
The Journal of Systems & Software 171 (2021) 110827

F
a

b

c

d

e

(
t
c
e
o
2
e
t
e

a

b
a

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A systematic literature review on Technical Debt prioritization:
Strategies, processes, factors, and tools
Valentina Lenarduzzi a,∗, Terese Besker b, Davide Taibi c, Antonio Martini d,
rancesca Arcelli Fontana e

LUT University, Lathi, Finland
Chalmers University of Technology, Göteborg, Sweden
Tampere University, Tampere, Finland
University of Oslo, Oslo, Norway
University of Milano-Bicocca, Milan, Italy

a r t i c l e i n f o

Article history:
Received 4 February 2020
Received in revised form 22 July 2020
Accepted 14 September 2020
Available online 14 October 2020

Keywords:
Technical Debt
Technical Debt prioritization
Systematic Literature Review

a b s t r a c t

Background Software companies need to manage and refactor Technical Debt issues. Therefore, it is
necessary to understand if and when refactoring of Technical Debt should be prioritized with respect
to developing features or fixing bugs.
Objective The goal of this study is to investigate the existing body of knowledge in software
engineering to understand what Technical Debt prioritization approaches have been proposed in
research and industry.
Method We conducted a Systematic Literature Review of 557 unique papers published until 2020,
following a consolidated methodology applied in software engineering. We included 44 primary
studies.
Results Different approaches have been proposed for Technical Debt prioritization, all having different
goals and proposing optimization regarding different criteria. The proposed measures capture only a
small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We
present an impact map of such factors. However, there is a lack of empirical and validated set of tools.
Conclusion We observed that Technical Debt prioritization research is preliminary and there is no
consensus on what the important factors are and how to measure them. Consequently, we cannot
consider current research conclusive. In this paper, we therefore outline different directions for
necessary future investigations.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Technical Debt (TD) is a metaphor introduced by Cunningham
1992) to represent sub-optimal design or implementation solu-
ions that yield a benefit in the short term but make changes more
ostly or even impossible in the medium to long term (Avgeriou
t al., 2016b). Software companies need to manage such sub-
ptimal solutions. The presence of TD is inevitable (Martini et al.,
015) and even desirable under some circumstances (Besker
t al., 2018c) for a number of reasons, which may often be related
o unpredictable business or environmental forces internal or
xternal to the organization.
However, just like any other financial debt, every TD has

n interest attached, or else an extra cost or negative impact

∗ Corresponding author.
E-mail addresses: valentina.lenarduzzi@lut.fi (V. Lenarduzzi),

esker@chalmers.se (T. Besker), davide.taibi@tuni.fi (D. Taibi),
ntonima@ifi.uio.no (A. Martini), francesca.arcelli@unimib.it (F. Arcelli Fontana).
ttps://doi.org/10.1016/j.jss.2020.110827
164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access art
that is generated by the presence of a sub-optimal solution (Li
et al., 2015). When such interest becomes very costly, it can
lead to disruptive events, such as development crises (Martini
et al., 2015). The current best practices employed by software
companies include keeping TD at bay by avoiding it if the con-
sequences are known or refactoring or rewriting code and other
artifacts in order to get rid of the accumulated sub-optimal so-
lutions and their negative impact. Companies cannot afford to
avoid or repay all the TD that is generated continuously and may
be unknown (Martini et al., 2015). The main business goals of
companies are to continuously deliver value to their customers
and to maintain their products.

Thus, the activity of refactoring TD usually competes with the
allocation of time to spend on developing new features and fixing
defects, where TD refactoring activities are often down prioritized
over implementation of new features (Martini et al., 2015). It is
therefore of utmost importance to understand when refactoring
TD becomes more important than postponing a feature or a
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2020.110827
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110827&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:valentina.lenarduzzi@lut.fi
mailto:besker@chalmers.se
mailto:davide.taibi@tuni.fi
mailto:antonima@ifi.uio.no
mailto:francesca.arcelli@unimib.it
https://doi.org/10.1016/j.jss.2020.110827
http://creativecommons.org/licenses/by/4.0/


V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

b
p
s
n
d
q
A
t
i
t

e
r
(
i
c
f
(

t
e

t
o
i
r
u
i
(
p
i
b

o
q
i
t
v

p
w
b

e
h
t
o
t
u
w

Fig. 1. The TD prioritization mind map.
t
i

t
s
p
w
c

2

g
T
o
i
t

p
n
o
t
a
f
w
i
f

T
i
(
m

a
e
o
a
c
r
d
t
q

d
s
d
m
f
t
l

ug fix. In other words, it is important to understand how to
rioritize TD with respect to features and bugs. However, a recent
tudy (Besker et al., 2019) performed in several software compa-
ies reported how companies struggle to prioritize TD and they
o not use systematic approaches. This leads to our first research
uestion: Which prioritization strategies have been proposed? (RQ1)
nswering this RQ will provide a list of prioritization strategies
hat have been studied, which can be useful for practitioners to
mprove their practices and identify the strategy more suited to
heir aims.

In addition, recent studies show how different projects and
ven different types of TD might be associated with different
efactoring costs (principal) and negative impact (interest)
Besker et al., 2018b). But it is still not clear in academia and in
ndustry how to measure principal and interest and what tools
an help in those activities. We then formulate other RQs: Which
actors and measures have been considered for TD prioritization?
RQ2) and Which tools have been used to prioritize TD? (RQ3)

Once again, answering these questions would provide practi-
ioners with actionable measures and tools to quantify or at least
stimate principal and interest, and therefore to prioritize TD.
Furthermore, as part of the prioritization strategies related

o RQ1, we know that some TDs can be more dangerous than
thers (Seaman et al., 2012; Martini and Bosch, 2016c), and it
s therefore important to understand how to prioritize TD with
espect to other TD. We therefore propose the following RQ, to
nderstand what approaches are available and which ones are
nstead missing: Are papers prioritizing TD vs. TD or TD vs. Features?
RQ1.1) Yet another important aspect related to the strategies to
rioritize TD, refers to its periodicity, where the prioritization for
nstance either can be done as a one-shot activity but it can also
e done iteratively and being a part of a continuous process.
We therefore propose the RQ: Is the prioritization based on a

ne-shot activity or on a continuous process? (RQ1.2). This research
uestion focuses on how the prioritization process is described
n the reviewed publications in terms of its periodicity. We dis-
inguish the different approaches in terms of one-shot activities
ersus part of a continuous process
However, there is no overall study that investigate strategies,

rocesses, factors, and tools for TD prioritization. The only similar
ork (Alfayez et al., 2020) analyzed prioritization approaches
ased only on their accounts for value and cost.
Our goal in this paper is to survey the existing body of knowl-

dge in software engineering to understand which approaches
ave been proposed in research and industry to prioritize TD. For
his reason, we performed a Systematic Literature Review (SLR)
n the prioritization of TD. We conducted a SLR in order to inves-
igate the existing body of knowledge in software engineering to
nderstand how TD is prioritized in software organizations and
hich research approaches have been proposed.
2

The main contribution of this paper is a report on the state of
he art concerning approaches, factors, measures, and tools used
n practice or proposed in research to prioritize TD.

The paper is structured as follows: In Section 3, we describe
he background of this review. In Section 4, we outline the re-
earch methodology adopted in this study. Sections 5 and 6
resent and discuss the obtained results. Finally, in Section 7,
e identify the threats to validity and in Section 8 draw the
onclusion.

. The TD prioritization mind map

We propose a preliminary mind map to conceptualize our
oal and research questions, that can help practitioners during
D prioritization activities as illustrated in Fig. 1. This Mind Map
ffers an exploration of different factors that need to be taken
nto consideration during the TD prioritization process and how
hese factors can be relates to each other.

The first step is to decide whether the practitioners require a
rioritization of the refactorings among TD issues or whether they
eed to prioritize a TD refactoring versus the implementation
f new features and bug fixes (to answer RQ1). This is because
he approaches differ in terms of assessing the impact of TD and
ssessing the value or the impact of features and bugs. In the
ormer case, the prioritization approach can use the same factors,
hile in the latter case, it is more probable that the principal and

nterest of TD need to be compared with feature-oriented factors,
or example competitive advantage or cost of delay.

Once the scope of the comparison is defined, the evaluation of
D should be performed taking into account: (1) the difference
n the TD principal (the cost of fixing the issues), (2) the impact
the TD interest), and (3) other factors, including economic and
arketing factors (results from RQ2).
The evaluation can be both quantitative and qualitative (RQ1),

nd in some cases could be supported by tools (RQ3). As an
xample, companies might quantitatively evaluate the presence
f Code Debt using tools, but they might also need to perform
qualitative evaluation (e.g., with code reviews) of factors that
annot be measured with tools, for example considering code
eadability, analyzability, or other quality characteristics. In ad-
ition, some tools provide means to calculate the principal of
he TD, but practitioners might need to calculate the interest by
ualitatively assessing the impact factors.
Moreover, the evaluation should be performed considering

ifferent scenarios, including the available resources and the pos-
ible evolution of the system. In fact, TD can be quite context-
ependent (as we discussed for the impact factors in RQ3), which
eans that practitioners need to assess it with estimations of

uture scenarios. For example, in the tool AnaConDebt, prac-
itioners can specify events happening in short-, medium- or
ong-term scenarios. The evaluation of the different scenarios



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

T
D

c
s
s
s
o
t

i
a
i
m
t
a
e
r
d
n
o
t
w
d
d
t
c
s

able 1
efinition of technical Debt (Li et al., 2015).
TD type Definition

Requirements TD ‘‘Refers to the distance between the optimal requirements specification and the actual system
implementation, under domain assumptions and constraints’’

Architectural TD ‘‘Is caused by architecture decisions that make compromises in some internal quality aspects, such as
maintainability’’

Design TD ‘‘Refers to technical shortcuts that are taken in detailed design’’

Code TD ‘‘Is the poorly written code that violates best coding practices or coding rules. Examples include code
duplication and over- complex code’’

Test TD ‘‘Refers to shortcuts taken in testing. An example is lack of tests (e.g., unit tests, integration tests, and
acceptance tests)’’

Build TD ‘‘Refers to flaws in a software system, in its build system, or in its build process that make the build overly
complex and difficult’’

Documentation TD ‘‘Refers to insufficient, incomplete, or outdated documentation in any aspect of software development.
Examples include out-of-date architecture documentation and lack of code comments’’

Infrastructure TD ‘‘Refers to a sub-optimal configuration of development-related processes, technologies, supporting tools, etc.
Such a sub-optimal configuration negatively affects the team’s ability to produce a quality product’’

Versioning TD ‘‘Refers to the problems in source code versioning, such as unnecessary code forks’’

Defect TD ‘‘Refers to defects, bugs, or failures found in software systems’’
Table 2
Previous SLRs .
ID Year Goal

Tom et al. (2013) 2012 Understanding the nature of TD
Li et al. (2015) 2015 TD management and TD classification
Ampatzoglou et al. (2015) 2015 Financial approaches for managing TD
Ribeiro et al. (2016) 2016 TD payment prioritization
Alves et al. (2016) 2016 TD management strategies, TD

taxonomy
Fernández-Sánchez et al.
(2017)

2017 TD management elements

Behutiye et al. (2017) 2017 TD in Agile development
Besker et al. (2018a) 2018 Managing architectural TD
Rios et al. (2018) 2018 TD types, management strategies
Khomyakov et al. (2019) 2019 TD tools
Alfayez et al. (2020) 2020 TD effort

should help in making refactoring decisions, for example regard-
ing which refactorings should be performed and which should be
postponed.

As an example of the decision process, a company might
onsider not implementing a new feature that involves a code
ection or module that is suffering from TD. This can happen if
uch TD is estimated to generate high interest in the short-term
cenario: In such a case, the interest generated by the TD could
vercome the cost of delaying the feature. The practitioners might
hen decide to refactor the code before implementing the feature.

