
Expressing the Adaptation Intent as a Sustainability Goal

Ilias Gerostathopoulos
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

i.g.gerostathopoulos@vu.nl

Claudia Raibulet
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

c.raibulet@vu.nl

Patricia Lago
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

p.lago@vu.nl

ABSTRACT

Adaptation and sustainability are two key challenges leading the
development of software-systems nowadays. Adaptation denotes
the capacity of a system to cope with variations and uncertainties
at runtime in order to continue providing its functionalities with
certain quality levels, notwithstanding change. But how can adapta-
tion and its intent be expressed at design time so that to analyze its
possible impact at runtime over a long period of time? To answer
this question we look at adaptation from the sustainability point of
view. Sustainability denotes the capacity of a system to both endure
and preserve its function over time. We propose an approach which
uses decision maps to make sustainability-driven decisions for adap-
tation in a systematic way. The proposed approach is illustrated
through two self-adaptive exemplars as illustrative cases.

KEYWORDS

Self-adaptive systems, adaptation intent, sustainability goal.

ACM Reference Format:

Ilias Gerostathopoulos, Claudia Raibulet, and Patricia Lago. 2022. Expressing
the Adaptation Intent as a Sustainability Goal. In New Ideas and Emerging
Results (ICSE-NIER’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512776

1 INTRODUCTION

With the current pace of digitalization, the role of software-intensive
systems is becoming increasingly profound. Modern software-inten-
sive systems such as robotic assistants, self-driving cars, and indus-
trial automation systems need to operate in a variety of operational
contexts and are expected to be able to deal with emerging uncer-
tainties in these contexts [19]. For instance, they are expected to
continue operating when sensors fail, faults occur, and their usage
increases rapidly. Even more, they are expected to balance off prop-
erties such as operation cost and user-perceived performance to
optimize themselves.

To deal with runtime uncertainties, such software-systems are
typically designed as self-adaptive, i.e., systems that are able to
modify their structure or behavior at runtime in response to external
or internal stimuli [20]. For instance, a system with autoscaling
capabilities is able to change its deployment architecture by adding
or removing resources (typically servers) in response to changes
in its usage patterns (e.g., increase in the number of user requests).

This work is licensed under a Creative Commons Attribution International 4.0
License.
ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9224-2/22/05.
https://doi.org/10.1145/3510455.3512776

Figure 1: A self-adaptive system view (adapted from [22])

A canonical view of a self-adaptive system distinguishes between

a managed system (the part of the system that can be changed at

runtime) and a managing system (the part of the system responsible

for performing the runtime changes to the managed part) [22]. As

depicted in Figure 1, the managing system needs to continuously

monitor both themanaged system and its environment (e.g., number

of users) to decide on the actions to undertake.

In practice, the functionality of continuously monitoring a sys-

tem and its environment, reasoning over the monitored data, de-

ciding on an adaptation action (e.g., deploying a new server), and

performing it at runtime is often hard to design and develop, and

even harder to analyse and test. To make matters worse, a managing

system not properly tuned can result in oscillations in performance,

unstable user experience, extra operational costs or even failures—

on top of the cost of the extra complexity added to the system.

For self-adaptive systems to be truly successful they need to

accommodate changes with a certain degree of autonomy. This

way, they are expected to act upon potentially unexpected changes

while preserving the original intent of the managed system over

time [9]. In other words, the adaptation intent should correspond

to the one of the managed system. To this end, there is a need to: (i)

define the intent behind the adaptation functionality, (ii) develop

the functionality to meet its intent, and (iii) assess the impact of the

functionality based on the level its intent is actually met over time.

The novel idea we put forward in this paper is to express the

adaptation intent of a software-system as a sustainability goal it

needs to satisfy, i.e., the network of quality concerns balanced over

time [15]. So far, sustainability goals have been used in software

projects to describe qualities that need to be minimized, maximized,

or kept balanced to make a project sustainable or ensure that a

project contributes to sustainability.

