and
the partial charge of N2 (q(N2)) for the reaction pathway on the C7 (left) and Fe∗3
(right) at 700K for various 12.5% N∗ coverage. The configurations in which the
minimum distance between N2 and any atom of Fe∗3 is more than 3.5Å are used for
the free energy calculation of C7 pathway, the remaining (min(d(N2, Fe

∗
3)) < 3.5Å)

are used for the Fe∗3 pathway. The local minima on the plot correspond to metastable
states, and the white dashed lines indicate the minimum free energy pathway (sm)
in this plane. The reference is set to 0 for the lowest energy state.

The global F (sm) profile, along with the individual F (sm) profiles for the two
pathways, are shown in Figure 5.17. Notably, the dissociation barrier for the Fe∗3
pathway is significantly higher (≈ 120 kJ/mol) compared to the C7 pathway (≈
80 kJ/mol). Consequently, as it is anticipated, the reaction predominantly proceeds
through the C7 pathway.

T = 700 K

Figure 5.17: The free energy profile computed along the minimum free energy path-
way in the 2-dimensional d(N,N) q(N2) space for the Fe(111) surface at 700 K (left
panel) using all reactive pathways and (right panels) resolved for C7 and Fe∗3 path-
ways.
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Discussion

In conclusion, in this Chapter we showed that the overall catalytic activity of the
Fe(111) surface is due not only to the existence of catalytic sites but also to the
properties of the surface as a whole, its dynamics, and its fluctuations. The closeness
to a phase transition toward the nitride phase helps to induce the kind of heteroge-
neous static and dynamical behavior observed here and to sustain the fluctuations
needed for the catalytic process to be stabilized. A beneficial effect on the catalyst
resistance to poisoning comes from a combination of surface dynamics and chemical
processes-induced changes. Similar observations of the dramatic effects of surface
dynamics and reaction-induced changes can be found in the literature, with notable
examples being the activation of the copper surface by carbon monoxide [56] and the
destabilization of lithium imide [66] and barium hydride [65] surfaces under ammonia
decomposition. Once again, our study demonstrates that a static description of one
such catalyst is inadequate. For the Haber-Bosch reaction, this was suggested some
time ago by Spencer [54], when he argued that for an industrial catalyst to be as
stable as it is, a steady state dynamical process needs to be set up. He indicated two
possible ways in which this could happen: either the surface atoms becoming mobile
or the reaction itself dynamically changing the surface. One can recognize that in
this process, the two scenarios combine into one.

It’s also interesting to compare these results with what we reported in Chapter 4.
For the case of Fe(110), we have observed how nitrogen dissolves in bulk, explain-
ing the formation of bulk nitrides. Instead, for the Fe(111), the surface species and
iron mobility favor the formation of a nitride pattern directly on the surface. In the
case of Haber-Bosch ammonia synthesis, this implies not only the aforementioned
beneficial effect on the active sites for N2 dissociation but also allows for exposing
N∗ on the surface without dissolving in bulk. The latter is crucial for the N∗ to
be hydrogenated. In contrast, the N dissolution and consequent bulk nitride forma-
tion observed for the Fe(110), will not lead to hydrogenation steps and, thus, the
reaction to proceed. This might offer an additional explanation for the dissimilar ac-
tivity observed across different surfaces[31]. Moreover, it further demonstrates how,
in heterogeneous catalysis, the role of the catalyst is much more complex than can
be modeled with simplified models.

Finally, we note that the picture depicted here could be experimentally checked
with modern operando surface spectroscopy techniques and these experiments could
also be used for studying the nucleation of the nitride phase [56, 216]. Notwith-
standing the economic and time burden of obtaining and studying a Fe(111) catalyst
obtained from a single crystal, we hope that this can be done in the near future.



Chapter 6

A Data-Efficient protocol for
modeling catalytic reactivity

As we have shown in previous Chapters, studyng catalytic reactivity under opera-
tive conditions poses a significant challenge due to the dynamic nature of the cat-
alysts. These studies were possible thanks to the combination of machine learning
and enhanced sampling, which allows for the simulation of dynamics at a fraction of
the cost. Still, to build accurate and robust MLPs, which are needed for modeling
catalytic reactivity in operando conditions, all relevant configurations, particularly
reactive ones, have to be included in the dataset. As seen in Section 2.3, active
learning techniques can effectively accomplish this task, particularly when combined
with enhanced sampling. We have demonstrated this in the construction of potential
for ammonia synthesis/decomposition on Fe surfaces, where we applied active learn-
ing through the query-by-committee, nowadays considered as a standard approach.
However, this procedure is effective but not efficient, and it could prevent studying
systems whose electronic structure description is more expensive. In fact, the total
amount of DFT calculations performed for Fe studies is of the order of hundreds of
thousands (see Section 2.3.1), which could be prohibitively large.

This is, for instance, the case of Fe-Co alloys, which we were interested in study-
ing as they showed an improved catalytic performance for NH3 decomposition with
respect to Fe. We were thus prompted to search for new strategies to efficiently con-
struct reactive potentials with a minimum number of QM calculations. More gener-
ally, this is also critical to enable their widespread use. In this regard, recent develop-
ments in data-efficient architectures can help in reducing the number of points needed
to train a robust model. These advances include equivariant GNNs (Section 2.2.3.2)
or transfer learning approaches [217] leveraging foundational models [218, 219]. How-
ever, these techniques still do not solve the crucial issue of identifying the few relevant
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configurations to be included in the reference dataset set.
In the following, we present a scheme we developed to construct a reactive poten-

tial for FeCo in a data-efficient way. This is achieved by combining enhanced sampling
methods first with GP to discover transition paths and then with GNN to obtain
a uniformly accurate description. The necessary configurations are extracted via a
novel active learning procedure we named Data-Efficient Active Learning (DEAL)
based on local environment uncertainty. The protocol has been developed with the
aim of studying the NH3 decomposition on FeCo, but it can be applied to general
reactions. At the end of the chapter, we will provide an extended validation of the
protocol and its general features, leaving the presentation of simulation results of the
new catalyst to the next chapter.

6.1 A data-efficient protocol

Despite the success of enhanced sampling-based active learning, these studies often
required many iterations and numerous DFT calculations, leaving room for improve-
ment. Two aspects should be considered to make the construction of MLPs more
efficient. At first, when there is little data available, incremental learning [220] ap-
proaches should be used in which the potential is frequently updated. Otherwise, by
pushing the system out of equilibrium with enhanced sampling, we risk extrapolating
poorly and sampling the wrong configurational regions. On the other hand, we also
need an efficient criterion for selecting structures for DFT calculations from those
obtained in the active learning process.

Here, we introduce a new scheme to efficiently construct reactive potentials, lever-
aging both enhanced sampling methods and on-the-fly selection of relevant struc-
tures. This is achieved following a two-stage protocol: an exploratory phase to har-
vest an initial pool of reactive configurations and a second stage in which we obtain
a uniformly accurate description of the transition pathways (see Fig. 6.1 for a di-
agram of the protocol). For the second step, we developed a new active learning
scheme, named Data-Efficient Active Learning (DEAL), which allows us to identify a
non-redundant set of structures to be added to the training set. As an enhanced sam-
pling method, we used OPES [157] (see Section 2.4.2) with its different variants that
can be used to explore or converge the free energy landscape. Furthermore, another
important ingredient is Gaussian processes (GPs) [221], which we used first to learn
the potential energy surface on the fly and then to identify novel local environments
to build a minimal data set within our active learning scheme.

We illustrate these methodological advances by studying several reactions re-
lated to ammonia decomposition over FeCo alloy catalysts. The ferromagnetic and
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Figure 6.1: Diagram of the protocol used to obtain uniformly accurate and data-
efficient reactive potentials. On the right, we have reported some details regarding
the ML potential, enhanced sampling scheme, and selection criterion used in the
different stages.
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metallic properties of the surface make the description of the electronic structure
particularly computationally expensive, and this is why we needed to develop this
computationally efficient methodology. Although it is a new system, it shares many
structural properties with Fe, so many of the variables and expertise developed in
the iron studies will be exploited here.

We focus here on the description of the method and the construction of the MLP
for FeCo alloys, while the results on the catalytic behavior and activity of FeCo will
be presented in Chapter 7.

6.1.1 Preliminary construction of reactant potentials

In our pursuit to model the catalytic process of ammonia decomposition FeCo sur-
faces, we initiated our investigation by constructing ML potentials for the reactants.
This involved gathering configurations to characterize the pristine 110 surface (see
Fig. 6.2) and the different intermediate species adsorbed on it (NH3, NH2, NH, N,
N2, H,...). To efficiently accomplish this task, we employed GPs to learn on-the-fly

Figure 6.2: NHx adsorbates on the FeCo (110) surface, top and left view.

the potential energy surface, with the sparse implementation of FLARE [115] us-
ing the Atomic Cluster Expansion (ACE) descriptors [116], see Section 2.7.4.2 for
details. Recognizing the limitations of GPs with large training datasets [221], we
trained separate models for each intermediate species.

Initially, we generated a dataset by conducting a set of uncertainty-aware molec-
ular dynamics (MD) simulations based on GPs at the operando temperature of
T=700 K. Subsequently, we performed simulations at higher temperatures (up to
900 K) to diversify our configurations and capture surface dynamics. In addition,
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to obtain an exhaustive coverage of the reactant space, we carried out enhanced
sampling simulations to explore the various adsorption sites and the diffusion of the
molecules on the surface. This preparatory stage produced about 2500 configurations
for all the different intermediates.

