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Abstract. We study the Riesz (a, p)-capacity of the so called Dobiński set. We characterize the values of the
parameters a and p for which the (a, p)-Riesz capacity of the Dobiński set is positive. In particular we show
that the Dobiński set has positive logarithmic capacity, thus answering a question of Dayan, Fernandéz and
González. We approach the problem by considering the dyadic analogues of the Riesz (a, p)-capacities which
seem to be better adapted to the problem.
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1. Introduction and main results

In a series of two papers [11, 12] Dobiński claims that the following identity is true∏
n≥0

(tan2nπx)2−n = (2sinπx)2,

for all real numbers x ∈ [0,1] which are not dyadic rationals. As it has been already noted in [2]
and explained in detail in a recent paper [10] the situation is not quite so simple. In fact, if we
consider the same identity with absolute values,∏

n≥0
|tan2nπx|2−n = (2sinπx)2,

so as to avoid issues of defining the powers of negative numbers, in [2] the authors prove that
the identity holds if and only if x does not belong to the so called Dobiński set D. To define
D let x ∈ [0,1] be a real number with dyadic expansion x = (0.a1a2 . . . )2 and for n ≥ 1 let
sn(x) = max{r ∈N : an = an+1 = ·· · = an+r } 1. Then,

D :=
{

x ∈ [0,1] : limsup
n→∞

sn(x)

2n > 0

}
.

∗Corresponding author.
1Let sn (x) =∞ if x is a dyadic rational
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So the Dobiński set comprises real numbers which can be approximated “exceedingly well”
by dyadic rationals on every scale. Related problems of diophantine approximation by dyadic
rationals have been considered in [14].

In a recent work [10] Dayan, Fernandéz and González prove, among other results, that D has
Hausdorff dimension 0 and logarithmic Hausdorff dimension 1. Their techniques are primarily
based on the mass transference principle of Beresnevich and Velani [6] which allows one to
transfer measure theoretic statements for limsup subsets of Rn to statements about Hausdorff
measure. The Hausdorff dimension is a precise way to talk about the size of a subset of Rn .
Another way to measure the size of subsets of Rn is by some kind of capacity. From now on it will
be convenient to consider D as a subset of the unit circle T in R2 via the usual correspondence
x 7→ e2πi x . Let 0 < a < 1 and f a positive measurable function on T the a-Riesz potential of f is
defined as

Ia f (x) :=
∫
T

f (y)dy

|x − y |1−a , x ∈T,

where dy is the normalized Lebesgue measure on T. Finally let 1 < p <∞ and a as before. The
(a, p)-Riesz capacity of a Borel subset E of T is defined as

Ra,p (E) := inf

{∫
T

f (y)p dy : f ≥ 0 and Ia f ≥ 1 on E

}
.

We shall refer to the capacities Ra,p as linear if p = 2 and as non-linear if p 6= 2. We shall
also assume that ap ≤ 1, otherwise singletons have positive capacity. There exists a remarkable
relation between Hausdorff dimension, which we will denote by dim, and linear Riesz capacities
for a Borel set E ⊆T established by Frostman [1, Corollary 5.1.14]

dimE = sup{1−ap : Ra,p (E) > 0}. (1)

This fact, together with the standard comparison results between capacities [1, Section 5.5]
and the fact that the Dobiński set has vanishing Hausdorff dimension implies that Ra,p (D) = 0
when ap < 1. In the same work where the Hausdorff dimension of D was studied the authors
ask whether also R 1

2 ,2(D) = 0 or not [10, Section 5]. In fact they formulate the question in
terms of logarithmic capacity in the complex plane but it is well known that for subsets of T,
logarithmic capacity is bounded below and above by the Riesz ( 1

2 ,2)-capacity [7, Lemma 2.2]
and [8, Corollary 2.6].

We have been able to answer the above question for all Riesz ( 1
p , p)-capacities.

Theorem 1. Let D be the Dobiński set and p > 1. Then,

R 1
p ,p (D) =

{
R 1

p ,p (T) if 1 < p ≤ 2

0 if p > 2.

