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Abstract: Solar-induced chlorophyll fluorescence (SIF) is closely related to plant photosynthetic
activity and has been used in different studies as a proxy for vegetation health status. However,
in order to use SIF as a relevant indicator of plant physiological stress, it is necessary to accurately
quantify the amount of light absorbed by the photosynthetic plant pigments, called the absorbed
photosynthetically active radiation (APAR). The ratio between fluorescence emission and light
absorption (i.e., SIF and APAR) is known as the fluorescence quantum efficiency (FQE). In this
work, simultaneous measurements of SIF and reflected radiance were performed both at the leaf and
canopy levels for Salvia farinacea and Datura stramonium plants. With the aim of disentangling
the proportion of sunlit and shaded absorbed PAR, an ad hoc experimental setup was designed to
provide a wide range of fraction vegetation cover (FVC) canopy settings. A linear spectral unmixing
method was proposed to estimate the contribution of soil, sunlit, and shaded vegetation from the
total reflectance spectrum measured at the canopy level. Later, the retrieved sunlit FVC (FVCsunlit)
was used to estimate the (dominant) green APAR flux, and this was combined with the integral of
the spectrally resolved fluorescence to calculate the FQE. The results of this study demonstrated
that under no-stress conditions and independently of the FVC, similar FQE values were observed
when SIF was properly normalised by the green APAR flux. The results obtained showed that the
reflectance spectra retrieved using a linear unmixing method had a maximum RMSE of less than 0.03
along the spectrum. The FVCsunlit evaluation showed an RMSE of 14% with an R2 of 0.84. Moreover,
the FQE values obtained at the top of the canopy (TOC) were found statistically comparable to the
reference values at the leaf level. These results support further efforts to improve the interpretation
of fluorescence based on field spectroscopy and the further upscaling to imaging spectroscopy at
airborne and satellite levels.

Keywords: fluorescence quantum efficiency; fractional vegetation cover; solar-induced fluorescence;
hyperspectral spectroscopy; linear unmixing

1. Introduction

Under the current conditions of climate change, the early detection of crop and global
vegetation stress is crucial to promote a sustainable agriculture and ecosystem management.
With the upcoming European Space Agency’s Fluorescence Explorer (FLEX) and Sentinel 3
tandem mission [1], vegetation fluorescence and the auxiliary parameters needed to inter-
pret solar-induced vegetation fluorescence (SIF) will be available at a 300 × 300 m spatial
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resolution. SIF is primarily controlled by the amount of light reaching the photosynthetic
surface (absorbed by chlorophyll a (Chl a) molecules). At the photosystem level, given the
same absorbed photosynthetically active radiation (APAR) and regardless of the species
studied and the leaf structure, a relatively constant fluorescence emission is expected,
driven by the change in fluorescence quenching [2,3]. At the leaf level, different studies
have shown a similar fluorescence quantum efficiency (FQE) (i.e., the flux of fluorescence
photons normalised by the flux of absorbed photons) when plants had a similar chlorophyll
content and were grown under the same environmental conditions (i.e., light history and
stress conditions) [4–6]. However, at the canopy level, the vegetation structure distorts both,
the light reaching the photosynthetic surface (affecting the photosynthetic reactions) and
the fluorescence signal (emitted by the vegetation) measured at the top of the canopy (TOC).
Therefore, before using remote measurements of SIF to determine the plant physiological
status, three major challenges need to be overcome: (i) quantifying the amount of light
incident on the photosynthetic surface, (ii) quantifying the amount of light absorbed by
Chl a molecules or the green/photosynthetically active surface, and (iii) correcting the
measured top of the canopy fluorescence by canopy scattering and reabsorption [7–11].
This study will focus on the first and second challenges (research question I—RQ I), with
the ultimate goal of a remote estimation of the FQE (research question II—RQ II), which is
going beyond fluorescence for early stress detection.

Regarding RQ I, fluorescence and photosynthesis are coupled by the actual amount of
light reaching the photosynthetic surface. Under normal growing conditions, the quantity
and quality of photosynthetically active radiation (PAR) varies within the canopy profile.
Moreover, shade-adapted leaves often have higher Chl contents and tend to be larger and
thinner than sun-adapted leaves [12]. The biophysical and structural leaf heterogeneity
results in a different light spectral response and leaf reflectance. Previous studies have
shown that an inaccurate characterization of the at-target incoming radiance leads to an
over- or underestimation of the retrieved vegetation properties when using reflectance
indices due to a biased incoming radiance estimation [13]. While inaccuracies in the
estimation of the at-target PAR do not alter the relationship between SIF and photosynthesis,
an accurate quantification of the flux of photons reaching the photosynthetic surface is
essential for a mechanistic interpretation of SIF [14].

Hence, at the canopy level, the main factors influencing the light received by the
photosynthetic surface are the vegetation’s structural properties such as the fraction of veg-
etation cover (FVC), leaf area index (LAI), and leaf angle distribution function (LADF) [15].
A different vegetation structure leads to a different vertical distribution of light, resulting
in different proportions of shaded and sunlit leaves observed within the canopy. The
fluorescence flux measured from the top of the canopy integrates both the fluorescence
emitted by the sunlit and shaded fractions of the canopy. Based on previous studies, we
assume that when measuring from the nadir, sunlit leaves dominate the measured total
fluorescence flux [16,17]. Therefore, we hypothesise that by accounting for the proportion
of light reaching the sunlit and shaded leaves, as well as nonvegetated surfaces such as soil
and woody material (RQ I), the remote estimation of the FQE estimates will be improved
(RQ II).