Given the complexity of the reaction pathways and the potential existence of
multiple channels, we approached the collection of reactive configurations through
a two-step process. In the first, the reactive pathways are discovered, while in the
second, the description of these pathways is improved until high accuracy is achieved.

6.1.2 Reactive pathways discovery via uncertainty-aware flooding
simulations

The initial step in harvesting reactive configurations is the discovery of reaction
pathways and transition state structures. While for gas phase reactions, a simple
interpolation between reactants and products can provide a reasonable guess, for
catalyzed reactions, this is not possible, especially at high temperatures. Indeed, the
active site is not known beforehand or may change due to dynamics [44, 222] or,
again, there may be multiple reaction pathways that need to be sampled [222]. To
address this challenge, we used OPES to perform a set of “flooding-like” [223] simu-
lations together with uncertainty-aware MD (see Section 2.7.4.2). As we have seen,
OPES-flooding introduces an external potential to fill the reactant basin and then
let the reactive event occur as spontaneously as possible along the low free-energy
pathways. This allowed us to sample reactive processes with minimal knowledge of
the reaction mechanism. The only requirement for these methods is the definition of
collective variables (CVs) that can distinguish between reactant and product states.
We note that, in the case where the products of the reaction to be studied are not
known, generic CVs could be used to discover the possible products [224]. In addi-
tion, the integration with uncertainty-aware MD brings two significant advantages:
it allows for an efficient selection of reactive configurations based on the uncertainty
of the local environments, and it updates the potential energy surface model in an
incremental manner, correcting wrong extrapolations to nonphysical regions of phase
space.

To illustrate our workflow and demonstrate its effectiveness in sampling reactive
pathways, we start with the case ofN2 dissociation, a process that we have extensively
examined on Fe surfaces (see Ref. [44] and Chapter 4). Nitrogen molecules can adsorb
onto the (110) surface in two main configurations, either parallel (α) or perpendicular
(γ) to the surface (see Fig. 6.3a). A priori, we do not know from which adsorption site
the molecule may break. To find out, we performed a set of iterative OPES-flooding
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Figure 6.3: Exploration stage: iterative discovery of reaction paths through
flooding simulations and GP-based MD. We report a schematic presentation for
the case of N2 dissociation. a) The reactant free energy landscape constructed at the
end of the preliminary phase, highlighting the metastable minima (gas phase and two
adsorption states). Arrows indicate that the reaction paths toward the product state
are unknown a priori. Several iterations are then initiated from the reactant basin.
The time evolution of the distance between N atoms dN,N (b) and the GP maximum
uncertainty on the local environments (c) are shown for a specific iteration. Every
time the uncertainty of the GP exceeds the threshold of 0.1 (red dotted line), energy
and forces are recomputed at the DFT level (red dots), and the GP is updated.
Panel (d) shows all iterations in the 2D space defined by dN,N and the coordination
number between N and surface atoms CN,Fe|Co, with the trajectory shown in (b,c)
highlighted. Above the top axis, we report the distribution of points where DFT
calculations were performed, projected along dN,N .
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Figure 6.4: Reaction path discovery for the hydrogenation steps. The tra-
jectories are visualized in the space defined by CN,H and CN,Co. To facilitate the
understanding of the sampled paths, we have shown in the background the free en-
ergy surface obtained from the final simulations, which are shown up to ∼ 2 kBT
above the barriers, highlighting the minimum free energy paths for each reaction
(see Fig. 6 for the full colored version). The dots represent the structures recalcu-
lated with DFT, whose distributions along CN,H are projected above the upper axis.

simulations, using the same CVs of Ref. [44], namely the N-N distance dN,N and the
coordination of N with surface atoms CN,Fe|Co. As it can be seen in Fig. 6.3b, the bias
potential promoted the exploration of new regions of the potential energy surface.
Whenever the uncertainty of the local environments (Fig. 6.3c) exceeded a predefined
threshold (i.e., it was structurally different from the environments in the training set),
a new DFT calculation was performed, and the GP model was updated. The reactive
pathway of N2 dissociation can be effectively visualized in the plane defined by the
two CVs (thick orange curve in Fig. 6.3d), illustrating the progression from the gas
phase through the adsorption sites γ and α and finally to the transition state region.
Whenever the system reached the product state (vertical dashed line), the simulation
was stopped, and a new one started. In this way, an ensemble of reactive pathways
was iteratively collected (Fig. 6.3d), ensuring continuous refinement of the potential
energy surface and inclusion of a diverse set of reactive environments. Indeed, each
pathway exhibited geometric diversity covering a wide range of coordination with
surface atoms while originating from the same horizontal adsorption site α.

The need for a flexible and adaptive approach is even more important for mod-
eling the three dehydrogenation steps from ammonia to atomic nitrogen. To harvest
such reactive structures, we followed the same protocol, using uncertainty-aware
flooding simulations starting from the GP potentials optimized for each reactant. In
previous work on the Fe surfaces (see Chapter 3), despite being three steps of the
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Figure 6.5: Evolution of the OPES-flooding reactive discovery iterations for
the dehydrogenation reactions. This is the same plot as in Fig. 6.4, divided here into
three rows according to the number of iterations. The sampled paths in the first
few iterations mostly involve regions of higher free energy. As the flooding iterations
proceed and the potential is updated with these new data points, the sampled paths
converge to lower free energy regions, emphasizing the importance of an incremental
approach. This is particularly evident in the case of the first step of dehydrogenation
of NH3, which initially occurs at very low coordination numbers between N and Co
and then converges to the minimum free energy pathway (that is around 1).

same chemical process (dehydrogenation), the different interactions of the adsorbates
with surface atoms had necessitated the use of different CVs to converge the free en-
ergy calculations. Since we are in an exploratory phase here, we wanted to use instead
a single generic CV (i.e., the planar distance between N and H) for all reaction steps
to demonstrate our approach’s ability to find the accessible pathways with minimal
knowledge. The resulting trajectories are visualized in the plane defined by nitrogen-
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hydrogen and nitrogen-cobalt coordination (Fig. 6.4), whose distribution revealed a
broad spectrum indicative of the existence of at least two distinct reaction channels.
To put our results into context, we superimposed the reactive pathways on the free
energy surface derived later from our study (analogous to Fig. 7.1). The remarkable
alignment between the sampled and minimum free energy pathways confirmed the
effectiveness of our methodology in accurately sampling the crucial reactive config-
urations without prior assumptions on the adsorption sites or the transition states.
Although each dehydrogenation step occurred from different adsorption sites charac-
terized by increasing coordination with the surface, thanks to the flooding scheme,
we were able to find reactive pathways using a generic CV that only distinguished
reactants from products. Furthermore, an analysis of the evolution of the sampled
paths as a function of iterations demonstrated the importance of an incremental ap-
proach: the transition pathways initially pass through high free-energy regions and
then converge to low free-energy regions as new data are added (Fig. 6.5).

In total, about 400 reactive configurations were collected in this exploratory
phase, demonstrating that our approach enables systematic and efficient sampling of
reaction pathways under operando conditions, even when multiple ones are available.

6.1.3 Uniform accuracy along reactive paths through GNNs and
Data-Efficient Active Learning (DEAL)

Having collected the first dataset of reactive structures, we moved on to the second
phase of our approach, aiming to converge the accuracy along the reactive paths. For
this purpose, we used equivariant graph neural networks (GNNs) [225] to represent
the potential energy surface. As we discussed in Section 2.2.3.2, these architectures
are more flexible than GPs [226] and have demonstrated remarkable data efficiency,
enabling robust simulations as early as hundreds/thousands of training points [227].
In particular, we used MACE [111], which integrates the descriptors used in our
previous approach (i.e., ACE) in a message-passing scheme. Resorting to NN allowed
us to consolidate all previously collected data into a single potential, overcoming the
limitations imposed by having separate GPs for each intermediate. In addition, this
allowed us to conduct long (∼ns) enhanced sampling simulations instead of the many
short (∼ps) simulations of the exploratory phase. This way, we sampled hundreds of
different reactive events, providing a more thorough sampling of reaction pathways
under dynamic conditions.

To enrich the training dataset further and improve the accuracy of our model, we
turned our attention to selecting additional structures from the new MD trajectories.
As before, we illustrate our method while focusing on the nitrogen recombination
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Figure 6.6: Convergence stage: data-efficient active learning of the GNN.
We illustrate the GP-based active learning of the MACE structures for the N re-
combination and dissociation process. a) Distribution of the maximum uncertainty
on the forces σ(MACE)

max (calculated from a committee model) on the simulation per-
formed with MACE before the active learning. The grey dotted line at 90 meV Å−1,
represents the chosen threshold for the query-by-committee selection. In the inset, we
report the distribution of the same configurations along the collective variable dN,N .
b) Distribution of the DFT single point performed with DEAL (red bars), among
the ones pre-selected via query-by-committee (blue bars). The number of configu-
rations in each bin is reported on top of the bars. c) Distribution of the maximum
uncertainty on the forces σ(MACE)

max for initial model (blue histogram) and after DEAL
(red histogram). The second distribution is obtained from a new MD with identical
parameters performed with the MACE model after DEAL. d), Average uncertainty
along the reaction coordinate dN,N for the two simulations generated respectively
with the initial MACE model (blu line) and after DEAL (red line).
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and dissociation process. Our first step is to examine the uncertainty of the MACE
model, evaluated using the maximum standard deviation of a committee of models
(see Equation 2.14). In Figure 6.6a, we report the distribution of the maximum
uncertainty per configuration peaks around 80meV Å−1. We note that this value is
high due to the large magnitudes of the N forces involved in the reaction: 90 percent
of these forces have a relative uncertainty of less than 20 percent, see Fig. 6.7.

