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a b s t r a c t

Consider the coupling of 2 evolution equations, each generating a global process.
We prove that the resulting system generates a new global process. This statement
can be applied to differential equations of various kinds. In particular, it also
yields the well posedness of a predator–prey model, where the coupling is in the
differential terms, and of an epidemiological model, which does not fit previous
well posedness results.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of models describing the evolution in time of real situations is obtained coupling simpler models
devoted to specific subsystems. In this paper we provide a framework where the well posedness of the “big”

odel follows from that of its parts.
Predictive models consisting of couplings of evolution equations, possibly of different types, are very

ommon in the applications of mathematics. Here we only note that their use ranges, for instance, from
pidemiology [1–3], to traffic modeling [4,5], to several specific engineering applications [6,7].

In this manuscript, the core result is set in a metric space, so that linearity plays no role whatsoever. This
lso allows the range of applicability of the general theorem to encompass, for instance, ordinary, partial
nd measure differential equations. In each of these cases, we obtain stability estimates tuned to the metric
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structure typical of the specific evolution equation considered, which can be, for example, the Euclidean
norm in Rn, the L1 norm in spaces of BV functions or some Wasserstein type distance between measures.

At the abstract level, the starting point is provided by the framework of evolution equations in metric
paces, see [8–13]. In this setting, an evolution equation is well posed as soon as it generates a Global Process,
.e., a Lipschitz continuous solution operator, see Definition 2. In other words, global processes substitute,
n the time dependent case, semigroups that, in the autonomous case, have as trajectories the solutions to
volution equations.

Assume that two evolution equations are given, each depending on a parameter and each generating a
lobal process, also depending on that parameter. We now let the parameter in an equation vary in time
ccording to the other equation: a coupling between the two models is thus obtained. Theorem 2 ensures
he well posedness of this coupled model, in the sense that it generates a new global process.

The assumptions required in this abstract construction are then verified in 5 sample situations: ordinary
ifferential equations, initial and boundary value problems for renewal equations, measure valued balance
aws and scalar conservation laws. Thus, we prove that any coupling of these equations results in a well
osed model. Indeed, in each of these cases, we provide a full set of detailed stability estimates compatible
ith the abstract results. Note that assumptions ensuring global in time existence results are also provided.
Finally, we consider specific cases. First, we briefly show that Theorem 2 comprises the case of the traffic

odel introduced in [5], where a scalar conservation law is coupled to an ordinary differential equation.
Then, we detail the case of a predator–prey model inspired by [14], namely{

∂tρ+ divx (ρ V (t, x, p(t))) = −η (∥p(t) − x∥) ρ(t, x)
ṗ = U (t, p, ρ(t)) .

(1)

hile we refer to Section 4.1 for a detailed explanation of the terms in (1), here we remark that in (1) the
oupling is not only in the source term of the partial differential equations, but also in the convective term,
here no nonlocal term is involved (V is a function defined for t ∈ R, x ∈ Rn and P (t) ∈ Rn).
Then, we apply the general construction to a recent epidemiological model presented in [3] whose well

osedness, to our knowledge, was not proved at the time of this writing. In this case, the coupling involves
boundary value problem for a renewal equation, see Section 4.2.
For all basic results on evolution equations in metric spaces, we refer to the extended treatises [8,9,12],

hose wide bibliographies also give a detailed view on the whole field. Below, we follow the approach
utlined in [10,11,13]. The different frameworks differ in their approaches but offer similar results. Related
o Theorem 2 is, for instance, [12, Theorem 26]. However, here we follow a more quantitative approach to
he various stability estimates.

We expect that also other equations fit in the framework introduced in Section 2. Natural candidates are,
or instance, measure differential equations [15,16] and their coupling with ordinary differential equations as
onsidered in [17]. A further class of couplings is that in [6], consisting of ordinary and partial differential
quations similar to those comprised in Section 3.3. Very likely to comply with the present structure is also
he general class of traffic models presented in [18].

This work is organized as follows. Section 2, once the basic notation is introduced, presents the general
esult. Each of the paragraphs in Section 3 is devoted to a particular evolution equation: its well posedness
s proved obtaining those estimates that allow the application of Theorem 2. Specific models are then dealt
ith in Section 4. Finally, proofs are in the final Section 5. Further estimates and technical results of use in

his paper are similar to known methods: we do not include them here but, for completeness, we make them

ublicly available in [19].
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2. Definitions and abstract results

Below we rely on the framework established in [10,11,13], see [8,9,12] for an alternative, essentially
equivalent, setting. Let (X, d) be a metric space and I be a real interval. First, a local flow on X provides a
ort of tangent vector field to X.

efinition 1 ([11, Definition 2.1]). Given δ > 0 and a closed set D ⊆ X, a local flow is a continuous map
: [0, δ] × I × D ↦→ X, such that F (0, to)u = u for any (to, u) ∈ I × D and which is Lipschitz in its first and

hird arguments uniformly in the second, i.e. there exists a Lip(F ) > 0 such that for all τ, τ ′ ∈ [0, δ] and
, u′ ∈ D

d (F (τ, to)u, F (τ ′, to)u′) ≤ Lip(F ) · (d(u, u′) + |τ − τ ′|) . (2)

Given an evolution equation, a global process is a candidate for the solution operator, i.e., for the mapping
assigning to initial datum u at time to and to time t the solution evaluated at time t.