Interestingly, both the concepts of sustainability goal and sustai-

nability-relevant quality concerns (in the technical-, economic-,

environmental-, and social dimensions [8] of sustainability) can be

used in framing the endurance and long-term success of an adapta-

tion solution. This allows us to use methods and models originally

36

2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)

http://creativecommons.org/licenses/by/4.0/

ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA Ilias Gerostathopoulos, et al.

proposed to capture sustainability-relevant quality concerns (con-

cerns for short) in software engineering (e.g., decisions maps [13])

to define and assess the intent of self-adaptive systems, too.

The rest of the paper is organized as follows. Our vision and

proposed approach are introduced in Section 2 which also illustrates

the application of the approach to twowell-known exemplars in self-

adaptive software. Section 3 discusses our approach, while Sections

4 and 5 follow with related works and future plans, respectively.

2 FRAMING ADAPTATION INTENT AS A
SUSTAINABILITY GOAL

This section introduces our vision and approach, and applies it to

two well-known self-adaptation exemplars as illustrative cases.

2.1 The Vision

Adaptation denotes the capacity of a system to address expected

or unexpected variations and uncertainties (variations for short)

at runtime in order to continue providing its functionalities with

certain quality levels. The occurrence of variations means that

something has changed in the execution of a system or its context.

To counteract such changes, the system adapts. While the adapta-

tion mechanisms generally focus on counteracting changes that are

applied in the short-term, we often forget about the overall adapta-

tion intent, which is—or should be—to preserve the stability of the

system in the long-term. The main research question is: How can

we express the adaptation and its intent at design time, so to analyze

its possible impact at runtime, and over a long period of time?

To answer this question we look at adaptation from the sus-

tainability point of view. In the context of software engineering,

sustainability denotes the capacity of a software-system to both

endure and preserve its function over time1. Even if adaptation and

sustainability seem to have different objectives, both are related to

the good functioning/health of a system.While adaptation is framed

in a short period of time (i.e., it addresses variations promptly), sus-

tainability is framed in a long period of time (i.e., it addresses the

impact of a system over time). Hence, through sustainability, adap-

tation has the potential to enrich its short-term perspective with

an additional long-term perspective.

To make it possible to reason at design time in a systematic

way about the adaptation and its possible impacts, and to uncover

and make explicit the long-term adaptation intent, we envision

adaptation as illustrated in Figure 2, where:

• The adaptation boundaries delineate the acceptable quality of

the system. Adaptation may increase or decrease the overall

quality of the system (the green and red arrows), but always

within these boundaries.

• The adaptation intent is expressed as a sustainability goal, i.e.,

as a network of positive and negative effects on the overall

quality over time and within the adaptation boundaries. For

instance, a negative effect may be an increase in the energy

consumption of a software system, while a positive effect

may be increased elasticity.

1In general, sustainability in software engineering has a much broader scope than
the software-systems themselves [1]. To illustrate our idea, however, we limit the
discussion to such scope, and touch base on the further implications in Section 5.

the boundaries of adaptation to control variations

the adaptation intent as a network of
positive and negative effects

time

positive effects
negative effects

Figure 2: Adaptation explained as a sustainability goal

2.2 The Proposed Approach

Essentially, our proposal is to express the adaptation intent as

a sustainability goal. To do this, we borrow from the software

sustainability literature the “decision maps” (DMs), a tool that helps

making sustainability-driven design decisions [13] in a systematic

way. Once the sustainability goal is defined with the help of DMs,

the adaptation boundaries are also identified and used to assess the

adaptation intent over time.

The main idea of a DM is to capture the architectural design

and quality concerns relevant to sustainability and frame them

around the four sustainability dimensions (see Figure 3). In practice,

a DM model consists of (i) the features (or requirements) that a

project needs to realize, (ii) the concerns, (iii) the effects between a

feature and a concern or between two concerns. Such effects are

always one-directional and capture the knowledge, or assumption,

the designer has on the type of effect, namely positive, negative, or

undecided. Throughout a project, a DM can be updated to reflect

e.g., changes in requirements or a better-informed understanding

of the expected or actual effects.