Figure 6.7: MACE relative uncertainty before/after DEAL. We plotted the
distribution of the relative maximum force uncertainty σ

(MACE)
max /f for the initial

MACE model (top) and after (bottom) the DEAL the active learning scheme de-
scribed in Main Text Fig. 4. On the right axis, the corresponding cumulative fraction
is reported.

To assess the quality of the potential in describing the reactive event, it’s re-
vealing to analyze the average uncertainty as a function of the collective variable,
which describes the progress of the reaction (Fig. 6.6d). Indeed, this quantity showed
a strongly nonuniform behavior, with significantly higher uncertainty in the region
between the reactant and product states (i.e., 1.5 < dN,N < 2.2). Furthermore, by
comparing the mean uncertainty with the distribution of the selected configurations
(Fig. 6.6c) we realized that the query-by-committee criterion would lead to an imbal-
ance between the region of the space which is most sampled (2.2 < dN,N < 2.7), but
whose configurations are only slightly above the threshold, and the one that really
needs to be improved. In previous works, it was necessary to manually select multiple
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configurations with high uncertainty [63] or from a specific region in CV space [129]
to accurately model reactive events.

Our objective is to avoid these issues and systematically achieve uniform accu-
racy along the entire reaction path with a minimal number of DFT calculations. To
this end, we propose an active learning scheme that uses the uncertainty of local en-
vironments to select a minimal set of representative configurations. In the following,
we refer to this scheme as Data-Efficient Active Learning (DEAL). DEAL consists
of two parts: first, a pre-selection of structures with high uncertainty is made using
the query-by-committee criterion (see Fig. 6.6a). Next, we extract a representative
subset of non-redundant configurations using Gaussian processes. Specifically, we use
the GP models trained in the previous stage to decide which configurations to re-
calculate at the DFT level, by measuring the uncertainty of the local environments
of the pre-selected structures. In this way, the uncertainty estimate is updated on
the fly after each single-point calculation, allowing us to filter out all the redundant
configurations. In the case of the N2⇌2N reaction, this approach allowed us to per-
form only ∼ 100 DFT calculations, which corresponds to about 5% of those selected
using the query-by-committee criterion (Fig. 6.6b). Moreover, this percentage varies
significantly as a function of CV, ranging from 2-3% in the most sampled region to
12-25% in the TS region, demonstrating how our algorithm can automatically target
the relevant configurations without requiring any input on the reaction coordinate.

The addition of the configurations selected by DEAL to the MACE model effec-
tively lowered the uncertainty of the configurations generated in the MD simulations
(Fig. 6.6c). In fact, already after only one cycle of active learning, the uncertainty
along the reactive coordinate drops below the chosen threshold (Fig. 6.6d). Other-
wise, we would have performed another cycle of active learning with the same proto-
col. We have applied the same scheme to the three dehydrogenation steps, obtaining
results similar to those we reported in Figure 6.8.

Before turning to the validation of the potential, we note that this active learning
scheme has two limitations: the need for a pre-trained GP model and the seriality of
DFT calculations. Therefore, we searched for alternatives that could address these
two aspects. To this end, recall that our goal is to extract a representative set of
configurations from those reported with high uncertainty. We have found that this
objective can also be achieved with a variant of DEAL in which the GP model is
trained from scratch using the energy and forces predicted by the potential as labels
(see Section 6.3). This is possible because the uncertainty provided by the GP is
based on the similarity of the local environments and not on the labels used. In
this variant, once the selection of structures is completed, DFT calculations can be
performed in an embarrassingly parallel way, as in the standard query-by-committee
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Figure 6.8: Uncertainty before/after DEAL (dehydrogenation reactions).
We present here the results of the dehydrogenation steps. MD simulations are
performed with MACE and the OPES bias to reversibly sample the transition
(NHx ⇌ NHx−1 +H, x=1,2,3). The first row reports the distribution of the maxi-
mum uncertainty on the forces σ(MACE)

max on the MD simulations performed with the
MACE models before (grey histograms) and after (colored histograms) the active
learning procedure. The second row shows the distribution of the average (max-
imum) uncertainty along the reaction coordinate CN,H for the configurations ex-
tracted from the MD simulations before (grey lines) and after (colored lines) the
active learning. After the active learning, the uncertainty was uniformly below the
threshold (50 meV/Å). Unlike the case of N2 recombination, the uncertainty in the
product regions (low coordination) was even higher than the TS. This was due to
the absence of configurations with short-range interaction between the products in
the preliminary dataset.

approach. We validated this approach by comparing the distribution of the selected
structures with that obtained previously with the pre-trained GP models (Fig. 6.9).
In addition, we trained a MACE potential using the newly collected structures and
verified that the description along the entire reaction pathway was equally accurate
(Fig. 6.10).
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Figure 6.9: DEAL selected configurations by the different variants (pre-
train GP vs from scratch). Here we compare the distribution of configurations
selected by DEAL variants along the CV. (top) Distributions of high uncertainty
configurations pre-selected with the query-by-committee criterion. (bottom) Con-
figurations selected by the GP pre-trained on the data collected in steps 0 and 1
and those trained from scratch only on the configurations generated by MD, using
MACE energy/forces as labels (see Section 6.3). In particular, since training a model
from scratch would result in selecting more configurations from the first part of the
dataset, we tested two different schemes: shuffling the trajectory or sorting the con-
figurations according to uncertainty in order to select more configurations with high
uncertainty. In both cases, we found remarkable agreement with the selection made
with the pre-trained model.
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Figure 6.10: DEAL selection: force accuracy along the reactive pathway for
the two variants (pretrain GP vs from scratch). We compared the accuracy of the
force predictions of the N atoms (as in Fig. 6.11) along the reactive pathway using
DEAL-selected configurations with a pre-trained or trained ex novo GP model. In
both cases, a uniformly good description is obtained along the entire reactive path.

6.2 Validation of the workflow

In this section, we assess the quality of the final potential, as well as investigate
its evolution through the different stages. The root mean square error (RMSE) of
the final MACE model on the validation dataset was 0.4 meV/atom for energies and
17 meV Å−1 for forces (corresponding to a relative error of less than 3 percent).
Figure 6.13 reports the accuracy of force predictions divided per chemical species,
from which we see that the adsorbate atoms (N,H) have the largest error, also partly
due to the higher magnitude of the forces.

To confirm the accuracy and reliability of our potential in describing reactive
processes and to better understand the importance of each stage, we conducted an
extensive post-hoc analysis. To this end, we trained three different MACE models
using the configurations collected at the end of each of the three stages (stage 2
thus represents the final potential). We constructed an additional test set composed
of configurations extracted from the production simulations and recalculated at the
DFT level. Specifically, we selected 200 structures for the N2⇌2N reaction and 150
for each dehydrogenation step, uniformly distributed along the CVs. We then evalu-
ated how the accuracy of the predictions of the energies and forces (of the adsorbates)
changes when expanding the training set as the workflow progresses. This analysis
shows that our procedure is able to achieve uniform accuracy along the reaction paths
for both energies (Fig. 6.14) and forces (Fig. 6.11 and Fig. 6.12). It also clarifies the
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Figure 6.11: Evolution of force accuracy along the reactive pathways in the
different stages of the workflow, for the case of N2⇌2N . (top) Force accuracy for the
N forces along the CV (N-N distance), with the violin plot denoting the distribution
within each bin and the solid lines representing the average along the CV. Each
line/violin plot corresponds to the accuracy of a MACE model optimized using as
a training set the configurations collected until a given stage (bottom). Number of
configurations in the reactive range collected at each stage. For each stage, it is
specified the type of simulation, while the number and length of the simulations
are reported in Section 2.7.4.5. The results for the other dehydrogenation steps are
reported in Fig. 6.12

.
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Figure 6.12: MACE force accuracy along the reactive pathways of
NHx⇌NHx –1+H, x=1,2,3. Analogous of Fig. 6.11 for the dehydrogenation steps.

relevance of each phase. In fact, focusing on the force predictions (Fig. 6.11, top
panel), we can observe that, at the end of the preliminary step, a significant fraction
of the configurations have errors greater than 0.5 eV Å−1. Therefore, using directly
the MACE potential to perform reactions by skipping the exploratory phase could
be dangerous, as we risk extrapolating to unphysical configurations.

We also observed how the relationship between the uncertainty σ(MACE)
max and the

error on the forces changes in the different stages (Fig. 6.15). Interestingly, in the
initial stage, the committee-based uncertainty strongly underestimates the error in
the transition region, while this gap decreases as more points are added. Additionally,
we also investigated the possibility of using a standard feed-forward NN potential
such as DeePMD [107, 109] instead of MACE. However, Fig. 6.16 shows that, after
the exploratory phase, the DeepMD errors are still large up to more than 1 eV Å−1,
which leads the simulations to be unstable. This implies that DeepMD requires larger
training datasets to obtain stable simulations, in agreement with what was observed
in Ref. [227], and confirms the importance of using data-efficient architectures in our
scheme. At the same time, this analysis shows that using the dataset of configura-
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Figure 6.13: Forces accuracy of the final MACE model divided per chemical
species (top row) MACE forces prediction versus DFT reference, resolved per atomic
species. (bottom row) Distribution of the error per each species. The test dataset is
composed of a subset of configurations extracted from the final dehydrogenation
simulations and recalculated with DFT single-point calculations.