Definition 2 ([11, Definition 2.5]). Fix a family of sets Dto ⊆ D for all to ∈ I, and a set

A = {(t, to, u) : t ≥ to, to, t ∈ I and u ∈ Dto} . (3)

A global process on X is a map P : A ↦→ X such that, for all u ∈ Dto and to, t1, t2 ∈ I with t2 ≥ t1 ≥ to,

P (to, to)u = u (4)
P (t1, to)u ∈ Dt1 (5)
P (t2, t1) ◦ P (t1, to)u = P (t2, to)u. (6)

In Theorem 1 below, a global process is constructed from a local flow by means of a suitable extension of
uler Polygonals to metric spaces.

efinition 3 ([11, Definition 2.3]). Let F be a local flow. Fix u ∈ D, to ∈ I, τ ∈ [0, δ] with to + τ ∈ I. For
very ε > 0, let k = ⌊τ/ε⌋, where the symbol ⌊·⌋ denotes the integer part. An Euler ε-polygonal is

F ε(τ, to)u = F (τ − kε, to + kε) ◦
k−1
⃝
h=0

F (ε, to + hε)u (7)

henever it is defined.

bove, we used the notation ⃝k
h=0fh = fk ◦ fk−1 ◦ · · · ◦ f1 ◦ f0.

For a local flow F , its corresponding Euler ε-polygonal F ε, and any to ∈ I, introduce the notation:

D3
to =

⎧⎪⎨⎪⎩u ∈ D :
F ε3(τ3, to + τ1 + τ2) ◦ F ε2(τ2, to + τ1) ◦ F ε1(τ1, to)u
is in D for all ε1, ε2, ε3 ∈ ]0, δ] and all
τ1, τ2, τ3 ≥ 0 such that to + τ1 + τ2 + τ3 ∈ I

⎫⎪⎬⎪⎭ . (8)

The next result provides the basis for our construction of solutions to coupled problems.

heorem 1 ([11, Theorem 2.6]). Let (X, d) be a complete metric space and D be a closed subset of X.
ssume that for the local flow F : [0, δ] × I × D ↦→ X there exist

1. a non decreasing map ω : [0, δ] → R+ with
∫ δ

0
ω(τ)
τ dτ < +∞ such that

d (F (kτ, to + τ) ◦ F (τ, to)u, F ((k + 1)τ, to)u) ≤ k τ ω(τ) (9)

whenever τ ∈ [0, δ], k ∈ N and the left hand side above is well defined;

3
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2. a positive constant L such that

d (F ε(τ, to)u1, F
ε(τ, to)u2) ≤ L d(u1, u2) (10)

whenever ε ∈ ]0, δ], u1, u2 ∈ D, τ ≥ 0, to, to + τ ∈ I and the left hand side above is well defined.

hen, there exists a family of sets Dto , for to ∈ I, and a unique global process (as in Definition 2) P : A → X

ith the following properties:

1. D3
to ⊆ Dto for any to ∈ I, with D3

to as defined in (8);
2. P is Lipschitz continuous with respect to (t, to, u) ∈ A;
3. P is tangent to F in the sense that for all (to + τ, to, u) ∈ A, with τ ∈ ]0, δ]:

1
τ
d (P (to + τ, to)u, F (τ, to)u) ≤ 2L

ln(2)

∫ τ

0

ω(ξ)
ξ

dξ . (11)

general condition to ensure that A is non empty is [11, Condition (D)]. Below, in the examples we consider,
t explicitly stems out that A ≠ ∅.

We now head towards considering processes depending on parameters.

efinition 4. Let (U , dU ) and (W, dW) be metric spaces. A Lipschitz Process on U parametrized by w ∈ W
s a family of maps Pw : AU → U , with

I = {(t, to) ∈ I × I : t ≥ to} ,
AU =

{
(t, to, u) : (t, to) ∈ I , u ∈ DU

to

}
,

DU
t ⊆ U ,

uch that for all w ∈ W, Pw is a Global Process in the sense of Definition 2 and there exist positive constants
u, Ct, Cw such that

dU (Pw(t, to)u1, P
w(t, to)u2) ≤ eCu(t−to) dU (u1, u2) , (12)

dU (Pw(t1, to)u, Pw(t2, to)u) ≤ Ct |t2 − t1| , (13)
dU (Pw1(t, to)uo, Pw2(t, to)uo) ≤ Cw (t− to) dW(w1, w2) . (14)

We equip the product space U × W with the distance

d ((u′, w′), (u′′, w′′)) = dU (u′, u′′) + dW(w′, w′′).

heorem 2. Let (U , dU ) and (W, dW) be complete. Let Pw : AU → U be a Lipschitz Process on U
arametrized by w ∈ W, and let Pu : AW → W be a Lipschitz Process on W parametrized by U . Let Cu, Cw,
nd Ct be constants that satisfy (12)–(13)–(14) for both processes. Then,

1. Introducing AF =
{

(τ, to, (u,w)) : τ ≥ 0, to, to + τ ∈ I, (u,w) ∈ DU
to × DW

to

}
, the map

F : AF → U × W
(τ, to, (u,w)) ↦→ (Pw(to + τ, to)u, Pu(to + τ, to)w) (15)

is a local flow on U × W.
2. F satisfies the assumptions of Theorem 1 with

L = e(Cu+Cw)T and ω(τ) = Ct Cu τ (16)

hence F generates a unique global process P : A → U × W, for a suitable A ⊆ I × I × U × W, satisfying

properties 1, 2 and 3 in Theorem 1.