To solve RQ I, the scientific community has developed several remote sensing methods
to distinguish between the surface components described above [18–20]. For instance, the
methods based on spectral mixture analysis (SMA) define the different components of
a scene as endmembers with a relatively constant spectral signature. The process of
quantifying the abundance of each endmember in the total measured spectrum is known
as unmixing. Unmixing methods range from the use of linear spectral combinations [21] to
machine learning approaches [22], including the use of spectral indices [23].

Linear unmixing consists of estimating the contribution of each endmember in a
given spectrum based on a linear combination of them. Therefore, the measured TOC
reflected radiance, if not strongly affected by multiple scattering due to complex vertical
structure [18,24,25], can be defined as a linear combination of four surface components: the
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vegetation sunlit and shaded fraction as well as the soil sunlit and shaded fraction [26–29].
SMA has long been used to analyse hyperspectral images for ecological studies [25,30].
Based on this approach, methods such as residual spectral unmixing [31] have been de-
veloped to obtain soil properties from hyperspectral measurements. In addition, other
authors have proposed the non-negative matrix factorization (NMF) to quantify soil salt
content [32] or wheat biomass [33] as an example of other SMA techniques.

The spatial resolution of remote hyperspectral sensors implies mixed surface pixels
(i.e., consisting of sunlit and shaded leaves, soil and woody material). External ancillary
data could be used to determine the spatial heterogeneity of the canopy, but this involves
differences in the values obtained due to different illumination and observation angles and
temporal dynamics, especially relevant at the satellite level. To overcome these limitations,
and in the context of the FLEX mission, we hypothesise that by taking advantage of the
benchmark high-spectral resolution sensors and the linear spectral unmixing method, we
will be able to quantify the sunlit canopy fraction (FVCsunlit), which is necessary to calculate
the effective APAR flux at the canopy level [9,34] (RQ I) to obtain the FQE from remote
sensing techniques (RQ II).

With the aim to evaluate the proposed hypothesis, an experiment is designed with a
wide range of vegetation fractional cover scenarios, using well-watered potted plants of two
different species, characterized by different leaf size and canopy density. Regarding RQ II, as
previously introduced, since both species will be measured under the same environmental
conditions, we hypothesise that a similar FQE will be obtained at the leaf and canopy
scales, regardless of the different FVC. As described in previous studies [9,14,35], further
processing and normalisation of initially derived stress proxies such as SIF can lead to
a more detailed early stress detection directly related to photosynthetic light responses
and a further global carbon assessment. These developments directly support the global
monitoring of early vegetation stress using remote sensing techniques.

2. Materials and Methods
2.1. Plant Material and Experimental Setup

To create a plant canopy experiment with varying levels of vegetation cover, we
designed a field experiment based on a transect monitoring of potted plants placed in
different densities and patterns. The experiment was conducted at the Parc Científic of
the University of Valencia (Paterna, Spain) between 25 and 29 July 2022. The average
temperature during the experiment was 30 ◦C.

We used two species with different canopy architectures based on plant height, leaf
size, and distribution. Mealy sage (Salvia farinacea Benth.) was selected as the first plant,
which had a dense canopy with a high number of small leaves, approximately 5 cm length.
The mealy sage plants (n = 140) were in their first growth stage and had an average height
of 30 cm, indicating the first flowering stage. The second plant species, thorn apple (Datura
stramonium L.), had a light canopy with few large leaves, measuring approximately 25 cm.
The thorn apple plants (n = 15) were in the vegetative stage and had an average height of
50 cm. To avoid drought stress conditions, all plants were watered twice a day before and
after the experiment (Figure 1C,D).

Several designs were implemented to create vegetation transects with different levels
of vegetation cover. The designs were focused on establishing different transects of either
mealy sage or thorn apple, depending on the plant density, on a bare soil surface (Figure 1A).
The transect length was approximately 5 m, starting with full plant cover and gradually
reducing the plant density towards the end of the transect. The last part of the transect
always ended in bare soil. The covered plant area was two metres wide, covered by
either 10 plants of mealy sage or 5 plants of thorn apple. Different planting patterns were
implemented to mimic different natural layouts with a single species by placing plants
in rows or dense blocks on one side of the transect. The main aim was to generate more
variability in the proportion of sunlit and shaded canopy due to the shading effect between
the plants.
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Figure 1. (A) Experimental setup. (B) Platform with the instruments onboard; (C,D) exemplars of 
thorn apple and mealy sage, respectively. 
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A multisensor cable-suspended motorized platform (UAV Works, Valencia, Spain) 

called FluoCat (Figure 1B) was used to monitor the transects in the vegetation area. This 
platform was specifically designed to measure solar-induced fluorescence and provide ad-
ditional data for the interpretation of fluorescence emission [36]. It is equipped with the Pic-
colo Doppio dual spectrometer system (GeoSciences, University of Edinburgh, Edinburgh, 
UK), a MAIAS2 multispectral camera with the ILS irradiance sensor module (SAL Engineer-
ing, Russi, Italy), and a TeAx Thermal Capture Fusion camera (TeAx Technology, Wilnsdorf, 
Germany), as shown in Figure 2. Two scissor lifts were used 20 m apart to suspend the sys-
tem over the plant transect using ropes attached to the lifts. The lifts were positioned to 
ensure a minimum distance of 2.5 m between the sensors and the ground surface. 

 
Figure 2. Examples of soil, sunlit and shaded classification for four MAIA images, with different 
amounts of FVC for thorn apple (98% top left, and 68% bottom left) and mealy sage (99% top right, 
40% bottom right). 

Figure 1. (A) Experimental setup. (B) Platform with the instruments onboard; (C,D) exemplars of
thorn apple and mealy sage, respectively.

