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Abstract. The classical dam-break problem for the shallow water system with a dry/vacuum
downstream state is revisited in the context of exact solutions which generalize the Riemann setup of
a Heaviside jump between constant states to continuous initial data. Two main setups are considered,
chosen to illustrate how local properties of the dependent variables at the vacuum point influence
the evolution over different time scales. For the first case, the elevation (density) variable is initially
continuous but not differentiable at the dry (vacuum) point: no gradient catastrophe develops in this
variable, with the time evolution eventually merging into a single (shifted) Stoker wave. Conversely,
for the second case, the elevation joins the dry state with vanishing first derivative and a curvature
jump: for an instant in time a global gradient catastrophe at the fixed contact point forms and
immediately evolves as a Stoker parabolic simple wave, allowing the contact point to split into two
moving points, one at the dry bed and one at a fixed elevation, ???where curvature singularities
persist at all times. Although in both cases shocks develop for the velocity field, these are non-
generic, in that, in contrast to the usual case, infinitely many conservation laws are satisfied at all
times. Long time evolution is further analyzed with the help of new stretched “unfolding” variables
to extract the details of the asymptotic approach to a rarefaction Stoker-like wave.
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1. Introduction. The classical gas-dynamics Riemann problem in the presence
of a vacuum state, and its hydrodynamic version for the so-called shallow water or
Airy’s system,

(1.1) ut + uux + ηx = 0 , ηt + (uη)x = 0 ,

is a challenging topic that has recently received renewed attention in the litera-
ture (see, e.g., [4, 5, 9]). One of the main difficulties stems from the result [12]
that no shocks can propagate into a vacuum/dry state, as the appropriate jump con-
ditions cannot be satisfied at the shock. This is in contrast with its rarefaction wave
counterpart, which of course is not subject to such conditions, and the corresponding
dynamics can be analyzed in general [11, 12]. With this in mind, the study of classes
of initial data that lead to closed form solutions can shed some light on the range of
possible dynamics supported by the evolution equation, and stimulate general proofs.

This is the focus of our paper. We consider piecewise smooth initial data on
the real line with a vacuum region corresponding to x < 0, connecting continuously
to “density” (actually the fluid layer thickness in the hydrodynamic interpretation
of (2.1)) η ≥ 0 for x > 0. While the velocity u for the vacuum region clearly has no
physical meaning, mathematically the manifold η = 0 is an invariant reduction of the
system to the Hopf equation

ut + uux = 0 .

For the class of solution we consider in this study, with vanishing initial velocity
u(x, 0) = 0, continuous dependence on the initial data can in fact lead to a jump
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Fig. 2.1. Sketch of the evolution of η(x, t) and u(x, t) starting from the initial data (2.2). The

relevant x-values are p(t) = −2t
√
Q and b(t) = t

√
Q. The dashed line are the initial data while the

bold line are their evolution.

of this field across the location where η(x, t) = 0, i.e., a shock for the variable u
alone while continuity of η is maintained. This situation is different from the most
common case studied in the literature, where jumps of the dependent variables occur
simultaneously. The standard Rankine-Hugoniot conditions are satisfied for the cases
we consider due to the vanishing of η at the shock location, thus the interpretation
of the resulting weak solutions as those with propagating shocks is justified. While
we focus on a particular set of initial data, our results apply locally to a larger class,
where η and u admit a Taylor series expansion in the (right) neighbourhood of the
contact point where η = 0.

This paper is organized as follows. After a brief review of the Riemann problem
in section 2, we define our “dam-break” classes in section 3 and 4.3, respectively for
the continuous and differentiable cases. The dynamics supported by the latter setup
is further illustrated by a variant of the Riemann problem, obtained by a version of
the backward in time prolongation of the dam-break initial data. Next, borrowing
from a recent result [2] in a different context, we introduce “unfolding” or stretched
variables, which can be used to follow the long time asymptotics of both solution
classes. Numerical simulations with a general purpose WENO algorithm both illus-
trate the evolution as predicted by the exact solutions and highlight the limitations
of this scheme in the presence of a vacuum state.

2. An overview of the classical Riemann problem. In this section we
briefly recall the dam-break solution (see, e.g., [17]) of the shallow water, or Airy’s,
model

(2.1) ut + uux + ηx = 0 , ηt + (uη)x = 0 ,

where, in appropriately scaled variables, η(x, t) represents the surface height and
u(x, t) is the horizontal layer-averaged velocity at location x ∈ IR and time t ∈ IR+.
The initial condition representing a dam at the origin filled to a height Q is

(2.2) η(x, 0) =

{
0, x < 0

Q, x ≥ 0
, u(x, 0) = 0 .

The corresponding solution satisfies η(p(t), t) = 0 and η(b(t), t) = Q, at moving points
p(t) and b(t), and is constant outside the interval [p(t), b(t)]. Inside this interval, the
solution is given by a so-called simple wave, meaning that one of the two Riemann
invariants is the same constant over the whole interval. Indeed, recall that the char-
acteristics of the system (2.1) are the solution of the ODEs

(2.3) ẋ± = λ±(η, u) , where λ±(η, u) = u±√η ,
2
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Fig. 2.2. Positive (continuous line) and negative (dashed line) characteristics for the solution
(2.6). The region O is parabolic, so there is only one family of characteristics.

and the so-called Riemann invariants R±(η, u) = u± 2
√
η are constant along the cor-

responding characteristics. In other words, system (2.1) is equivalent (in the physical
region of interest η ≥ 0) to

(2.4) ∂tR± + λ±(R+, R−) ∂xR± = 0 .

Following the negative characteristic starting from points (x0, 0), with x0 > 0, the

Riemann invariant R− is easily seen to assume the constant value −2
√
Q in the

simple-wave region S = {(x, t) | p(t) < x < b(t), t ≥ 0}, where the field η and u

are functionally related by u(x, t)− 2
√
η(x, t) = −2

√
Q. It is easy to check that the

solution in the region S is given by the simple rarefaction wave

(2.5) η =
1

9

(x
t

+ 2
√
Q
)2

, u =
2

3

(x
t
−
√
Q
)
,

so that p(t) = −2t
√
Q and b(t) = t

√
Q. The whole dam-break solution can then be

defined as

(2.6)

η(x, t) =


0, x < −2t

√
Q

1

9

(x
t

+ 2
√
Q
)2
, −2t

√
Q ≤ x ≤ t

√
Q√

Q, x > t
√
Q

,

u(x, t) =


0, x < −2t

√
Q

2

3

(x
t
−
√
Q
)
, −2t

√
Q ≤ x ≤ t

√
Q

0, x > t
√
Q

.

It is interesting to note (see, e.g., [17]), that the layer thickness remains constant at
the origin, η(0, t) = 4Q/9, for all t > 0, that is, the interface always passes through
the point (0, 4Q/9).