4
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3. For all to ∈ I and τ ≥ 0 with to + τ ≥ to, we have

F (τ, to)(DU
to × DW

to ) ⊆ (DU
to+τ × DW

to+τ ) (17)

hence the process P is defined on A with

A ⊇
{

(τ, to, (u,w)) : τ ≥ 0, to, to + τ ∈ I, (u,w) ∈ DU
to × DW

to

}
. (18)

The proof is deferred to Section 5.1.
An analogous result can be proved defining the local flow F by means of local flows FU

w and FW
u , provided

hese local flows satisfy the assumptions of Theorem 1 and have a Lipschitz continuous dependence on the
arameter.

heorem 3. Consider two complete metric spaces (U , dU ) and (W, dW). Let

Fw : [0, δ] × I × DU → U , and Fu : [0, δ] × I × DW → W,

be local flows parametrized by w ∈ W and u ∈ U , respectively, so that there exists L such that for all τ ∈ [0, δ]
nd t ∈ I,

dU (Fw1(τ, t)u, Fw2(τ, t)u) ≤ L dW(w1, w2) u∈ DU w1, w2 ∈ W
dW (Fu1(τ, t)w,Fu2(τ, t)w) ≤ L dU (u1, u2) u∈ DW u1, u2 ∈ U

hen, setting D = DU × DW , the coupling

F̂ : [0, δ] × I × D → U × W
(τ, t, (u,w)) ↦→ (Fw(t, to)u, Fu(t, to)w)

s a local flow in the sense of Definition 1. If moreover Fw and Fu satisfy assumptions 1 and 2 in Theorem 1,
hen F̂ is tangent to the local flow F defined in (15) by means of the processes Pw and Pu defined through
heorem 1.

As a direct consequence of Theorem 3, by means of [20, Theorem 2.9], we have that whenever Theorem 2
pplies, if F̂ generates a global process P̂ , then P̂ coincides with the process P constructed in Theorem 2.

. General Cauchy problems

In the paragraphs below we consider differential equations depending on parameters that generate
arametrized Lipschitz processes in the sense of Definition 4. Thus, any coupling of the processes below
eets the requirements of Theorem 2 and generates a new Lipschitz process. Moreover, we verify that this
ew process eventually yields solutions to the coupled problem.

Throughout, Î is a real interval containing 0. If x ∈ Rn, ∥x∥ denotes its Euclidean norm, while ∥x∥V
s the norm of x in the Banach space V . The open, respectively closed, ball centered at x with radius r is
(x, r), respectively B(x, r).

3.1. Ordinary differential equations

This brief paragraph mainly serves as a paradigm for the subsequent ones. All proofs are deferred to [19].
Indeed, we begin by considering the classical Cauchy problem for an ordinary differential equation{

u̇ = f(t, u, w) t ∈ Î
u(to) = uo

with f : Î × Rn × W → Rn , (19)

here t ∈ Î, u ∈ Rn and the parameter w is fixed in W.
o o

5
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Definition 5. A map u : I → Rn is a solution to (19) if to ∈ I ⊆ Î, u(to) = uo, for a.e. t ∈ I, u is
ifferentiable at t and u̇(t) = f (t, u(t), w).

The well posedness of (19) is an elementary result which we state below to allow subsequent couplings
f (19) with other equations within the framework of Theorem 2.

roposition 1. Let R > 0. Define D = B(0, R) in Rn and consider the Cauchy problem (19) under the
ssumptions

(ODE1) For all u ∈ D and all w ∈ W, the map t ↦→ f(t, u, w) is measurable.
(ODE2) There exist positive FL, F∞ such that for all t ∈ Î, u1, u2 ∈ D and w1, w2 ∈ W

∥f(t, u1, w1) − f(t, u2, w2)∥ ≤ FL (∥u1 − u2∥ + dW(w1, w2)) ; (20)
sup
w∈W

∥f(·, ·, w)∥L∞(Î×D̂;Rn) ≤ F∞ . (21)

hen, there exists T > 0, such that [0, T ] ⊆ Î, and a Lipschitz process on Rn parametrized by W in the sense
f Definition 4, whose orbits solve (19) according to Definition 5, with

T ≤ R/(2F∞) , Cu = FL , Ct = F∞ , Cw = FL e
FLT ,

Dt = B
(

0, R− (T − t) supw∈W ∥f(·, ·, w)∥L∞(Î×D̂;Rn)

)
.