2.2. Multisensor Setup and Transect Sampling Protocol

A multisensor cable-suspended motorized platform (UAV Works, Valencia, Spain)
called FluoCat (Figure 1B) was used to monitor the transects in the vegetation area. This
platform was specifically designed to measure solar-induced fluorescence and provide
additional data for the interpretation of fluorescence emission [36]. It is equipped with
the Piccolo Doppio dual spectrometer system (GeoSciences, University of Edinburgh, Ed-
inburgh, UK), a MAIAS2 multispectral camera with the ILS irradiance sensor module
(SAL Engineering, Russi, Italy), and a TeAx Thermal Capture Fusion camera (TeAx Tech-
nology, Wilnsdorf, Germany), as shown in Figure 2. Two scissor lifts were used 20 m
apart to suspend the system over the plant transect using ropes attached to the lifts. The
lifts were positioned to ensure a minimum distance of 2.5 m between the sensors and the
ground surface.
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The Piccolo Doppio (hereafter referred to as Piccolo) is a dual-FOV hyperspectral
point system [37], consisting of two QEPro spectroradiometers (Ocean Optics, Dunedin,
FL, USA) and a bifurcated fibre optic with shutters to alternately acquire the downwelling
solar irradiance (FOV 180◦) and the surface upwelling radiance (FOV ~23◦) almost instanta-
neously. With the height setup mentioned above, a ground FOV of at least 1 m was covered.
The fibre optics were connected to two spectroradiometers, one covering the entire VNIR
spectral range from 400 to 1180 nm, with a spectral resolution of ~1.5 nm, and another
(called FLUO) covering the spectral range from 640 to 790 nm, with a spectral resolution
of ~0.3 nm. The TOC surface reflectance was calculated for both radiometers using the
signal captured from the upwelling and downwelling channels as described in [36]. The
VNIR measurement was used to spectrally parameterise the vegetation, and the FLUO was
used to retrieve the SIF. Each measurement consisted of 15 repetitions to compensate for
instrumental and environmental variability.

The MAIAS2 multispectral camera provided reflectance imagery emulating the first
9 spectral bands of Sentinel-2. The camera had a horizontal field of view of 35◦ and a
vertical field of view of 26◦. The images were preprocessed by MultiCam Stitcher Pro
v1.4, where the reflectance was calculated from the data measured by the irradiance sensor
facing upwards and the images taken with the camera facing downwards. The purpose of
MAIA was to extract the spatial distribution of the vegetation measured within the FOV of
the Piccolo system as a reference for FVC and FVCsunlit.

A TeAx Thermal Capture Fusion camera was also installed. This is a dual system
consisting of two snapshot cameras. The first camera has a thermal sensor covering the
long wave infrared (LWIR) range between 7.5 and 13.5 µm with an image resolution of
640 × 512 pixels, a horizontal FOV of 25◦, a vertical FOV of 20◦, and a thermal resolution of
0.05 K. The second camera is an RGB camera with an image resolution of 1600 × 1200 pixels.
This camera was not used in this experiment.

Piccolo’s upwelling channel optics and multispectral and thermal cameras were
mounted on a gimbal so that they always pointed down. Piccolo’s downwelling channel
optics, equipped with a cosine receptor, and MAIA’s irradiance sensor were mounted
so that they always pointed upwards. The projected FOVs of Piccolo and MAIA were
calculated to cover the vegetation transect surface with a 0.5 metre buffer zone around the
projected FOV area of Piccolo.

The FluoCat was moved along the rope to obtain between 15 and 50 readings for
each designed transect. Measurements were taken while the platform was stationary. The
average time spent on each transect measurement was approximately 15 min, during which
we moved the position of the system in small steps (~10 cm). All instruments on the
platform were triggered simultaneously.

The sky conditions during the experiment were generally cloudless, and measurements
took place avoiding moments of cloud overpasses.

2.3. Leaf Fluorescence

At the same time as the TOC measurements, reference leaf level measurements were
performed in both plant species using a USB4000 radiometer (Ocean Optics, Dunedin,
FL, USA) and a FluoWat leaf clip [38]. The FluoWat leaf clip allows the measurement of
leaf surface reflectance, transmittance, and up- and downwelling fluorescence. The full
chlorophyll fluorescence emission spectrum (650–800 nm) can be obtained by following the
protocol in [39].

Sampling consisted of randomly selecting plants of both species from a set of extra
pots. The number of leaves sampled each day varied according to the time spent on the
TOC measurements. On day 25, 19 leaves were measured (12 from mealy sage, 7 from
thorn apple), on day 26, 24 leaves (6 from mealy sage, 14 from thorn apple), on day 27,
6 leaves of thorn apple, and on day 28, 17 leaves (12 from mealy sage, 5 from thorn apple).
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2.4. Sunlit Fractional Vegetation Cover Based on MAIA Multispectral Reflectance Images

The MAIA reflectance images were used to obtain the reference total fractional vege-
tation cover (MAIA FVCtotal) and the reference sunlit fractional vegetation cover (MAIA
FVCsunlit) to validate the FVCtotal and FVCsunlit products derived from the Piccolo hyper-
spectral point spectroradiometer (Section 2.5).