With definition (2.6) for the weak solution of system (2.1), and in particular
having chosen the velocity u = 0 in the region x < p(t), it is immediate to check that

the jump from u = 0 to u = −2
√
Q at x = p(t), consistently defines a shock velocity,

as
(2.7)

ṗ =
[ηu]

[η]
≡ lim
ε→0

η(p(t) + ε, t)u(p(t) + ε, t)− η(p(t)− ε, t)u(p(t)− ε, t)
η(p(t) + ε, t)− η(p(t)− ε, t)

= −2
√
Q ,
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i.e., this shock moves with the fluid’s velocity, which is well defined when η > 0.
For x < p(t), the choice u = 0, which leads to a jump in this variable, is some-
what arbitrary from a physical perspective, since no fluid is present to the left of the
moving point p(t). However, from a mathematical viewpoint, setting η = 0 reduces
system (2.1) to the Hopf equation ut+uux = 0 for u, and the choice of u in the region
x < p(t) should be made consistently with a solution to this equation, e.g., for any

constant value for u. In particular, the choice u = −2
√
Q for x < p(t), which is the

one made in [17], is also available and makes the u-field continuous, therefore elimi-
nating the interpretation of the moving point x = p(t) as a shock location. However,
note that this would imply an initial discontinuity in the velocity field, whereby the
second equation in (2.2) would be replaced by u(x, 0) = −2

√
QH(−x), where H is

the Heaviside step function. Similarly, the analogue of the jump condition (2.7) for
the momentum m ≡ η u is satisfied with any choice u = const. for x < p(t), and in fact
for infinitely many conserved quantities, see below. For η = 0, even if system (2.1) has
coincident characteristics eigenvalues λ+ = λ−, and thus it is degenerate of parabolic
kind in this region, such shock conditions can be still interpreted as local conservation
laws. The solution (2.6) is depicted in figure 2.1, and the corresponding characteristics
are shown in figure 2.2.

Remark 2.1. As well known, not all quantities conserved by strong solutions of
system (2.1) are still conserved by weak solutions. In the presence of shocks, selecting
which conservation laws that are to be enforced determines the shock speed. For in-
stance, with the conserved density u and its related current η+u2/2 the shock velocity

is −
√
Q, which does not coincide with ṗ = −2

√
Q given by (2.7). However, in the

presence of a vacuum state with continuous η, an infinite number of conserved quan-
tities survives. A simple way to prove this peculiar property exploits the integrability
structure of system (2.1). By means of the classical Lenard-Magri recursion for the
bi-Hamiltonian structure of the model [1, 13], one finds a one-parameter family of
conserved densities,

(2.8) h(u, η; z) = −
√

(u− z)2
4

− η +
z − u

2
,

whose associated current generator is

(2.9) H(u, η; z) =
z + u

2
h(u, η; z)− 1

2
η .

In the limit z → +∞, a countable number of conserved densities arises,

(2.10) h(u, η; z) =
η

z
+
ηu

z2
+
η2 + ηu2

z3
+
η2u+ ηu3

z4
+

2η3 + 6η2u2 + ηu4

z5
+ . . . .

The shock velocity vs for an arbitrary fixed value of z is

(2.11) vs(z) =
HR −HL

hR − hL
,

where fR and fL stand for the values of f on the right and on the left of p(t) =

−2
√
Qt. This reduces to

vs(z) = lim
ηR→0

H(−2
√
Q, ηR; z)−H(0, 0; z)

h(−2
√
Q, ηR; z)− h(0, 0; z)

= lim
ηR→0

H(−2
√
Q, ηR; z)

h(−2
√
Q, ηR; z)

= −2
√
Q

(2.12)
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for all z. In particular, each term of series (2.10) (and in particular the energy, which
is the z−3 term of (2.10)) gives rise to a conserved quantity even in the presence of
velocity shocks located at points where η joins continuously η = 0.

Having reviewed the essential elements of the classical dam-break problem, we now
look at extensions which can still lead to closed form solutions. While still special,
these solutions nonetheless illustrate how the simplicity of the classical dam-break
problem above can hide fundamental differences with the more generic case, where
one simple (rarefaction) wave cannot account for the global structure of the solution.

3. Dam-break: the linear connection case. Outside of the simple-wave
class, exact solutions of system (2.1) can always be sought in Taylor series form with
time-dependent coefficients which would then satisfy an infinite system of ODEs. A
notable class of solutions in this form consists of a reduction to a finite number of
ODEs, whose solutions then determine the whole (possibly infinite) hierarchy of coeffi-
cients. Hence the special solutions generated this way can be viewed as corresponding
to “finite degree of freedom” reductions of the dynamics supported by system (2.1)
[2]. The simplest case of this reduction is that of linear and quadratic polynomials,
where all higher order coefficients of the Taylor series can be taken to be zero, so that
closed form solutions can actually be computed.

3.1. Linear-core exact solution. The shallow water model (2.1) admits linear
solutions

(3.1) η = β(t)x+ µ(t) , u = ν(t)x+ κ(t),

where the coefficients of the straight lines are suitable functions of t, solving the
triangular ODE system

(3.2) ν̇ + ν2 = 0 , β̇ + 2νβ = 0 , κ̇+ νκ+ β = 0 , µ̇+ νµ+ βκ = 0

with initial data

(3.3) ν(0) = ν0 , β(0) = β0 , κ(0) = κ0 , µ(0) = µ0 .

After a translation of the x-axis, we can set µ0 = 0. Moreover, up to sign change
reflections of x and u, we can always assume β0 > 0. If the initial velocities vanish,
i.e., ν0 = 0 and κ0 = 0, then the solution is easily computed

(3.4) η = β0x+
1

2
β2
0t

2 , u = −β0t .

The characteristics passing through (x0, 0) for x0 ≥ 0 are determined by the corre-
sponding Riemann invariant

(3.5) R±
(
x±(t), t

)
= β0t± 2

√
β0x±(t) +

1

2
β2
0t

2 = ±2
√
β0x0

or, explicitly,

(3.6) x±(t;x0) = x0 ± t
√
β0x0 −

1

4
β0t

2 .
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Remark 3.1. It is clear from the right-hand side of (3.5) that these curves exist
only in the region x ≥ − 1

2β0t
2. This is in agreement with the fact that η(−β0t2/2, t) =

0, since η = 0 separates the hyperbolic and the elliptic region of system (2.1). Hence,
the positive characteristics (labeled by “+” in (3.6)) are defined for all t ≥ 0, while
the negative ones (labelled by “−”) are defined for 0 ≤ t ≤ 2

√
x0/β0 and cease to

exist at the curve x = −β0t2/2.
Remark 3.2. The two curves x−(t;x0) and x = −β0t2/2 are tangent at the in-

tersection point (−2x0, 2
√
x0/β0), so that the latter curve can also be viewed as the

envelope of these characteristics. The curve x−(t;x0) for t ≥ 2
√
x0/β0 is in fact

the positive characteristic emanating from the tangent point. In the hodograph plane
(u, η), characteristics trace arcs of parabolae u ± 2

√
η = const., which have η = 0 as

their envelope (cf. equation (3.4)).
To compare the present case with that in our previous discussion for the classical
dam-break solution, it is useful to note that the parabola x = −β0t2/2 admits yet
another characterization, namely it can be viewed as location of the (degenerate) shock
class mentioned above, whereby the velocity u jumps while the layer thickness η joins
continuously the value η = 0 where the system (2.1) becomes parabolic. Indeed, two
characteristics with initial conditions x0 and x′0 intersect, i.e.,

(3.7) x0 ± t
√
β0x0 −

1

4
β0t

2 = x′0 ± t
√
β0x′0 −

1

4
β0t

2,

at time

(3.8) t = ∓

(√
x′0
β0

+

√
x0
β0

)
.

Therefore the negative-class characteristics intersect at some positive time, which
would imply, according to the general theory (see, e.g., [18]), that a shock needs to be
fitted to maintain single-valuedness. The earliest shock time (for a single characteristic
starting from x0) is

(3.9) t(x0) = 2

√
x0
β0

.

Eliminating the parameter x0 by using this in equation (3.6), with the choice of
negative sign, yields x = −β0t2/2, which is therefore the location of intersections of
characteristics of the same (negative) class. Notice that characteristics starting from
base points x′0 < x0 cease to exist before t = t(x0). This behaviour of characteristics
is depicted in figure 3.1.