(22)

ong time existence is also available.

orollary 1. Assume sup Î = +∞ and that, for every R > 0, (ODE1) and (ODE2) hold with
∞ = F∞(R) satisfying

lim sup
R→+∞

F∞(R)
R ln(R) < +∞.

hen, for all to ∈ Î, the solution to (19) exists for every t ≥ to.

e now verify that Theorem 2 applies to the coupling of (19) with other Lipschitz Processes.

roposition 2. Set U = Rn. Assume that (ODE1)–(ODE2) hold. Let Pu be a Lipschitz Process on W
arametrized by u ∈ U . Call P : A → Rn × W, with P ≡ (P1, P2), the Process constructed in Theorem 2
oupling Pw, generated by (19), and Pu. If ([to, T ], to, uo, wo) ⊆ A, then

u : [to, T ] → Rn
t ↦→ P1(t, to)(uo, wo)

solves
{
u̇ = f̄(t, u)
u(to) = uo

where f̄(t, u) = f (t, u, P2(t, to)(uo, wo))

n the sense of Definition 5.

.2. The initial value problem for a renewal equation

We examine the following initial value problem for a first order partial differential equation{
∂tu+ divx (v(t, x, w)u) = m(t, x, w)u+ q(t, x, w) (t, x) ∈ Î × Rn,
u(to, x) = uo(x), x ∈ Rn

(23)

or u ∈ L1(Rn;R) and t ∈ Î. Proofs are deferred until Section 5.2.
o o

6
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(

Definition 6. For a fixed w ∈ W, a function u ∈ C0 ([to, T ]; L1(Rn;R)
)
, where [to, T ] ⊆ Î, is a solution

o (23) if:

1. for any test function φ ∈ C∞
c (]to, T [ × Rn;R),∫ T

to

∫
Rn

(
u(t, x) ∂tφ(t, x) + u(t, x) v(t, x, w) · ∇xφ(t, x)

+ (m(t, x, w)u(t, x) + q(t, x, w))φ(t, x)
)

dx dt = 0;

2. u(to, x) = uo(x) for a.e. x ∈ Rn.

roposition 3. Let R > 0 and set U = L1(Rn;R). Define

D =
{
u ∈ L1(Rn;R) : max

{
∥u∥L1(Rn;R), ∥u∥L∞(Rn;R),TV(u)

}
≤ R

}
.

onsider the Cauchy problem (23) under the assumptions

IP1) For all w ∈ W, v(·, ·, w) ∈ C0(Î×Rn;Rn), v(t, ·, w) ∈ C2(Rn;Rn) for all t ∈ Î and there exist positive
constants V1, VL, V∞ such that for all t ∈ Î

∥v(t, ·, w)∥L∞(Rn;Rn) ≤ V∞ ; ∥∇v(t, ·, w)∥L∞(Rn;Rn×n) ≤ VL ;
∥∇∇ · v(t, ·, w)∥L1(Rn;Rn) ≤ V1 .

and, for all w1, w2 ∈ W and t ∈ Î,

∥v(t, ·, w1) − v(t, ·, w2)∥L∞(Rn;Rn) ≤ VL dW(w1, w2),
∥∇ · (v(t, ·, w1) − v(t, ·, w2))∥L1(Rn;R) ≤ VL dW(w1, w2).

IP2) For all w ∈ W, m(·, ·, w) ∈ C0(Î × Rn;R) and there exist positive constants M∞, ML such that for
all t ∈ Î and for all w,w1, w2 ∈ W

∥m(t, ·, w)∥L∞(Rn;R) + TV (m(t, ·, w)) ≤ M∞ ;
∥m(t, ·, w1) −m(t, ·, w2)∥L1(Rn;R) ≤ ML dW(w1, w2) .

IP3) For all w ∈ W, q(·, ·, w) ∈ L1
(
Î; L∞(Rn;R)

)
and there exist positive constants Q∞, Q1, QL such

that for all t ∈ Î and for all w,w1, w2 ∈ W,

∥q(t, ·, w)∥L∞(Rn;R) + TV (q(t, ·, w)) ≤ Q∞ ;
∥q(t, ·, w)∥L1(Rn;R) ≤ Q1,

∥q(t, ·, w) − q(t, ·, w2)∥L1(Rn;R) ≤ QL d(w1, w2) .

Then, there exists T > 0, such that [0, T ] ⊆ Î, and a Lipschitz process on U parametrized by W in the sense
of Definition 4, whose orbits solve (23) in the sense of Definition 6, with

Cu = M∞ , Ct = V∞ Re(M∞+2VL)T +Q1 e
M∞T + (M∞ + VL)Re(M∞+VL)T ,

Cw = [VL(2R+Q∞)(1 + (V1 +M∞)T ) + (QL + (ML + VL)(R+Q∞T ))] e(M∞+VL)T ,

Dt =

⎧⎪⎨⎪⎩u ∈ D :
∥u∥L1(Rn;R) ≤ α1(t)

∥u∥L∞(Rn;R) ≤ α∞(t)

⎫⎪⎬⎪⎭ ,

(24)
TV(u) ≤ αTV(t)
7
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where
α1(t) = Re−M∞(T−t) −Q1(T − t)eM∞t ,

α∞(t) = Re−(M∞+VL)(T−t) −Q∞e
(M∞+VL)t(T − t) ,

αTV(t) = Re−(M∞+VL)(T−t) (1 − (M∞ + V1)(T − t))
−Q∞e

(M∞+VL)t (1 + (M∞ + V1)t) (T − t) .