Based on the MAIA’s reflectance images and following the protocol described in [36],
we classified each MAIA’s pixel as soil, sunlit, or shaded vegetation fraction. To define
the area where the Maia and Piccolo measurements overlapped, the Piccolo FOV was first
projected onto the MAIA surface images. To correctly define the coincidence area, the
relative position of the optics of the two instruments in the platform gimbal was taken into
account (Figure 3). Later, the normalised difference vegetation index (NDVI) was calculated
from the reflectance bands 4 and 7 (NDVI = R783 − R665/R783 + R665) [40]. Finally, an
NDVI threshold was used to discriminate between soil and vegetation, resulting in the
reference MAIA FVCtotal. Based on the MAIA FVCtotal and a reflectance band 7 threshold,
a second mask was created to discriminate between sunlit and shaded leaves, resulting in
the reference MAIA FVCsunlit and MAIA FVCshaded. For further details see [36].
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2.5. Development of Piccolo FVCsunlit Obtained from the TOC Surface Reflectance
2.5.1. Surface Reflectance Unmixing Concept

The spectral response of both vegetation and soil surfaces is mixed in the measured Pic-
colo VNIR TOC reflectance signal (400–1100 nm). To decompose the fractions of the mixed
reflectance signals, the contribution of each element (i) was assumed to add linearly to the
total surface reflectance, Rsur f ace (−). In order to linearly unmix the surface components,
the pure reflectance factors of the sunlit soil and the sunlit and shaded vegetation fractions
are required, hereafter referred to as the endmember weights (wi). The total TOC surface
reflectance is then defined as the sum of n effective reflectance surface components (Re f f , i),
given as the endmember weight ( wi) times the pure endmember reflectance spectrum ( Ri),

Rsur f ace = ∑n
i Re f f , i = ∑n

i (w i × Ri) (1)
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The proposed assumption is based on the decomposition of the surface reflectance
(Rsur f ace) into three components associated with the soil, the sunlit vegetation, and the
shaded vegetation fractions,

Rsur f ace = wsoil × Rsoil + wveg, sunlit × Rveg, sunlit + wveg, shaded × Rveg, shaded (2)

By knowing the measured surface endmembers and combining them with a spectral
fitting algorithm, it is possible to unravel the abundance of each element. The weights used
to combine the endmembers to fit the surface reflectance are understood as the abundance
of each endmember. This methodology does not consider the distinction between sunlit
and shaded soils, as the spectral feature differences obtained between both types of soils
and the white reference with both conditions were lower than 6% across the entire spectrum.
This means that the features of the soil spectral signature do not change significantly when
the fraction of direct and diffuse light exposition change.

2.5.2. Extraction of Surface Reflectance Endmembers

The proposed unmixing method requires defining three unknown endmembers, these
are Rsoil , Rveg, sunlit, and Rveg, shaded (Equation (2)). Soil, vegetation-sunlit, and vegetation-
shaded surfaces were obtained based on MAIA FVC characterization. Reflectance end-
members were defined using ground measurements taken during the experiment with the
Piccolo at a 2.5 m height. The Rsoil endmember was obtained from a soil surface where
MAIA FVCtotal = 0% (n = 26) (Figure 4, Rsoil). The pure Rveg, shaded endmember was ob-
tained by shielding a vegetation area, MAIA FVCtotal = 100% (n = 1), from direct sunlight
with a panel at the side. Regarding Rveg, sunlit, since it is not possible to measure a spectrum
of 100% sunlit vegetation, the strategy was to obtain it indirectly from a TOC total (mixed)
vegetation canopy (i.e., sunlit + shaded) and to correct it for the shaded contribution based
on the previously obtained Rveg, shaded endmember. Furthermore, it must be considered that
both the sunlit and total vegetation endmembers are composed of a direct and a diffuse
illumination component, while the shaded endmember is composed only of the diffuse
component [41]. For simplicity, the potted plants were assumed to have a constant vertical
structure (i.e., canopy height, leaf density, and leaf area index). A constant ratio between
diffuse and direct components was assumed for the sunlit canopies, and a single diffuse
component for the shaded canopies.

TOC mixed vegetation ( Rveg, total

)
measurements (assuming that the measured surface

is completely covered by vegetation) are defined by the addition of the sunlit and shaded
components (Equation (3)),

Rveg, total = wveg, sunlit × Rveg,sunlit + wveg,shaded × Rveg,shaded (3)

Moreover, Rveg,sunlit is defined as,

Rveg,sunlit =
1
n∑n

i=1

(
Rveg, total (i)−(wveg,shaded (i)×Rveg,shaded)

wveg, sunlit (i)

)
(4)

where

• Rveg, total is the reflectance spectrum of all the Piccolo measurements where MAIA
FVCtotal is higher than 95% (n = 16);

• wveg, sunlit and wveg,shaded are the weight values of sunlit and shaded fractions ob-
tained from the corresponding MAIA reference images, MAIA FVCsunlit, and MAIA
FVCshaded, respectively; Section 2.4 (n = 16);

• Rveg, shaded is the shaded endmember reflectance spectrum previously defined (n = 1).

As the experiment was carried out in summer under high solar illumination angles, the
solar sensor target geometry was assumed to have only a minor effect on the distribution
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and scattering of direct and diffuse light within the canopy. All the endmember spectra
used are shown in Figure 4.
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2.5.3. Unmixing Strategy

Based on the Piccolo measurements and the reflectance endmembers defined in the
previous section, the different fractions of signal components’ contributions (i.e., soil, sunlit
vegetation, and shaded vegetation) were unmixed from the surface apparent reflectance
using a non-negative least squares (NNLS) fitting (i.e., ‖aX − Y‖2, a is the endmember
weight and could vary from 0 to 1, X is an m × n matrix (wavelengths × number of end-
members) where X ∈ Rn, and Y ∈ Rm, and Y is the apparent reflectance for each wavelength
(m)). Two different approaches were implemented, i.e., approach A, where only soil and
mixed vegetation endmembers were considered, and approach B, where three endmembers
corresponding to sunlit vegetation, shaded vegetation, and soil were considered. In both
cases, the implemented Lawson–Hanson NNLS package in R [42] was used to solve for the
contribution (weight and fitted value) of the different signal components. The sum of the
estimated weights (wsoil + wveg,total or wsoil +wveg, sunlit+ wveg, shaded) should be equal to 1.
However, in some scenarios, the sum of the weights resulted in values greater than 1. This
was proposed to consider other elements present in the scene and the multiple scattering
of vegetation, which mainly influences the shaded fraction of vegetation, in the unmixing
process [25].