DMs have proven useful in the exploration of the design space [13].

They also help stakeholders uncover and frame the sustainability

goal(s) of a certain project. In general, a sustainability goal describes

a concern that needs to be optimized (minimized or maximized) or

kept within a threshold. Clearly, the goal of a project can be broken

down into several sub-goals that need to be jointly satisfied.

COMMENT (E.G. CAUSE OF THE
EFFECT, MEASURE, PREDICTION)

SOCIAL CONCERN
TECHNICAL
CONCERN

ENVIRONMENTAL
CONCERN

ECONOMIC
CONCERN

POSITIVE EFFECT

NEGATIVE EFFECT

REQUIREMENT

TYPES OF SUSTAINABILITY-QUALITY
CONCERNS

PROJECT
FOCUS

FEATURE OR
REQUIREMENT

(SOCIAL)

FEATURE OR
REQUIREMENT
(TECHNICAL)

FEATURE OR
REQUIREMENT

(ECONOMIC)

FEATURE OR
REQUIREMENT

(ENVIRONMENTAL)

FEATURE OR
REQUIREMENT

(GENERIC)

TYPES OF DIGITAL FEATURES
OR REQUIREMENTS

UNDECIDED EFFECT

TYPES OF INTER-DEPENDENCES PROJECT FOCUS

Figure 3: Decision Map notation

In the following, we show how DMs can be used for capturing

the quality concerns of a managing system and expressing the

adaptation intent as a sustainability goal. We do this by focusing on

two well-known exemplars from the self-adaptation community2,

SWIM and DeltaIoT.
2Self-Adaptive Exemplars: www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars

37

Expressing the Adaptation Intent as a Sustainability Goal ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

2.3 SWIM

SWIM (Simulator for Web Infrastructure and Management) is a self-

adaptation exemplar that simulates amulti-tier web application [16].

This application consists of a web and a database tier. The web tier

serves client requests by having a load balancer assigning each

request to one of the application servers in the web tier. A request

is served by the assigned server by retrieving the necessary data

from the database tier and rendering dynamic HTML pages.

The web application needs to deal with dynamic request load (the

main source of uncertainty) and keep the system running without

failures or negative impacts to its stakeholders (clients, but also

service owners). To this end, it provides two ways to adapt itself at

runtime: (1) add or remove application servers—similar to classic

autoscaling policies, (2) adjust a parameter that controls the number

of requests that serve additional content (e.g., advertisements) on

top of the mandatory content to be included in a response.

OPERATION COSTS

SWIM

REVENUE (from
advertisements)

PERFORMANCE
[response time]

RESOURCE
ALLOCATION

[add/remove Web
servers]

ADVERTISEMENT
ALLOCATION

[change dimmer
value]

ELASTICITY

Figure 4: Decision map for SWIM

Figure 4 depicts the DM for SWIM. With respect to features that

should be supported in the managing system of SWIM, we identify

two technical ones, namely resource and advertisement allocation.

The related concerns are both of technical and economic nature.

In particular, the advertisement allocation is expected to have a

positive impact on the generated ad-based revenue—an economic

concern—and a negative effect on the performance visible to the

clients as request response time—a technical concern. The reason-

ing behind this is that requests that do not include advertisements

impose less load to the system. On the other hand, resource alloca-

tion is expected to have a positive effect on the same performance

concern. Resource allocation also supports the elasticity concern

which, in turn, is expected to have a positive effect on the opera-

tional costs of the systemmeasured by the uptime of the application

servers—an economic concern.

For the managing system of SWIM to be sustainable, it needs

to preserve over time its overall sustainability goal. This involves

a number of subgoals expressed by the concerns identified in the

DM, namely:

• Minimizing the operation costs;

• Maximizing the revenue;

• Keeping the response time (performance) within a threshold.