3.2. Piecewise linear-constant solution. The linear initial condition above
for the fluid layer thickness η, and its (η, u) evolution, can be made to satisfy physical
boundary conditions as x→∞ by “splicing” it with constant values of the dependent
variables. Thus, we now consider the evolution starting from rest with a dry region
η = 0 connected by a straight line to a constant height η = Q. This can be seen
as an intermediate case between the classical Riemann dam-break problem and the
parabolic case, to be discussed in the next section, in that the η-initial data are
continuous but non-differentiable at the origin, as opposed to discontinuous for the
Riemann case and C1 at the dry point for the parabolic case.
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Fig. 3.1. Positive (continuous line) and negative (dashed line) characteristics for the solu-
tion (3.4) with β0 = 1. The thick line is x = − 1

2
β0t2, where η = 0. In the grey region, the positive

characteristics emanate from x = − 1
2
β0t2, rather than t = 0, and their analytical form coincides

with that of the negative characteristics.

The initial condition is

(3.10) η(x, 0) =


0, x < 0

β0x, 0 ≤ x ≤ a0
Q, x > a0

, u(x, 0) = 0 ,

where a0 = Q/β0. Given what we know about the linear solution core from the
previous section, the solution is

(3.11)

η(x, t) =

{
0, x < p(t)

β0x+ 1
2β

2
0t

2, p(t) ≤ x < a(t)
,

u(x, t) =

{
0, x < p(t)

−β0t, p(t) ≤ x < a(t)
,

where we have kept, by analogy with the Riemann case of section 2, the notation p(t)
for the point where η vanishes; thus at all times where the linear solution (3.4) exists,
p(t) = −β0t2/2. Here a(t) is the moving point, to be determined, of the right end of
the linear solution interval, so that a(0) = a0. Note that singularities can develop to
limit the time of solution existence, and the above solution may only exist for finite
times. To find a(t) we make the following ansatz,

η(x, t) =(β0x+ 1
2β

2
0t

2)χA(x) +N(x, t)χB(x) +QH(x− b(t)) ,
u(x, t) =− β0t χA(x) + V (x, t)χB(x) ,

(3.12)

where N(x, t) and V (x, t), are, respectively, the local surface and the velocity solutions
of the Airy system (2.1) for a(t) < x < b(t), χI(x) is the characteristic function of
the interval I = (x1, x2) ⊂ IR, that is,

χI(x) = H(x− x1)−H(x− x2) ,

with H the Heaviside step function, A = (p(t), a(t)) and B = (a(t), b(t)). Here b(t) is
another moving point to be determined, such that b(0) = a0. Thus, we anticipate that

7



the initial corner at x = a0 can split into two corners supported at the moving points
a(t) and b(t) where the solution joins continuously the linear core and the constant
background, respectively, so that (η, u), at least up to a possible gradient catastrophe
time, is continuous at all points x > p(t). Differentiating the Airy system with respect
to x yields

(3.13) uxt +

(
u2

2
+ η

)
xx

= 0 , ηxt + (u η)xx = 0 ,

and when the solution ansatz (3.12) is substituted in these equations, using the dis-
tributional relation

(3.14) χ′I = δ(x− x1)− δ(x− x2) ,

three different kinds of distributions (Heaviside H, Dirac−δ and Dirac−δ′) appear and
need to be separately balanced to find a solution in the sense of distributions. The
terms involving Heaviside functions cancel out because (3.12) is a piecewise solution of
the Airy system, and the same happens with the terms involving Dirac−δ′ because of
the continuity of (3.12) for x > p(t). Therefore the only terms governing the evolution
of the points a(t) and b(t) come from the Dirac−δ’s, and read

(3.15)

(
β0 −Nx(a(t), t)

)(
ȧ(t) + β0t

)
+ Vx(a(t), t)

(
β0a(t) + 1

2β
2
0t

2
)

= 0 ,

Vx(a(t), t)
(
ȧ(t) + β0t

)
+ β0 −Nx(a(t), t) = 0 ,

for the terms supported at x = a(t), and

(3.16) Nx(b(t), t) ḃ(t)−QVx(b(t), t) = 0 , Vx(b(t), t) ḃ(t)−Nx(b(t), t) = 0 ,

for the terms supported at b(t). If Nx(b(t), t)Vx(b(t), t) 6= 0, from system (3.16) it
follows that ḃ(t)2 = Q, so that ḃ(t) = ±

√
Q. The choice of the plus sign moves the

point b(t) along a right going characteristic, therefore we obtain

(3.17) b(t) =
Q

β0
+ t
√
Q .

As to the evolution of a(t), if (β0 −Nx(a(t), t))Vx(a(t), t) 6= 0, from system (3.15) it
follows that

(3.18)

(
d

dt
(a(t) + 1

2β0t
2)

)2

= β0(a(t) + 1
2β0t

2) .

Hence with the choice of negative sign for a left going characteristic, we have

(3.19)
d

dt

(
a(t) + 1

2β0t
2
)

= −
√
β0
(
a(t) + 1

2β0t
2
)
,

whose solution satisfying a(0) = a0 = Q/β0 is easily seen to be

(3.20) a(t) =
Q

β0
− t
√
Q− 1

4
β0t

2 .

This solution shows that there exists a finite time tc = 2
√
Q/β0 when a collision a(t) =

p(t) occurs. This corresponds to the time when the core straight line disappears, and
the solution supported on the intermediate interval B connects the dry region to the
left of p(t) to the background quiescent state to the right of b(t).
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Remark 3.3. The above computation by distributional calculus shows explicitly
how the classical result [18] (§5.5, p.127) applies to corner points x = 0 and x = a0
moving along characteristics. However, it should be stressed that the point at x = 0
behaves differently than its counterpart at x = a0. In fact, the interpretation of x =
p(t) as an envelope of characteristics shows that a loss of regularity could be expected at
this point, as characteristics of the same class cross along this curve. Accordingly, the
continuity of the velocity component of system (2.1) can be expected to be lost at times
t > 0, unlike the case for the classical Riemann dam-break in section 2, where the dry
region η = 0 could be covered with a constant solution of the Hopf equation ut+uux =
0 to join continuously the value u(p(t), t) = −2

√
Q. In particular, no splitting of the

corner point initially at x = 0 along two characteristics can be observed in the solution.
From the results in [18], it follows that a necessary condition for a corner point initially
at x = x̂ to split into two points, each following a different characteristic, is that
the characteristic eigenvalues are different, λ−

(
η(x̂, 0), u(x̂, 0)

)
6= λ+

(
η(x̂, 0), u(x̂, 0)

)
;

while we do not pursue a full analysis of this point here, we conjecture that, to be
sufficient, this condition has to be augmented by the requirement that both Riemann
invariants have a discontinuous (t- or x-)derivative at (x̂, 0). Thus, the initial corner
at x = 0, where η = 0, does not separate into two points and remains at the bottom
(i.e., its evolution is given by x = p(t) = −β0t2/2) for the finite time t < tc, whereas
the second corner point initially at x = a0 splits along the negative characteristic
curve (3.20) (cf. the general expression (3.6)), and its positive counterpart (3.17)
(associated with the constant solution η = Q, u = 0), for all times t > 0.