Since the weights represent the vegetation cover fraction, in the next section of the
manuscript, we refer to Piccolo FVCtotal, Piccolo FVCsunlit, and Piccolo FVCshaded when
referring to the total (i.e., mixed sunlit and shaded), sunlit, and shaded vegetation fractions,
respectively. Finally, to validate the unmixing results, for both approaches A and B, the
spectral-fitting-based FVC from the Piccolo measurements was compared with the image-
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based reference FVC of the MAIA measurements by means of the root-mean-square error
(RMSE) between the two data pairs (i.e., for approach A: Piccolo FVCtotal vs. Maia FVCtotal
and Piccolo FVCtotal vs. Maia FVCsunlit; for approach B: Piccolo FVCtotal vs. Maia FVCtotal,
and Piccolo FVCsunlit vs. Maia FVCsunlit).

2.6. TOC Fluorescence Retrieval

Spectrally resolved TOC fluorescence was retrieved using the SpecFit method [43],
generating the chlorophyll fluorescence spectrum from 670 to 870 nm. The SpecFit method
is based on a weighted spectral fitting method which uses the incoming and surface’s
reflected radiance to model the actual reflectance and fluorescence spectra by means of an
iterative optimization technique.

From the fluorescence spectrum obtained, the total fluorescence flux JF,total was calcu-
lated based on photon flux units, integrated for the hemisphere, assuming an ideal diffuse
scattering behaviour [9] as:

JF,total

[
photonsm−2 s−1

]
=
∫

Ω

∫ 850

650
JF, nadirdλdw = π

∫ 850

650
JF, nadirdλ (5)

2.7. Retrieval of Piccolo-Based Green APAR Flux of Sunlit Canopy Fraction and Fluorescence
Quantum Efficiency

To obtain the sunlit green fluorescence (Equation (6)), also defined as the effective sur-
face fluorescence emission, the green APAR flux of the sunlit canopy fraction (JA,green sunlit)
was calculated based on the Piccolo FVCsunlit previously retrieved:

JA,green sunlit

[
photonsm−2 s−1

]
= Alea f × PAR× PiccoloFVCsunlit (6)

where the leaf level absorbance factor (Aleaf) was assumed to be constant at 0.84 [9,44,45],
and the PAR was spectrally integrated based on photon flux units obtained from the
Piccolo’s downwelling radiance channel. The proposed method assumed that the sunlit
fraction was the dominant surface triggering fluorescence emission, and that chlorophyll
absorption was constant at the leaf level.

Both the total fluorescence and green sunlit absorbed PAR photon fluxes were then
used to calculate the fluorescence quantum efficiency (FQE) as shown by Equation (7).

FQE =
JF,total

[
µmol m−2s−1]

JA,green sunlit[µmol m−2s−1]
(7)

Further we compared the FQE obtained at the TOC with the FQE values obtained in
situ at the leaf level with the FluoWat leaf clip, where the FQE was estimated according to
the same formula, considering a FVCsunlit of 1 (i.e., 100% FVCsunlit). The values obtained for
each transect were compared with the results at the leaf level made within a time span of
20 min before and after each transect. The transects without leaf measurements in that time
range were discarded for the comparison. Two tests were used to compare the pairwise
variance of the data from the different scales. Fligner’s test was used to discriminate
between different types of data variance. Either Student’s t-test (equal variances) or Welch’s
t-test (unequal variances) was used to compare data pairs. All calculations were performed
using the Python library Scipy version 1.1 (“PyPI · The Python Package Index”, 2021).

Figure 5 summarises the processing chain applied to obtain the FQE, considering the
necessary input parameters and the advanced products obtained due to the sensor’s synergies.
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Figure 5. Diagram summarising the methodology applied to obtain the top of the canopy’s fluo-
rescence quantum efficiency (FQE) and its comparison to the leaf reference value. It represents the
processing chain of the different products obtained from the FluoWat, Piccolo, and MAIA systems, as
well as the processing chain to retrieve the necessary variables to obtain the FQE.

3. Results
3.1. Surface Reflectance and Reference MAIA FVC

In order to test the proposed spectral unmixing method for the spectral retrieval of
the fractional vegetation cover, the experiment was designed to obtain a dataset with a full
range of fractional vegetation covers from 100% to 0%. A total of 321 surface reflectance
measurements were used. Based on the distribution of the reference FVC classifications
obtained from the MAIA processing, it can be seen that the full FVC range was covered
(Figure 6). The MAIA FVCtotal reference distribution shows, for the range 0–100%, at
least 20 measurements for each 10% group, with peaks at both extremes, 0% and 100%, of
approximately 45 measurements, and a broad peak of 50 measurements around an FVCtotal
of 70%. For the values obtained for the MAIA FVCsunlit and FVCshaded classified fractions,
the distribution of the number of measurements shows a higher number of measurements
in the 0–10% range for the former and in the 10–20% range for the latter.

Accordingly, the surface reflectance dataset obtained with the spectroradiometer in
parallel with the MAIA images from the transect measurements describes a continuous
pattern of spectral mixtures between full cover and bare soil surface reflectance. A sample
set of transect measured surface reflectance spectra is shown in Figure 7 as a function of the
MAIA reference fractional vegetation cover.
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Figure 7. Example of the Piccolo-measured surface reflectance (Rsurface) dataset obtained along
a transect with different vegetation cover densities. This transect was measured from 10:30 to 11:05
UTC on 26 July, starting from full vegetation cover to full bare soil. The spectra are coloured based
on the MAIA FVCtotal value obtained using the classification protocol described. The shaded areas
indicate the (small) standard deviation of each measurement (n = 15).