Figure 6.14: MACE energy accuracy along the reactive pathway for N2⇌2N ,
as a function of the N-N distance. The violin plots represent the distribution of the
errors, and the lines denote the average over the points belonging to each bin.
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Figure 6.15: Accuracy vs uncertainty for the MACE GNN models. Top row:
scatter plot between the MACE uncertainty and the MACE error for the predictions
of the N forces, calculated on the reactive pathway of the N2⇌2N reaction. Bottom
row: Average MACE error/uncertainty along the CV (N-N distance), highlighting
the reactants and product regions. Each column corresponds to the MACE models
trained with the training set collected at the different stages.

tions collected with our workflow with other architectures still yields uniform (though
higher) accuracy along the entire reactive path, further confirming the quality of the
data selection scheme. Moreover, this suggests that the use of architecture which
are based on the same descriptors is not a strict requirement, leading to a poten-
tial substitution of the GNN with an equivalent or even better highly data-efficient
architecture.

6.2.1 Data-efficiency

Finally, before concluding, it’s worthwhile to comment on the number and distribu-
tion of the reference training structure. The number of configurations collected in
each stage is reported in Table 6.1, while the distribution along the CVs is reported
in the bottom panels of Figs. 6.11 and 6.12. It is worth noting that these distribu-
tions are complementary and collectively result in uniform coverage of the reactive
path. Remarkably, this uniform distribution was achieved without using the CVs in
the selection process, but simply by providing our active learning schemes with re-
active trajectories. If we focus on nitrogen dissociation/recombination, our approach
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Figure 6.16: Comparison between DeepMD and MACE for the forces accu-
racy at the different stages for the N2⇌2N reaction. To evaluate how important
it is to use a data-efficient GNN architecture in our scheme, we optimized another
set of ML potentials using the DeepMD scheme on the same data collected at dif-
ferent stages. We notice that the errors are systematically larger: after the initial
exploratory phase (Stage 1) DeepMD errors still reach more than 1 eV/A, which
leads the simulations to be highly unstable. As a result, it’s not possible to use a
potential with DeepMD with so few reactive configurations. At the same time, this
analysis shows us that, at the end of the sampling process (Stage 2), the accuracy
of DeepMD is also uniform (although much higher) throughout the entire reactive
path, confirming the goodness of the data selection scheme.
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produces a robust potential with less than 1k configurations (958). Considering the
entire catalytic cycle, which consists of 6 different intermediates, a total of 5k DFT
calculations were used. Compared to the number of configurations used in previous
studies on Fe surfaces (30k for N2 dissociation [44] and 110k for ammonia decompo-
sition, see Table 2.1), we obtained more than 20-fold improvement in data efficiency.
This was possible not only because of data-efficient architectures but, more impor-
tantly, due to an efficient protocol for sampling reactive configurations and selecting
the most relevant ones.

Dataset composition

System Stage MD System # config.

FeCo Preliminary AIMD1 T=700 K 124
FLARE T=800 K 6

130

N2 / FeCo Preliminary FLARE MD 651
FLARE OPES (adsorption/diffusion) 91

Explore FLARE OPES-flooding 86
Convergence MACE OPES 130

958

NHx / FeCo Preliminary FLARE MD 1184
FLARE OPES (adsorption/diffusion) 286

Explore FLARE OPES-flooding 323
Convergence MACE OPES (reactive) 450

MACE OPES (products)2 1681
3924

TOTAL 5012

Table 6.1: Dataset composition. Summary of the configurations collected during
the different stages, divided based on the system, the MD driver, and the type of
sampling.
1: Short (400 fs) AIMD simulation, with configurations extracted every 3 steps. These
configurations were used to initialize the GP model.
2: Configurations from the product states extracted from the MACE simulations
using the query-by-committee criterion.

6.3 DEAL: general features and applicability

In this final section, we want to summarize in a schematic and general way the el-
ements of DEAL, which make it a scheme applicable far beyond the specific case
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presented earlier. DEAL is an active learning scheme that aims to improve the ac-
curacy of an ML potential in a data-efficient way. Given a set of configurations
(typically obtained from MD simulations using the potential itself), we want to iden-
tify a non-redundant subset to be recomputed at the DFT level and added to the
training set of the potential. DEAL is composed of two steps: I) pre-filtering via
query-by-committee and II) non-redundant selection of the local environments using
the uncertainty provided by GPs.

Pre-filtering via query-by-committee. In the first step, we select a set of con-
figurations that are not properly described by the ML potential, as measured by the
uncertainty computed by a committee of NNs. That is, we select all the configurations
whose uncertainty is above a given threshold. We suggest choosing the threshold not
based on the absolute value of uncertainty but in such a way as to select the subset
of configurations that are described worse, as routinely done for the standard query-
by-committee approach, see Section 2.3.1. In fact, especially in the early stages, the
uncertainty could significantly underestimate the error (see Fig. 6.15), just as the
absolute value depends greatly on the architecture of the NN (see Fig. 6.16). Also,
it is appropriate to set a limit on the maximum uncertainty (σu, see Section 2.3.1)
to avoid including non-physical configurations, especially in the first stages.

Non-redundant selection via GP uncertainty. The second step is the iden-
tification of a non-redundant subset from those with high uncertainty. To achieve
this goal, we train a GP model on the filtered configurations, using the maximum
uncertainty on the local environments σ(GP)

max , see 2.2.4. This quantity correlates quite
well with σ(MACE)

max (Fig. 6.17). This allows the uncertainty estimate to be updated on
the fly and, in turn, selects a non-redundant set of configurations to be calculated at
the DFT level. In practice, this can be accomplished in two different ways: (a) using
the pre-trained GP models on the previously collected configurations and performing
a DFT calculation before updating the GP or (b) training a GP model from scratch
only on the filtered configurations and using the MD energy/forces as labels (selec-
tion only). This is possible because the uncertainty provided by the GP is based on
the similarity of the local environments and does not depend on the actual labels
used for training. We note that the second strategy has several practical advantages.
First, the training time for the GP is greatly reduced because the size of the training
set remains small. More importantly, DFT calculations can be performed in parallel
after selection. The only downside is the fact that it might select structures that are
already in the ML potential’s training set, but the query-by-committee pre-selection
ensures that all these structures are not described well by the ML potential. Another
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Figure 6.17: Correlation between GP and GNN uncertainties. We compared
the GP maximum local atomic uncertainty σ(GP)

max versus the MACE maximum force
standard deviation σ

(MACE)
max , for the N2⇌2N reaction step, for both the adsorbate

molecule/atoms (N) and the surface (Fe|Co).

element to consider is that, when building a sparse GP model from scratch, more of
the first parsed structures will be selected. For this reason, we tested two different
schemes: shuffling the trajectory or sorting the configurations by their uncertainty
(Fig. 6.9).

Finally, we note that while this scheme was designed to achieve uniform accuracy
along reactive paths (by applying it to enhanced sampling simulations), it does not
require any knowledge of the reaction coordinate and is thus applicable as a general
active learning scheme also to non-reactive simulations.

We have successfully applied DEALusing the GP from scratch approach to study
the impact of finite surface coverage on the reactions. As we will demonstrate in
Chapter 7, in 5 iterations and the addition of only ∼3000 single point calculations,
we manage to accurately describe the two fundamental processes of ammonia de-
composition, namely nitrogen recombination and nitrogen dissolution/segregation.

Discussion

The training set construction typically involves active learning procedures [117, 119,
120]. In particular, it is corroborated that, by integrating these sampling techniques
with active learning strategies, it becomes possible to construct MLPs reliable for
simulating a wide variety of rare events [44, 63, 64, 125–137], in particular catalytic
processes [44, 63, 64] as we did in the case of Fe.

However, this strategy is effective but not efficient and cannot be applied to
more computationally expensive systems. Thus, we focus on the development of a
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method that requires as few QM calculations as possible, which are essential to en-
able the widespread use of ML-based potentials. In this Chapter, we introduced a
data-efficient scheme for constructing reactive potentials. We demonstrate that this
method can effectively capture complex reaction mechanisms composed of multiple
channels without prior knowledge of the adsorption sites or the transition states.
Remarkably, the number of needed training points is at least one order of magnitude
less than the ones required for the iron catalyst. These advances can facilitate the
simulation of more realistic systems, both in complexity and underlying level of the-
ory. Also, it is important to note that the proposed approach is highly modular. For
example, if one has already collected reactive configurations, it is possible to move
directly to the second stage of active learning with DEAL. Or, one could leverage
foundational models instead of GPs to collect the initial set of reactive configura-
tions. In addition, it will be interesting to test the parallel variant of DEAL as a
tool to reduce the size of existing databases, as we are going to do in the case of
Fe ones. These features make our approach a general and versatile framework for
constructing reactive potentials, applicable not only to catalytic processes but also
to the broader field of chemical reactions and materials. Indeed, we believe that hav-
ing a data-efficient way to construct ML potentials is critical to enable the study
of increasingly complex systems, both in terms of the environments (such as reac-
tions in the presence of solvent or surface dynamics) and the level of theory of the
reference calculations. Finally, this workflow could be further integrated with ML
techniques to design collective variables[228] in a data-driven way, thereby reducing
the need to identify process-specific CVs. Similarly, path sampling methods could be
integrated into the active learning scheme to investigate the mechanism in a more
unbiased way [130]. For all these reasons, we believe that our scheme can be effec-
tively used to construct reactive potentials for a wide variety of processes occurring
under dynamic conditions, gaining insights into their workings at the atomistic level.
We are currently applying this novel strategy to study many complex systems at an
affordable computational and time cost, from the nitride iron phases to pre-melted
catalysts. These studies are still ongoing and not included in this Thesis, but we
hope to include them in future publications.