Collecting results (3.17) and (3.20) yields the explicit form of the piecewise solu-
tion for the intermediate times t ∈ [0, tc],

(3.21)

η(x, t) =


0, x < p(t)

β0x+ 1
2β

2
0t

2, p(t) ≤ x ≤ a(t)

N(x, t), a(t) < x ≤ b(t)
Q, x > b(t)

,

u(x, t) =


0, x < p(t)

−β0t, p(t) ≤ x ≤ a(t)

V (x, t), a(t) < x ≤ b(t)
0, x > b(t)

,

where N(x, t) and V (x, t) are, respectively, an interface and a velocity field solving the
system (2.1) in the time-varying interval B = (a(t), b(t)). We will call the pair (N,V ),
connecting the straight line with the constant height Q, the “shoulder” part of the
solution. By the same argument used in section 2, one can show that the Riemann
invariant R−(η, u) = u − 2

√
η is constant, R−(η, u) = −2

√
Q, when evaluated at

η = N(x, t) and u = V (x, t), so that the shoulder corresponds to a simple wave
solution. In the region S where the shoulder is defined (see figure 3.2), the positive
characteristics are straight lines (starting form the curve x = a(t)). Indeed, the
slope λ+ = V +

√
N = (3R+ + R−)/4 of such a characteristic is invariant along the

characteristic itself.
To compute N(x, t) and V (x, t) at a given point (x, t) ∈ S, denote by (a(t0), t0)

the point lying on the positive characteristic passing through (x, t). Note that the
time coordinate t0 of this point must lie in the interval [0, tc]. We have,

(3.22) x− a(t0) = Λ(t0)(t− t0) ,

9
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Fig. 3.2. Positive (continuous line) and negative (dashed line) characteristics corresponding
to the initial data u(x, 0) = 0 and (3.10). The coordinates of the point C are xc = −2Q/β0 and

tc = 2
√
Q/β0. There are four different regions: on the left, the region O where the elevation η

vanishes; on the right, the region Q where η = Q; the interface is a straight line in L, and is given
by the simple wave (3.26) in S.

where

(3.23) Λ(t0) = λ+(a(t0), t0) = V (a(t0), t0) +
√
N(a(t0), t0) =

√
Q− 3

2
β0t0,

since V (a(t0), t0) = −β0t0 and N(a(t0), t0) = (
√
Q− β0t0/2)2. Since R+ is constant

along (3.22) and R− is constant on the whole region S, we have

(3.24) V (x, t) = V (a(t0), t0) , N(x, t) = N(a(t0), t0) ,

and we are left with solving equation (3.22) with respect to t0. Thanks to (3.23), this
is a quadratic equation, and from figure 3.2 it is clear that we are interested in the
smaller of the two real solutions, hence

(3.25) t0 =
1

5β0

(
4
√
Q+ 3tβ0 −

√
20β0x− 4Q+ 4tβ0

√
Q+ 9t2β2

0

)
.

This yields the explicit form of V , and so N , by using the simple wave relation from
the “-” Riemann invariant R− = V − 2

√
N = −2

√
Q,

(3.26)
V (x, t) = 1

5

(√
20β0x− 4Q+ 4tβ0

√
Q+ 9t2β2

0 − 4
√
Q− 3tβ0

)
,

N(x, t) = 1
4

(
V (x, t) + 2

√
Q
)2

.

A useful observation for the qualitative characterization of this solution is the presence
of the fixed point x∗ = 2Q/(9β0) where the interface height remains constant at all
times,

(3.27) N

(
2Q

9β0
, t

)
=

4Q

9
.

Note that this height is the same as that for the classical dam-break of section 2,
where, however, the special point at which the value η = 4Q/9 is attained remains
fixed at the origin x∗ = 0.

10



The straight-line part of the solution shrinks to the point xc = −2Q/β0 when

t = tc = 2
√
Q/β0. Note that at this time the shoulder, simple-wave component of

the solution becomes a straight line with slope β0/5, or

(3.28) N(x, tc) =
β0
5
x+

2Q

5
, p(tc) = −2Q

β0
≤ x ≤ 3Q

β0
= b(tc) ,

and the concavity of the shoulder switches from negative to positive at this time.
After t = tc, the contact point with the bottom moves at constant speed −2

√
Q,

x = p(t) = 2Q/β0 − 2t
√
Q, and the solution becomes

(3.29)

η(x, t) =


0, x < p(t)

N(x, t), p(t) ≤ x ≤ b(t)
Q, x > b(t)

, u(x, t) =


0, x < p(t)

V (x, t), p(t) ≤ x ≤ b(t)
0, x > b(t)

.

Thus, for times t > tc, in the region [p(t), b(t)] the solution is a simple wave, just
as the Stoker rarefaction wave of section 2. However, as remarked above, the jump
discontinuity in the velocity field at the point where η vanishes cannot be eliminated at
all times t > 0 by a choice of u consistent with the Hopf equation to which system (2.1)
reduces for η = 0. This is essentially due to the time evolution of u in the linear region
(p(t), a(t)) where u(x, t) = −β0 t, which would require a time dependent continuation
of u for x < p(t).

Suppose in fact that for the region η = 0 we were to look for a solution of the
initial-boundary value problem for the second equation of system (2.1), i.e., the Hopf
equation

(3.30) ut + uux = 0 , u(x, 0) = f(x), u
(
p(t), t

)
= −β0t , for x < p(t) ,

for some function f(x). Then the change of variables x = y + p(t) and u(x, t) =
v(y, t)−β0 t transforms this into the equivalent initial-boundary value problem of the
fixed half-line domain,

(3.31) vt + v vy = β0 , v(y, 0) = g(y), v
(
0, t
)

= 0 , for y < 0 ,

whose solution, by characteristics, i.e.,

(3.32)
dv

dt
= β0 on curves y(t) such that

dy

dt
= v(y(t), t)

is

(3.33) v(y, t) = g(y0) + β0t , y = y0 + g(y0)t+
1

2
β0t

2 ,

with g a function such that g(0) = 0 to be compatible with the boundary condition at
t = 0, and otherwise must be extended to maintain the boundary condition v(0, t) = 0.
This implies that a characteristic emanating from y = y0 at time t = 0 must be such
that

g(y0) = −β0t

at time t, so that the corresponding characteristic point of origin y0 is given by

(3.34) 0 = y0 −
1

2
β0t

2 ,

11



i.e., only characteristics emanating from the positive semi-axis y > 0 can be consid-
ered. Thus, the choice of the function g for the support y0 ≥ 0 is g(y0) = −

√
2β0y0,

so that that these characteristics are part of the family of parabolae

(3.35) y = y0 −
√

2β0y0 t+
1

2
β0t

2 ,

whose vertex is tangent to the t axis. The latter is, in fact, the envelope of the charac-
teristics family as shown by the second equation in (3.32); by this and the boundary
condition v(y(t), t) = 0 it can be checked that the envelope is itself a characteris-
tic, which of course corresponds to the “parabolic” limit v = 0 for equation (3.31).
The corresponding solution v(y, t) on the half line y > 0 can be taken to be time-
independent,

v(y, t) = −
√

2β0y

as can be readily checked. No characteristics emanating from y0 > 0 can be prolonged
into the negative half-plane y < 0. Together with the fact that regardless of the
choice of initial data g(y0) all characteristic curves eventually grow as β0t

2/2 at long
times, this shows that the boundary condition at y = 0 cannot be met by regular
solutions of (3.32) for y0 < 0. Thus, the construction of solutions of the initial value
problem (3.10) for system (2.1) in the dry (vacuum) region cannot be carried out
without some form of shock fitting for the velocity component. The choice u = 0 for
x < p(t) is the simplest one that satisfies the shock velocity jump condition (2.7),
whence the conservation laws discussed in section 2 follow for this case of piecewise
linear initial data as well.