2.4 DeltaIoT

DeltaIoT is a self-adaptation exemplar from the domain of Internet

of Things (IoT) [10]. It consists of a number of motes (sensor de-

vices) that communicate with each other and with an IoT gateway

via a LoRa multi-hop wireless network. In particular, the motes

periodically sense different physical attributes (temperature, occu-

pancy status, object tracking) and send their measurements to the

gateway, possibly by relaying the data packets via intermediate

motes, for central storage and analysis.

The IoT application deals with the different levels of interference

in wireless communication, the variable traffic load (number of

messages to send), and the fluidity in the architecture of the system

as motes may fail, new motes may appear, and motes may be moved

around. To this end, the system itself can at runtime: (1) change the

transmission power of each mote, (2) change the spreading factor

of each mote (i.e., bit-encoding per symbol of transmitted packet),

(3) modify the path a packet uses to reach the gateway.

DeltaIoT

RELIABILITY
[packet loss]

ENERGY
CONSUMPTION

CONNECTIVITY

TRANSMISSION
CONFIGURATION

[power setting of mote]

NETWORK
CONFIGURATION

[paths selection, spreading
factor of mote]

Figure 5: Decision map for DeltaIoT

As shown in Figure 5, the DM for DeltaIoT comprises two techni-

cal features, transmission- and network configuration. In particular,

transmission configuration is expected to have a positive effect on

the reliability concern, i.e., the packet loss in the network, while

it is expected to negatively affect the energy consumption, since

a higher transmission power for a mote yields lower probability

of packet loss but higher energy spent in the transmission. On the

other side, network configuration encompasses strategies to select

a path for a packet to be delivered to the gateway, and controls the

spreading factor of eachmote. This feature is expected to have a pos-

itive effect on the connectivity (ensuring that each mote is always

connected via a multi-hop network to the gateway). Its effect on

energy consumption is undecided, since an increase (resp. decrease)

in the spreading factors can increase (resp. decrease) the energy

spent, while choosing different paths to balance the re-transmission

load is expected to affect the energy consumption positively.

All in all, the sustainability goal of the managing system is to:

• Minimize the energy consumption;

• Maximize the reliability (equivalently, minimize packet loss);

• Ensure the connectivity of the system.

In applying our proposal to SWIM and DeltaIoT, we observe that

we can effectively express the sustainability goal of each managing

system in terms of the concerns identified in the respective DM; and

that such sustainability goal captures the underlying adaptation

intent of each system.

3 DISCUSSION

In this work we aim at providing a systematic way to capture and

ultimately measure the sustainability of a managed system, or in

38

ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA Ilias Gerostathopoulos, et al.

other words, assess whether its quality over time can be bounded.

We purposely leave out of the approach and DM notation the mod-

eling of other aspects important to self-adaptive systems, such

as the modeling of the context, as we believe it can complement,

not replace, other architectural design approaches in self-adaptive

systems that focus on context and adaptation actions (e.g., [11]).

DMs are a starting point for understanding the trade-offs be-

tween the different concerns at design time. Most importantly, for

each concern, relevant metrics can be identified to measure its de-

gree of satisfaction. So far, the Goal-Question-Metric (GQM) has

been used to identify metrics related to a particular concern [8],

but that is only one possibility. Such metrics can be used to both

evaluate a new self-adaptation mechanism, and compare different

self-adaptation mechanisms [7] with respect to their sustainability.

Concretely, once each concern is quantified by one or more

metrics, the satisfaction of the overall sustainability goal of a sys-

tem can be quantified, too. This will typically involve several sub-

goals (three in the case of SWIM or DeltaIoT). Assuming that static

weights can be assigned to each sub-goal, it is possible to calculate a

value capturing the overall quality of the system. Moreover, assum-

ing the best and worse case (but still acceptable) scenarios for each

of the sub-goals and calculating the quality for those scenarios,

would help us determine the adaptation boundaries depicted in

Figure 2. Then, the sustainability of the managed system over time

could be assessed by checking whether the values of overall quality

fall within the adaptation boundaries.