Chapter 7

Ammonia cracking on iron-cobalt

In this last chapter, we present the study of ammonia decomposition on iron-cobalt
(FeCo) alloy catalysts, which has been suggested as a promising alternative to pure
iron due to its superior catalytic performance (see Section 1.2.2). From the modeling
perspective, even if this is a new system that has never been studied, it has the same
crystal structure of α-Fe (BCC). Thus, we can leverage the knowledge obtained from
the previous chapters. As we have described in Chapter 6, the study of ammonia
decomposition on FeCo was made possible by the development of the protocol for
the construction of an MLP that accurately describes chemical reactions in a data-
efficient manner. In the following, all the results will be obtained with this MLP; we
refer the reader to Section 2.7.4 for the computational details.

The first sections will be on unraveling the free energy landscape and the elemen-
tary steps of the reaction, as well as on investigating the effects of nitrogen migration
inside the bulk of the alloy; comparing the results with the one obtained on pure iron.
Then, we will show how we effectively expanded the MLP to study lateral interaction
and the role of finite surface coverage on the two more relevant processes, which we
have shown to explain the nitride formation in Fe catalysts (Chapter 4), providing
a microscopic interpretation on the high catalytic activity of FeCo.

7.1 Unraveling the free energy landscape and reaction
mechanism

Following the approach adopted for the Fe catalyst (Chapters 3 and 4), we study
here the elementary steps of ammonia decomposition on the (1 1 0) surface of FeCo.
XRD measurements indicate that the active FeCo samples are those presenting a
body-centered cubic (BCC) alloy arrangement, with the (1 1 0) surface predominantly
exposed [30, 51]. On this surface, iron and cobalt atoms are exposed in a 1:1 ratio,
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as shown in Fig. 6.2.
Before discussing the reactions, all simulated at the operating temperature of

700 K as for Fe, it is important to recall the behavior of the catalyst at this temper-
ature. As with the case of Fe, this close-packed surface is particularly stable. In fact,
even though we are above the Hüttig temperature (∼600 K), the energy required for
defect formation is greater than the entropy gain obtained from it.

7.1.1 Dehydrogenation steps

We start focusing on ammonia dehydrogenation steps, which eventually lead to
atomic nitrogen and hydrogen release.

Similarly to Fe, we first performed a set of long OPES simulations, which allowed
us to calculate the free energy profiles of the three dehydrogenation steps (as de-
picted in Fig. 7.1). The resulting free energy barriers exhibited varying heights, with
NH2 →NH+H being the lowest, followed by NH3 →NH2+H, and finally NH→N+H,
similarly to what was observed for Fe(110). We have reported the tabulated results
for each elementary step in Table 7.1. It’s noteworthy to notice that the free energies

Figure 7.1: Free energy profile of dehydrogenation steps projected along the
maximum distance between N and H atoms max(dN,H) (top), and on the 2D plane
defined by max(dN,H) and CN,Co (bottom). The uncertainties on the 1D free energy
profiles (shadow region, ∼0.01 eV) are calculated with a weighted block average [157].

are accurately reconstructed, with a sampling error smaller than 20 meV, demon-
strating the goodness of the developed protocol and the resulting MLP. Given the
presence of two different metal species at the surface, it is interesting to perform a
deeper analysis to ascribe the potential role played by Fe and Co.
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Figure 7.2: Free energy surfaces of dehydrogenation steps NHx ⇌ NHx−1+H
(x=1,2,3) projected along the maximum distance between N and H atomsmax(dN,H)
and the coordination with surface atoms (CH,Fe|Co, top panels), cobalt (CH,Co, cen-
tral panels), and iron (CH,Fe, bottom panels). The free energy surfaces are shown
up to 3kBT above the barriers for each reaction. In terms of coordination with the
surface, the minimum free energy pathways pass through a value of CH,Fe|Co ≈ 1
(top panels). However, if we resolve the coordination with respect to Fe and Co,
we see a marked tendency for the reactive hydrogen to form bonds with Co rather
than Fe, indicated by the minimum free energy path passing through CH,Co ≈ 1 and
CH,Fe ≈ 0.



Ammonia cracking on iron-cobalt 134

Analyzing the 2D free energy surfaces projected onto the maximum distance be-
tween N and H atoms, max (dN,H), and the coordination number between N and Co
atoms, CN,Co, reveals further insights on the reaction mechanism. Multiple pathways
are clearly present in all three reaction steps, as already observed in the exploration
phase. Notably, these paths exhibit very similar barrier heights but distinct geomet-
ric configurations, underscoring the necessity of considering all possible routes. In
the case of NH3 dehydrogenation, we observed two predominant paths characterized
by the nitrogen-cobalt coordinations being around 0.5 or 1, with a preference for the
latter. Similarly, for NH2, the reaction occurred at either coordination 1 or 2, albeit
with a slight favor towards the former. Finally, for NH, there was substantial parity
between the two paths at coordination values 1 and 2. If we look instead from the
perspective of hydrogen, its total coordination with the surface in the TS region is
always around 1. Still, the reaction occurs preferentially when the reactive hydrogen
is in contact with cobalt atoms (Figure 7.2).

To gain a deeper understanding of the reaction paths, we conducted a new set of
flooding simulations using the same scheme that we have adopted for iron, namely
enhancing only the reactant region, guaranteeing that no bias is added in the TS and
product regions (see Section 2.6.1). We thus obtain an ensemble of 100 reactive tra-
jectories per step, which are reported in Figure 7.3. From the distributions reported
on the right of each panel, we can learn a qualitatively different behavior between
NH3 and NH2/NH. Notably, NH3 trajectories exhibited a broadened distribution
in the coordination between H and Co, CH,Co, reacting uniformly in contact with
either iron (CH,Co = 0) and cobalt (CH,Co = 1). Conversely, NH2/NH trajectories
displayed a greater flux over higher coordination values, indicating a propensity for
dehydrogenation when hydrogen is cobalt-coordinated.

To focus more on the transition state (TS) region, we report in Figure 7.4 a
detailed analysis of TS configurations in terms of nitrogen and hydrogen coordi-
nations. As we observed for iron (see Figure 3.9), the TS configurations form an
ensemble of structures rather than a well-defined TS. Projecting the results in terms
of these variables, it is evident that nitrogen has a greater affinity for forming bonds
with iron. In fact, CN,Fe > CN,Co for the majority of the configurations collected
(76, 82, and 90% for the three dehydrogenation steps, respectively). When look-
ing at the total coordination of NHx at the TS (considering both the coordination
with metal atoms and with hydrogen), it is always greater than 4, indicating that
the reaction occurs in an over-coordination regime with the metal, similarly to iron
(Figure 3.10). On the other hand, this analysis also highlights what was mentioned
earlier, namely the higher propensity of hydrogen to bond with cobalt rather than
with iron (CH,Co > CH,Fe in 55, 69, and 70% of the reactive events for the three



Ammonia cracking on iron-cobalt 135

Figure 7.3: Reactive path analysis for the dehydrogenation steps. An ensem-
ble of 100 trajectories is calculated with the OPES-flooding scheme and visualized
in the 2D plane defined by max(dN,H) and CH,Co. Only the 40 fs around the reac-
tive event (determined by max(dN,H) crossing 1.45 Å, denoted by a vertical line) are
reported for each trajectory. For convenience, we report in the background the free
energy surfaces projected on the same coordinates obtained from the OPES simula-
tions (Fig. 7.2), which are shown up to ∼ 2kBT above the barriers for each reaction.
On the right axis, we projected the distribution of the coordination number CH,Co

when crossing the line at max(dN,H) = 1.45Å (black dashes).

dehydrogenation steps, respectively). The broader distribution exhibited by the first
dehydrogenation step can be explained by the fact that, as discussed in Section 3.2.1,
the nitrogen molecule can be considered physisorbed on the surface and, therefore,
quite mobile. Additionally, a large portion of reactive events occurs due to the high
kinetic energy the molecule gains during adsorption, as also observed by Gerrits et
al. on Ru(0 0 0 1) [59].

This comprehensive analysis underscores the multiplicity of reaction pathways
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NH3 → NH2 + H

NH2 → NH + H

NH → N + H

N coordination H coordination

Co: 24% 

Fe: 76% 

Co: 55% 

Fe: 45% 

Co: 18% 

Fe: 82% 

Co: 69% 

Fe: 31% 

Co: 10% 

Fe: 90% 

Co: 70% 

Fe: 30% 

Figure 7.4: Transition state analysis. Analysis of geometries related to the transi-
tion state configurations extracted from the OPES-flooding trajectories (see Fig. 7.3)
for the three dehydrogenation steps. The left column shows the coordination number
between iron (x) and cobalt (y) with N, while the right column shows the one with
H. The distribution shows that, at the transition state, N is more coordinated with
Fe in most of the reactive events, while H is more closely coordinated with Co. This
can be quantified by the percentage of reactive events for which the coordination
with N/H is higher with Co (Fe), which is reported in the top left (bottom right)
corner of each plot.
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facilitated by high-temperature dynamic conditions. It also demonstrates the effec-
tiveness of the data-efficient approach presented in Chapter 6, not only in parsimo-
niously constructing the potential but also in investigating the process under opera-
tive conditions with the same simulations, thus elucidating the reaction mechanism
and reconstructing the free energy profile of the different catalytic steps.