However, an alternative definition of the velocity u in the vacuum region, akin
to that used for the Riemann problem to extend this variable continuously without
using a shock, can also be made in this case. By using the pair η,m of dependent
variables instead of η, u, where m is the momentum of the fluid, the Airy system can
be written as

(3.36) ηt +mx = 0 , mt +
2m

η
mx −

m2

η2
ηx + ηηx = 0 ,

and the velocity u can be defined by the ratio m/η. Of course, in the region where
η vanishes, this definition loses meaning, but the velocity could still be extended by
using the appropriate limit η → 0 in such a way that the ratio m/η stays bounded.
For the linear-core case under consideration in this section, it is natural to continue
u(x, t) with the value of this limit as x→ p(t)−, that is, assume

u(x, t) = −β0t , x ≤ p(t) ,

for times t < tc and

u(x, t) = −2
√
Q , x ≤ −2

√
Qt ,

for times t > tc, i.e., after the linear core disappears, in analogy with the Stoker
rarefaction wave case. This alternative formulation of the evolution would effectively
turn the initial value problem with piecewise data (3.10) on the infinite line into a
boundary-initial value problem on the half line x > p(t), with Cauchy data on the
velocity u at the moving boundary x = p(t).

12
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Fig. 3.3. Sketch of the evolution of η(x, t) starting from the initial data (3.10). The relevant

x-values are p(t) = −β0t2/2 for 0 ≤ t ≤ tc ≡ 2
√
Q/β0, p(t) = 2Q/β0 − 2t

√
Q for t > tc, and

a(t) = Q/β0 − t
√
Q− β0t2/4, b(t) = Q/β0 + t

√
Q.

4. Dam-break: the parabolic connection case. In this section we consider
the evolution from a dry region connected by a parabolic profile to a constant height
Q. We begin with the simplest situation of a “global” simple wave (see e.g., [8]),
leading to an initial condition obtained by a backward-time extension of the Riemann
problem, which yields a closed-form and explicit expression illustrating the effect of
C1 connections with the dry case. The price to pay for simplicity is that of non-
vanishing velocity boundary conditions at infinity in the fluid region. Next, we turn
to a class of initial conditions which can still result in exact solutions, albeit implicitly
defined. Just as in the previous linear case, splicing together closed-form solutions
results into overall C-functions which are non-differentiable at the connection point
with a background quiescent state of thickness Q, with vanishing velocity boundary
conditions at infinity.

4.1. Simple-wave setup. Consider the initial conditions for the shallow water
(Airy) model defined by

(4.1)

η(x, 0) =


0 , x < 0

x2/(9t2c) , 0 < x < 3
√
Qtc

Q , x > 3
√
Qtc

,

u(x, 0) =


0 , x < 0

−2x/(3tc) , 0 < x < 3
√
Qtc

−2
√
Q , x > 3

√
Qtc

.

For t < tc this initial conditions evolve as

(4.2)

η(x, t) =


0 , x < 0

1

9

(
x

tc − t

)2

, 0 < x < 3
√
Q(tc − t)

Q , x > 3
√
Q(tc − t)

,

u(x, t) =


0 , x < 0

−2

3

x

tc − t
, 0 < x < 3

√
Q(tc − t)

−2
√
Q , x > 3

√
Q(tc − t)

.
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This solution is a simple wave everywhere, for t < tc of class C1 at x = 0 and C at
x = 3

√
Qtc. The constant Riemann invariant is

(4.3) u+ 2
√
η = 0 .

The dry point at which η = 0 is fixed at x = 0 until the gradient catastrophe time
t = tc. At this time the solution becomes the pair of Heaviside functions

(4.4) η(x, tc) =

{
0 , x < 0
Q , x > 0

, u(x, tc) =

{
0 , x < 0

−2
√
Q , x > 0

.

A suitable regularization has to be adopted in order to continue the solution after the
catastrophe at t = tc. Simply continuing the solution (4.2) for t > tc forces a shock to
be fitted for the velocity u, which would then connect a positive value to the negative
right asymptotic value −2

√
Q. This would violate the shock conditions, since at the

shock position η is continuous and positive. Another option, which would preserve
the simple wave structure, would be to choose a different Riemann invariant to be
kept constant overall. As shown by (4.3), the early time solution is a simple wave
with the constant Riemann invariant u+2

√
η = 0. After tc the only possible choice is

to fix, using the nonzero asymptotic values of the fields, the other Riemann invariant
to be

(4.5) u− 2
√
η = −4

√
Q .

The related solution is then

(4.6)

η(x, t) =


0 , x < p(t)

1

9

(
x

t− tc
+ 4
√
Q

)2

, p(t) < x < b(t)

Q , x > b(t)

,

u(x, t) =


0 , x < p(t)

2

3

(
x

t− tc
− 2
√
Q

)
, p(t) < x < b(t)

−2
√
Q , x > b(t)

.

where b(t) = −
√
Q(t− tc) and p(t) = −4

√
Q(t− tc). This solution is a simple wave

preserving (4.5) only in the regions where the fields are nonzero; therefore one has
to check that splicing the two parts (4.2) and (4.6) into a continuous solution for

η is compatible with shock and gluing conditions. At x = p(t) = −4
√
Q(t − tc),

the rightmost point where η is zero, the velocity u has a shock which is admissible
because the shock speed is equal to the value of the velocity u to the right of this
point. The evolution of the solution is a sort of “stumble” at time t = tc caused
by the persistence of the dry point at x = 0, followed by a “slide” as the Riemanm
dam-break after t = tc. This evolution is sketched in figure 4.1.

Remark 4.1. The Airy system is invariant under Galileian boosts. This prop-
erty is reflected by the fact that, in the region where η is nonzero, the solution (4.6)
coincides, up to a change of inertial reference frame, with that of the classical zero
initial velocity Riemann problem of section 2; that is, in this region (4.6) is obtained
from (2.6) by the boost

(4.7) u = uR − 2
√
Q , η = ηR , x = xR + 2

√
Q(t− tc) , t = tR + tc ,

14
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Fig. 4.1. Sketch of the evolution of η(x, t) starting from the initial data (4.1).

where the subscript R indicates solution (2.6). This can be also further verified ob-
serving that the point where η = 4Q/9 is moving to a constant velocity,

(4.8) x = −2
√
Q(t− tc) .

The fluid thicknesses η = 0, η = 4Q/9 and η = Q are the only ones whose velocities
are constant in time.

4.2. Parabolic-core exact solution. When a quadratic polynomial expression
is sought for η(x, t) in system (2.1), self-similar parabolic solutions (already briefly
mentioned in [14]) can be determined of the form

(4.9) u(x, t) = ν(t)x , η(x, t) = γ(t)x2 ,

where the coefficients satisfy the system of ODE

(4.10) ν̇ + ν2 + 2γ = 0 , γ̇ + 3νγ = 0 .

If we consider the initial conditions ν(0) = 0 and γ(0) = γ0 > 0, then it can be
checked that the curvature γ satisfies the ODE

(4.11) γ̇2 = 36
(
γ3 − γ1/30 γ8/3

)
and is an increasing function of time. After introducing the auxiliary variable σ =
(γ/γ0)1/3, the previous equation simplifies to

(4.12) σ̇ = 2
√
γ0 σ

2
√
σ − 1 ,

and we have that

(4.13) ν2 = 4γ0
(
σ3 − σ2

)
, γ = γ0σ

3 ,

where σ(t) is the inverse of

(4.14) t(σ) =

√
σ − 1 + σ arctan

(√
σ − 1

)
2
√
γ0 σ

and satisfies the initial condition σ(0) = 1. The characteristics are given by

(4.15) x±(σ) = x0

√
σ ±
√
σ − 1

σ
.