We envisage using the Sustainability Assessment Framework

(SAF) toolkit [3] (which includes the DMs) that leverages the men-

tioned metrics as a sustainability goal; hence measuring the contri-

bution of each metric to the sustainability of a system design.

The impact of expressing a software adaptation intent as a sus-

tainability goal would potentially help software engineers create

self-adaptive systems that endure change in the long-term by design

— hence addressing our main research question (cf. Section 2).

4 RELATEDWORK

To the best of our knowledge, there is no similar research expressing

an adaptation intent of a software-system as a sustainability goal.

The most-related available approaches investigate the benefits of

adaptation with respect to its cost. For example, Tao Chen et al. [2]

introduce the term temporal adaptation debt, i.e., a technical debt

which captures the economic health (e.g., net debt) of an adaptive

system and indicates whether an adaptation should be performed

or not (e.g., to obtain net profit) at runtime. A situation-dependent

approach to measure the degree of adaptation to avoid possible

conflicts between the benefits of adaptation and stability issues in

the system or user acceptance is shown in [21]. The leading idea

is to adapt if the adaptation has an overall positive effect in the

system, or avoid adaptation otherwise. Esfahani et al. [4] propose a

general quantitative approach to tackle the complexity of automat-

ically making adaptation decisions under internal uncertainties at

runtime. Further, they investigate possible positive and negative

effects of the adaptation decisions. The same authors extended their

work in [5] to summarize the main sources of uncertainty and to

outline the importance of considering uncertainty in the adaptation

decision process. They also argue that the optimality of adaptation

decisions should be considered as a range of values, not just a single

value at runtime. The quality-driven adaptive continuous experi-

mentation approach in [12] aims to reduce development risks and

operational costs through experiments at runtime to investigate

variants in infrastructure configuration and architectural design.

The main differences between our approach and the existing

solutions are: (i) available solutions consider the trade-off between

the positive and negative effects of adaptation at runtime for each

single adaptation, while we consider the trade-off between such

effects at design time as well as over time, i.e., to address sustainabil-

ity, and (ii) our proposal outlines that the average between positive

and negative adaptation effects should be in a range of values to

address sustainability, again, in the long-term.

5 FUTURE PLANS

Identifying and collecting concerns and related metrics for

self-adaptive systems. We plan to support software engineers

in identifying the adaptation intent by providing a catalogue of

sustainability-related concerns that are important and recurring

in self-adaptive systems. As a starting point, we will collect such

adaptation concerns by both surveying existing literature in self-

adaptive systems (and in particular surveys related to the evaluation

of self-adaptive systems, e.g., [7, 17, 18]) and by performing inter-

views and focus groups with experts from industry and academia.

We will also focus on the way such concerns are typically combined

in specifying adaptation intents. Finally, for each concern, we will

extract the metrics that can be used to quantify it [6].

Tool-based support for specifying and evaluating adapta-

tion intents over time. Having an overview of the various con-

cerns (e.g., performance) and the related metrics (e.g., “average

response time per five minutes”), we plan to provide tools to model

the different concerns in decision maps, and associate metrics to

them in an intuitive way. For instance, such association can be

done via selecting a data stream (e.g., response time) from the list

of data streams monitored by the managing system and selecting a

function (e.g., average) to be applied over a data window (e.g., five

minutes). In a similar vein, we should be able to specify sustainabil-

ity goals in terms of the quantified concerns and create a service

that continuously measures them over time [14].