Let us take a concrete example of how a refactoring decision
s made following the steps in the prioritization mind map. An
rchitect needs to decide whether to refactor a ‘‘sub-optimal’’
nterface before more applications accessing it are developed. The
ain activity of the architect is to evaluate whether to priori-

ize the refactoring of TD vs. developing new features. Then the
rchitect needs to take into consideration and calculate differ-
nt factors (principal, interest, and other factors). Without the
efactoring, the TD would spread to all the new code (Contagious
ebt). In addition, all the new applications would suffer from the
egative impact (interest) generated by interacting with the sub-
ptimal API (Spread of impact in the system. Although delaying
he development of the new applications (feature-oriented factor)
ould imply costs in the short-term scenario, the lead time for
eveloping new features in the long-term scenario could be re-
uced as the developers would not pay the interest generated by
he sub-optimal interface. If such long-term gain overcomes the
ost of delaying the application development, the practitioners

hould choose to perform the refactoring of the API. In this case,

3

the refactoring decision would be made by evaluating whether, in
a future scenario, the cost of avoiding the interest is worth paying
the principal.

The TD prioritization Mind Map can assist practitioners, in
combination with the other results presented in this paper (im-
pact map, description of prioritization approaches, and available
tools), in reaching a refactoring decision.

3. Background

In this Section, we explain the meaning of TD in order to avoid
confusion or misunderstandings, and we will report on previously
published systematic reviews.

3.1. Technical Debt

The concept of TD was introduced for the first time in 1992
by Cunningham as ‘‘The debt incurred through the speeding up of
software project development which results in a number of defi-
ciencies ending up in high maintenance overheads’’ (Cunningham,
1992). In 2013, McConnell (2013) refined the definition of TD as
‘‘A design or construction approach that is expedient in the short
term but that creates a technical context in which the same work
will cost more to do later than it would cost to do now (including
increased cost over time)’’. In 2016, Avgeriou et al. (2016a) defined
it as ‘‘A collection of design or implementation constructs that are
expedient in the short term, but set up a technical context that can
make future changes more costly or impossible. TD presents an actual
or contingent liability whose impact is limited to internal system
qualities, primarily maintainability and evolvability’’.

Li et al. (2015) conducted a systematic mapping study for
understanding the concept of TD and created an overview of the
current state of research on managing TD. Based on the selected
studies (96), they proposed a classification of ten types of TD at
different levels, as reported in Table 1. Since this classification
derives from a recent secondary study and is, according to our
knowledge, the most complete one available in the literature, we
considered it in our search strategy process (Section 4.2) to define
our search terms.

3.2. Previous SLRs

In this Section, we briefly report on previous systematic re-
views (Systematic Mapping Studies and Systematic Literature
Reviews) available in the source engines, showing their main



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

g
i
s
t
2

n
b
t
t
v
d
t
p

a
o
a
n
p
a
p

T
c
s
s
M
a

a
t
p
d
t
r

p
p
T
a
M
p
r
n
f
s

n
s
o
T
m
n
e
b

a
c
p
r
p
c
d

t

t
p
o
e

4

T
t
C
a

t
t
t
a

4

e
s
r

(

oals in Table 2). We present the studies in chronological order
n order to show the research evolution regarding TD. The first
ystematic review was published in 2012 (Tom et al., 2013) and
he last ones, to the best of our knowledge, in 2018 (Besker et al.,
018a; Rios et al., 2018).
Tom et al. (2013) exploited an exploratory case study tech-

ique that involves a multivocal literature review, supplemented
y interviews with software practitioners and academics, in order
o establish the boundaries of the TD phenomenon. As a result,
hey created a theoretical framework that provides a holistic
iew of TD, comprising a set of TD dimensions, attributes, prece-
ents, and outcomes. The framework provides a useful approach
o understanding the overall phenomenon of TD for practical
urposes.
Li et al. (2015) investigated TD management (TDM), providing

classification of TD concepts and presenting the current state
f research on TDM. They considered publications between 1992
nd 2013, ultimately selecting 94 studies. The results showed a
eed for empirical studies with high-quality evidence on the TDM
rocess, application of TDM approaches in industrial contexts,
nd tools for managing the different TD types during the TDM
rocess.
Ampatzoglou et al. (2015) analyzed research efforts regarding

D, focusing on financial aspects underlying software engineering
oncepts. They considered publications until 2015, selecting 69
tudies. The results provide a glossary of terms and a classification
cheme for financial approaches to be applied for managing TD.
oreover, they discovered that a clear mapping between financial
nd software engineering concepts is lacking.
Ribeiro et al. (2016) evaluated the appropriate time for paying

TD item and how to apply decision-making criteria to balance
he short-term benefits against long-term costs. They considered
ublications until 2016, selecting 38 studies. They identified 14
ecision-making criteria that can be used by development teams
o prioritize the payment of TD items and a list of types of debt
elated to the criteria.

Alves et al. (2016) investigated what strategies have been pro-
osed to identify and manage TD in software projects, considering
ublications between 2010 and 2014 and selecting 100 studies.
hey proposed an initial taxonomy of TD types and provided
list of indicators to identify TD and management strategies.
oreover, they analyzed the current state on TD, highlighting
ossible research gaps. The results showed a growing interest of
esearchers in the TD area. They identified some gaps regarding
ew indicator proposals and management strategies and tools
or controlling TD. Another gap they identified regards empirical
tudies for validating the proposed strategies.
Fernández-Sánchez et al. (2017) identified the elements

eeded to manage TD, considering publications until 2017 and
electing 69 studies. They did not provide a general overview
f the TD phenomenon or of the activities for managing TD.
he elements were classified into three groups (basic decision-
aking factors, cost estimation techniques, practices and tech-
iques for decision-making) and grouped based on stakehold-
rs’ points of view (engineering, engineering management, and
usiness-organizational management).
Behutiye et al. (2017) analyzed the state of the art of TD

nd its causes, consequences, and management strategies in the
ontext of agile software development (ASD). They considered
ublications until 2017 and selected 38 studies, finding potential
esearch areas for further investigation. The study highlighted
ositive interest in TD and ASD and provided some potential
ategories that can easily lead to TD, such as ‘‘focus on quick
elivery and architectural and design issues’’.
Besker et al. (2018a) investigated Architectural TD (ATD), syn-
hesizing and compiling research efforts in order to create new

4

knowledge with a specific interest in ATD. They considered pub-
lications between 2005 and 2016, selecting 43 studies. The results
showed a lack of guidelines on how to manage ATD successfully
in practice and of an overall process where these activities are
fully integrated.

Rios et al. (2018) performed a tertiary study based on a set of
five research questions and evaluated 13 secondary studies dating
from 2012 to March 2018. They evolved a taxonomy of TD types,
identified a list of situations in which debt items can be found
in software projects, and organized a map representing the state
of the art of activities, strategies, and tools for supporting TD
management. Their results can help to identify points that still
require further investigation in TD research. For example, they
found that there are management activities that do not have any
type of support tool.

Khomyakov et al. (2019) investigated existing tools for the
measurement and analysis of TD, focusing on quantitative meth-
ods that could also be automated. They selected 21 papers out of
331 retrieved. Their results show that many new approaches are
being defined to measure TD.

Avgeriou et al. (2020) compared the existing tools for mea-
suring TD, comparing their features and popularity, and analyz-
ing the existing empirical evidence on their validity. Differently
from this work, they did not compare the methods adopted to
prioritize TD.

Recently, Alfayez et al. (2020) investigated the software ar-
tifact dependencies, and type of required human involvement.
They analyzed prioritization approaches based on their accounts
for value, cost, or resources constraints.

Comparing to the existing SLRs, our study is the only one
hat investigates strategies, processes, factors, and tools for TD
rioritization considering all the possible aspects and not focusing
nly on a specific ones (such as effort Ribeiro et al., 2016; Alfayez
t al., 2020, or development process Behutiye et al., 2017).

. Methodology

In order to understand the state of the art and the practice on
echnical Debt prioritization, we conducted a systematic litera-
ure review based on the guidelines defined by Kitchenham and
harters (2007) and Kitchenham and Brereton (2013). We also
pplied the ‘‘snowballing’’ process defined by Wohlin (2014).
In this Section, we describe the goal and the research ques-

ions (Section 4.1) and report our search strategy approach (Sec-
ion 4.2). Moreover, we performed a quality assessment (Sec-
ion 4.3) for each included paper and outlined the data extraction
nd the analysis (Section 4.4) of the corresponding data.

.1. Goal and research questions

Based on our mind map, the study goal was to investigate the
xisting body of knowledge in software engineering to under-
tand how TD is prioritized in software organizations and what
esearch approaches have been proposed.

Based on our goal, we defined the following research questions
RQs):

RQ1 Which prioritization strategies have been
proposed?

RQ1.1 Are papers prioritizing TD vs. TD or TD vs.
Features?

RQ1.2 Is the prioritization based on a one-shot
activity or on a continuous process?

RQ2 Which factors and measures have been
considered for TD prioritization?
RQ3 Which tools have been used to prioritize TD?



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

s
t
t
i
m
p

f
a
m
c
e
s

4

b
c
f

r
(

O
O
d
d

o
c
a
t

l
C
r
m
D
b
s
T
D

T
I

D
t
u

f
a
p
p

a
p
a
s
O
a

a
e
t
a

2
p
o
t
s
p
c

o

4

q

Fig. 2. The search and selection process.

The first research question targets how the investigated re-
earch papers address the prioritization process of TD, both in
erms of different strategies (RQ1), i.e., whether the prioritiza-
ion process of TD mainly focuses on different TD items or also
ncludes prioritization between TD items and, e.g., the imple-
entation of new features (RQ1.1), and of how the prioritization
rocess is described in terms of its periodicity (RQ1.2).
Based on the above RQs, we aimed at identifying a set of

actors and measures considered useful during TD prioritization
ctivities (RQ2). Moreover, we aimed at understanding which
easures are considered in the prioritization of the main TD
omponents, principal and interest. We aim to provide a list of
xisting tools used to evaluate TD in order to depict the current
ituation in terms of numbers and the maturity of each tool (RQ3).

.2. Search strategy

The search strategy involves the outline of the most relevant
ibliographic sources and search terms, the definition of the in-
lusion and exclusion criteria, and the selection process relevant
or the inclusion decision. Our search strategy is depicted in Fig. 2.

Search terms. In our search string, we included all the terms
elated to TD proposed by Li et al. (2015) and reported in Table 1
Section 3).

The search string contained the following search terms:
(‘‘technical debt’’)OR (‘‘design debt’’) OR (‘‘architect* debt’’)

R (‘‘test* debt’’) OR (‘‘implem* debt’’) OR (‘‘docum* debt’’)
R (‘‘requirement debt’’) OR (‘‘code debt’’) OR (‘‘Infrastructure
ebt’’) OR (‘‘versioning debt’’) OR (‘‘defect debt’’) OR (‘‘build
ebt’’)
We used the asterisk character (*) for the second term group in

rder to capture possible term variations such as plurals and verb
onjugations. To increase the likelihood of finding publications
ddressing TD prioritization, we applied the search string to both
itle and abstract.

Bibliographic sources. We selected the list of relevant bib-
iographic sources following the suggestions of Kitchenham and
harters (2007), since these sources are recognized as the most
epresentative in the software engineering domain and used in
any reviews. The list includes: ACM Digital Library, IEEEXplore
igital Library, Science Direct, Scopus, Google Scholar, CiteSeer li-
rary, Inspec, Springer link. Moreover, we performed a manual
earch on the most important conferences and workshops on
echnical Debt, such as the International Conference on Technical

ebt (TechDebt).

5

able 3
nclusion and exclusion criteria.
Criteria Assessment criteria Step

Inclusion

Papers that prioritize TD issues All

Papers that report the criteria of removal,
refactoring, remediation of TD issues regarding
any aspect (financial, maintenance,
performance, readability, . . . )

All

Papers that compare TD issues All

Papers that empirically investigated the
prioritization of removal, refactoring,
remediation of TD issues

F

Exclusion

Papers not fully written in English T/A

Papers not peer-reviewed (i.e., blog, forum ...)