Somewhat surprisingly the capacity of D exhibits a jump from full to 0 at the critical value
p = 2. It should be mentioned that this statement implies, via (1), that the Hausdorff dimension
of D is 0 and that the logarithmic Hausdorff dimension is 1 by [1, Corollary 5.1.14]. The proof of
the above theorem is presented in Section 3 and it applies to a more general class of Dobiński type
sets and all (a, p) Riesz capacities (see Theorem 5). The proof rests on two ideas. One is the use of a
discrete/dyadic version of the Riesz capacity. Discrete type capacities have appeared in potential
theory in the past (see for example [5, 15]) and their “combinatorial” nature suites very well the
dyadic structure of D. In concrete terms one can show using a recursive formula (Lemma 3)
that D has positive discrete capacity and this, through a comparison theorem for discrete and
Riesz capacities, [4, Theorem 1] allows one to deduce that D has positive Riesz ( 1

p , p)-capacity
for 1 < p ≤ 2 and zero capacity when p > 2. Finally we prove a “Kolmogorov 0−1” type lemma
(Lemma 4) from which we can deduce that in fact D is of full capacity, i.e. R 1

p ,p (D) = R 1
p ,p (T)
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when 1 < p ≤ 2. The general type Dobiński sets exhibit a similar behavior also with respect to
their Hausdorff h-measure (associated to sufficiently regular gauge function h). This in fact is the
main result of Dayan et al. [10, Theorem 1].

It is worth also noticing that the same transition phenomenon appears in the study of loga-
rithmic capacity of uniform Gδ-sets [13, Theorem 1.2].

2. Trees, dyadic capacity and the recursion formula

Let T := {0,1}∗ the free monoid generated by the language {0,1} with neutral element e. In this
context we shall call T the dyadic tree. The length of a word x is denoted |x|. For two words x, y ∈ T
we denote the largest common prefix of x and y by x∧y . If x∧y = x we write x ≤ y . Finally we use
the notation x− := x0, x+ := x1. The (Poisson) boundary ∂T of T can be identified with the metric
space {0,1}N equipped with the metric

d(x, y) := 2−|x∧y |.
We will write T := ∂T ∪T. There exists a natural mapping from ∂T to [0,1],

Λ : ∂T 7→ [0,1], Λ(w1w2 · · · ) := (0.w1w2 · · · )2 (2)

which is onto and Lipschitz continuous. Moreover, every x ∈ [0,1] which is not a dyadic rational
has a unique pre-image. Dyadic rationals have two pre-images underΛ.

Our next goal is to develop a potential theory on ∂T which parallels the one we have already
seen in T. A more detailed exposition of the potential theory on the boundary of the tree can be
found in [3, 4, 9]. Here we shall present only the elements that are essential for our problem.

Let ϕ a non negative function defined on T . The potential of ϕ is given by

Iϕ(x) := ∑
y≤x

ϕ(y), x ∈ T .

Let π be a positive weight function defined on T . Then for a set E ⊆ ∂T we define its π (discrete)
capacity as follows

capπ(E) := inf

{ ∑
x∈T

ϕ(x)pπ(x) :ϕ≥ 0 and Iϕ≥ 1 on E

}
.

Whenπ(x) = 2−|x|(1−ap) we shall refer to the capacity capπ =: capa,p as discrete (a, p) capacity. The
relation between the Riesz and discrete capacities can be made explicit. This has been first noted
in [5] for a = 1/2, p = 2 and generalized further in [4]. In particular, [4, Theorem 1] specialized
to the case where the metric space is the interval [0,1] with the Euclidean metric and as “tree
decomposition” we consider the set of dyadic intervals in [0,1] we get the following;

Theorem 2. Let p > 1,0 < a ≤ 1/p. There exists a constant c = c(a, p) > 0 such that for any compact
set K ⊆ ∂T

c−1 capa,p (K ) ≤ Ra,p (Λ(K )) ≤ c capa,p (K ).

In fact the restriction that K should be a compact set can be relaxed considerably. By Choquet’s
capacitability theorem [1, Theorem 2.3.11], Theorem 2 holds for all Suslin sets, in particular for
all Borel sets.

Discrete capacities satisfy a recursive formula, which is of fundamental importance for our
computations. It relates the capacity of a set to the capacities of the parts of its dyadic decom-
position. Let x ∈ T and E ⊆ ∂T. Let also Ex := {w ∈ ∂T : xw ∈ E } and πx (w) = π(xw). Then we
define

capπ(E , x) := capπx
(Ex ).

Informally, capπ(E , x) is the capacity of the portion of E that stays below x “viewed” from the
root x.

C. R. Mathématique — 2022, 360, 679-685



682 Nicola Arcozzi and Nikolaos Chalmoukis

Theorem 3 ([4, Theorem 30]). Let E ⊆ ∂T a Borel set. For every x ∈ T the following equality holds

capπ(E , x) = capπ(E , x−)+capπ(E , x+)(
1+

[
capπ(E , x−)+capπ(E , x+)

π(x)

]p ′−1)p−1
. (3)

Finally let us introduce a more general class of Dobiński type sets on the boundary of the tree.
This is a rather natural generalization of the set D. Suppose that κn is a sequence of positive
integers. Let

D(n,κn) := {
w ∈ ∂T : wn+1 = wn+2 = . . . wn+κn = 0

}
.