Evaluation of capturing and measuring sustainability of

self-adaptive systems.We plan to use the DM notation and mod-

eling process explored in this paper to capture the sustainability

concerns of SWIM and DeltaIoT with more self-adaptive systems,

including industrial-grade systems, to evaluate the applicability and

also evolve the proposed approach. To evaluate the usability of the

approach, we intend to perform both case studies and controlled

experiments. Finally, we envision that our proposed approach and

related tool support will help build the foundations for a systematic

process that covers the different phases of the design and develop-

ment of a self-adaptive system.

ACKNOWLEDGEMENT

We would like to thank Michele Pugno for his valuable feedback.

39

Expressing the Adaptation Intent as a Sustainability Goal ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Coral Calero, Mª Ángeles Moraga, and Mario Piattini. 2021. Introduction to

Software Sustainability. In Software Sustainability, Coral Calero, Mª Ángeles
Moraga, and Mario Piattini (Eds.). Springer International Publishing, 1–15.

[2] Tao Chen, Rami Bahsoon, Shuo Wang, and Xin Yao. 2018. To Adapt or Not to
Adapt?: Technical Debt and Learning Driven Self-Adaptation for Managing Run-
time Performance. In Proceedings of the 2018 ACM/SPEC International Conference
on Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018, Katinka
Wolter, William J. Knottenbelt, André van Hoorn, and Manoj Nambiar (Eds.).
ACM, 48–55. https://doi.org/10.1145/3184407.3184413

[3] Nelly Condori-Fernandez and Patricia Lago. 2018. Characterizing the contribution
of quality requirements to software sustainability. The Journal of systems and
software 137, 3 (2018), 289–305. https://www.sciencedirect.com/science/article/
pii/S0164121217302984

[4] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming uncertainty in
self-adaptive software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, Tibor
Gyimóthy and Andreas Zeller (Eds.). ACM, 234–244. https://doi.org/10.1145/
2025113.2025147

[5] Naeem Esfahani and Sam Malek. 2013. Uncertainty in Self-Adaptive Software
Systems. In Software Engineering for Self-Adaptive Systems II - International Semi-
nar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited
Papers (Lecture Notes in Computer Science, Vol. 7475), Rogério de Lemos, Hol-
ger Giese, Hausi A. Müller, and Mary Shaw (Eds.). Springer, 214–238. https:
//doi.org/10.1007/978-3-642-35813-5_9

[6] Ilias Gerostathopoulos, Claudia Raibulet, and Elvin Alberts. 2022. Assessing Self-
Adaptation Strategies Using Cost-Benefit Analysis. In Proc. of 44th International
Conference on Software Engineering Companion, ICSA 2022. In press.

[7] Ilias Gerostathopoulos, Thomas Vogel, Danny Weyns, and Patricia Lago. 2021.
How do we Evaluate Self-adaptive Software Systems?: A Ten-Year Perspective
of SEAMS. In Proceedings of the IEEE/ACM 16th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2021). IEEE
Computer Society, 59–70. https://doi.org/10.1109/SEAMS51251.2021.00018

[8] Sarthak Gupta, Patricia Lago, and Roel Donker. 2021. A Framework of Software
Architecture Principles for Sustainability-driven Design and Measurement. In
18th IEEE International Conference on Software Architecture Companion, ICSA
Companion 2021, Stuttgart, Germany, March 22-26, 2021. IEEE, 31–37. https:
//doi.org/10.1109/ICSA-C52384.2021.00012

[9] Marieke Huisman, Herbert Bos, Sjaak Brinkkemper, Arie van Deursen, Jan Friso
Groote, Patricia Lago, Jaco van de Pol, and Eelco Visser. 2016. Software that
Meets Its Intent. In Leveraging Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications (Lecture Notes in Computer
Science), Tiziana Margaria and Bernhard Steffen (Eds.). Springer International
Publishing, Cham, 609–625. https://doi.org/10.1007/978-3-319-47169-3_47

[10] Muhammad Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansée,
Danny Weyns, and Danny Hughes. 2017. DeltaIoT: A Self-Adaptive Internet of
Things Exemplar. In 2017 IEEE/ACM 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 76–82.