Duplicate papers (only consider the most
recent version)

T/A

Position papers and work plans (i.e., papers
that do not report results)

T/A

Publications where the full paper cannot be
located (i.e., if database used does not have
access to the full text of the publication)

T/A

Publications that only mention prioritization of
TD in an introductory statement and do not
fully or partly focus on it

All

Only the latest version of the papers (e.g.,
journal papers that extend conference papers
are excluded if they refer to the same dataset)

All

Inclusion and exclusion criteria. We defined inclusion and
exclusion criteria to be applied to the title and abstract (T/A) or
to the full text (F) or to both cases (All), as reported in Table 3.

Search and selection process. The search was conducted in
ecember 2019 and included all the publications available until
his period. The application of the searching terms returned 557
nique papers.
Testing the applicability of inclusion and exclusion criteria: Be-

ore applying the inclusion and exclusion criteria, we tested their
pplicability (Kitchenham and Brereton, 2013) on a subset of ten
apers (assigned to all the authors) randomly selected from the
apers retrieved.
Applying inclusion and exclusion criteria to title and abstract: We

pplied the refined criteria to the remaining 547 papers. Each
aper was read by two authors; in the case of disagreement,
third author was involved in the discussion to clear up any

uch disagreement. For 29 papers, we involved a third author.
ut of the 557 initial papers, we included 116 based on title and
bstract.
Full reading: We fully read the 117 papers included by title and

bstract, applying the criteria defined in Table 3 and assigning
ach one to two authors. We involved a third author for six papers
o reach a final decision. Based on this step, we selected 49 papers
s possibly relevant contributions.
Snowballing: We performed the snowballing process (Wohlin,

014), considering all the references presented in the retrieved
apers and evaluating all the papers referencing the retrieved
nes, which resulted in one additional relevant paper. We applied
he same process as for the retrieved papers. The snowballing
earch was conducted in December 2019. We identified only 11
otential papers, but only one of these was included in order to
ompose the final set of publications.
Based on the search and selection process, we retrieved a total

f 50 papers for the review, as reported in Table 5.

.3. Quality assessment

Before proceeding with the review, we checked whether the
uality of the selected papers was sufficient to support our goal



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

T
Q

r
a

t
s

f
s
p

4

o
s

5

m
t
C
M

able 4
uality assessment criteria.
QAs Quality Assessment Criteria (QA) Response scale

QA1 Is the paper based on research (or is it merely
a ‘‘lessons learned’’ report based on expert
opinion)?

QA2 Is there a clear statement of the aims of the
research?

QA3 Is there an adequate description of the context
in which the research was carried out?

QA4 Was the research design appropriate to
address the aims of the research?

Excellent = 4

QA5 Was the recruitment strategy appropriate for
the aims of the research?

Very Good=3

QA6 Was there a control group with which to
compare treatments?

Good=2

QA7 Was the data collected in a way that
addressed the research issue?

Fair=1

QA8 Was the data analysis sufficiently rigorous? Poor=0

QA9 Has the relationship between researcher and
participants been considered to an adequate
degree?

QA10 Is there a clear statement of findings?

QA11 Is the study of value for research or practice?

Table 5
Results of search and selection and application of quality assessment criteria.
Step # Papers

Retrieval from bibliographic sources (unique papers) 557
Reading by title and abstract 439 rejected
Full reading 68 rejected
Backward and forward snowballing 1
Papers identified 50
Quality assessment 6 rejected
Primary studies 44

and whether the quality of each paper reached a certain quality
level. We performed this step according to the protocol proposed
by Dybå and Dingsøyr (2008). To evaluate the selected papers, we
prepared a checklist (Table 4) with a set of specific questions. We
ranked each answer, assigning a score on a five-point Likert scale
(0 = poor, 4 = excellent). A paper satisfied the quality assessment
criteria if it achieved a rating higher than (or equal to) 2.

Among the 50 papers included in the review from the search
and selection process, only 44 fulfilled the quality assessment
criteria, as reported in Table 5.

4.4. Data extraction

We extracted data from the 44 primary studies (PSs) that
satisfied the quality assessment criteria. The data extraction form,
together with the mapping of the information needed to answer
to each RQs, is summarized in Table 6.

In order to answer RQ1, we first extracted data related to the
context of the papers, outlining each PS in terms of the type of TD
evaluated, according to the list proposed by Li et al. (2015). We
also reported the type of evaluation adopted in the papers, distin-
guishing between qualitative, quantitative, and mixed evaluation
approaches. Moreover, we also extracted the criteria of removal,
refactoring or remediation of TD issues.

We extracted data related to the goal of the prioritization
(RQ1.1), so as to understand if papers prioritized TD vs. TD or
TD vs. the implementation of new features. To answer RQ1.2, we
eported if the prioritization is based on a one-shot activity, or on

continuous process, if it is proactive or reactive. t

6

Fig. 3. Types of TD.

To answer RQ2, we extracted the measures and factors used
o assess the prioritization of a TD issue and which of these are
uggested during the prioritization process.
Finally, to answer RQ3, we retrieved information about the

rameworks and tools adopted to evaluate and prioritize TD is-
ues. This data is exclusively based on what is reported in the
apers, without any kind of personal interpretation.

.5. Replicability

In order to allow replication and extension of our work by
ther researchers, we prepared a replication package1 for this
tudy with the complete results obtained.

. Results

Based on the adopted selection process, we identified 44 pri-
ary studies (PSs). Considering the TD type reported in Table 1,

he types of TD considered most frequently in the PSs were:
ode Debt (38%), Architectural Debt (24%), and Design Debt (10%).
oreover, some PSs (24%) do not report on issues of any specific

TD type, but evaluate TD in general (Fig. 3).
Code TD is generally investigated from the point of view of its

impact on one – or more than one – software qualities [SP13],
[SP18], [SP19], [SP26]. Maintainability [SP4], [SP5], [SP11] and
maintenance effort [SP1], [SP2], [SP11], [SP19] are considered
most often by the PSs. Code debt evaluation is mostly based on
code smells [SP2], [SP5], [SP11], [SP18], [SP19], [SP26].

Other metrics are also considered, such as the time [SP4],
[SP23] or cost [SP1] needed to fix a violation, and quality rules
[SP13].

Some factors related to subjective evaluation such as customer
feedback [SP23] or developers’ comments in the code [SP28] are
evaluated less often.

The approaches mainly involve models that reduce TD by re-
moving or refactoring code smells or other metrics [SP11],[SP18].
These approaches look at the impact on code smells [SP5], make
a comparison with classes without smells [SP2], [SP26], or rank
the code rules [SP13] perceived as critical by developers.

Architectural TD is general investigated taking into account
the role of architectural smells [SP17], [SP19], [SP20] or complex
architectural design [SP17], [SP27] which negatively impact soft-
ware quality [SP17], [SP19], [SP20]. Architectural TD is evaluated
by measuring the extra maintenance effort for bug fixing [SP17]
or analyzing the bug-proneness [SP17] of the code. Another ap-
proach combines three different perspectives, such as historical

1 http://www.taibi.it/raw-data/JSS_TD_2019.zip (The raw data will be moved
o a permanent repository (Mendeley Data) in case of acceptance of this paper).

http://www.taibi.it/raw-data/JSS_TD_2019.zip


V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

o
o
f

a
T

5

a
u
t
c
S
r
h
a
c
w
t
o

r
T
i
s
m
H
s
c

s
i
p
c
r
s

r

o
e

5

s
i
t

Table 6
Data extraction.
RQs Data Outcome

RQ1 TD type Architectural, Build, Code, Defect, Design, Documentation,
Infrastructure, Requirement, Test, and Versioning

RQ1 Evaluation type Qualitative, quantitative, or mixed evaluation approach

RQ1 Criteria of removal, refactoring,
remediation of TD issues

RQ1.1 Prioritization goal TD vs. TD, TD vs. Feature

RQ1.2 Process type Single activity or continuous process, proactive or reactive

RQ2 Measures and factors used to assess the
prioritization of a TD issue

e.g. a specific code smell, or metric, or feature

RQ3 Frameworks and tools adopted
data of the projects, architectural design, and severity of the class
prioritizing the refactoring activities [SP19].

Architectural design is used to identify high interest in terms
f wasted time related to architectural TD [SP27], combined with
ther metrics such as number of files and percentage of complex
unctions and files [SP35].

Another approach identifies dependencies and social gaps
cross architecture organization in order to define architectural
D [SP31].

.1. RQ1 which prioritization strategies have been proposed?

TD prioritization is considered as one of the most important
ctivities when managing TD. The TD prioritization process is
sed for defining the ordering and/or scheduling of planned refac-
oring initiatives based on the priority of each identified TD item
oncerning the impact of the individual items on the software.
everal different prioritization aspects have been proposed by
esearchers in the reviewed publications and a few methods on
ow to prioritize TD have been developed, but there is no unified
pproach regarding how the TD prioritization process should be
arried out, nor is there a consensus on which aspects to focus on
hen performing the TD prioritization process. The selection of
he prioritization strategy is currently context-dependent in most
rganizations [SP21].
In order to analyze the prioritization aspects presented in the

etrieved publications, a thematic analysis approach was used.
hematic analysis is an effective method for identifying, analyz-
ng, and reporting patterns and themes within a searched data
cope (Braun and Clarke, 2006). The thematic analysis returned
ainly five themes illustrating different prioritization aspects.
owever, one should note that from a software evolution per-
pective, these aspects can potentially have dependencies and
ouplings.
Based on the analysis, the different suggested prioritization

trategies presented in the reviewed publications are mainly: (a)
mproving software quality, (b) increasing software practitioners’
roductivity, (c) affection on the correctness of the software, (d)
ost–benefit analysis (CBA) to compare various TD items with
espect to low cost and high payoff, or (e) a combination of
everal different approaches.
These different strategies are presented in Fig. 4 together with

eferences to the publications representing each type of strategy.
Following sub-sections will describe more in detail how each

f the investigated publications contribute to the illustrated cat-
gorization of TD strategies.

.1.1. Internal software quality
Studies focusing on internal software quality as a prioritization

trategy commonly focus on a quality assessment of the software
n order to identify the TD items that cause the highest main-
enance costs [SP1], [SP2], [SP13], [SP19], [SP28], [SP26], [SP4],
7

Fig. 4. Technical debt prioritization strategies.

[SP31], [SP35], [SP41], [SP44], together with factors such as re-
maining product life, debt severity and its impact on future
development activities, and current business-related constraints
[SP3], [SP9].

Xiao et al. [SP17] suggest an approach that focuses on archi-
tectural TD. It focuses both on locating TD items and on ranking
and prioritizing them. Their approach returns the TD items that
consume the largest maintenance effort and therefore deserve
more attention and higher priority for refactoring

Plösh et al. proposes a TD prioritization approach with a pri-
marily focus on the prioritization of Design debt, and their ap-
proach relies on the quantification of design best practices by
transferring the identified TD items into a portfolio-matrix [SP42].
Albarak and Bahsoon further claim that software systems having
database tables below fourth normal form are likely to form TD
and therefore the ill-normalized tables should be prioritized for
refactoring [SP40].

5.1.2. Software productivity
Some reviewed publications also take the decrease in software

practitioners’ productivity into consideration when prioritizing
TD, since software suffering from architectural TD, for example,
slows down development by causing rework [SP2], [SP3].

5.1.3. Software correctness
The effect TD has on the correctness of the software is de-

scribed as an approach for evaluating different candidate TD
items for prioritization [SP2]. More specifically, Arcelli Fontana,
Ferme and Spinelli [SP5] report that the prioritization of the refac-
toring of code smells representing design debt can be evaluated
by studying the impact of the refactoring of the code smells on



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

d
‘
t
b
d
m

p
i
p

5

w
i
t
w
p
i
a
o

t
b
t
r
t
o
a
t
e
e
a
i
a

5

n
B
p
c
f
s

s
t
m
b
c
b
o
m
r

b
t
t
e
t
t
p
p
b

t
p

ifferent quality metrics, with the goal is to identify and prioritize
‘the most dangerous smell and hence the smell which represents
he worst TD’’. When prioritizing defect debt, in particular, Ak-
arinasaji et al. [SP23] focus their approach on the severity of the
ebt items (using the categorizations critical, major, normal, and
inor) and the duration of bug-xing time.
Codabux et al. [SP21] used a Bayesian approach to build a

rediction model for determining the ‘‘TD proneness’’ of each TD
tem using a classification scheme according to the TD proneness
robability where the risk of the individual items is assessed.