7.1.2 Nitrogen adsorption and recombination

We now focus on studying the behavior of atomic nitrogen released on the surface
(N∗). Here, we repeat the studies conducted for Fe (see Section 4.1) to understand
its adsorption and to study its surface diffusion.

Figure 7.5: On the left panel, free energy of N∗ projected along the two crys-
tallographic directions [0 0 1] (x-axis) and [11̄0] (y-axis). Local minima represent
metastable states, and black dotted lines denote the minimum free energy diffu-
sion pathways. On the bottom panel, free energy is projected along the minimum
free energy pathways. On the right, the same free energy surface, in the presence of
another atomic nitrogen adsorbed in the center. For an effective sampling, a reflective
wall was placed at |vhkl| < 2.55, hlk = 11̄1, 11̄1̄, at 1.55 in the absence of the second
N∗ atom. Similarly, to avoid the diffusion of the central nitrogen, another wall at
|vhkl| < 0.55, hlk = 11̄1, 11̄1̄.

In the top left panel of Figure 7.5, we present the 2D free energy surface (FES)
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projected along the two in-plane crystallographic directions [0 0 1] (x) and [1 1 0] (y).
We can immediately observe that nitrogen is preferentially adsorbed at the hollow
sites (h). However, the FeCo(1 1 0) surface features two distinct hollow sites, hFe and
hCo, due to the asymmetry caused by the two different chemical species. In the hFe

site, nitrogen is coordinated with two cobalt atoms (in the first layer along the x
direction) and three iron atoms (two in the first layer along the y direction and one
in the layer below). Similarly, in the hCo site, the coordination is the same but with
iron and cobalt swapped. From the FES, we can see that hFe is slightly favored over
hCo, which has a free energy that is approximately 15 kJ/mol higher.

From the FES, we can also analyze the diffusion mechanism and the associated
free energy barrier. The minimum free energy path (black dotted line) for diffusion
between adjacent sites passes through a short bridge (sb); in this case, all sb sites
are equivalent. Specifically, to move from one hFe site to the next, nitrogen passes
through an hCo site, crossing two sb sites:

hFe
sb−→ hCo

sb−→ hFe,

with free energy barriers (∆G‡) of approximately 65 and 50 kJ/mol, respectively
(Figure 7.5, bottom left panel).

Furthermore, we repeat the instructive study of nitrogen diffusion in the presence
of another adsorbed N∗ at the center (Figure 7.5, right panel). This study is again
made possible by employing the variables v11̄1 and v11̄1̄ (see Equations 2.30 and
Section 2.7.4.6).

As can be observed, the resulting FES is practically superimposable with that
obtained for Fe, with the four hollow sites adjacent to the occupied central site being
approximately 40 kJ/mol higher in energy than the most stable sites. Once again,
these sites are of considerable interest because they represent the precursor states of
recombination. It should be noted that in the specific case depicted in the figure, the
central nitrogen is placed in hFe, and the four adjacent sites are hCo. However, the
result remains the same if the central atom is placed in hCo, as the presence of two
nitrogen atoms in two adjacent h sites resolves the asymmetry of the problem.

Having defined and characterized the precursor site, we can now focus on the
recombination of two N∗ starting from this site. In Figure 7.6, we report the FES as
a function of the distance between two nitrogen atoms d(N,N) and the coordination
between nitrogen and the metal atoms CN,Fe|Co. It is important to note that, unlike
what was shown in Section 6.1.2, here we are focusing on the recombination 2N∗ →
N2. The reactant state consists of two N∗ atoms adsorbed at two adjacent h sites,
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Figure 7.6: Free energy surface of nitrogen recombination/dissociation (2N∗ ⇌ N2)
as a function of N-N distance d(N,N) and the coordination between nitrogen and
the metal atoms CN,Fe|Co at 700K. The local minima on the plots correspond to
metastable states. Some snapshots along the reaction are reported. From left to
right, the reactants (2 N), transition state (TS), the various N2 adsorption sites (α,
and γ) and products (N2 gas phase) are shown.

one at hFe and one at hCo, while the transition state (TS) is located near the sb site
(see snapshots on the right). For this reason, we do not report results resolved for the
two coordinations CN,Fe and CN,Co, as they are identical by symmetry. Instead, we
emphasize that, in the product states, the adsorption states for N2, horizontal (α)
and vertical (γ), are degenerate and can be resolved based on the two different metals.
However, similarly to what was observed for nitrogen adsorption (Figure 7.5), these
states are close in energy and are of little interest to the reaction, since once N∗

2 is
recombined, it can easily desorb from the surface. Regarding the free energy required
for this process, the free energy barrier at the TS is approximately 190 kJ/mol. This
represents the rate-determining step of the reaction, even in the case of FeCo.

7.1.3 Comparison of elementary step with Fe

Having studied all the elementary steps of the reaction, we can now compare our
results with those previously obtained for Fe. In Table 7.1, we report the free en-
ergy barriers (∆G‡) for all the elementary steps of the reaction on the two different
catalysts, obtained from MD simulations at the operating temperature of 700 K.

We can immediately observe that the great agreement we found in the reaction
mechanism is also reflected in the free energy barriers. Specifically, for the three
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Free energy barriers ∆G‡ [kJ/mol] at T=700 K

Fe(110) FeCo(110)

NH3* −−→ NH2* + H* 97 106
NH2* −−→ NH* + H* 76 77
NH* −−→ N* + H* 121 127
2 N* −−→ N2 216 192

Table 7.1: Estimated free energy barrier for each elementary step of ammonia decom-
position on Fe(1 1 0) and FeCo(1 1 0) surfaces at T=700 K. The values are derived
from the associated free energy profiles. Considering the accuracy of the ML poten-
tials and the sampling uncertainty of the free energy calculations, we estimated an
uncertainty within the range [5-10] kJmol−1.

dehydrogenation steps, ∆G‡ is always slightly higher for FeCo, but with a difference
of at most 9 kJ/mol. This result is difficult to interpret given the higher affinity
of hydrogen for Co. Further investigations will be required to understand the cause,
which could stem from a slight difference in the surface dynamics of the intermediates
or be related to the pseudopotentials used in the DFT calculations.

On the other hand, for nitrogen recombination, which is clearly the rate-limiting
step for both catalysts, a significantly lower barrier was obtained for FeCo compared
to Fe, with ∆(∆G‡) = −24 kJ/mol. Although not dramatic, this reduction in the
rate-limiting step has a notable effect on the reaction rates, which are exponentially
dependent on ∆G‡. Under the reasonable assumption that the pre-exponential factors
are the same for both reactions, from Equation 2.21 we have:

tFe1/2

tFeCo
1/2

=
kFeCo

kFe
= exp

(
−
∆G‡

FeCo −∆G‡
Fe

RT

)
= exp

(
−∆(∆G‡)

RT

)
≈ 60

That is, at this temperature, the reaction proceeds approximately 60 times faster on
FeCo than on Fe.

Our results indicate that the reaction mechanism and free energy barriers on FeCo
are similar to those on Fe, challenging the hypothesis that Co induces a radically
different mechanism [30]. Moreover, our findings are in line with those reported in
Ref. [51], where the authors measured similar apparent activation energies between
Fe and FeCo.

However, we have not yet considered one of the reactions that proved crucial in
explaining the Fe catalyst: nitrogen migration into the bulk, which will be the focus
of the next section.
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7.2 Nitrogen migration inside the bulk

We now proceed to study the migration process of a nitrogen atom into the bulk
material. As we have seen, in the case of the iron catalyst, this process was able to
explain the nitridation of the material during ammonia decomposition. This repre-
sents the first step toward the formation of bulk nitrides. Therefore, we repeat these
studies on FeCo to understand its behavior as the reaction progresses. Again, we
must emphasize that Fe and FeCo share many structural properties under operating
conditions. Thus, we can utilize the same tools that we implemented to study the
dissolution/segregation of nitrogen on the (1 1 0) surface of iron.

In fact, on FeCo, nitrogen migration inside the bulk proceeds along the same
“diffusion channels” of Fe. We have thus employed the collective variables (CVs)
described in Equations 2.31, using v01̄0 as the bias variable and applying reflective
walls when ∥ṽ11̄1∥ > 0.55 and ∥ṽ11̄1̄∥ > 0.55 to constrain the simulation within the
channel.

In Figure 7.7, we show the free energy profile along v01̄0 for both Fe (blue line,
same as in Fig. 4.8) and FeCo.

Focusing on FeCo, starting from the surface hollow adsorption site (specifically
the most stable hFe in this case), nitrogen migration proceeds to the first octahedral
interstitial site, which corresponds to the small shoulder at v01̄0 ≈ 6, and then to
a second octahedral site, which is the first metastable one. From there, nitrogen
alternates between deeper octahedral interstitial sites.