(25)

Corollary 2. Assume [0,+∞) ⊆ Î and that (IP1), (IP2), and (IP3) hold. Then the solution to (23) exists
for every t ≥ to.

Continuing now to the act of coupling this Lipschitz process with another.

Proposition 4. Set U = L1(Rn;R). Assume that (IP1)–(IP2)–(IP3) hold. Let Pu be a Lipschitz process
on W, parametrized by u ∈ U . Call P : A → L1(Rn;R) × W, with P ≡ (P1, P2), the process generated in
Theorem 2 by the coupling of process Pw, found in Proposition 3, with Pu. If ([to, T ], to, uo, wo) ⊆ A, then
the map

u : [to, T ] → (L1 ∩ BV)(Rn;R)
t ↦→ P1(t, to)(uo, wo)

olves {
∂tu+ divx (v̄(t, x)u) = m̄(t, x)u+ q̄(t, x) (t, x) ∈ [to, T ] × Rn,
u(to, x) = uo(x), x ∈ Rn

n the sense of Definition (23), where

m̄(t, x) = m (t, x, P2(t, to)(uo, wo)) , q̄(t, x) = q (t, x, P2(t, to)(uo, wo)) ,
v̄(t, x) = v (t, x, P2(t, to)(uo, wo)) .

.3. The boundary value problem for a linear balance law

Consider the model⎧⎪⎨⎪⎩
∂tu+ ∂x (v(t, x)u) = m(t, x, w)u+ q(t, x, w) (t, x) ∈ Î × R+

u(t, 0) = b(t) t∈ Î
u(to, x) = uo(x) x∈ R+ .

(26)

here uo ∈ L1(R+;R), to ∈ Î and w ∈ W. Throughout, we choose left continuous representatives of BV
unctions. Proofs are deferred to Section 5.3.

efinition 7. For a fixed w ∈ W, a function u ∈ C0 ([to, T ]; L1(R+;R)
)
, with [to, T ] ⊆ Î, such that

(t) ∈ BV(R+;R) for a.e. t ∈ [to, T ] is a solution to (26) if:

1. For all φ ∈ C∞
c (]to, T [ ×

◦
R+;R)∫ T

to

∫
R+

(
u(t, x) ∂tφ(t, x) + v(t, x)u(t, x) ∂xφ(t, x)

+ (m(t, x, w)u(t, x) + q(t, x, w)) φ(t, x)
)

dxdt = 0 .

2. For a.e. x ∈ R+, u(to, x) = uo(x).

3. For a.e. t ∈ [to, T ], limx→0+ u(t, x) = b(t).

8
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Proposition 5. Let U = L1(R+;R) and fix b ∈ BV(Î;R). For R > 0, define

D =
{
u ∈ U : max

{
∥u∥L1(R+;R), ∥u∥L∞(R+;R), TV(u) +

⏐⏐⏐b(sup Î) − u(0)
⏐⏐⏐} ≤ R

}
. (27)

Assume

(BP1) There exist strictly positive constants v̌, v̂, V1, V∞ such that v ∈ C0,1(Î × R+; [v̌, v̂]) and for all
(t, x) ∈ Î × R+

TV
(
v(·, x); Î

)
+ TV (v(t, ·)) ≤ V∞ ,

TV (∂xv(t, ·)) + ∥∂xv(t, ·)∥L∞(R+;R) ≤ VL .

(BP2) For all w ∈ W, m(·, ·, w) ∈ C0(Î × R+;R) and there exist M∞,ML such that for all t ∈ Î,
w,w1, w2 ∈ W,

TV (m(t, ·, w)) + ∥m(t, ·, w)∥L∞(R+;R) ≤ M∞ ,

∥m(t, ·, w1) −m(t, ·, w2)∥L1(R+;R) ≤ ML dW(w1, w2) .

(BP3) For all w ∈ W, q(·, ·, w) ∈ C0
(
Î; L1(R+;R)

)
and there exist Q1, Q∞ such that for all t ∈ Î and

w,w1, w2 ∈ W, and

∥q(t, ·, w)∥L1(R+;R) ≤ Q1 ,

TV (q(t, ·, w)) + ∥q(t, ·, w)∥L∞(R+;R) ≤ Q∞ ,

∥q(t, ·, w1) − q(t, ·, w2)∥L1(R+;R) ≤ QL dW(w1, w2) .

(BP4) b ∈ (L1 ∩ L∞ ∩ BV)(Î;R), is left continuous, and there exist positive constants B1 and B∞ such
that

∥b∥L1(Î;R) ≤ B1 ,

TV(b) + ∥b∥L∞(Î;R) ≤ B∞ .