.1.4. Cost–benefit analysis
Researchers such as [SP3], [SP6] use a cost–benefit analysis

hen prioritizing different TD items, focusing on which refactor-
ng activities should be performed first because they are likely
o be inexpensive to implement yet have a significant effect, and
hich refactoring should be postponed due to high cost and low
ayoff. The main focus of this approach is on making a lucrative
nvestment in the software, with the output of this analysis being
prioritized list of different TD items ordered by the profitability
f the different possible refactoring activities [SP3].
This strategy is echoed by Martini et al. [SP32], who state

hat ‘‘if the interest is (or is going to be) high, the debt is worth
eing paid. On the contrary, if the interest is not enough to justify
he cost of refactoring, there is no reason to ‘‘waste resources to
efactor the system’’. However, Martini et al. [SP32] also stress
he importance of not only focusing the prioritization decisions
n single TD items by assessing each TD item separately, but
lso understanding the overall impact TD items generally have on
he whole project, thus focusing on the overall project goals by
valuating the information holistically. In this approach, Martini
t al. [SP32] also include factors such as the portion of the code
ffected by the TD, the project size, the roadmap, the positive
mpact of the TD, the existence of an alternative, and the cultural
ttitude of the team when prioritizing TD refactoring activities.

.1.5. A combination of several different approaches
Quite a few of the investigated publication suggest a combi-

ation of several different approaches. For instance, Alfayez and
oehm [SP44] propose an automated search-based approach for
rioritizing TD using a multi-objective evolutionary algorithm
alled MOEA (which is an open-source Java library), having a
ocus on the repayment of the TD refactoring activity within a
pecific cost constraint.
Borrowing prioritization approaches from other disciplines,

uch as finance and psychology, Seaman et al. [SP6] include
echniques such as Analytic Hierarchy Process (AHP), the Portfolio
ethod, and the Options approach. The AHP approach involves
uilding a criteria hierarchy, assigning weights and scales to the
riteria, and finally performing a series of pairwise comparisons
etween the alternatives against the various criteria. The goal
f using the Portfolio approach is to select those assets that
aximize the return on investment or minimize the investment

isk.
Codabux et al. [SP25] stress the importance of adopting a

roader perspective on the prioritization process, focusing on
he liability of TD. According to them, decision makers need to
hink beyond the cost associated with fixing the debt, including
stimates of the possible future costs resulting from the decision
o ship. The additional costs reflected during the prioritization in
erms of liability costs include, e.g., costs for responding to sup-
ort requests, costs associated with catastrophic failures, etc., and
otential litigation costs if service level agreements are violated
ecause of unmanageable debts.
Ribeiro et al. [SP24] present a multiple decision strategy cri-

eria model using a combination of different prioritization ap-

roaches, which can be used during different project phases.

8

Their model focuses on aspects such as, e.g., the severity of the
impact the TD items have from a customer perspective on the
interest cost of TD, the lifetime of the project’s properties, and its
possibility of evolution.

Yet another prioritization process that includes different per-
spectives is the approach described by Ciolkowski et al. [SP29].
Their approach focuses on a combination of the overall soft-
ware quality with a focus on productivity improvement from a
future-oriented perspective, using a proactive methodology.

Gupta et al. [SP20] use a two-level approach for prioritizing
TD. First, the TD items are assessed according to their importance
and urgency. In a second step, the TD items’ impact on business
values and effort is assessed.

Guo et al. [SP15] present a TD prioritization approach that
ranks customer expectations according to top priority, followed
by availability of development resources, the interest of the TD
items, the current status of the debt-infected modules, and the
impact of the debt on other features. By studying how soft-
ware practitioners prioritize TD items in practice, Yli-Huumo
et al. [SP14], [SP16] concluded that their prioritization approach
commonly focuses on scalability, business value, use of a feature,
and customer effect.

Snipes et al. [SP7] suggest a TD prioritization approach that in-
cludes a combination of factors such as severity, the existence of
a workaround, urgency of the refactoring required by customers,
refactoring effort, the risk of the proposed refactoring, and the
scope of testing required.

Schmid [SP8] distinguishes between potential and effective
TD, where potential TD is any type of suboptimal software sys-
tem, while effective TD refers to issues in the software system
that make further development of that system more difficult. This
prioritization approach considers aspects such as evolution cost,
refactoring cost, and the probability that the predicted evolution
path will be realized.

Further, Almeida et al. [SP43] suggest to also focus on business
objectives when prioritization TD in order to support business
expectations and goals. The researcher compared the differences
between a technical prioritization and a business-oriented one,
and they state that their results show that ‘‘taking business prior-
ities into account can change decisions related to technical debt
prioritization’’. This prioritization aspect is also described to fa-
cilitate the argumentation from the technical side and thereby to
convince business stakeholders to prioritize what was previously
considered pure-technical problems.

Martini and Bosch [SP33] propose a tool called AnaConDebt
to provide assistance during the TD prioritization process. Their
tool assesses the severity of the interest for different TD items,
with the calculation of the interest being based on an assessment
of seven different factors and their growth. The assessed factors
are: (1) reduced development speed, (2) bugs related to the TD
item, (3) other qualities compromised, (4) other extra costs, (5)
frequency of the issue, (6) spread in the system, and (7) users
affected. Vidal et al. [SP18] also propose a tool called JSpIRIT
for specifically prioritizing source-code-related TD, where the TD
items are evaluated according to their importance based on dif-
ferent prioritization criteria. The tool calculates a ranking for a set
of code smells according to their importance, where the tool can
instantiate to prioritize TD items by different criteria. Examples
of such criteria are the relevance of the kind of code smells,
the history of the system, or different software metrics, among
others. Additionally, the developer can use external information
to improve the prioritization.

Yet another reviewed publication [SP39] suggests performing
TD prioritization using a tool called CodeScene, where factors
such as how developers work with the code is taken into con-
sideration. The process uses an complexity trend analysis when
calculating the indentation-based complexity of the identified TD
items and together with a skilled human observer set out the final
TD prioritization.



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

5

d
o
o
o
l
i
T

t
a
a

a
s
i
f
p
r
d

c
t
a
m
c
a
t
i

T
i
r

c
f
t
a

f
t
t
T
r
i
o
t
H
s
f
c

5
c

p
p

i
t
i

t

.2. RQ1.1 are papers prioritizing TD vs. TD or TD vs. features?

Since today’s software companies face increasing pressure to
eliver customer value, the balance between spending devel-
per time, effort, and resources on implementing new features
r spending it on TD remediation activities, on fixing bugs, or
n other system improvements become vital. In this study, we
imited the scope to studying the balance between prioritizing the
mplementation of new features or the remediation of existing
D.
To conclude, this research question seeks to address whether

he TD prioritization process mainly focuses on the prioritization
mong different TD items or whether the TD items are described
s competing with the implementation of new features or not.
Budget, resources, and available time are important factors in
software project, especially during the prioritization process,

ince spending time and effort on refactoring activities commonly
nfers that less time can be spent on implementing new features,
or example. This is one of the main reasons why software com-
anies do not always spend additional budget and effort on the
efactoring of TD since they commonly have a strong focus on
elivering customer-visible features [SP18].
Ciolkowski et al. [SP29] describe this situation like this: ‘‘The

hallenge for project managers is to nd a balance when using
he given budget and schedule, either by reducing TD or by
dding technical features. This balance is needed to keep time to
arket for current product releases short and future maintenance
osts at an acceptable level’’. Echo this view stating that ‘‘Ide-
lly, actionable refactoring targets should be prioritized based on
he technical debt interest rate to balance the trade-os between
mprovements, risk, and new features’’ [SP39].

Furthermore, Martini, Bosch and Chaudron [SP10] state that
D refactoring initiatives usually get low priority compared to the
mplementation of new features and that TD that is not directly
elated to the implementation of new features is often postponed.

Vathsavayi and Systa [SP22] echo this notion, stating that ‘‘De-
iding whether to spend resources for developing new features or
ixing the debt is a challenging task’’. The researchers highlight
hat software teams need to prioritize new features, bug fixes,
nd TD refactoring within the same prioritization process.
However, even if the balance between implementing new

eatures and TD refactoring activities is described as impor-
ant [SP31], the papers investigated in this study commonly focus
heir prioritization approaches on prioritization among different
D items, with the goal being to determine which item should be
efactored first. None of the prioritization approaches described
n the surveyed publications explicitly addresses how the pri-
ritization between implementing new features and spending
ime and effort on the refactoring of TD should be carried out.
owever, the study by Besker et al. (2019) states that ‘‘the pres-
ure of delivering customer value and meeting delivery deadlines
orces the software teams to down-prioritize TD refactorings
ontinuously in favor of implementing new features rapidly’’.

.3. RQ1.2 is the prioritization based on a one-shot activity or on a
ontinuous process?

Just as important as prioritizing TD refactoring activities in a
roject is to describe a management strategy for the prioritization
rocess.
Therefore, this research question focuses on how the prior-

tization process is described in the reviewed publications in
erms of its periodicity. We distinguish the different approaches
n terms of one-shot activities versus part of a continuous process.

Some of the publications reviewed in this study highlight
he TD prioritization process in terms of it being a continuous,
9

integrated, and iterative process [SP16], [SP22], whereas others
stress the importance of prioritizing TD refactoring within each
sprint [SP15]. Choudhary et al. [SP19] illustrate the prioritization
process as being an integral part of the continuous development
process by saying ‘‘ideally software companies try to incorporate
refactoring practices as an integral part of their development
and maintenance processes’’ [SP9], and [SP39] echos this notion
stating that ‘‘a systematic management of TD and how to reduce
it should also be considered important in each release of the
development project’’.

Interestingly, however, the rest of the publications reviewed
in this study do not give any explicit recommendations on how
often or in what way the prioritization of TD should be carried
out.

5.4. RQ2 which factors and measures have been considered for TD
prioritization?

When we analyzed the papers to understand which factors
were used for TD prioritization, we used a bottom-up approach
(inductive analysis). With a deductive analysis (with a priori
categories decided in advance), we would have risked to miss
some of the factors.

First, we coded each paper with the factors that were men-
tioned and we obtained a long list of <factor, paper>. Then we
grouped and renamed the overlapping factors, to obtain a list of
<factor, (paper1, paper2, . . . )>. Finally, we grouped the factors
in categories based on different aspects of software development.
The results of this process, especially for the factors related to the
interest, are visible in Table 7.

During the prioritization process, six PSs considered both prin-
cipal and interest ([SP1], [SP10], [SP13], [SP15], [SP23], [SP35]),
while four PSs considered only interest ([SP13], [SP17], [SP27],
[SP34]).

Principal is calculated as cost [SP1], [SP10] or time [SP1], [SP4]
needed to fix technical quality issues [SP1] or violations of quality
rules [SP13]. Other factors are also considered, such as page rank
or customer feedback [SP23].

Interest is calculated as extra cost spent on maintenance due
to technical quality issues [SP1], [SP10], [SP17], [SP35] or as
wasted time related to different activities (management or refac-
toring) [SP27], [SP34]. Principal is compared with interest without
considering any item for which the benefit does not outweigh the
cost [SP15]. The factors considered are: customer expectations,
which have the top priority, followed by availability of develop-
ment resources, the interest of the TD items, the current status of
the debt-infected modules, and the impact of the debt on other
features [SP15].

In Table 7, we present an ‘‘Impact Map’’, which highlights
the plethora of factors related to the impact (interest) of TD to
be considered for prioritization, and their wide variation across
studies and projects. In total, we counted 53 unique factors.