It is important to note that in the case of FeCo, not all octahedral sites are equiv-
alent. Until now, we have intentionally described the FeCo crystal lattice imprecisely
as BCC to highlight its similarity to Fe. However, because Fe and Co are two different
chemical species, the correct description is a primitive cubic lattice with a base, with
a Fe atom at (0,0,0) and a Co atom at (a/2,a/2,a/2), or equivalently, two interpene-
trating primitive cubic lattices. This structure, known as “cesium chloride” or simply
B2 structure, breaks the symmetry along the ⟨1 1 1⟩ direction, resulting in a change
in chemical species. As a result, there are two types of octahedral interstitial sites:
the first type has nitrogen at the center of the face of the Fe simple cubic lattice and,
consequently, at the midpoint of the side of the Co simple cubic lattice (Figure 7.7,
inset a); the second type is identical but with Fe and Co swapped (Figure 7.7, inset
b). From a chemical perspective, the two sites are different, as in the first case, ni-
trogen forms two shorter bonds with Co atoms and four longer bonds with Fe, while
in the second case, the opposite occurs. As can be seen from the free energy profile,
the first site is more stable than the second, similar to what was observed for the
two hollow sites on the surface, confirming the lower affinity of nitrogen for Co.
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Figure 7.7: Free energy profiles of nitrogen dissolution/segregation on Fe(1 1 0) and
FeCo(1 1 0) slabs at T=700 K. The free energy is projected along the v01̄0 direction,
and for Fe is reprinted from Figure 4.8. The same constraints of Fe (Figure 4.8)
were adopted for FeCo. In the insets, we report two snapshots of the different FeCo
octahedral interstitials where N is placed at a) the center of the face of the Fe simple
cubic lattice and b) at the center of the face of the Co simple cubic lattice. The
uncertainty along the free energy profiles is computed as the standard deviation
of four independent simulations performed with four different MLPs. Additionally,
to indicate and highlight the value of the free energy inside the bulk, the linear
interpolation of the metastable free energy minima (v01̄0 < 4.5) is reported (dashed
lines).

As for iron, the choice to limit our study to the [0 1 0] direction was made to
reduce the complexity of the problem. Indeed, nitrogen can equivalently move from
one octahedral interstitial site to any of the six adjacent octahedral sites along the
⟨1 0 0⟩ directions, while only two are considered here.

If we now focus on the free energy profile, for nitrogen to migrate to the first
metastable interstitial site at v01̄0 ≈ 5, it faces a barrier of approximately 210 kJ/mol.
Subsequently, it must overcome a first barrier of about 45 kJ/mol and a second of
30 kJ/mol to reach the “stable” interstitial site at v01̄0 ≈ 3. From this point, migration
into the bulk proceeds with barriers of about 60 and 30 kJ/mol.
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It is interesting to note that the barriers for dissolution are approximately 5 kJ/mol
higher than those for segregation. This is also reflected in the average values of the
metastable free energy minima inside the bulk, whose value increases as migration
progresses into the bulk (represented by the orange dashed line). This means that
if nitrogen successfully dissolves below the first layers of FeCo, the probability that
the process continues is lower than that of the opposite process of segregation. This
is in stark contrast to what was observed for Fe (blu line).

Additionally, when observing the free energy values in the interstitial sites, these
are significantly higher in FeCo. The minimum difference is as much as 80 kJ/mol
when considering nitrogen in an interstitial site of the third layer (v01̄0 ≈ 3).

If we compare the barriers on the two surfaces, for nitrogen to migrate into the
bulk (v01̄0 ≥ 3.5), it must overcome a free energy barrier of 223 kJ/mol in the case of
FeCo, while for Fe, this barrier is 169 kJ/mol, with ∆(∆G‡) = 54 kJ/mol. Similarly
to what was observed for nitrogen recombination, if we compare the t1/2 of the same
process in the two catalysts, we find that the probability of observing dissolution in
FeCo with respect to Fe is approximately 1:10000.

Before comparing this process with other dehydrogenation steps, we want to intro-
duce lateral interactions, which, as we observed in the case of Fe, have a considerable
impact on both processes.

7.3 Lateral interactions

In this section, we introduce the effect of finite coverage on the surface and its
impact on the two most important reactions: recombination and bulk migration.
Before studying these reactions, we had to refine the MLP by expanding the training
set to simulate these phenomena accurately. We report this methodological step
here because we consider it of great value in demonstrating the developed method’s
effectiveness and potential applications.

7.3.1 Efficiently refining the ML potential with DEAL

To expand the training set and accurately capture lateral interactions, we performed
five active learning cycles with DEAL, using the version where the Gaussian Process
(GP) is trained from scratch each time, and the DFT calculations are executed in
an embarrassingly parallel manner, as described in Section 6.3.

Although lateral interactions represent a new and highly complex phenomenon
to model, it was possible to start directly with DEAL since the potential already
contained configurations of adsorbates on the surface, albeit isolated. Therefore, it
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Figure 7.8: Evolution of MLP accuracy during active learning iterations for N-N
recombination reaction at various coverage (17%, 33%, and 50%, monolayer cover-
age with ratio N : H = 1 : 3) at T=700K. The evaluation is performed along the
same trajectory for each coverage, sampled along reactive CV with well-tempered
probability using the final model (MLP5). On top panels, the distributions of the
maximum force uncertainty σMACE

max . In the bottom panels (left) the boxplot of the
same distributions and (right) the average value of σMACE

max along the reaction coor-
dinate (dN,N ) for the highest coverage studied.

was able to produce reasonable predictions from the beginning.
In the first cycle, we used the initial potential (MLP0, the production model of

previous studies but unrefined for lateral interactions) to perform a first set of short
unbiased simulations (100 ps) where we varied the concentration of adsorbates on
the surface to 17%, 33%, and 50%, considering only H, only N, and N and H in
a 1:1 and 1:3 ratio. In this initial iteration, all the generated configurations were
new to the potential and could be included in the training set without redundancy.
Therefore, we preselected the configurations simply by extracting one frame every
2.5 ps for each trajectory, rather than using the query-by-committee criterion, which
is less reliable in this regime. We then proceeded according to the DEAL framework,
extracting a non-redundant subset of configurations through the GP, recalculating
these configurations at the DFT level, including them in the training set, and training
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Figure 7.9: Analogus of Figure 7.8 for the N dissolution/segregation reaction.

a new committee of potentials (MLP1).
We ran the same simulations with MLP1 and performed a DEAL cycle, including

the preselection via query-by-committee, obtaining MLP2, which was already capable
of accurately describing the surface in the absence of reactions.

We then focused on the two reactions of interest, recombination and bulk mi-
gration, and performed three additional DEAL cycles, starting from longer reactive
simulations (at least 1 ns) and focusing only on surface coverages with an N:H ratio
of 1:1 and 1:3.

To validate the approach, we measured the accuracy of the different MLPs during
converged reactive simulations obtained with the final potential (MLP5) at different
coverages (Figures 7.8 and 7.9). From this study, it is interesting to observe that,
in the case of high coverage, many active learning cycles are required to bring the
potential to the target accuracy, demonstrating the complexity of the phenomenon
being studied.

The evolution of the potential’s accuracy along the reaction coordinate for the
simulations at the highest coverage (50%), shown in the bottom right panel of Fig-
ure 7.8 for recombination and Figure 7.9 for bulk migration, is also noteworthy. This
graph clearly shows that during the first two iterations (performed on non-reactive
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simulations), the accuracy of the potential in the region of the reactants and products
reaches the target level. However, the region around the transition state (TS) is still
poorly described. The subsequent cycles, which are carried out on reactive simula-
tions, are necessary to achieve uniform accuracy along the entire reaction pathway.

This demonstrates the effectiveness of DEAL in identifying the configurations
that should be included in the training set to achieve the required accuracy.

Selected configuration with Data-Efficient Active Leaning (DEAL)

Iteration 1 2 3 4 5 Total

Pre-selection 3863 2606 8089 24297 11086 49941
GP selection 194 252 911 755 917 3029

Table 7.2: DEAL selection. Selected configuration with Data-Efficient Active Lean-
ing (DEAL) during the 5 iterations executed during the study of finite coverage effects
on reactivity. The GP threshold parameter was set to 0.1 for all the iterations except
for iteration 4, where it was set to 0.12 since the large number of configurations
preselected (longer simulations). See text for details.

In Table 7.2, we report the number of preselected and selected configurations
during the five iterations. The most remarkable number is the total number of con-
figurations collected, calculated at the DFT level, and included in the potential:
3029.

Considering also the configurations previously collected, the total number of DFT
calculations used to study the entire catalytic process of ammonia decomposition on
FeCo, including finite coverage, amounts to 8200. This number is to be contrasted
with the approximately 400k calculations done for Fe. We leave it to the reader to
draw the obvious conclusions about the effectiveness and savings achieved.

Before moving on to the presentation of the results, we would like to make one
last consideration regarding the practicality of the method applied here. The active
learning cycles performed with DEAL in this manner are very fast. The initial config-
urations can be collected from many different simulations performed in parallel. In
this specific case, the 1 ns simulations on the reduced-size system (necessary for re-
calculating it with DFT) require about 10 hours on a single modern GPU. Similarly,
the GP trained from scratch can process around 1000 configurations in less than
24 hours on a few dozen CPUs. Finally, the DFT calculations are embarrassingly
parallelizable, so, with sufficient computational resources, the time required for the
relabeling step is equivalent to the time needed for a single-point DFT calculation.
Retraining the GNN potential also requires little time, as the number of configura-
tions in the training set remains small. In practice, each cycle presented took only 1
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to 2 days to be completed.

7.3.2 Nitrogen recombination and dissolution

Having built a reliable potential, we can now study the effect of finite coverage on
the recombination and bulk migration processes.

In fact, we know that lateral interactions between adsorbed atoms on Fe(110)
play a significant role, influencing the adsorption site preferences and altering the
free energy barriers for both recombination and migration (Section 4.4). To directly
compare with Fe, we simulated the exact same setup, performing simulations with
finite coverage of N and H atoms (20% and 40% of a monolayer with an N:H ratio of
1:3). We want to emphasize that, unlike the commonly used approach of estimating
the effects of coverage through static calculations on small systems, here we explicitly
simulated the dynamics on large systems at the operando temperature of 700 K.