3.2. TOC and Leaf Surface Fluorescence

The TOC fluorescence spectra (670–780 nm) obtained by the Specfit retrieval method
shows values in an increasing order along the increase in MAIA FVCtotal (Figure 8A).
While the fluorescence values around the 740 nm peak show a gradual increase with the
MAIA FVCtotal, the fluorescence values at the 687-nm peak remain rather indifferent to
the underlying FVC. Interestingly, when FVCtotal = 0–10% (i.e., pure soil), although no
fluorescence signal should be obtained, values of the order of 1 mW m−2 sr−1 nm−1 were
obtained from the TOC measurements. In terms of magnitude, TOC fluorescence values
of the first, rather constant, peak are similar to the leaf level (full surface) values, while
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the 740 nm peak at the TOC given a FVCtotal = 100% shows values up by a factor of
two compared to the leaf value (Figure 8B).
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3.3. Surface Reflectance Spectral Unmixing

The proposed surface reflectance unmixing strategies based on two or three endmem-
bers showed slightly different results. In the two-endmember case (approach A), the fitted
effective surface reflectance (Reff,surface) was composed of the fitted effective soil and vege-
tation reflectance (Reff,soil, Reff,veg,total), while for the three-endmember case (approach B),
it was composed of the fitted components Reff,soil, Reff,veg,sunlit, and Reff,veg,shade. Figure 9
shows several linear fitting examples of both approaches along a range of MAIA FVCtotal
values. In general, the two-endmember unmixing approach slightly overestimated the
fitted surface reflectance spectrum, especially in the region beyond the red edge. In contrast,
the results from the three-endmember unmixing approach slightly underestimated the
fitted reflectance surface spectrum.

For the two strategies, the mean fitting error based on the RMSE between the measured
and fitted reflectance, considering all 321 surface reflectance spectra, is shown in Figure 10
(red line). The two-endmember strategy shows a mean fitting error of 0.03 ± 0.02 along the
fitted reflectance range while the three-endmember strategy shows a mean fitting error of
0.011 ± 0.007. Using the three-endmember approach resulted in lower fitting errors across
the whole spectral range, especially in the NIR region.
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Figure 10. Absolute error of all 321 surface reflectance spectra (grey lines) and the RMSE (red line)
between the measured and fitted top of canopy reflectance spectra for the 2-endmember (A) and the
3-endmember (B) fitting strategies.

3.4. Validation of the Piccolo FVCsunlit Obtained by Spectral Unmixing

Finally, the endmember weights obtained from the surface reflectance unmixing
process were used to calculate the spectrally based vegetation cover fractions, which were
validated with the MAIA FVCtotal and MAIA FVCsunlit reference products (Figure 11).
Generally, for both unmixing approaches, the FVCtotal was underestimated; in contrast,
the FVCsunlit fraction was overestimated in comparison with the reference values. The
difference between Figure 11A,B in the FVCtotal ranges is due to the fact that no restrictions
were applied to the unmixing NNLS weights, resulting in values greater than one when
the FVCsunlit and FVCshaded fractions were summed to obtain FVCtotal.
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Figure 11. Comparison of Piccolo spectral-based vegetation cover for the total and sunlit components
with the MAIA reference products FVCtotal and FVCsunlit. For the 2-endmember strategy (A), FVCtotal

does not differentiate between sunlit and shaded vegetation, and for the 3-endmember strategy (B),
FVCtotal is the sum of unmixed sunlit and shaded weights.

For the two-endmember approach, the RMSE obtained between Piccolo FVCtotal
(which integrated sunlit and shaded vegetation) and the MAIA FVCtotal was 0.11, with a
coefficient of determination (R2) of 0.88. In addition, the RMSE obtained between Piccolo
FVCtotal and the MAIA FVCsunlit was 0.21, with an R2 of 0.86 (Figure 11A). For the three-
endmember approach, the Piccolo FVCtotal (obtained by adding the unmixed sunlit and
shaded weights) and the Piccolo FVCsunlit were compared with the MAIA FVCtotal and
MAIA FVCsunlit, respectively. Compared to the two-endmember approach results, this
strategy improved both the correlation factor and the estimated error, with an RMSE
between Piccolo FVCtotal and MAIA FVCtotal of 0.13, (R2 = 0.88) and an RMSE between
Piccolo FVCsunlit and MAIA FVCsunlit of 0.14, (R2 = 0.84) (Figure 11B).

3.5. Fluorescence Quantum Efficiency

Different examples of the relationships between the retrieved FQE and the calculated
green absorbed energy JA,green sunlit using the three-endmember fitting approach are shown
in Figure 12. From these figures, it can be seen that despite the different PAR, APAR, and
F fluxes, when the F flux was normalised by the green APAR, similar FQE values were
obtained between the samples (FQE ~ 0.4%).



Remote Sens. 2023, 15, 4274 15 of 23

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 12. Examples of top of the canopy measurements showing the photon flux received, ab-
sorbed, and emitted by the vegetation surface. The fractional vegetation cover decreasing (A–D), 
and the FQE are shown to analyse the differences. In the legend, the PAR, green APAR, and SIF are 
shown, each represented by a line. The coloured area below each line represents the integrated value 
used to calculate the FQE, with J, ௦௨௧ (green area) and Jி,௧௧ (red area). 

 

Figure 12. Examples of top of the canopy measurements showing the photon flux received, absorbed,
and emitted by the vegetation surface. The fractional vegetation cover decreasing (A–D), and the
FQE are shown to analyse the differences. In the legend, the PAR, green APAR, and SIF are shown,
each represented by a line. The coloured area below each line represents the integrated value used to
calculate the FQE, with JA,greensunlit (green area) and JF,total (red area).