A few of the factors might overlap, although in different papers
the factors are calculated differently. For example, ‘‘number of
bugs’’ and ‘‘ROI (calculated on number of bugs)’’ are obviously
overlapping factors, although using the sheer number of bugs or
the cost of their impact as indicators might give very different
results when prioritizing. In other cases, a generic concept of
‘‘interest’’ or ‘‘cost’’ has been used, although such values were
probably implicitly calculated by the researchers or practitioners
taking in consideration some of the other 52 remaining factors
explicitly mentioned in the other papers. However, given the
reported information, there is no way to perform such a mapping.
Thus, we report a generic factor, for example ‘‘risk’’, as different
from all the other specific ones.

The factors have been grouped into categories, when possible,
to help navigate them. First, we mapped the factors to qualities



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

T
I

f
i
w
c

able 7
mpact Map: Factors and measures related to the interest of TD considered when prioritizing (RQ3).
Category Factors PSs

ID #

Business

Competitive advantage [SP10]

3

Lead time [SP10]
Attractiveness for the market [SP10]
Penalties [SP10]
Feature usage [SP16]
Business value [SP16]
ROI (calculated per bug) [SP20]

Customer

Satisfaction [SP12]

5Long-term satisfaction [SP10]
Specific customer value [SP10]
Customer expectations [SP13]
Customer effect [SP16], [SP24]

Evolution

Time of impact on evolution (short- or long-term) [SP8]

5Risk of critical impact on evolution (possible crisis) [SP8]
Impact on other features [SP13], [SP24]
Impact on upcoming features [SP22], [SP24], [SP32]

Maintenance
Modifiability [SP2], [SP18], [SP26], [SP28]

12Number of bugs [SP2], [SP10], [SP11], [SP17], [SP20], [SP23], [SP28], [SP32], [SP33], [SP38]
Maintenance cost [SP10], [SP17], [SP35]

System qualities Robustness [SP4] 6Performance efficiency [SP2], [SP4], [SP12]
Security [SP4]
Transferability [SP4]
Scalability [SP16]
Generic qualities [SP32], [SP33], [SP38]

Quality Debt # of issues or their co-occurrence [SP9], [SP16], [SP28], [SP29], [SP25], [SP32], [SP35], [SP36] 8

Productivity

% Wasted time (effort) [SP27], [SP32], [SP33], [SP34], [SP35], [SP38]

7
Number of developers working on TD [SP35]
Wasted development hours [SP35]
Generic effort [SP24]
Coding output/effort [SP29]

Project factors
Availability of resources [SP13]

3Project size and complexity [SP32]
Postponement of bugs [SP23]

Social factors

Developers’ morale [SP30]

3Social debt [SP31]
Positive impact of TD [SP32]
Team culture [SP32]

Other factors

Contagious debt [SP10]

6

Existence of TD solution (alternative) [SP32]
Spread of impact in the system [SP32], [SP33], [SP38]
Number of users affected [SP32], [SP33], [SP38]
Frequency of negative impact [SP32], [SP33], [SP38]
Kind of smell [SP18], [SP24]
History of the system [SP18]
Compromise architecture [SP18]
Future cost [SP22]
User perception [SP24]

Not specified

Risk [SP10], [SP25]

8
Interest likelihood [SP13], [SP22]
Interest [SP13], [SP24]
Severity [SP24], [SP38]
Customizable [SP18], [SP24], [SP25], [SP32], [SP33], [SP38]
that are mentioned most often in relation with TD. These cat-
egories are ‘‘Evolution’’, ‘‘Maintenance’’, and ‘‘Productivity’’. For
example, the current working definition of TD explicitly mentions
the impact on maintainability and evolvability. Given the empha-
sis on such qualities, we first grouped the factors according to
them. TD impacting other qualities was gathered under ‘‘System
Qualities’’ (which do not include the former two). Productivity is
also usually associated with TD in the form of extra effort spent
because of the debt.

Next, we proceeded to categorize and group the remaining
actors according to what aspect of software development the
mpact is related to. This can be important in order to understand
hich roles would be hit the most by such impact and what
onsequences it might have on the prioritization. As an example,
10
TD can have a direct impact on the ‘‘Customer’’ factors, so such
TD might be considered more important by some organizations
in their prioritization. Understanding the impact on ‘‘Business’’
factors can also be very useful in a prioritization against features
that are prioritized mostly using business concerns. ‘‘Social’’ and
‘‘Project’’ factors need to be taken into consideration as well, as
non-technical aspects of software development.

For some of the factors, it was not possible to find a com-
mon category (‘‘Other factors’’), or they were only described as
high-level factors without additional details (‘‘Not specified’’).

The majority of the papers focus on the impact of TD on main-
tainability (12). Some papers focus on productivity (7), evolvabil-
ity (5), and other system qualities (6), while five papers consider
the customer perspective.



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

T
T

b
o
c
r
s
i
a
a
e
t
s
f

i
r
p
t
m
t

w
s
t
a
i
V
r
T
e
T
c

5

o
r
u

a
C
S
t
a
i
c
a
a
c
b
v

able 8
ool used when prioritizing TD (RQ4)
Tool name Tool link Paper ID

AnaConDebt https://anacondebt.com [SP32], [SP33]
ARCAN (Arcelli Fontana et al., 2016; Fontana et al., 2017) http://essere.disco.unimib.it/wiki/arcan [SP38]
CAFFEA Not available [SP31]
CAST https://www.castsoftware.com [SP4]
Coverity http://www.coverity.com [SP20]
Findbugs http://findbugs.sourceforge.net [SP20]
Visual studio FxCopAnalyzer https://www.nuget.org/packages/Microsoft.CodeAnalysis.FxCopAnalyzers [SP20]
iPlasma http://loose.cs.upt.ro/index.php?n=Main.IPlasma [SP5]
Jsprit https://sites.google.com/site/santiagoavidal [SP18]
Scitool understand https://scitools.com [SP21]
SonarQube https://www.sonarqube.org [SP30]
Codescene https://codescene.io [SP39]
t
s

i

Only a few papers take into consideration other factors, such
usiness factors (3), social factors (3), project factors (3), and
ther non-categorized factors (6). In most of these cases (in-
luding the customer aspect), the identified factors have been
eported in a single paper or two. This highlights either their
pecificity for a specific context or a lack of focus on these factors
n the literature. In both [SP10] and [SP24], the authors conducted
survey with practitioners to understand which of these factors
re most important for developers, architects, and product own-
rs. In most cases, customer and business factors were considered
he most important ones. However, only a few papers address
uch factors when prioritizing TD, so we can conclude that these
actors have been overlooked in the literature.

In quite a few studies (8), the interest (impact) of TD has been
dentified and assessed as generic interest, interest likelihood,
isk, severity, or as customizable by the practitioners. Six papers
resent factors not categorized specifically in the previously men-
ioned categories and that represent the impact of TD spanning
ultiple categories or represent a specific aspect not related to

hese categories.
Eight other papers assume that the impact of TD is associated

ith the (co-)occurrence of instances of different issues (e.g., code
mells) that are considered sub-optimal (‘‘quantity of debt’’ in
he table). However, the measures used in different papers differ
ccording to the tools used, and the impact of the individual
ssues is assumed to be the same or was assigned arbitrarily.
ery few papers (4) use an estimate or a measure of the cost of
efactoring (principal) in contrast to the impact of TD (interest).
his is in contrast with the theoretical approach (Chatzigeorgiou
t al., 2015; Martini and Bosch, 2016b, [SP8]), according to which
D needs to be prioritized by taking into consideration both the
ost of refactoring and the impact.

.5. RQ3 which tools have been used to prioritize TD?

As reported in Table 8, only 14 papers mentioned the usage
f tools for evaluating and prioritizing TD, but only ten of them
eport information on which tools were used. The other studies
sed a custom-made tool developed for their specific purposes.
Out of the aforementioned tools, we can identify ten static

nalysis tools: ARCAN, CAST, Coverity, Findbugs, Visual Studio Fx-
opAnalyzer, iPlasma, Jspirit, Scitool Understand, and SonarQube.
citool Understand analyzes the code and visualizes its archi-
ecture. The remaining ones detect TD issues such as code or
rchitectural smells, security violations, or others. CAST, Cover-
ty, Findbugs, Studio FxCopAnalyzer, Codescene, and SonarQube are
ommercial tools commonly used to analyze code compliance
gainst a set of rules. When the rules are violated, they raise
TD issue. These tools provide the severity of the issues and

lassify them into different types (e.g., issues that could lead to
ugs, to increased software maintenance effort, or to security
ulnerabilities). Moreover, CAST and SonarQube also associate a
 F

11
Fig. 5. Paper distribution by year.

remediation effort (principal), the time needed to remove the TD
issue. ARCAN, iPlasma, and Jspirit are open-source tools, developed
by research teams and aimed at detecting architectural smells
(ARCAN) and code smells (iPlasma and Jspirit).

AnaConDebt (Martini, 2018) is a management tool based on
a TD-enhanced backlog. The backlog allows the creation of TD
items and performs TD-specific operations on the created items.
In [SP32] and [SP33], AnaConDebt has been used to report and
visualize the information on TD manually collected by product
managers and developers.

The CAFFEA framework (Martini and Bosch, 2016a) identifies
organizational roles, where architectural responsibilities are allo-
cated. Moreover, the tool defines the team members and share
among them. The framework has been used in [SP31] to analyze
mismatches between the architecture community and the system
architecture.

ARCAN was used in [SP38] to detect architectural smells. The
TD principal was then investigated by means of a survey in a large
company.

In [SP30], developers were asked to discuss the TD issues
raised by SonarQube. However, there is no information on
whether the developers considered the severity or the type of
TD issues. In [SP4], the authors used CAST as is to estimate the
principal calculated as time to remove all TD issues.

iPlasma and Jspirit were used in [SP5] and [SP18], respectively,
o detect the number of code smells to be refactored in the
ystems under investigation.
Scitool Understand was used in [SP21] to identify architectural

ssues in the system under investigation.
The TD issues detected by Coverity, Findbugs, and Visual Studio
xCopAnalyser were used in [SP20] for an industrial survey.

https://anacondebt.com
http://essere.disco.unimib.it/wiki/arcan
https://www.castsoftware.com
http://www.coverity.com
http://findbugs.sourceforge.net
https://www.nuget.org/packages/Microsoft.CodeAnalysis.FxCopAnalyzers
http://loose.cs.upt.ro/index.php?n=Main.IPlasma
https://sites.google.com/site/santiagoavidal
https://scitools.com
https://www.sonarqube.org
https://codescene.io


V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

6

s
t
c
q
t
(

(
s
p
D
b
s
w
t
T
t
o
t
t
p
t

a
c
s
r
(
H
o
s
t
b
r
d
t
w
c

w
p
r
a
h
p
u
w
p

p
p
w

a
a
i
v
t
a

a
T
T
g

o
a
f

t
o
f
o
m
a
o
(
m
t
p
p
h
c

o
t
w
i
c
t
[
a

n
I
f
t
R
a

(
v
t
e
o
p

I

p
m
f
t
w
o
t
a
f
f
o
r
t
t
i
r
i
T

g
t

. Discussion

In this section, we will discuss the results obtained outlining
ome implications for researchers and practitioners working in
he TD domain. Although the TD domain is relatively young
ompared to other domains such as software testing or software
uality, significant contributions have been published in the last
en years and researchers are becoming more and more active
Fig. 5).

Among the ten TD types proposed in 2015 by Li et al. (2015)
Table 1), only Code Debt and Architectural Debt have been con-
idered frequently by researchers (RQ1) in the context of TD
rioritization. In the study proposed by Li et al. (2015), Code
ebt was the most commonly investigated type of TD, followed
y Test Debt. However, other types of TD have also received
ignificant attention. Differently than in Li et al. (2015), in our
ork it emerged that Code Debt and Architectural Debt are by far
he most frequently investigated types of debt when considering
D prioritization. This could be due to the fact that they are easy
o measure, mainly based on extensions of previous research from
ther domains, or it may also be due to the fact that they (par-
icularly ATD) are considered as the most harmful and expensive
ypes to manage in software. For example, architectural and code
atterns have been investigated for more than twenty years, even
hough they were not considered as ‘‘debt’’.