We define the Dobiński type set associated to κn as

D := limsup
n→∞

D(n,κn).

Notice that if we consider the set Λ(∪mDm) where Dm is the Dobiński type set corresponding
to the sequence κn = 2nm−1, we obtain “one half” of the Dobiński set D. The other half is
obtained by considering the same construction, where instead of “strings of 0’s” in the definition
of D(n,κn) we consider strings of 1’s. These two sets cover the Dobiński set but they have non
empty intersection.

3. Proof of the main result

The general Dobiński set as defined above enjoy a natural invariance under rotation by dyadic
rational angles. This follows from the fact that for a point e2πi x , x = (0.a1a2 . . . )2 belonging or
not to a Dobiński type set D is a property which depends only on the eventual behaviour of the
sequence (a1a2 . . . ). Since adding a dyadic rational number to x only changes a finite number
of the binary digits of x, Dobiński sets are invariant under such rotations. This observation
motivates the following lemma.

Lemma 4. Let p > 1 and a > 0 such that ap ≤ 1 and E ⊆ T a Borel set which is invariant under
rotations by angles θ, where θ is a dyadic rational number. Then, either Ra,p (E) = Ra,p (T) or
Ra,p (E) = 0.

Proof. We recall the fact that the Riesz (a, p) capacity of the circle is finite. More precisely an
elementary argument shows that

Ra,p (T)−
1
p =

∫
T

dy

|1− y |1−a <+∞.

Assume now that Ra,p (E) 6= 0. By Theorem [1, Theorem 2.3.10], since E has finite capacity, there
exists a unique non negative function fE ∈ Lp (T) such that

Ia( fE ) ≥ 1, Ra,p -q.e. on E , (4)

and ∫
T

f p
E (x)dx = Ra,p (E). (5)

Let θ a dyadic rational and define ρθ f (x) := f (e2πiθx). Then it is clear that Ia(ρθ fE ) =
ρθ(Ia( fE )) ≥ 1 on e2πiθE = E . Therefore ρθ fE satisfies equations (4) and (5) and by uniqueness
ρθ fE = fE . Since θ is dense in [0,1] a calculation with the Fourier coefficients of fE shows that
fE = c Lebesgue a.e. on T for some positive constant c.

By equation (5) and the fact that 0 < Ra,p (E) ≤ Ra,p (T) we get 0 < cp ≤ Ra,p (T). Finally let
y0 ∈ E , such that (4) holds;

1 ≤Ia( fE )(y0) = c
∫
T

dx

|y0 −x|1−a = cRa,p (T)−
1
p . �
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We now turn to the main theorem. The calculation can be carried out for general (a, p),

Theorem 5. Let D a Dobiński set associated to a sequence κn and a > 0,1 < p < ∞. In the case
ap = 1 we have

(i) If limsupn→∞κ
−(p−1)
n 2n > 0, then cap 1

p ,p (D) > 0.

(ii) If
∑∞

n=1κ
−(p−1)
n 2n <∞, then cap 1

p ,p (D) = 0.

While in the case ap < 1 we have

(a) If limsupn→∞(apn − (1−ap)κn) >−∞ then capa,p (D) > 0.,
(b)

∑∞
n=0 2apn−(1−ap)κn <+∞ then capa,p (D) = 0.

Let us pause for a second to show how one can derive Theorem 1 from Theorem 5.

Proof of Theorem 1. Let p > 1. Consider the Dobiński type set Dm corrisponding to the sequence
κn = 2nm−1 for some fixed m. As noted before Λ(Dm) ⊆ D. For 1 < p ≤ 2, by Theorem 5(i),
we have that cap 1

p ,p (Dm) > 0. Therefore the comparison principle, Theorem 2, gives R 1
p ,p (D) ≥

R 1
p ,p (Λ(Dm)) ≥ c−1 cap 1

p ,p (Dm) > 0. Since D is invariant under rotations by dyadic rationals,

Lemma 4 implies that D has full capacity.
While when p > 2, by Theorem 5(ii), cap 1

p ,p (Dm) = 0 for all m ∈ N. By countable subadditiv-

ity and the comparison theorem, cap 1
p ,p (∪mDm) = R 1

p ,p (Λ(∪mDm)) = 0. The “other half” of Do-

biński’s set has zero capacity for the same reason, which concludes the proof. �

Proof of Theorem 5. Let D(n,κn) as before. We start with deriving an exact formula for the
discrete (a, p) capacity of the set D(n,κn) using the recursive formula (equation (3)). For a positive
parameter r > 0 define the function

Φr (x) := x

(1+ r xp ′−1)p−1
, x > 0.