This and other self-similar solutions in the quadratic class have been studied in more
detail in [3] and [2].
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4.3. Piecewise parabolic-constant solutions. We now consider initial condi-
tions obtained by splicing together the parabolic core above with a quiescent constant
background state, as done for the linear-core case of section 3.2. Specifically, we take
u(x, 0) = 0 and

(4.16) η(x, 0) =


0, x < 0

γ0x
2, 0 ≤ x ≤ a0

Q, x > a0

,

where γ0, Q > 0 and a0 =
√
Q/γ0. For x ≥ 0, the evolution is the same obtained

by taking η(x, 0) even, coinciding with (4.16). Indeed, this case has been described
in [3, 2], where we have focussed on the consequences that η(0, t) = 0 for all t > 0.
(This is a general fact, related to the initial data being C1 in a neighborhood of
x = 0.) Hence the solution we are looking for can be obtained by gluing together
(η(x, t), u(x, t)) = (0, 0) for x < 0 with the solution above for x ≥ 0, before a certain
catastrophe time tc.

For initial data (4.16), there is only one non differentiable point, x = a0, and
we know (see Section 3.2 and [2, 3]) that it splits and evolves along the negative
characteristic

(4.17) x = a(σ) =

√
Q

γ0

√
σ −
√
σ − 1

σ
,

where σ(t) is the inverse of (4.14), and the positive characteristic (associated with the
constant solution η = Q, u = 0),

(4.18) x = b(t) = a0 + t
√
Q .

The behavior of (η(x, t), u(x, t)) for as long as continuity is maintained by the
evolution, is given by
(4.19)

η(x, t) =


0 , x ≤ 0

γ(t)x2 , 0 < x < a(t)

N(x, t) , a(t) ≤ x ≤ b(t)
Q , x > b(t)

, u(x, t) =


0 , x ≤ 0

ν(t)x , 0 < x < a(t)

V (x, t) , a(t) ≤ x ≤ b(t)
0 , x > b(t)

,

where ν(t) and γ(t) are defined by the solutions of the ODEs above, and the pair
(N,V ) is a simple wave solution of system (2.1) in the time-varying interval [a(t), b(t)],

such that the (negative sign) Riemann invariant is V − 2
√
N = −2

√
Q. This simple

wave solution is

(4.20) N(x, t) = γ(σ0)a(σ0)2 = σ0Q
(√
σ0 −

√
σ0 − 1

)2
,

the function σ0 = σ0(x, t) being implicitly defined by

(4.21) x = Λ(σ0)

(
t−
√
σ0 − 1 + σ0 arctan

(√
σ0 − 1

)
2σ0
√
γ0

)
+

√
Qσ0 −

√
Q(σ0 − 1)

σ0
√
γ0

,

where

(4.22) Λ(σ0) = 3
√
Qσ0

(
1−

√
1− 1

σ0
− 2

3σ0

)
.
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Fig. 4.2. Sketch of the evolution of η(x, t) starting from the initial data (4.16) and u(x, 0) =

0. The relevant x-values are x = a(t) (see (4.17) and (4.14)), b(t) = t
√
Q +

√
Q/γ0, p(t) =

−2
√
Q (t− π/(4√γ0)), and xJ (t) = −

√
Q (t− π/(4√γ0)) /2.

The interface described by (4.20) admits an invariant thickness value, similarly to
what observed for the solutions in the previous sections. Indeed, inverting (4.20) one
finds

(4.23) σ0 =
N√

Q
(

2
√
N −

√
Q
) ,

and substituting in equation (4.21), one obtains an implicit expression for N(x, t).
Using this, it is easy to show that

(4.24) N

(√
3Q

16γ0
, t

)
=

4Q

9
.

The coalescence time (i.e., the time when a(t) becomes zero, so that the parabola
collapses to a vertical segment) is

(4.25) tc =
π

4
√
γ0
,

which is the global gradient catastrophe time mentioned above (see [2] for the details,
and [3] for more information on the relevant features of this construction).

As seen for the Riemann construction of section 4.1, after this gradient catastro-
phe the solution can be continued by considering another simple wave, such that its
corresponding Riemann invariant is V0 − 2

√
N0 = −2

√
Q. Thus, define the new pair

of dependent variables (N0, V0)

(4.26) N0 =
1

9

(
x

t− tc
+ 2
√
Q

)2

, V0 =
2

3

(
x

t− tc
−
√
Q

)
,
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Fig. 4.3. Positive (continuous line) and negative (dashed line) characteristics corresponding to
the initial data u(x, 0) = 0 and (4.16). There are four different regions: on the left, the region O
where the elevation η vanishes; on the right, the region Q where η = Q; the interface is a parabola
in P , and is given by the simple waves (N,V ) and (N0, V0) in S.

and, as seen from the value of the Riemann invariant R−, the pairs (N,V ) and (N0, V0)
form a unique simple wave. The gluing point between them can be determined as
follows. Denote the leftmost point of N by xJ(t), which corresponds to σ0 → +∞ in
(4.21) and (4.20). We obtain

(4.27) xJ(t) = −
√
Q

2

(
t− π

4
√
γ0

)
, N(xJ(t), t) =

Q

4
, V (xJ(t), t) = −

√
Q .

It can be seen immediately that the rarefaction wave (4.26) passes through this point,
since

(4.28) N0(xJ(t), t) =
Q

4
,

and hence at xJ(t) the simple waves N0 and N , respectively for x < xJ(t) and
x > xJ(t), form a continuous function.

Remark 4.2. The x-derivative of the solution is also continuous at xJ(t), since

(4.29) N0x(xJ(t), t) = Nx(xJ(t), t) =

√
Q

3(t− tc)
,

where Nx(xJ(t), t) is computed as

(4.30) Nx(xJ(t), t) = lim
σ0→+∞

∂N(x(σ0, t), t)/∂σ0
∂x(σ0, t)/∂σ0

,

using again (4.21) and (4.20). The simple-wave definition then assures that the same
continuity properties hold for the velocity field components V0 and V . However, note
that by a similar argument the one-sided second derivative Nxx(x, t) can be computed
and diverges, Nxx → −∞ as x→ xJ(t), for all times t > tc (details omitted here).

5. Asymptotic behaviour of rarefaction waves: “unfolding variables”.
For all the dam-break scenarios studied so far, the long time evolution resembles that
of rarefaction simple waves. So for instance, in figure 5.1 we plot the evolution of the
speed of the foot of the interface for different classes of initial data, i.e. Riemann-like,
linear and parabolic. In the last two cases we choose β0 and γ0 in order to have the
same support x ∈ [0, a0] the nonconstant part of the initial data ,

(5.1) β0 =
Q

a0
, γ0 =

Q

(a0)2
.
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Fig. 5.1. Contact dry-point p(t) evolution. Left panel: sketch of the η initial data for the
Riemann (short dash), linear-core (long dash) and parabolic-core (solid) profiles; right panel: velocity
ṗ for the different classes of initial data, labelled accordingly.