Both the retrieved JA,green sunlit and TOC fluorescence JF,total integrated over the spec-
tral range and hemisphere show a clear positive correlation with the fractional vegetation
cover (Figure 13A,B,D,E). A higher fractional vegetation cover leads to higher APAR and
consequently higher JF,total values. This relationship becomes stronger when the fluo-
rescence flux is related to the FVCsunlit (R2 = 0.76, Figure 13A,B) compared to FVCtotal
(R2 = 0.58, Figure 13D,E). Interestingly, the relationship between FQE, calculated with
Equation (7), and FVC shows that FQE remains in the range between 0.3 and 0.8% for
FVCsunlit > 20% and FVCtotal > 30% (Figure 13C–F). Within this range, further analyses
were carried out on the dataset. These are described below.

Finally, the retrieved FQE at the canopy level was compared to the reference FQE at the
leaf level. Only leaf measurements taken 20 min before and after the TOC measurements
were included (Figure 14). For this comparison, transects without a leaf reference in the
described time range were discarded due to the temporal dynamics of the vegetation.
Furthermore, using the values obtained at the leaf level as a reference, TOC measurements
with less than 20% of FVCtotal were discarded. Considering these points, TOC FQE values
were pooled per transect (average of 18 samples per transect) and compared with the leaf
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FQE values (average of five samples per transect). From the t-test analysis (p-value = 0.05)
of the eleven TOC FQE vs. leaf FQE pairs, only four cases showed statistical differences
(25-Salvia 1, 25-Salvia 3, 26-Salvia 1, 28-Datura 1).
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Figure 14. Comparison between the FQE obtained at the TOC (Piccolo-based) and at the leaf level
(FluoWat) for each transect. Due to the sampling strategy, the number of measurements at the
canopy and leaf levels varies between transects. The average number of samples for TOC FQE values
is 18 samples per transect. The average number of samples for the leaf FQE values is 5 samples.
* indicates a pair with statistical differences (p-level = 0.05).

4. Discussion

The accurate quantification of the vegetation fluorescence quantum efficiency using
remote sensing techniques requires the prior structural characterization of the canopy object
acquired in the sensor’s field of view (i.e., point sensor’s field of view and/or imaging
sensor’s pixel spatial resolution) [8,10,11]. As previously mentioned, this requires the quan-
tification of the amount of incident PAR and APAR, and a correction for the fluorescence
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scattering and reabsorption within the canopy. In this study, in order to address RQ I, which
focuses on disentangling the proportion of sunlit and shaded absorbed PAR, an ad hoc
experimental setup was designed to provide a wide range of FVC scenarios by varying the
plant density within the sensor FOV, but keeping the vertical vegetation structure constant,
thus reducing the variable effect of the canopy scattering and reabsorption. In addition, the
use of two plant types with different architectures was used to explore RQ II, assuming that
regardless of the FVC and the proportion of sunlit and shaded vegetation, a similar FQE is
obtained at the leaf and canopy scales when plants grow under the same environmental
conditions. The resulting dataset represented the full range of FVCtotal from 0 to 100%
(Figures 6 and 7), having a peak at 70 measurements for 0–10% FVCsunlit and decreasing to
16 measurements for 80% FVCsunlit (Figure 6).

In this study the sunlit and shaded green areas (RQ I) were quantified using a linear
unmixing algorithm based on the surface reflectance fitting with specific endmember com-
ponents. Two different approaches were compared, a two-endmember (Reff,soil, Reff,veg,total,
approach A) and a three-endmember (Reff,soil, Reff,veg,sunlit, and Reff,veg,shade, approach B)
approach. When comparing the reference and fitted reflectance spectra, the results showed
that decomposing the signal using three endmembers provided better results than with
two endmembers, reducing the averaged spectral RMSE between the actual reflectance
spectrum and the fitted spectrum from 0.03 to 0.01 (Figure 10). The largest difference in
terms of RMSE was observed after the red edge, in the NIR range. This can be explained by
the nonlinear behaviour of the canopy’s multiple scattering caused by the interaction of
the light within the canopy [18]. Moreover, this is the reason why the three-endmembers
provided better results than the two-endmember approach. The addition of a shaded
vegetation endmember introduced a diffuse component into the fit. This improved the
results of the spectral vegetation unmixing in the NIR range in [25].

The fitting accuracy of the presented study is in the same order of magnitude as
the results presented in [46–48]. These studies, however, reported a higher number of
endmembers (e.g., 4–5). For instance, Ref. [47] added to the set of four endmembers (sunlit
soil, shaded soil, sunlit vegetation, and shaded vegetation) a fifth endmember with zero
reflectance, called photometric shade, which included the multiple scattered signals from
the shaded surfaces in the fitting. Their study achieved a maximum RMSE of 0.01 across the
optical range. We hypothesise that the reason why our results are consistent with previous
studies, despite the use of only three endmembers, is due to the simplicity of the proposed
measurement setup, where a reduced number of elements, i.e., flat terrain, homogenous
soil surface, and two vegetation structures, define the measured transect. Furthermore,
in this study it was not necessary to add a shaded soil endmember because, as assumed
by [49], the surface true reflectance was the same, and the differences between sunlit and
shaded soil reflectance were mostly due to scattered light from the canopy. Therefore,
in the present work, the contribution of the shaded soil was mostly fitted to the shaded
vegetation signal, which explains why the addition of FVCsunlit and FVCshaded provided
values greater than one.