The two most commonly considered types of TD (Code Debt
nd Architectural Debt) are mainly evaluated by means of ar-
hitectural or code-level anti-patterns (architectural smells, code
mells, or code violations). Moreover, their harmfulness is mainly
elated to the influence they have on some external quality
e.g., the impact of a specific code smell on maintenance effort).
owever, their influence is still not clear, since the vast majority
f studies do not agree on their harmfulness. Other types of TD
hould be investigated in the future. We believe that Code Debt is
he type investigated most often since it is easy to access the data
y mining software repository studies, while other types of debt
equire other types of studies, including case studies involving
evelopers. We recommend that practitioners should consider
he measures identified in this RQ, but should complement them
ith expert judgment to understand which architectural smells,
ode smells, or code violations to consider.
In a software affected by TD, the only significantly effective

ay to reduce this TD is to refactor it. This fact stresses the im-
ortance of continuously and iteratively prioritizing the identified
efactoring tasks and thereby highlights the importance of using
n appropriate TD prioritization process. Through this study, we
ave identified several different approaches and strategies for
rioritizing TD (RQ1, RQ1.1, and RQ1.2). However, there is no
nified approach for this activity, nor there is a consensus on
hich aspects to focus on when performing the TD prioritization
rocess.
It is evidently clear from the findings that the prioritization

rocess of TD refactoring can be carried out using different ap-
roaches, all having different goals and proposing optimization
ith regard to different criteria.
This study has identified five different main approaches that

im to: (a) improve software qualities, especially maintainability
nd evolvability, (b) increase software practitioners’ productiv-
ty, (c) reduce the fault-proneness of the software, (d) compare
arious TD items using cost–benefit analysis (CBA) to understand
he convenience of refactoring, and (e) combine several different
pproaches.
This result is of value to both academics and practitioners

nd illustrates that it is important to first identify the goals of
D prioritization, and thereafter to implement a corresponding
D prioritization approach targeting the identified and specified

oals.

12
One interesting finding is that the investigated papers usually
nly compared different TD items during this prioritizing process
nd more rarely compared the need for implementing a new
eature with the refactoring of TD.

Regarding the characteristics and measures considered during
he prioritization process (RQ2), the results so far imply that pri-
ritizing TD is an activity that requires a holistic view of several
actors. The systematic assessment of TD requires a wide amount
f information, which might change from case to case, and in
ost cases TD is prioritized without following a standardized
pproach. Also, the known measures used in a few papers capture
nly a small part of the factors that are used to prioritize TD
proxy for maintenance costs or productivity). Using only such
easures to prioritize TD without considering the full picture of

he relevant factors (risks and costs) might consequently result in
artial and thus biased prioritization, which in turn could lead to
oor business decisions. On the other hand, some of the factors
ave been reported in a single study conducted in a specific
ontext and might not be relevant in other prioritization cases.
More studies are necessary in order to obtain better evidence

n factors that have been overlooked (for example factors related
o customers, business, social, and project aspects). In addition,
e need to better understand which factors should be considered

n different contexts, and which additional measures should be
onsidered when prioritizing TD. Finally, although a few holis-
ic approaches have been reported (Martini and Bosch, 2016b,
SP24], [SP33]), there is a need for a better defined framework
nd a standardized approach for assessing TD.
Considering the two main components of TD, only a limited

umber of papers propose how to evaluate principal and interest.
nterest is mainly calculated as extra cost, or as time wasted to
ix TD issues. The reason could be that TD interest is not easy
o calculate without access to empirical data from companies.
esearchers should design and perform studies to understand the
ctual interest of existing TD issues.
The tool support for prioritization activities is very fragmented

RQ3), which highlights the lack of a solid, widely used, and
alidated set of tools specifically for TD prioritization. Current
ools mainly identify TD issues and, in some cases, propose an
stimate of the time needed to fix them. However, to the best
f our knowledge, no tools calculate the interest due to the
ostponement of activities.

mplication for practitioners and researchers

This work highlighted some implications for researchers and
ractitioners pointing out interesting topics to be investigated in
ore depth. It might be relevant to understand why researchers

ocus mainly on code and architectural TD, without considering
he other types of TD where TD also seems to be relevant and
orthy of investigation (e.g. test or infrastructure TD). More-
ver, it might be useful to understand, if the reason is due to
he lack of knowledge in primes areas (such as in methods or
pproaches), limited data, or due to the low levels of interest
rom the academia. Researchers can also evaluate other important
actors such as different approaches, affecting variables, and pri-
ritization of different types of TD. Additionally, not only should
esearchers investigate the prioritization of different TD items,
hey should also consider the effect of refactoring TD during
he development process (such as the addition of new features
ntroduced into the code) as well as the time and effort spent
efactoring the TD. Practitioners may really benefit from these
nvestigations and possibly avoid or reduce the accumulation of
D from the start of the development process.
Moreover, it is important to reach a common consensus re-

arding how to calculate the interest of TD. Companies can es-
imate the effort (principal) to fix a particular issue (such as a



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

c
i
P
i
a
e
f
t
c
p
t
t
a
f
c
i
m

t
s
s
i
d

t
t
t
e
T
n

7

c
t
a
t
c

7

t
2
y
g
p
o
c
p
a

7

c
c
n
i
w
C

ode smell or a code style violation), but they cannot estimate the
mpact and the extra cost for postponing the fixing of the issue.
ostponing fixing activities might also have a ripple effect, such as
mpact other part of the system. As an example, postponing the
doption of a software library might cause developers to write
xtra code that may not be needed when the library will be
inally adopted. The lack of knowledge regarding how to calculate
he TD interest may lead to dramatic effects such as increasing
osts and decreasing software development quality, which may
ossibly have a negative impact on the customers. A clear method
o calculate TD interest may allow the companies to schedule
heir refactoring activities based on preferences and avoid the
ccumulation of TD that might become unmanageable in the
uture. To solve this issue, researchers need empirical data. In this
ase practitioners can play a crucial role by taking an active part
n the empirical study, providing the data that researchers are
issing.
Researchers should also focus their attention to other factors

hat may lead to TD. Technical aspects are not the only ones that
hould be considered. Factors related to customers, business, and
ocial are less investigated but might provide another interest-
ng prospective, and possibly open an interdisciplinary research
irection.
Since the available tools are not fully mature, research activi-

ies can focus on empirical validation of existing tools, confirming
he usefulness of each measure proposed by each tool. Practi-
ioners can benefit from our results by using our impact map to
xplore/anticipate what kind of impact might occur because of
D. Moreover, they should be careful in the selection of the tools,
ot applying only one but considering more than one.

. Threats to validity

The results of an SLR may be subject to validity threats, mainly
oncerning the correctness and completeness of the survey. In
his Section, we will outline some implications for researchers
nd practitioners working in the TD domain. We have struc-
ured this Section as proposed by Wohlin et al. (2012), including
onstruct, internal, external, and conclusion validity threats.

.1. Construct validity

Construct validity is related to generalization of the result to
he concept or theory behind the study execution (Wohlin et al.,
012). In our case, it is related to the potentially subjective anal-
sis of the selected studies. As recommended by Kitchenham’s
uidelines (Kitchenham and Charters, 2007), data extraction was
erformed independently by two or more researchers and, in case
f discrepancies, a third author was involved in the discussion to
lear up any disagreement. Moreover, the quality of each selected
aper was checked according to the protocol proposed by Dybå
nd Dingsøyr (2008).

.2. Internal validity

Internal validity threats are related to possible wrong con-
lusions about causal relationships between treatment and out-
ome (Wohlin et al., 2012). In the case of secondary studies, inter-
al validity represents how well the findings represent the find-
ngs reported in the literature. In order to address these threats,
e carefully followed the tactics proposed by Kitchenham and

harters (2007).

13
7.3. External validity

External validity threats are related to the ability to generalize
the result (Wohlin et al., 2012). In secondary studies, external
validity depends on the validity of the selected studies. If the
selected studies are not externally valid, the synthesis of its
content will not be valid either. In our work, we were not able
to evaluate the external validity of all the included studies.

7.4. Conclusion validity

Conclusion validity is related to the reliability of the con-
clusions drawn from the results (Wohlin et al., 2012). In our
case, threats are related to the potential non-inclusion of some
studies. In order to mitigate this threat, we carefully applied the
search strategy, performing the search in eight digital libraries in
conjunction with the snowballing process (Wohlin, 2014), con-
sidering all the references presented in the retrieved papers, and
evaluating all the papers that reference the retrieved ones, which
resulted in one additional relevant paper. We applied a broad
search string, which led to a large set of articles, but enabled
us to include more possible results. We defined inclusion and
exclusion criteria and applied them first to title and abstract.
However, we did not rely exclusively on titles and abstracts
to establish whether the work reported evidence on Technical
Debt prioritization. Before accepting a paper based on title and
abstract, we browsed the full text, again applying our inclusion
and exclusion criteria.

8. Conclusion

Software companies need to manage and refactor TD issues
since sometimes their presence is inevitable, due to a number of
causes that may be related to unpredictable business or environ-
mental forces internal or external to the organization. Moreover,
some types of TD can be more dangerous than others. Therefore,
it is necessary to understand when refactoring TD should be
prioritized with respect to implementing features or fixing bugs,
or with respect to other types of TD.

We conducted an SLR in order to investigate the existing body
of knowledge in software engineering and gain an understanding
of how TD is prioritized in software organizations and what
research approaches have been proposed. The SLR process was
carried out by following two rigorous approaches. We included
scientific articles indexed by the most important bibliographic
sources and selected by a rigorous process. We considered arti-
cles published before December 2019. Our work is based on 38
selected studies, which include data on the state of the art con-
cerning approaches, factors, measures, and tools used in practice
or proposed in research to prioritize TD.

The results of our review show that Code Debt and Architec-
tural Debt are by far the most frequently investigated type of debt
when considering TD prioritization, while there is scant evidence
about other types of TD such as Test Debt and Requirement
Debt. The prioritization process of TD refactoring can be carried
out using different approaches, all having different goals and
proposing optimization with regard to different criteria. However,
the identified measures used in a few papers capture only a small
part of the factors that are used to prioritize TD.

There is a lack of empirical evidence on measuring princi-
pal and interest. Moreover, our results highlight the lack of a
solid, validated, and widely used set of tools specifically for TD
prioritization.

In practice, we found that there is a plethora of aspects that
need to be considered when prioritizing TD. We presented an



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

i
h
o
b

t
t
p
d
t

C

i
D
M
s
&

D

c
t

A

m

l
o
t
i
r

i
t
S
S
S
w
P

p
(
p
v
o
C
(
g
m
C
t
i
T
C
I
M
w
C
p
t
E

t
o
o

P
o
a
p
1
J

a

t
d

A

[

[

[

mpact map of such factors, which can be used as a compre-
ensive reference regarding which interest might be paid by an
rganization and how it should be considered. This map can also
e used to follow up with further research.
Future work should focus on the investigation of types of TD

hat have been investigated less often. Moreover, we are planning
o investigate how to systematically evaluate and measure the
rincipal and interest of different types of TD. We also aim at
eveloping a framework to support decision-making related to
he prioritization of TD.

RediT authorship contribution statement

Valentina Lenarduzzi: Conceptualization, Methodology, Writ-
ng - original draft. Terese Besker: Data extraction, Data analysis.
avide Taibi: Methodology, Writing - original draft. Antonio
artini: Supervision, Writing - review & editing, Funding acqui-
ition. Francesca Arcelli Fontana: Supervision, Writing - review
editing, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ppendix A. Overview of the primary studies

Based on the adopted selection process, we identified 44 pri-
ary studies (PSs). We illustrate the distribution by year in Fig. 5.
The first three relevant papers on TD prioritization were pub-

ished in 2011. In the next two years, between 2012 and 2014,
nly three papers were published. From 2015, the publication
rend increased a lot (5 papers), experiencing a considerable
ncrease in 2016, 2017, and 2018 with 10, 12, and 8 papers,
espectively.