[11] Muhammad Usman Iftikhar and Danny Weyns. 2014. ActivFORMS: active formal
models for self-adaptation. In Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2014).
Association for Computing Machinery, Hyderabad, India, 125–134. https://doi.
org/10.1145/2593929.2593944

[12] Miguel A. Jiménez, Luis F. Rivera, Norha M. Villegas, Gabriel Tamura, Hausi A.
Müller, and Nelly Bencomo. 2019. An architectural framework for quality-
driven adaptive continuous experimentation. In Proceedings of the Joint 4th
International Workshop on Rapid Continuous Software Engineering and 1st In-
ternational Workshop on Data-Driven Decisions, Experimentation and Evolution,
RCoSE-DDrEE@ICSE 2019, Montreal, QC, Canada, May 27, 2019. IEEE / ACM,
20–23. https://doi.org/10.1109/RCoSE/DDrEE.2019.00012

[13] Patricia Lago. 2019. Architecture Design Decision Maps for Software Sustain-
ability. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). 61–64.

[14] Patricia Lago and Toon Jansen. 2011. Creating Environmental Awareness in
Service Oriented Software Engineering. In Service-Oriented Computing, E. Michael
Maximilien, Gustavo Rossi, Soe-Tsyr Yuan, Heiko Ludwig, and Marcelo Fantinato
(Eds.). Springer, 181–186.

[15] Patricia Lago, Roberto Verdecchia, Nelly Condori-Fernandez, Eko Rahmadian,
Janina Sturm, Thijmen van Nijnanten, Rex Bosma, Christophe Debuysscher, and
Paulo Ricardo. 2021. Designing for Sustainability: Lessons Learned from Four
Industrial Projects. In Advances and New Trends in Environmental Informatics.
Springer International Publishing, 3–18.

[16] Gabriel A Moreno, Bradley Schmerl, and David Garlan. 2018. SWIM: an ex-
emplar for evaluation and comparison of self-adaptation approaches for web
applications. In Proceedings of the 13th International Conference on Software Engi-
neering for Adaptive and Self-Managing Systems (Gothenburg, Sweden) (SEAMS

’18). Association for Computing Machinery, New York, NY, USA, 137–143.
[17] Claudia Raibulet and Francesca Arcelli Fontana. 2017. Evaluation of self-adaptive

systems: a women perspective. In 11th European Conference on Software Architec-
ture, ECSA 2017, Companion. 23–30. https://doi.org/10.1145/3129790.3129825

[18] Claudia Raibulet, Francesca Arcelli Fontana, and Simone Carettoni. 2020. A
preliminary analysis of self-adaptive systems according to different issues. Softw.
Qual. J. 28, 3 (2020), 1213–1243. https://doi.org/10.1007/s11219-020-09502-5

[19] Andres J. Ramirez, Adam C. Jensen, and Betty H. C. Cheng. 2012. A taxonomy of
uncertainty for dynamically adaptive systems. In 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2012,
Zurich, Switzerland, June 4-5, 2012, Hausi A. Müller and Luciano Baresi (Eds.).
IEEE Computer Society, 99–108. https://doi.org/10.1109/SEAMS.2012.6224396

[20] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-Adaptive Software: Landscape
and Research Challenges. ACM TAAS 4, 2, May (2009), 1–40. https://doi.org/10.
1145/1516533.1516538

[21] Sven Tomforde and Martin Goller. 2020. To Adapt or Not to Adapt: A Quantifi-
cation Technique for Measuring an Expected Degree of Self-Adaptation. MDPI
Computers 9, 1 (2020), 21. https://doi.org/10.3390/computers9010021

[22] DannyWeyns. 2018. Engineering Self-Adaptive Software Systems –AnOrganized
Tour. In 2018 IEEE 3rd International Workshops on Foundations and Applications
of Self* Systems (FAS*W). 1–2. https://doi.org/10.1109/FAS-W.2018.00012

40