Then, there exists R, T > 0, such that [0, T ] ⊆ Î, and a Lipschitz process on U , parametrized by W in the
sense of Definition 4, whose orbits solve (26) in the sense of Definition 7, with

Cu = M∞ , Ct = [v̂(B1 + 2R+R(M∞ + VL)T ) +M∞R+Q1]eM∞T ,

Cw =
[
B∞ML + v̂ QL + 1

2 v̂ Q∞ ML T +MLR+QL + 1
2 MLQ∞ T

]
eM∞T ,

Dt =
{
r ∈ U :

∥u∥L1(R+;R) ≤ α1(t) , ∥u∥L∞(R+;R) ≤ α∞(t) ,
TV(u) + |b(t) − u(0)| ≤ αTV (t)

} (28)

here

α1(t) = Re−M∞(T−t) − (v̂B∞ +Q1)(T − t)eM∞t

α∞(t) = Re−M∞(T−t) −Q∞(T − t)
αTV(t) = R (1 − (M∞ + VL)(T − t)) e(M∞+VL)(T−t)

−2Q∞(1 + (M∞ + VL)t)(T − t)e(M∞+VL)t

−B∞(M∞ + VL)(T − t)e(M∞+VL)t − TV(b; [t, T ])e(M∞+VL)t .
A result entirely analogous to Corollary 2 can be proved also in the case of (26).
9
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i

Proposition 6. Set U = L1(R+;R). Assume (BP1)–(BP2)–(BP3)–(BP4). Let Pu be a Lipschitz process
on W, parametrized by u ∈ U . Set P : A → U ×W, with P ≡ (P1, P2), to be the process generated in Theorem 2
by the coupling of the process Pw, constructed in Proposition 5, with Pu. If (t, to, (uo, wo)) ∈ A, then

u : [to, T ] → L1(R+;R)
t ↦→ P1(t, to) (uo, wo)

(29)

s a solution to ⎧⎪⎨⎪⎩
∂tu+ ∂x (v(t, x)u) = m̄(t, x)u+ q̄(t, x) (t, x) ∈ [to, T ] × R+

u(t, 0) = b(t) t∈ [to, T ]
u(to, x) = uo(x) x ∈ R+

(30)

in the sense of Definition 7, where

m̄(t, x) = m (t, x, P2(t, to) (uo, wo)) , q̄(t, x) = q (t, x, P2(t, to) (uo, wo)) . (31)

3.4. Measure valued balance laws

Following [21], consider the following measure valued balance law{
∂tµ+ ∂x (b(t, µ, w)µ) + c(t, µ, w)µ =

∫
R+

(η(t, µ, w)) (y) dµ(y) t ∈ Î

µ(to) = µo
(32)

for µo ∈ M+(R+), the set of bounded, positive Radon measures on R+ equipped with the following distance,
induced by the dual norm of W1,∞(R+;R), see [21, § 2]:

dM(µ1, µ2) = sup
{∫

R+

φ d(µ1 − µ2) :φ ∈ C1(R+;R) and ∥φ∥W1,∞ ≤ 1
}
. (33)

We refer to [22] for basic measure theoretic results. Below, if X is a Banach space, then BC(Î;X) is the
space of bounded continuous functions with the supremum norm. BCα,1(Î × M+(R+);X) is the space of
X valued functions which are bounded with respect to the ∥·∥X norm, Hölder continuous with exponent α
with respect to time and Lipschitz continuous in the measure variable with respect to dM in (33). These
spaces are equipped with the norms

∥f∥BC(Î;X) = sup
t∈Î

∥f(t)∥X ,

∥f∥BCα,1(Î×M+(R+);X) = sup
t∈Î,µ∈M+(R+)

(∥f(t, µ)∥X + Lip (f(t, ·)) + H (f(·, µ))) ,

∥f∥(BC∩W1,∞)(R+;M+(R+)) = sup
x∈R+

∥f(x)∥M(R+) + Lip(f) ,

where, with a slight abuse of notation,

Lip (f(t, ·)) = sup
µ1,µ2∈M+(R+)

µ1 ̸=µ

(∥f(t, µ1) − f(t, µ2)∥X/dM(µ1, µ2)) ,

H (f(·, µ)) = sup
s1,s2∈Î

(∥f(s1, µ) − f(s2, µ)∥X/|s1 − s2|α) ,

Lip(f) = sup
x1,x2∈R+

(dM (f(x1), f(x2)) /∥x2 − x1∥) .

x1 ̸=x2

10
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P
C

Definition 8. Given T ∈ Î with T > to and w ∈ W, a function µ : [to, T ] → M+(R+) is a weak
olution to (32) on the time interval [to, T ] if µ is narrowly continuous with respect to time (i.e., for

every bounded function ψ ∈ C0 (R+;R), the map t ↦→
∫
R+

ψ(x) dµ(t, x) is continuous), and for all
∈ (C1 ∩ W1,∞) ([to, T ] × R+;R), the following equality holds:∫ T

to

∫
R+

(∂tφ(t, x) + (b(t, µ, w)) (x) ∂xφ(t, x) − (c(t, µ, w)) (x) φ(t, x)) dµ (t, x) dt

+
∫ T

to

∫
R+

(∫
R+

φ(t, x) d[η(t, µ, w)(y)] (x)
)

dµ (t, y) dt

=
∫
R+

φ(T, x) dµ (T, x) −
∫
R+

φ(to, x) dµo (x) .