The selected PSs are published in 22 different sources, includ-
ng 6 journals and 15 conferences and workshops. Specifically,
he journal publication sources are: (2 papers) Information and
oftware Technology (IST), (2 papers) Journal of Systems and
oftware (JSS), (2 papers) IEEE Software, (1 paper) Empirical
oftware Engineering Journal (EMSE), (1 paper) Journal of Soft-
are: Evolution and Process (JSEP), (1 paper) Science of Computer
rogramming.
Regarding conferences and workshops, the numbers are: (10

apers) International Conference on Technical Debt (TechDebt)
former Workshop on Managing Technical Debt (MTD)), (4 pa-
ers) Euromicro Conference on Software Engineering and Ad-
anced Applications (SEAA),(3 papers) International Conference
n Agile Software Development (XP), (2 papers) International
onference on Product-Focused Software Process Improvement
PROFES), (2 papers) International Conference on Software En-
ineering (ICSE), (1 paper) International Conference on Manage-
ent of Digital Eco Systems (MEDES), (1 paper) International
onference on Services Computing (SCCC), (1 paper) Interna-
ional Workshop on Quantitative Approaches to Software Qual-
ty (QuASoQ), (1 paper) International Workshop on Emerging
rends in Software Metrics (WETSoM), (1 paper) International
onference on Enterprise Information Systems (ICEIS), (1 paper)
nternational Symposium on Empirical Software Engineering and
easurement (ESEM), (1 paper) International Conference On Soft-
are Architecture Workshop (ICSAW), (1 paper) International
onference on Software Maintenance and Evolution (ICSME), (1
aper) International Conference on Quality of Software archi-
ectures (QoSA), (1 paper) International Conference on Software
ngineering Advances (ICSEA).
14
Context Data. 28 PSs (75.67%) conducted case studies in order
o investigate TD issues, analyzing different sets of projects. 24
ut 28 PSs report the findings for each analyzed project in terms
f projects number, project size, and programming language.
Regarding the number of projects analyzed, the majority of the

Ss considered fewer than seven each, with most considering only
ne project. We identified three papers that took into account
s context a huge number of projects, such as [SP4] with 700
rojects, [SP1] with 44 projects, and [SP5] with 12 projects. Only
1 PSs report on the programming language of the project(s), with
ava, C#, and C++ being the most common ones.

The remaining papers investigated TD issues based on surveys
mong different practitioners.
TD issues were mainly (48.64%) investigated with a focus on

he maintainability process. The remaining PSs took into account
ifferent process phases such as defectively or changeability.

ppendix B. The selected papers (Ps)

[SP1] A. Nugroho, J. Visser, and T. Kuipers. An empirical model
of technical debt and interest. 2nd Workshop on Managing
Technical Debt (MTD ’11). pp. 1–8, 2011.

[SP2] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman. Inves-
tigating the impact of design debt on software quality.
2nd Workshop on Managing Technical Debt (MTD ’11).
pp. 17–23, 2011.

[SP3] N. Zazworka, C. Seaman, and F. Shull. Prioritizing design
debt investment opportunities. 2nd Workshop on Manag-
ing Technical Debt (MTD ’11). pp. 39–42, 2011.

[SP4] B. Curtis, J. Sappidi and A. Szynkarski. Estimating the Prin-
cipal of an Application’s Technical Debt. IEEE Software, vol.
29, no. 6, pp. 34–42, 2012.

[SP5] F. Arcelli Fontana, V. Ferme, and S. Spinelli. Investigating
the impact of code smells debt on quality code evalua-
tion. Third International Workshop on Managing Technical
Debt (MTD ’12). pp. 15–22, 2012.

[SP6] C. Seaman et al. Using technical debt data in decision
making: Potential decision approaches. Third International
Workshop on Managing Technical Debt (MTD’12), pp. 45–
48, 2012.

[SP7] W. Snipes, B. Robinson, Y. Guo, and C. Seaman. Defining
the decision factors for managing defects: a technical debt
perspective. Third International Workshop on Managing
Technical Debt (MTD ’12), pp. 54–60, 2012.

[SP8] K. Schmid. A formal approach to technical debt deci-
sion making. 9th international ACM Sigsoft conference on
Quality of software architectures (QoSA ’13), pp/153-162,
2013.

[SP9] T. Sharma, G. Suryanarayana and G. Samarthyam. Chal-
lenges to and Solutions for Refactoring Adoption: An In-
dustrial Perspective. IEEE Software, vol. 32, no. 6, pp. 44–
51, 2015.

SP10] A. Martini, J. Bosch, M. Chaudron. Investigating Architec-
tural Technical Debt accumulation and refactoring over
time: A multiple-case study. Information and Software
Technology, Volume 67, pp. 237–253, 2015.

SP11] H. Wang, M. Kessentini, W. Grosky, and H. Meddeb. On the
use of time series and search based software engineering
for refactoring recommendation. 7th International Con-
ference on Management of computational and collective
intElligence in Digital EcoSystems (MEDES ’15). pp. 35–42,
2015.

SP12] A. Martini and J. Bosch. Towards Prioritizing Architecture
Technical Debt: Information Needs of Architects and Prod-
uct Owners. 41st Euromicro Conference on Software Engi-
neering and Advanced Applications. pp. 422–429, 2015.



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

SP13] D. Falessi and A. Voegele. Validating and prioritizing qual-
ity rules for managing technical debt: An industrial case
study. 7th International Workshop on Managing Technical
Debt (MTD). pp. 41–48, 2015.

SP14] J. Yli-Huumo, A. Maglyas, K. Smolander, J. Haller and H.
Törnroos. Developing Processes to Increase Technical Debt
Visibility and Manageability - An Action Research Study in
Industry. Product-Focused Software Process Improvement.
pp. 368–378, 2016.

SP15] Y. Guo, R. Oliveira Spínola, and C. Seaman. 2016. Exploring
the costs of technical debt management - a case study.
Empirical Softw. Engg. Volume 21(1), pp. 159–182, 2016.

SP16] J. Yli-Huumo, A. Maglyas, and K. Smolander. How do soft-
ware development teams manage technical debt? - An
empirical study. Journal of System and Software, Vol. 120,
C, pp. 195–218, 2016.

SP17] U. Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong
Feng. Identifying and quantifying architectural debt. 38th
International Conference on Software Engineering (ICSE
’16), pp. 488–498, 2016.

SP18] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia
and W. Oizumi. JSpIRIT: a flexible tool for the analysis of
code smells. 34th International Conference of the Chilean
Computer Science Society (SCCC), pp. 1–6, 2015.

SP19] A. Choudhary and P. Singh. Minimizing Refactoring Ef-
fort through Prioritization of Classes based on Histori-
cal, Architectural and Code Smell Information. QuASoQ/
TDA@APSEC, 2016.

SP20] R.K. Gupta, P. Manikreddy, S. Naik, and K. Arya. Pragmatic
Approach for Managing Technical Debt in Legacy Software
Project. 9th India Software Engineering Conference (ISEC
’16), pp. 170–176, 2016.

SP21] Z. Codabux and B. J. Williams. Technical debt prioritiza-
tion using predictive analytics. 38th International Con-
ference on Software Engineering Companion (ICSE ’16),
pp. 704–706, 2016.

SP22] S. H. Vathsavayi and K. Systä. Technical Debt Management
with Genetic Algorithms. 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
Limassol, pp. 50–53, 2016.

SP23] S. Akbarinasaji, A. Bener and A. Neal. A Heuristic for Esti-
mating the Impact of Lingering Defects: Can Debt Analogy
Be Used as a Metric?. 8th Workshop on Emerging Trends
in Software Metrics (WETSoM), pp. 36–42, 2017.

SP24] L. Ferrera Ribeiro, N. S. R. Alves, M. G. d. M. Neto and R.
O. Spínola. A Strategy Based on Multiple Decision Criteria
to Support Technical Debt Management. 43rd Euromi-
cro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 334–341, 2017.

SP25] Z. Codabux, B. Williams, G. Bradshaw and M. Cantor. An
empirical assessment of technical debt practices in indus-
try. Journal of Software: Evolution and Process. Vol. 29,
2017.

SP26] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, and
P. Avgeriou. Assessing code smell interest probability: a
case study. XP2017 Scientific Workshops (XP ’17), Article
5, 8 pages, 2017.

SP27] T. Besker, A. Martini and J. Bosch. Impact of Architectural
Technical Debt on Daily Software Development Work — A
Survey of Software Practitioners. 43rd Euromicro Confer-
ence on Software Engineering and Advanced Applications
(SEAA), pp. 278–287, 2017.

SP28] M. Farias, J. Amâncio Santos, M. Kalinowski, M. Mendonça
and R. Spínola, Rodrigo. Investigating the Identification of
Technical Debt Through Code Comment Analysis. Lecture
Notes in Business Information Processing. pp. 284–309,
2017.
15
SP29] M. Ciolkowsk, L. Guzmán, A. Trendowicz and F. Salfner.
Lessons Learned from the ProDebt Research Project on
Planning Technical Debt Strategically. International Con-
ference on Product-Focused Software Process Improve-
ment. pp. 523–534, 2017.

SP30] H. Ghanbari, T. Besker, A. Martini and J. Bosch. Looking
for Peace of Mind? Manage Your (Technical) Debt: An
Exploratory Field Study. International Symposium on Em-
pirical Software Engineering and Measurement (ESEM),
pp. 384–393, 2017.

SP31] A. Martini and J. Bosch. Revealing Social Debt with the
CAFFEA Framework: An Antidote to Architectural Debt.
International Conference on Software Architecture Work-
shops (ICSAW),pp. 179–181, 2017

SP32] A. Martini, S. Vajda, J. Vasa, A. Jones, M. Abdelrazek, J.
Grundy and J. Bosch. Technical debt interest assessment:
from issues to project. XP2017 Scientific Workshops.
pp. 1–6, 2017.

SP33] A. Martini and J. Bosch. The magnificent seven: towards a
systematic estimation of technical debt interest. IXP2017
Scientific Workshops (XP ’17), Article 7, 5 pages, 2017.

SP34] T. Besker, A. Martini and J. Bosch. The Pricey Bill of Tech-
nical Debt: When and by Whom will it be Paid?. Interna-
tional Conference on Software Maintenance and Evolution
(ICSME), pp. 13–23, 2017

SP35] A. Martini, E. Sikander, and N. Madlani. A semi-automated
framework for the identification and estimation of Archi-
tectural Technical Debt. Information and Software Tech-
nology, Vol. 93, C, pp. 264–279, 2018.

SP36] J. M. Conejero, R. Rodríguez-Echeverría, J. Hernández, P. J.
Clemente, C. Ortiz-Caraballo, E. Jurado, F. Sánchez-
Figueroa, Early evaluation of technical debt impact on
maintainability. Journal of Systems and Software. Vol. 142,
pp. 92–114, 2018.

SP37] A. Martini, T. Besker, J. Bosch. Technical Debt tracking:
Current state of practice: A survey and multiple case study
in 15 large organizations. Science of Computer Program-
ming. Vol. 163, pp. 42–61, 2018.