An elementary computations shows that the following semigroup law is satisfied

Φr ◦Φs (x) =Φr+s (x), ∀ r, s, x > 0.

Next we apply n + κn times the recursive formula (3) for the set D(n,κn). In the following
c := capa,p (∂T ). If we use the symbol

∏
for repeated composition of functions we have

capa,p (D(n,κn)) = 2n
n∏

m=1
Φ2(p′−1)[(n+1−m)+(m−1)(1−ap)] ◦

n+κn∏
m=n+1

Φ2(p′−1)(m−1)(1−ap) (c) = 2nΦσ(c) (6)

where we have used the fact thatΦr (2x) = 2Φ2p′−1r (x) and σ is given by

σ=



n∑
m=1

2(p ′−1)[(n+1−m)+(m−1)(1−ap)] +
n+κn∑

m=n+1
2(p ′−1)(m−1)(1−ap)

2n(p ′−1) −2n(1−ap)(p ′−1)

1−2−ap(p ′−1)
+ 2(n+κn )(1−ap)(1−p ′) −2n(1−ap)(p ′−1)

2(1−ap)(p ′−1) −1
when ap < 1,

2n(p ′−1) −1

1−21−p ′ +κn , when ap = 1.

Consequently if ap = 1,

cap 1
p ,p (D(n,κn)) = 2nc(

1+κncp ′−1 + 2n(p ′−1) −1

1−21−p ′ cp ′−1
)p−1

= c(
2n(1−p ′) +κn2n(1−p ′)cp ′−1 + 1−2n(1−p ′)

1−21−p ′ cp ′−1
)p−1

.

C. R. Mathématique — 2022, 360, 679-685
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From which is easily verified that there exists a constant A > 0 such that

1

A
cap 1

p ,p (D(n,κn)) ≤ κ−(p−1)
n 2n ≤ A cap 1

p ,p (D(n,κn)), ∀ n ∈N.

Similarly when ap < 1,

cap 1
p ,p (D(n,κn))

= 2nc(
1+

[2n(p ′−1) −2n(1−ap)(p ′−1)

1−2−ap(p ′−1)
+ 2(n+κn )(1−ap)(p ′−1) −2n(1−ap)(p ′−1)

2(1−ap)(p ′−1) −1

]
cp ′−1

)p−1

= c(
2−n(p ′−1) +

[1−2−nap(p ′−1)

1−2−ap(p ′−1)
+ 2−nap(p ′−1)+κn (1−ap)(p ′−1) −2−nap(p ′−1)

2(1−ap)(p ′−1) −1

]
cp ′−1

)p−1
.

Hence, for some constant A > 0,

1

A
cap 1

p ,p (D(n,κn)) ≤ 2apn−(1−ap)κn ≤ A cap 1
p ,p (D(n,κn)), ∀ n ∈N.

The theorem then follows from the estimates which hold for all ap ≤ 1. We can estimate the
capacity of D from above using subadditivity

capa,p (D) = capa,p

( ∞⋂
m=1

∞⋃
n=m

D(n,κn)

)
≤

∞∑
n=m

capa,p D(n,κn), ∀ m ∈N.

And from below;

capa,p (D) = capa,p

( ∞⋂
m=1

∞⋃
n=m

D(n,κn)

)
= lim

m

(
capa,p

∞⋃
n=m

D(n,κn)

)
≥ limsup

n
capa,p D(n,κn). �

It is clear that Theorem 5 leaves a gap between the sufficient and the necessary condition for
a general Dobiński type set to have positive capacity, although for the Dobiński set considered
in [10] this turns out not to be a problem. We conjecture that the series condition in Theorem 1
in fact characterizes the vanishing of the capacity of any Dobiński type sets. This conjecture
is supported by the following observation. Consider a 1 < p < +∞ fixed and define s, a by the
relation s = 1− ap. Then, at least when s > 0, applying [10, Theorem 1] to the Dobiński type set
D associated to the sequence κn and the gauge function h(t ) = t s we get that the s-Hausdorff
measure of D is zero if and only if the series

∑
n∈N 2(1−s)n−sκn converges. Thanks to equation (1)

sup{s : Ra,p (D) > 0} = inf

{
s :

∑
n∈N

2(1−s)n−sκn <+∞
}

.

Under the hypothesis that the sup in the above equation is a maximum if and only if the inf in
the same equation is a minimum, one can conclude that the series characterizes the vanishing of
the Riesz (a, p) capacity. Unfortunately we have been unable to prove such a condition.
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