Regarding the discrimination between FVCtotal and FVCsunlit, both the two-endmember
and three-endmember approaches provided accurate results when comparing Piccolo
FVCtotal and MAIA FVCtotal (R2 = 0.88 and RMSE = 0.11–0.13). However, only the three-
endmember approach was able to discriminate between FVCtotal and FVCsunlit, improving
the estimation of FVCsunlit (RMSE = 0.14) compared to using the two-endmember ap-
proach’s FVCtotal used as an estimation of the sunlit fraction (RMSE = 0.21) (Figure 11).
Nevertheless, the results obtained in this study are in the same order of magnitude as other
works where more complex hyperspectral unmixing methods have been proposed [50–52].

Compared to previous studies where the total (i.e., sunlit + shaded) incoming radiation
was estimated using vegetation indices [53,54], the work presented in this study, provides
the opportunity to calculate in physical units the actual energy flux arriving at the sunlit
photosynthetic surface (JA,green sunlit) (Figure 12A). Furthermore, the results presented in
Figure 13B, where the correlation between SIF and MAIA FVCsunlit (R2 = 0.76) is higher than



Remote Sens. 2023, 15, 4274 19 of 23

when correlated with FVCtotal (R2 = 0.58), corroborate the hypothesis that the measured
TOC SIF is mainly emitted by sunlit leaves [16,17]. Hence, both JA,green sunlit and the total
calculated fluorescence flux (JF,total) show a strong relationship with the FVCsunlit. The
combination of these two terms allows us to decouple the changes in JF,total dynamics
driven only by the physiological component [9].

Regarding RQ II, the quantification of the incident APAR and emitted fluorescence
photons flux allows the remote quantification of the real fluorescence quantum efficiency
(FQE) (Figure 12C). Interestingly, except for FVCsunlit below 20%, similar FQE values
were obtained throughout the experiment regardless of the vegetation fractional cover
(Figure 12C). These results support the hypothesis that under equal environmental condi-
tions, and without any applied stress such as drought or nitrogen excess/deficit, similar
FQE values should be obtained (Figure 13). An accurate estimation of FQE is essential for a
quantitative interpretation of SIF and its role in early plant stress detection. Regarding the
high FQE values obtained when FVCsunlit < 20%, these results could be explained by the
positive (and overestimated) SIF values retrieved over samples where bare soil predomi-
nates in the measurement transect (Figure 8, red lines). In this study, unfortunately, these
observations indicate an overestimation of the retrieved values obtained by the Specfit
method in cases with a low FVC. These results are consistent with the findings in [43],
where a decrease in performance is observed with a low LAI. These results do not alter
the findings of the present study but suggest a revision of the proposed retrieval method
when low FVC values are investigated. Consequently, measurements with FVCtotal lower
than 20% were discarded for the comparison between TOC and leaf level measurements
(Figure 14).

In general terms, the FQE-TOC underestimated the retrieved FQE at the leaf level
(Figure 14). In 4 of the 11 transects analysed, the TOC measurements were statistically
different from the leaf level measurements. However, despite the slight differences, the FQE
obtained at the canopy and leaf levels showed values in the same range and the variability
along the experiment was similar. A possible explanation for the differences between them
is a combined effect of an overestimation of the fluorescence retrieved, and the omission of
the canopy scattering and reabsorption effects when measuring at the TOC due to the light
interactions with the canopy [55].

This experiment tested a methodology capable of retrieving the FQE from hyper-
spectral TOC data, with a protocol to validate the spectral-based FQE values with image-
based measurements. However, before extrapolating the proposed methodologies to
a larger and more complex ecosystems, further studies are needed to properly character-
ize and correct for the effects of the canopy’s vertical structure in more heterogeneous
surfaces, and to improve the fluorescence retrieval to downscale TOC measurements to
the leaf—photosynthetic surface—level. In addition, a further characterization of green
(i.e., specific pigment absorption) and nongreen (i.e., woody material and soil absorption
libraries) endmembers as well as the atmospheric correction should be incorporated into
the proposed methodology. Given the proposed improvements, it is expected that the next
studies will apply this methodology to larger scales, such as airborne or satellite measure-
ments, allowing the remote estimation of FQE and consequently the early detection of crop
and global vegetation stress.

5. Conclusions

Combining a state-of-the-art set of instruments mounted on a cable-driven platform,
this work exploited the synergies between a single-point high-spectral resolution spec-
troradiometer and a VNIR multispectral imaging camera for reflectance and fluorescence
interpretation. This setup allowed the development of an unmixing retrieval scheme to
disentangle the fraction of sunlit vegetation cover from the total TOC reflectance, validated
by the VNIR imaging camera. By normalising the retrieved TOC fluorescence by the green
APAR flux (i.e., sunlit FVC × PAR) the fluorescence quantum yield was quantified. The
proposed methodology allows the comparison and validation of the FQE at different scales,
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from leaf to canopy, with proximal and remote sensors. Furthermore, the methodology
presented here, together with the FluoCat system, provides the ability to operate and test
similar protocols over large fields, and thus characterize the heterogeneity of the surface,
which brings the opportunity to explain/understand the signal measured by the sensor
over such an area. In this study, the spectral signature of the sunlit vegetation fraction was
used to describe the vegetated surface, which is crucial for Cal/Val activities. From the
point of view of the remote sensing methodologies, the quantification of the components
present inside the measured area overcomes the limitation of the structural effects on the
fluorescence signal, demonstrating that the proposed spectral approach has the potential
to unravel the intricate complexities of underlying vegetated surfaces with hyperspectral
sensors. The development of more robust methods to obtain products beyond fluorescence,
such as the surface effective PAR and APAR, and most importantly the FQE, will allow
the remote quantification of the vegetation energy balance, closing the gap between the
flux of photons absorbed, dissipated, and used for photochemistry, which is critical for
a remote quantification of photosynthesis. Future research lines are needed to investigate
the extrapolation of this method to larger scales, with the aim of studying the FQE’s tem-
poral dynamics and variable stress conditions for a global monitoring of vegetation using
orbiting satellites.
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