Memory of differences in the initial conditions are however kept for all times in the
evolution, and a precise statement about the long-time approach to a simple wave
for the transition between the dry region and the quiescent state of constant thick-
ness fluid layer seems desirable. For a single nonlinear conservation law, the mean of
the initial data is an invariant in time (as easy to observe for strong solutions and
confirmed by a classical theorem [11] for weak ones). All solutions of the previous sec-
tions at some finite time become piecewise continuous combinations of simple waves,
and as such they are solutions of a single conservation law, so that the mean must
be conserved. Thus, for all cases we have considered, differences that may persist
at long times must be compatible with the fact that the same mean is maintained
at these times, an invariant that is essentially set by the quiescent state thickness
Q. In all cases, note that memory of the initial conditions at all times is kept by
time-independent shifts which cannot be canceled by a Galileian boost. Two of these
differences immediately appear in the positions of the non-differentiable points in the
graph of η. Thus, for instance, for the linear case even if both points corresponding
to η = 0 and η = Q have the same asymptotic velocity in time, the one at η = Q
is shifted by Q/β0, while the “foot” at η = 0 is shifted by 2Q/β0. Moreover, an-
other shift applies to the unique point x∗ where the thickness η matches the invariant
η(x∗, t) = 4Q/9. In the classical dam-break case, we have x∗ = 0, while in the linear
case x∗ = 2Q/(9β0). Of course, these shifts are all compatible with maintaining the
mean value of the solution constant.

In order to isolate differences in how the long time asymptotics of initial data
varies around the mean it is useful to adapt an idea developed for shocks in [2], which
relies on the use the stretched variables (see e.g., [10]). For the classical Riemann

dam-break of section 2, the interval −2
√
Qt < x <

√
Qt where the solution (2.6)

varies in space and time can be fixed by rescaling the variable x as

(5.2) ξ =
x

3
√
Qt

,

with −2/3 < ξ < 1/3. In these variables the solution, being self-similar in x/t, does
not depend on time, and it turns into a simple polynomial of the variable ξ,

(5.3) η =
Q

9
(3ξ + 2)2 , u =

2
√
Q

3
(3ξ − 1) .

A similar approach can be used for the study of the exact solutions in sections 3.2
and 4.3 for large times t > 2

√
Q/β0, when the polynomial “core” has disappeared,
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either by being absorbed by the shoulder simple wave, as for the linear case, or by
the gradient catastrophe collapse, as in the parabolic case, respectively.

We study the linear case first. The (x, t) varying part of the linear dam-break

solution between 2Q/β0 − 2t
√
Q < x < Q/β0 + t

√
Q can be written in the new

“unfolding” variable

(5.4) ξl =

(
x− 4Q

3β0

)/(
3
√
Qt− Q

β0

)
,

whose range is fixed between −2/3 and 1/3. The time asymptotic behavior of the
fields in the new variable is
(5.5)

N(x(ξl, t), t) =
Q

9
(3ξl + 2)2 +O(t−1) , V (x(ξl, t), t) =

2
√
Q

3
(3ξl − 1) +O(t−1) ,

as t → +∞. Thus, apart from the spatial shifts discussed above, the solution pair
(N,V ) has the same asymptotic behaviour as that of the Riemann dam-break in the
unfolding variables, with the remainder, in these variables, decaying as O(t−1). Note
that the limit β0 → +∞ correctly reproduces the classical Riemann dam-break.

Remark 5.1. Note that a direct approach to the long time limit at x fixed of the
nonconstant part (3.26) of the linear dam-break solution,

(5.6) V (x, t) =
2

3

(
x̃

t
−
√
Q

)
− 4

√
Q

27β0

x̃

t2
+O(t−3) , x̃ = x− 2Q

9β0
,

yields artificial corrections for the interface variable asymptotics. In fact, the lowest
terms of the asymptotic velocity are the same as in the classical dam-break case (2.6),
the only difference being the presence of x̃ instead of x; the translation x 7→ x̃ cor-
responds to setting the invariant interface height at x = 0. However, the asymptotic
series for the interface is

(5.7) N(x, t) =
1

9

(
x̃

t
+ 2
√
Q

)2

− 8Q

81β0

x̃

t2
+O(t−3) ,

which leads to a different O(t−2) behaviour with respect to the expression for Riemann
dam break rarefaction wave, the first term in parenthesis.

The case of the initial parabolic core can be treated similarly. The appropriate
unfolding variable is now

(5.8) ξp =

(
x− π + 4

6

√
Q

γ0

)/(
3
√
Qt− π − 2

2

√
Q

γ0

)
,

where the denominator is the post-shock length of the (x, t)-varying part of the par-
abolic dam-break, and the x-shift is again chosen in such a way that the domain of
the unfolding variable ξp is between −2/3 and 1/3. The unfolded equivalent to the
point xJ(t) is

(5.9) ξpJ =
π + 16 + 12

√
γ0 t

12(π − 2)− 72
√
γ0 t

.

This point is not fixed in time but it reaches an asymptotic value

(5.10) ξpJ → −
1

6
, for t→ +∞ ,
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Initial interface η(x, 0)
(u(x, 0) = 0)

unfolding variable
x−q

3
√
Qt − l

foot p(t)

−2
√
Qt + k

junction b(t)√
Qt +m

height

η(x∗, t) = 4
9
Q

QH(x) q = 0, l = 0 k = 0 m = 0 x∗ = 0

β0xχβ(x) + QH
(
x − Q

β0

) q =
4Q
3β0

l = − Q
β0

k =
2Q
β0

m =
Q
β0

x∗ =
2Q
9β0

γ0x
2χγ (x) + QH

(
x −

√
Q
γ0

) q = π+4
6

√
Q
γ0

l = π−2
2

√
Q
γ0

k = π
2

√
Q
γ0

m =

√
Q
γ0

x∗ =

√
3Q

16γ0

Table 5.1
Comparison of self-similar intermediate behavior of different dam-break configurations of in-

creasing degree of regularity. Here χβ(x) and χγ(x) denote the characteristic functions of the in-
tervals (0, Q/β0) and (0,

√
Q/γ0), respectively, and and H is the Heaviside function.
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Fig. 6.1. Riemann dam-break, Q = 1/2. Top row panels: snapshots of evolution of η and
u from (nondimensional) time t = 0 to t = 4 at time intervals 0.4 apart. Bottom row: zoom-in
showing shock from wetting layer, and velocity jump with oscillations.

which is the mid-point in the interval of the variable ξp. Using the implicit solution
(4.23) shows, once again, that the asymptotic behavior of the combined (N,V ) and

(N0, V0) pair, (Ñ , Ṽ ) say, is

Ñ(x(ξp, t), t) =
Q

9
(3ξp + 2)2 +O(t−1) ,

Ṽ (x(ξp, t), t) =
2
√
Q

3
(3ξp − 1) +O(t−1) ,

(5.11)

as t→ +∞. The results of this section are summarized in table 5.1.

6. Numerics. To illustrate the theoretical results, we next turn to numerical
computations. The physical interpretation of the Airy’s system (2.1) in the presence
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Fig. 6.2. Linear dam-break, Q = 1/2, β0 = 1/2. Top row panels: snapshots of evolution of η
and u from (nondimensional) time t = 0 to t = 8 at time intervals 0.8 apart. Bottom row: zoom-in
showing shock from wetting layer, and velocity jump with oscillations.
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Fig. 6.3. Parabolic dam-break, Q = 1/2, γ0 = 1/2. Top row panels: snapshots of evolution of η
and u from (nondimensional) time t = 0 to t = 8 at time intervals 0.8 apart. Bottom row: zoom-in
showing shock from wetting layer, and velocity jump with oscillations.

of shocks requires that it be written in the form of mass-momentum conservation laws

(6.1) ηt +mx = 0 , mt +

(
1

2
η2 +

m2

η

)
x

= 0 ,
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since m(x, t) = η(x, t)u(x, t) is the momentum density for the fluid layer of thickness η.
In this form, system (6.1) is mathematically equivalent to equation (1) and preferable
for numerical computations with a conservative discretisation scheme that maintains
the significance of fluxes for the spatial derivatives above. This can be achieved for
equation (6.1) by means of a shock capturing WENO (Weighted Essentially Non-
Oscillatory) finite difference scheme [15]. Our specific implementation consists of a
standard fifth-order WENO method coupled with the fourth order Strong Stability
Preserving Runge–Kutta method derived in [16, p. 489] (see also [7]). (We refer to [2]
for more details on the shock capturing algorithm adopted in this work.)