SP38] A. Martini, F. Arcelli Fontana, A. Biaggi, R. Roveda. Iden-
tifying and Prioritizing Architectural Debt Through Archi-
tectural Smells: A Case Study in a Large Software Com-
pany. 12th European Conference on Software Architecture
(ECSA), pp. 24–28, 2018

SP39] A. Tornhill. Prioritize technical debt in large-scale systems
using codescene. International Conference on Technical
Debt (TechDebt ’18), pp. 59–60, 2018

SP40] M. Albarak and R. Bahsoon. Prioritizing technical debt in
database normalization using portfolio theory and data
quality metrics. International Conference on Technical
Debt (TechDebt ’18), pp. 31–40, 2018

SP41] H.M. Firdaus and H. Lichter. Towards a Technical Debt
Management Framework based on Cost-Benefit Analysis.
ICSEA 2015, 2015

SP42] R. Plösch, J. Bräuer, M. Saft, and C. Körner. Design debt
prioritization: a design best practice-based approach. In-
ternational Conference on Technical Debt (TechDebt ’18),
pp. 95–104, 2018

SP43] R. Rebouças de Almeida, U. Kulesza, C. Treude, D. Caval-
canti Feitosa and A. Higino Guedes Lima. Aligning Techni-
cal Debt Prioritization with Business Objectives: A
Multiple-Case Study. International Conference on Soft-
ware Maintenance and Evolution (ICSME 2018), pp. 655–
664, 2018

SP44] R. Alfayez and B. Boehm. Technical Debt Prioritization: A
Search-Based Approach. 19th International Conference on
Software Quality, Reliability and Security (QRS), pp. 434–
445, 2019



V. Lenarduzzi, T. Besker, D. Taibi et al. The Journal of Systems & Software 171 (2021) 110827

R

A

A

A

A

A

A

A

B

B

B

B

B

B

C

C

D

F

F

K

K

K

L

M

M

M

M

M

M

eferences

lfayez, R., Alwehaibi, W., Winn, R., Venson, E., Boehm, B., 2020. A systematic
literature review of technical debt prioritization. In: International Conference
on Technical Debt 2020.

lves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Sea-
man, C., 2016. Identification and management of technical debt: A systematic
mapping study. Inf. Softw. Technol. 70, 100–121.

mpatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2015. The
financial aspect of managing technical debt: A systematic literature review.
Inf. Softw. Technol. 64, 52–73.

rcelli Fontana, F., Pigazzini, I., Roveda, R., Zanoni, M., 2016. Automatic detection
of instability architectural smells. In: Proc. 32nd Intern. Conf. on Software
Maintenance and Evolution (ICSME 2016). IEEE, Raleigh, North Carolina, USA.

vgeriou, P., Kruchten, P., Nord, R.L., Ozkaya, I., Seaman, C., 2016a. Reducing
friction in software development. IEEE Softw. 33 (1), 66–73.

vgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016b. Managing technical
debt in software engineering (dagstuhl seminar 16162). Dagstuhl Rep. 6 (4),
110–138.

vgeriou, P.C., Taibi, D., Ampatzoglou, A., Arcelli Fontana, F., Besker, T., Chatzige-
orgiou, A., Lenarduzzi, V., Martini, A., Moschou, N., Pigazzini, I., Saarimaki, N.,
Sas, D.D., de Toledo, S.S., Tsintzira, A.A., 2020. An overview and comparison
of technical debt measurement tools. IEEE Software 0-0.

ehutiye, W.N., Rodríguez, P., Oivo, M., Tosun, A., 2017. Analyzing the concept
of technical debt in the context of agile software development: A systematic
literature review. Inf. Softw. Technol. 82, 139–158.

esker, T., Martini, A., Bosch, J., 2018a. Managing architectural technical debt: A
unified model and systematic literature review. J. Syst. Softw. 135, 1–16.

esker, T., Martini, A., Bosch, J., 2018b. Technical debt cripples software de-
veloper productivity: A longitudinal study on developers’ daily software
development work. In: International Conference on Technical Debt. In:
TechDebt ’18, pp. 105–114.

esker, T., Martini, A., Bosch, J., 2019. Technical debt triage in backlog manage-
ment. In: International Conference on Technical Debt. In: TechDebt ’19, IEEE
Press, Piscataway, NJ, USA, pp. 13–22.

esker, T., Martini, A., Lokuge, R.E., Blincoe, K., Bosch, J., 2018c. Embracing tech-
nical debt, from a startup company perspective. In: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). pp. 415–425.

raun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res.
Psychol. 3, 77–101.

hatzigeorgiou, A., Ampatzoglou, A., Ampatzoglou, A., Amanatidis, T., 2015.
Estimating the breaking point for technical debt. In: International Workshop
on Managing Technical Debt (MTD). pp. 53–56.

unningham, W., 1992. The wycash portfolio management system. SIGPLAN
OOPS Mess. 4 (2), 29–30.

ybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: A
systematic review. Inf. Softw. Technol. 50 (9–10), 833–859.

ernández-Sánchez, C., Garbajosa, J., Yage, A., Perez, J., 2017. Identification and
analysis of the elements required to manage technical debt by means of a
systematic mapping study. J. Syst. Softw. 124, 22–38.

ontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M., Nitto, E.D., 2017.
Arcan: A tool for architectural smells detection. In: International Conference
on Software Architecture Workshops (ICSAW). pp. 282–285.

homyakov, I., Makhmutov, Z., Mirgalimova, R., Sillitti, A., 2019. Automated
measurement of technical debt: A systematic literature review. In: ICEIS.

itchenham, B., Brereton, P., 2013. A systematic review of systematic review
process research in software engineering. Inf. Softw. Technol. 55 (12),
2049–2075.

itchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering.

i, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt
and its management. J. Syst. Softw. 101, 193–220.

artini, A., 2018. Anacondebt: A tool to assess and track technical debt. In:
International Conference on Technical Debt. In: TechDebt ’18, pp. 55–56.

artini, A., Bosch, J., 2016a. A multiple case study of continuous architecting
in large agile companies: Current gaps and the CAFFEA framework. In:
Conference on Software Architecture (WICSA). pp. 1–10.

artini, A., Bosch, J., 2016b. An empirically developed method to aid decisions
on architectural technical debt refactoring: Anacondebt. In: International
Conference on Software Engineering Companion (ICSE-C). pp. 31–40.

artini, A., Bosch, J., 2016c. An empirically developed method to aid decisions
on architectural technical debt refactoring: AnaConDebt. In: Proceedings of
the 38th International Conference on Software Engineering Companion, ICSE
’16. pp. 31–40.

artini, A., Bosch, J., Chaudron, M., 2015. Investigating architectural technical
debt accumulation and refactoring over time: A multiple-case study. Inf.
Softw. Technol. 67, 237–253.

cConnell, S., 2013. Managing technical debt. http://www.sei.cmu.edu/
community/td2013/program/upload/techncaldebt-icse.pdf.
16
Ribeiro, L.F., Farias, M.A.d.F., Mendonça, M., Spínola, R.O., 2016. Decision criteria
for the payment of technical debt in software projects: A systematic mapping
study. In: 18th International Conference on Enterprise Information Systems,
ICEIS 2016, Portugal, pp. 572–579.

Rios, N., de Mendonça Neto, M.G., Spínola, R.O., 2018. A tertiary study on
technical debt: Types, management strategies, research trends, and base
information for practitioners. Inf. Softw. Technol. 102, 117–145.

Seaman, C.B., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetro, A., 2012.
Using technical debt data in decision making: Potential decision approaches.
In: 2012 Third International Workshop on Managing Technical Debt (MTD).
pp. 45–48.

Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J. Syst.
Softw. 86 (6), 1498–1516.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: EASE 2014.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., 2012.
Experimentation in Software Engineering. Springer.

Valentina Lenarduzzi is a postdoctoral researcher at the LUT University in
Finland. Her primary research interest is related to data analysis in software
engineering, software quality, software maintenance and evolution, with a
special focus on Technical Debt. She obtained her Ph.D. in Computer Science at
the Università degli Studi dell’Insubria, Italy, in 2015, working on data analysis
in Software Engineering. She also spent 8 months as Visiting Researcher at the
Technical University of Kaiserslautern and Fraunhofer Institute for Experimental
Software Engineering (IESE) working on Empirical Software Engineering in
Embedded Software and Agile projects. In 2011 she was one of the co-founders
of Opensoftengineering s.r.l., a spinoff company of the Università degli Studi
dell’Insubria. Contact her valentina.lenarduzzi@lut.fi.

Terese Besker is a Ph.D. candidate in the Software Engineering at Chalmers
University of Technology in Sweden. She is working in the research fields of
technical debt management. Before becoming a Ph.D. student, she had worked
as a senior software engineer in the software industry for more than fifteen
years. She also has a bachelor’s degree in software engineering and a master’s
degree in applied IT. She has published several peer-reviewed articles in journals,
conference and workshop proceedings. Contact her at besker@chalmers.se.

Antonio Martini is Associate Professor at the University of Oslo and is a part-
time researcher at Chalmers University of Technology. The current focus of
Antonio’s research is on Technical Debt, Architecture, Technical Leadership and
Agile software development. Antonio’s experience covers Software Engineering
and Management in several contexts: large, embedded software companies,
small, web companies, business to business companies, startups. HIs expertise
ranges from technical programming to software architecture and software
quality, to Agile ways of working and software business. Antonio Martini has
worked as Principal Strategic Researcher at CA Technologies for a co-financed
project for technology transfer related to Technical Debt and Architecture by
the H2020 Marie Skłodowska-Curie grant of the European Union. Antonio has
collaborated with several large companies such as Ericsson, Volvo, Saab, Axis,
Grundfos, Siemens, Bosch and Jeppesen. He has also started his own consultancy
company and have run projects with large companies in north- and central-
Europe to manage and visualize Technical Debt. Antonio has been employed
as a Postdoc Researchers at Chalmers, after having obtained a Ph.D. in Software
Engineering at Chalmers University of Technology, Sweden in 2015. Contact him
at antonima@ifi.uio.no.

Davide Taibi is an associate professor (tenure track) at the Tampere University,
Finland. He obtained his Ph.D. in Computer Science at the Università degli
Studi dell’Insubria, Italy in 2011. His research activities are focused on software
quality in cloud-based systems, supporting companies in keeping Technical
Debt under control while migrating to cloud-native architectures. Moreover,
he is interested in patterns, anti-patterns and ‘‘bad smells’’ that can help
companies to avoid issue during the development process both in monolithic
systems and in cloud-native ones. Formerly, he worked at the Free University
of Bolzano, Technical University of Kaiserslautern, Germany, Fraunhofer IESE -
Kaiserslautern, Germany, and Università degli Studi dell’Insubria, Italy. In 2011
she was one of the co-founders of Opensoftengineering s.r.l., a spin-off company
of the Università degli Studi dell’Insubria. Contact him at davide.taibi@tuni.fi.

Francesca Arcelli Fontana is an of Full Professor at University of Milano
Bicocca. She had her Master degree and Ph.D. in Computer Science taken
at the University of Milano. The actual research activity principally concerns
the software engineering field. In particular in software evolution, reverse
engineering, managing technical debt, and software quality assessment. She is
at the head of the Software Evolution and Reverse Engineering Lab at University
of Milano Bicocca. Contact her at francesca.arcelli@unimib.it.

http://refhub.elsevier.com/S0164-1212(20)30220-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb12
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb12
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb12
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb12
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb12
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb13
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb13
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb13
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb15
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb15
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb15
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb17
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb17
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb17
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb17
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb17
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb19
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb19
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb19
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb22
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb22
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb22
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb23
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb23
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb23
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb27
http://www.sei.cmu.edu/community/td2013/program/upload/techncaldebt-icse.pdf
http://www.sei.cmu.edu/community/td2013/program/upload/techncaldebt-icse.pdf
http://www.sei.cmu.edu/community/td2013/program/upload/techncaldebt-icse.pdf
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb32
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb32
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb32
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30220-X/sb34
mailto:valentina.lenarduzzi@lut.fi
mailto:besker@chalmers.se
mailto:antonima@ifi.uio.no
mailto:davide.taibi@tuni.fi
mailto:francesca.arcelli@unimib.it

	A systematic literature review on Technical Debt prioritization: Strategies, processes, factors, and tools
	Introduction
	The TD prioritization mind map
	Background
	Technical Debt
	Previous SLRs

	Methodology
	Goal and research questions
	Search strategy
	Quality assessment
	Data extraction
	Replicability

	Results
	RQ1 which prioritization strategies have been proposed?
	Internal software quality
	Software productivity
	Software correctness
	Cost–benefit analysis
	A combination of several different approaches

	RQ1.1 are papers prioritizing TD vs. TD or TD vs. features?
	RQ1.2 is the prioritization based on a one-shot activity or on a continuous process?
	RQ2 which factors and measures have been considered for TD prioritization?
	RQ3 which tools have been used to prioritize TD?

	Discussion
	Implication for Practitioners and Researchers 

	Threats to validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Overview of the Primary Studies
	Appendix B. The Selected Papers (Ps)
	References