roposition 7. Let R > 0. Set U = M+(R) and let D = {µ ∈ M+(R+) :µ(R+) ≤ R}. Consider the
auchy problem (32) under the assumptions, for some positive constant L̂,

(MVBL1) For every w ∈ W, b(·, ·, w) ∈ BCα,1(Î × D; W1,∞ (R+;R)). Further, for every w,w1, w2 ∈ W,
t ∈ Î, and µ ∈ D, b(t, µ, w)(0) ≥ 0, and, for some B > 0,

∥b(t, µ, w)∥W1,∞(R+;R) ≤ B ,

∥b(·, µ, w1) − b(·, µ, w2)∥BC(Î;W1,∞(R+;R)) ≤ L̂ dW(w1, w2) .

(MVBL2) For every w ∈ W, c(·, ·, w) ∈ BCα,1(Î × D; W1,∞(R+;R)). Further, there exists a positive
constant C ≥ 0 such that, for all w,w1, w2 ∈ W, µ ∈ D and t ∈ Î,

∥c(t, µ, w)∥W1,∞(R+;R) ≤ C ,

∥c(·, µ, w1) − c(·, µ, w2)∥BC(Î;W1,∞(R+;R)) ≤ L̂ dW(w1, w2) .

(MVBL3) For all w ∈ W, η(·, ·, w) ∈ BCα,1
(
Î × D; (BC ∩ W1,∞)(R+; M+(R+))

)
. Further, there exists

an E > 0 such that, for all w,w1, w2 ∈ W, t ∈ Î, and µ ∈ D,

∥η(t, µ, w)∥(BC∩W1,∞)(R+;M+(R+)) ≤ E ,

∥η(·, µ, w1) − h(·, µ, w2)∥BC(Î;BC∩W1,∞)(R+;M+(R+)) ≤ L̂ dW(w1, w2) .

Then, there exist T > 0, such that [0, T ] ⊆ Î, and a Lipschitz Process on M+(Rn), parametrized by W in the
sense of Definition 4 whose orbits solve (32) in the sense of Definition 8, with

Cu = 3(B + C + E) , Ct = (B + C + E) e2(B+C+E)TR ,

Cw = C∗(T,B,C,E) R L e5(B+C+E)T ,

Dt =
{
µ ∈ D :µ(R+) ≤ Re−3(B+C+E)(T−t)} . (34)

The proof is a direct consequence of [21, Theorem 2.10] and, hence, it is omitted. In particular, C∗ in (34)
is the constant defined in [21, Item (iv), Theorem 2.10].

Proposition 8. Set U = M+(Rn). Fix T > 0 and assume that (MVBL1)–(MVBL2)–(MVBL3) hold.
Let Pu be a Lipschitz process on W, parametrized by u ∈ U . Call P : A → Rn × W, with P ≡ (P1, P2), the
Process constructed in Theorem 2 coupling Pw, found in Proposition 7, and Pu. If ([to, T ], to, uo, wo) ⊆ A,
then the map

µ : [to, T ] → M+(Rn) (35)

t ↦→ P1(t, to)(µ,w)

11
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solves the measure valued balance law{
∂tµ+ ∂x

(
b̄(t, µ)µ

)
+ c̄(t, µ)µ =

∫
R+

(η̄(t, µ)) (y) dµ(y) t ∈ Î

µ(to) = µo

n the sense of Definition 8, where

b̄(t, µ) = b (t, µ, P2(t, to)(µo, wo)) , c̄(t, µ) = c (t, µ, P2(t, to)(µo, wo)) ,
η̄(t, µ) = η (t, µ, P2(t, to)(µo, wo)) .

he proof is deferred to Section 5.4.

.5. Scalar nonlinear conservation laws

We now consider the following scalar nonlinear conservation law in one space dimension:{
∂tu+ ∂xf(t, u, w) = 0 (t, x) ∈ Î × R,

u(to, x) = uo(x) x ∈ R
(36)

or to ∈ Î, uo ∈ L1(R;R), w ∈ W, with f : Î × R × W → R a given function.

efinition 9. Fix w ∈ W and [to, T ] ⊆ Î. We say that a map u ∈ C0 ([to, T ]; L1(R;R)
)

is a solution to
roblem (36) if it is a Kružkov–Entropy solution, i.e.∫ T

to

∫
R

[|u− k| ∂tφ+ sign(u− k) (f(t, u, w) − f(t, k, w)) ∂xφ] dx dt

≥
∫
R

|u(T, x) − k|φ(T, x) dx−
∫
R

|uo(x) − k|φ(to, x) dx , (37)

or all non-negative test functions φ ∈ C∞
c (Î × R;R+), and for all k ∈ R.

roposition 9. Let R > 0 and to, T be such that [to, T ] ⊆ Î. Choose U = L1(R;R) and define
= {u ∈ U : TV(u) ≤ R}. Consider the Cauchy problem{