Given the presence of a division by the thickness η the flux term m2/η of this
conservative formulation, it is interesting to check how this scheme behaves in the
presence of a contact point with a dry/vacuum state when compared with some of
the exact cases we have considered above. Not unexpectedly, the code we have tried
breaks down when η = 0 on an interval, and in order to simulate this case it is
necessary to extend the surface variable in these dry regions with a thin, but non-
zero, wetting layer. Note that the original formulation (1) of the Airy system, while
free of this division-by-zero problem, is still unsuitable for studying the “vacuum”
dam-break problem due to the impossibility of ensuring that the numerical solution
conserves momentum.

In figures 6.1-6.3, we show snapshots of the numerical solutions obtained for
the initial data discussed in sections 2, 3, and 4, respectively. For both the linear-
and the parabolic-connection initial data, we plot the profiles for η and u every 0.8
units of time, while for the Riemann problem we double the plotting frequency to
0.4 time units, due to the higher speed of propagation of the rarefaction wave. The
regularisation value for our computations is η(x < 0, t = 0) = 10−6.

As seen in the figures, the overall qualitative behaviour of the analytical solution is
captured by the scheme, although “fine-tooth”-comb details may differ. The clearest
of these differences, shown in the enlargments, consists in a train of high-frequency,
unphysical oscillations propagating into the vacuum region to the left of the wetting
point. A second inconsistency between the exact solutions and the numerical approx-
imation lies in the (expected) formation of a weak shock wave that appears in the
numerical solution as a consequence of the regularisation of the vacuum region. Such
a shock wave is physically justified when the low-density region to the left of the dam
is not a vacuum state. For this reason, and in contrast to the wiggles described earlier,
this shock wave cannot be ascribed to a limitation of the numerical method. However,
since the amplitude of the shock tends to zero with the height of the wetting layer,
we believe that in our computations the density in the region to the left of the dam
is sufficiently low that the perturbed solution follows closely the exact vacuum solu-
tion. This limit, however, requires a progressively smaller time step for the algorithm,
which affects its performance in the long run.

In closing this section, it is interesting to consider, for the classical dam-break of
section 2, the regularization offered by the Stoker continuation of the u-component of
the solution with its constant value −2

√
Q for x < 0. As no shocks are expected to

develop, the original dependent variables η, u of the Airy’s system (2.1) can be used,
as the solution remains a continuous expansion wave in both dependent variables for
t > 0. In particular, no regularizing wetting layer η > 0 in the dry region is required
to run the code in this case. The result of a computation with the initial data given
by (2.6) taking the small initial time t = 0.1 is shown in figure 6.4. This choice
of initial time for the initial condition (2.6) effectively smoothes the initial step and
avoids a numerical effect of an initial shock near the left-moving front. However, even
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Fig. 6.4. Riemann dam-break with u-continuation u = −2
√
Q for x < 0, with Q = 1/2. Top

row panels: snapshots of evolution of η and u with from (nondimensional) time t = 0.1 to t = 8
at time intervals 0.2 apart. Bottom row: zoom-in showing small (of order 10−6) initial oscillations
around the contact point p(t).

in this case, a small initial numerical error still occurs and is dissipated away as the
evolution proceeds from this initial time.

7. Conclusions. We have considered the classical “dam break” problem of a
fluid layer released onto a dry bed, as an illustration of the dynamics supported by
gas-dynamic-type equations in the presence of a vacuum. While it might be expected
that a rarefaction wave would eventually propagate into the vacuum at long times,
at intermediate times the evolution can differ substantially depending on the degree
of smoothing regularity of the initial step at the dry point. In fact, the cases we have
considered show that the regularity at the vacuum point can change from its initial
degree in the course of the evolution. Thus, initial smoothing of class C compactly
supported (allowing for jumps in the derivative of the thickness η) as in the case of
the linear core example §3.2, suggests that this regularity persists for a finite time at
the moving front where η = 0. In this case, a simple wave develops and eventually
merges at the dry point thereby increasing its regularity to C1, as in the standard
dam-break Riemann rarefaction wave. In contrast, as in the case of the parabolic
core example of section 4.3, smoothing of class C1 at the dry point pins it down to
its initial position (at x = 0 say) for a finite time, until a gradient catastrophe occurs
at time t = tc. In our parabolic core example, from the viewpoint of the fluid layer
thickness, this catastrophe corresponds to a vertical “wall” of finite extensions that
forms for the instant t = tc at the dry point. The wall is connected to the quiescent
background state by a simple wave solution (the “shoulder”) which joins smoothly as
a graph to the vertical wall at time tc, since the derivative at x = 0 of the shoulder
goes to infinity at that point. From the catastrophe time onward, the wall evolves
into a Stoker-like rarefaction wave, which joins in both magnitude and derivative the
shoulder. The resulting combined simple wave is a function of C1-class, whose support
goes from the front to the gluing point with the constant η background. At the front,
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even though the catastrophe destroys the C1 class at an instant in time at t = tc, this
regularity is immediately recovered by the Stoker wave at time t+c . As to the long
time limit of the solution, we have obtained additional information on its behaviour
by using a particular form of stretched variables, which allow to isolate the leading
order perturbation terms from the classical Stoker-like rarefaction wave. (Note that
compactly supported smoothing of initial data, as in the class we have considered,
lead to evolution that can differ significantly from that with smoothing supported on
the whole real line, as in the case considered in [6] for a similar problem with the
so-called defocusing Nonlinear Schrø”dinger equation.)

The evolution of the velocity field from zero initial data naturally follows suit,
being coupled to the thickness η by the momentum equation. Thus, we expect u to
develop a shock at the front at t = 0+, as for the linear core case, while for smoothing
of class C1 at the dry point, as for the parabolic core case, the velocity maintains
continuity at the dry point till the catastrophe time. While clearly the velocity of the
vacuum is devoid of physical meaning, from the mathematical perspective of the re-
duction η = 0, the assumption of continuity with respect to initial data leads to fitting
a shock for the velocity for the linear core case. These non-standard, velocity-only,
shocks not only satisfy the Rankine-Hugoniot conditions for mass and momentum
conservation, but would also comply with an infinite class of conservation laws.

Finally, our analysis can be used for testing the performance of popular shock-
capturing schemes such as WENO. While the overall features of the solution are well
represented by the numerical simulations, there appear to be limitations on the fine
details of the moving front, which depend on the formulation being used. Thus, for
instance, the density/momentum formulation suffers, for Airy’s case, from the division
by η in the flux, which requires the presence of a thin wetting layer in front of the dam
for the numerical method to work. The trend for the wetting layer thickness limiting
to zero can be investigated numerically for the initial value problem, but identifying
the correct scaling limit can become expensive as it requires increasingly smaller grid
sizes. A reformulation of the dam-break as an initial-boundary value problem using
thickness and velocity variables helps overcome some of the limitations above, by
doing away with the need of a wetting layer. However, this requires knowledge of
the front position at all times, which cannot be known a priori for general initial
dam-break data.
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