Figure 7.10: Free energy profiles of nitrogen recombination (left) and dissolution/seg-
regation (right) on the FeCo(110) slab at T=700 K at various coverages (0, 20, and
40% of a monolayer with a ratio N : H = 1 : 3). The free energies are computed iden-
tically to the 0% coverage case. The uncertanty is computed from a set of different
configurations, see text for details.

MD simulations at various coverage levels indicate that the barrier for recom-
bination decreases with increasing coverage (Figure 7.10, left panel). Similarly, the
migration barrier decreases as nitrogen coverage increases (Figure 7.10, right panel).
This is the same behavior we observed for Fe, although it is less drastic in this case.

Focusing on migration into the bulk, we observed that, with increasing coverage
(20%), there is a reduction in the free energy barrier for entering the first interlayer
interstitial octahedral site at v01̄0 ≈ 6, which becomes slightly metastable at the
maximum coverage investigated.
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A final note on the uncertainty of the simulations is necessary (represented by
the shaded area in Figure 7.10). For the simulations at 0% coverage, we estimated
the uncertainty from the standard deviation of four independent simulations, each
run with a different MLP model (trained on the same training set) for 6 ns. For
the simulations at finite coverage, we performed 32 independent 6 ns simulations,
initializing 8 different random adsorbate configurations and running each of them 4
times independently, using a different model for each. We used this strategy because
MACE, like all GNN models in general, is about 10 times slower than DeePMD,
making it impractical to run simulations of hundreds of nanoseconds. However, these
time scales would be necessary to sample the process ergodically, as nitrogen atom
diffusion on the surface occurs on the nanosecond scale at 700 K (∆G‡ ≈ 60 kJ/mol).
To address this, we circumvented the problem by running many replicas, performing a
total of approximately 200 ns of simulation for each coverage level. Of course, since the
sampling is not ergodic (not with respect to the reaction coordinate but the surface
configurations), each simulation converges to a slightly different free energy value,
resulting in increasing uncertainty with higher coverage. Nonetheless, we note that
these variations are small, and the uncertainty estimate provided, which accounts
for both MLP uncertainty (by using different models) and sampling uncertainty (by
performing independent simulations), is conservative, as we could have used more
strict estimators like the standard deviation of the mean.

7.4 Experimental observations of no nitride formation

Having reconstructed all the free energy profiles of the entire ammonia decomposi-
tion process on the (1 1 0) surfaces of Fe (see Chapters 3 and 4) and FeCo through
MD simulations, we are now able to rationalize the results obtained in light of ex-
perimental evidence.

We observed that, for both catalysts, the dehydrogenation steps are not rate-
limiting, while the nitrogen recombination step is the limiting one. This last reaction
must be compared with another competitive process for removing nitrogen from the
surface: its dissolution into the bulk. In Figure 4.10, we report the overall free energy
barrier for these two processes for Fe (left panel) and FeCo (right panel), considering
the more realistic scenario of both finite temperature and coverage.

As already discussed in Section 4.5, our MD simulations reveal that nitrogen
prefers to migrate into the bulk of Fe(110) rather than recombining on the surface.
This finding is consistent with experimental observations of nitride formation during
ammonia decomposition [208]. In particular, the experiments show the immediate
release of H2 after ammonia decomposition, while nitrogen remains on the surface
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Figure 7.11: Free energy barrier of recombination (red circles) and migration inside
(green squares) as functions of surface coverage for Fe (left) and FeCo (right), ob-
tained from Figure 4.9 and Figure 7.10, respectively. The surface coverage refers to N,
H monolayer coverage with an N:H ratio equal to 1:3. The dashed lines are obtained
from linear regression. Given the relationships between the free energy barriers on
the two different catalysts, different processes occur during ammonia decomposition,
as illustrated in the boxes.

and migrates into the bulk, forming nitrides. After the formation and breakdown of
nitrides (Fe4N and Fe2N) at elevated temperatures, nitrogen is finally released.

In contrast, our results show that this tendency is exactly the opposite in FeCo(1 1 0),
with recombination being favored over migration into bulk. This remains true even
at high coverage. Furthermore, as we discussed in Section 7.2, nitrogen dissolution
is always favored over segregation even after the first migration barrier inside the
bulk is overcome (Figure 7.7). From these results, we can infer that in FeCo, the
formation of bulk nitrides is not expected, as it is blocked in the early stages.

However, this is not the only beneficial effect of adding cobalt to form an alloy.
In fact, the free energy barrier of the rate-limiting step of the reaction, i.e., N2

release via N∗ recombination, is consistently reduced on FeCo. The process occurs
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approximately 50 times faster on the alloy.
Together with our experimental partners, we are gathering evidence of this dual

promotional effect of the cobalt-iron alloy, although important information can al-
ready be derived from the present literature [30, 51]. From the study of the elemen-
tary steps of the reaction, our results indicate that the reaction mechanism and free
energy barriers on FeCo are similar to those on Fe. This challenges the hypothesis
that cobalt induces a radically different mechanism [30]. Instead, our findings are in
line with those reported in Ref. [51], where the authors measured similar apparent
activation energies between Fe and FeCo, as well as they agree with the long-time
recognized structural sensitivity [31, 32]. More importantly, in operando XAS and
XPS measurements suggest that FeCo alloys remain stable during ammonia decom-
position without transitioning to a nitride phase, contrary to what was reported for
the Fe catalyst. In conclusion, our results perfectly explain the experimental evidence
of the improved catalytic activity of the FeCo alloy for ammonia decomposition [30,
51], providing a mechanistic explanation of all the reaction steps and the lack of
nitride formation.

Furthermore, this demonstrates that simple explanations using descriptors [19,
21, 51, 52] are not always sufficient, and the processes involved in heterogeneous
catalysis are far more complex, requiring a realistic modeling that includes dynamics
and lateral interactions.



Conclusions and Perspectives

Catalytic processes are fundamental to both biological systems and industrial opera-
tions, driving everything from essential life-sustaining reactions to large-scale chemi-
cal production. Atomistic simulations have long been regarded as an important tool
for gaining insight into these complex processes at the atomic and molecular levels.
With recent advancements based on machine learning techniques and the increasing
availability of computational resources, the field of atomistic simulations is expanding
its scope toward in silico experiments of catalytic processes under realistic, operando
conditions.

In this thesis, we have taken significant steps in this direction by presenting a com-
prehensive computational study of ammonia decomposition on iron and iron-cobalt
alloy catalysts. Our work addressed critical challenges in understanding the atomic-
level mechanisms driving catalysis, shifting from a static representation of catalytic
processes to a dynamic and statistical approach using state-of-the-art molecular dy-
namics simulations.

Our results demonstrate that dynamic effects critically influence all stages of
decomposition of ammonia, particularly on the Fe(1 1 1) surface, where adsorption,
active site formation, and reaction mechanisms evolve with time and temperature.
We showed that treating reactions dynamically is essential, as these reactions exist
as ensembles of pathways rather than a single, well-defined path. This highlights the
importance of integrating dynamical equilibrium concepts into the study of catalytic
processes and materials, aligning with a perspective of the catalyst as a functional
material [1, 2, 54].

Additionally, our investigation into nitridation underscored the complexity of
catalytic behavior, challenging traditional models that rely on simple descriptors,
such as the binding energy. Our findings indicate that it is the delicate balance
between different surface processes that explains the actual formation surface or bulk
iron nitrides and why monometallic iron becomes nitrided under certain conditions
while iron-cobalt alloys do not. The results shed light on the microscopic origin
of cobalt’s role in preventing bulk nitridation, which is driven by the synergistic
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effects of structural and electronic promotion. Collectively, these findings contribute
to a deeper understanding of catalytic processes critical to ammonia decomposition,
offering a rational basis for designing future catalysts for industrial applications, such
as leverage alloying to prevent deactivation due to nitridation.

Furthermore, the novel machine learning potential protocol developed here of-
fers a promising approach for studying complex catalytic systems with high accu-
racy and reduced computational cost. By focusing on data-efficient techniques, we
demonstrated the ability to simulate key reaction mechanisms under realistic condi-
tions, paving the way for routine use of MD simulations to study complex reaction
networks.

Despite the progress made in this study, several avenues remain open for future
research. While our work focused on iron and iron-cobalt alloys, exploring alternative
catalysts, such as other bimetallic systems, and investigating the role of promoters
could reveal further improvements in catalytic efficiency and durability. These ad-
vancements are well within reach thanks to our efficient and practical protocol, which
could be further improved by integrating new enhanced sampling methods and more
efficient architectures or even used to fine-tune foundational models.

Another natural extension of this work toward simulations directly comparable
with experiments would be the inclusion of pressure effects through gran canonical
sampling as well as the integration with microkinetic models. The latter could be
exploited to obtain the (dynamical) equilibrium conditions at which to run MD
simulations, thus reconstructing the free energy profiles under these conditions. These
free energies could then be used to refine the microkinetic model in an iterative way.

Machine learning continues to hold great potential for advancing the study of cat-
alytic processes, and future efforts should explore more sophisticated algorithms to
generate and optimize catalysts or to identify reaction mechanisms. For instance, our
atomic charge model successfully captured the driving force of the reaction, suggest-
ing that ML techniques can be expanded not only as analysis tools but also to drive
reactive simulations, further extending the scope of enhanced sampling techniques
from a geometry-based description to a chemical one.

In conclusion, this work contributes to the ongoing efforts to develop green hy-
drogen technologies by demonstrating how machine learning and molecular dynamics
can accelerate the search for solutions for sustainable futures. This goal has never
been more urgent.
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