∂tu+ ∂xf(u,w) = 0 (t, x) ∈ [to, T ] × R,

u(to, x) = uo(x) x ∈ R
(38)

under the assumptions

(CL1) For all w ∈ W, the map u ↦→ f(u,w) is piecewise twice continuously differentiable.
(CL2) There exists a positive FL such that for all u1, u2 ∈ R and all w,w1, w2 ∈ W

|f(u1, w) − f(u2, w)| ≤ FL |u1 − u2|
Lip (f(·, w1) − f(·, w2)) ≤ FL dW(w1, w2)

hen, there exists a Lipschitz Process on L1(R;R), parametrized by W, whose orbits are solutions to (36) in
he sense of Definition 9, with constants in (12)–(13)–(14)

Cu = 0 , Ct = FLR , Cw = FLR , Dt = D.
he proof is classical and follows, for instance, from [23, Theorem 2.14 and Theorem 2.15].
12
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Remark 1. The present treatment is limited to homogeneous, i.e., with a flux independent of x, conservation
aws. Note that general 2 × 2 systems of conservation laws can not be approached by means of Theorem 2
hile, for instance, we do comprehend a nonlocal coupling of the form{

∂tu+ ∂xf
(
u,
∫
R w dx

)
= 0

u(0, x) = uo(x)

{
∂tw + ∂xg

(
w,
∫
R u dx

)
= 0

w(0, x) = wo(x) .

roposition 10. Set U = L1(R;R). Assume that (CL1)–(CL2) hold. Let Pu be a Lipschitz process on
, parametrized by u ∈ U . Call P : A → Rn × W, with P ≡ (P1, P2), the Process constructed in Theorem 2

oupling Pw, generated by (38), to Pu. If ([to, T ], to, uo, wo) ⊆ A, then

u : [to, T ] → L1(R;R)
t ↦→ P1(t, to)(uo, wo)

solves
{
∂tu+ ∂xf̄(t, u) = 0

u(to) = uo,

n the sense of Definition 9, where f̄(t, u) = f (u, P2(t, to)(uo, wo)).

he proof is left until Section 5.5.

. Specific coupled problems

The abstract framework developed in Section 2, thanks to the proofs in the subsequent paragraphs, allows
o prove the Lipschitz well posedness of several models.

As a first example, consider the model introduced in [5], where a large and slow vehicle positioned at
= y(t) affects the overall traffic density ρ = ρ(t, x). The resulting model [5, Formula (2.1)] consists in the

oupling of the Lighthill–Whitham [24] and Richards [25] macroscopic model describing the evolution of ρ
oupled with an ordinary differential equation for y, that is{

∂tρ+ ∂xf (x, y(t), ρ) = 0
ẏ = w (ρ(t, y))

(39)

learly, this coupled problem fits in Theorem 2 thanks to Proposition 10 and Proposition 2, once the
unctions f and w meet reasonable requirements.

In the next paragraphs, we consider in particular the case of a predator–prey system (Section 4.1) and
hat of an epidemiological model (Section 4.2). To our knowledge, this latter well posedness is first proved
ere.

.1. Predators and prey

On the basis of the games introduced in [14] we consider the following predator–prey model:{
∂tρ+ divx (ρ V (t, x, p(t))) = −η (∥p(t) − x∥) ρ(t, x)
ρ(0, x) = ρ̄(x)

where
{
ṗ = U (t, p, ρ(t))
p(0) = p̄

(40)

e consider a specific example, letting ρ = ρ(t, x) be the density of some prey species moving in RN and
= p(t) be the position in RN of a predator hunting it. To escape the predator, prey adopt a strategy

efined by the speed
V (t, x, p) = − p− x

2 ψ
(

∥p− x∥2
)

(41)

α+ ∥p− x∥

13
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where the term p− x

α+ ∥p− x∥2 stands for the escape direction of the prey. The positive term α in the

denominator smooths the normalization. The function ψ describes the relevance of the predator p to the
prey at x as a function of the distance ∥p− x∥. The function η = η (∥p− x∥) describes the effect of the
eeding of the predator at p on the prey at x. On the other hand, the predator hunts moving towards the
egion of highest (mean) prey density, i.e., with speed

U(t, p, ρ) = (∇φ ∗ ρ) (p) , (42)

here φ is an averaging kernel.
Here, we show that (40) fits in the general framework presented in Section 2. Indeed, with reference

o Section 3.2, set

U = L1(RN ;R) ,
W = RN ,

u = ρ ,
w = p ,

v(t, x, w) = V (t, x, w) ,
m(t, x, w) = −η (∥w − x∥) ,
q(t, x, w) = 0 ,

(43)

hile with reference to Section 3.1, set

U = RN ,
W = L1(RN ;R) ,

u = p ,

w = ρ ,
f(t, u, w) = U(t, u, w) . (44)

Proposition 11. Fix positive α, rρ, rp, rη and mollifiers

(V) Let V be as in (41) with ψ ∈ C∞
c (RN ;R+), with sptψ ⊆ B(0, rρ) and

∫
B(0,rρ) ψ dξ = 1.

(U) Let U be defined in (42) with φ ∈ C∞
c (R;R), positive, with sptφ ⊆ [−rp, rp] in (42).

(η) η ∈ C∞
c (RN ;R), positive, with sptη ⊆ B(0, rη).

Then, conditions (IP1)–(IP2)–(IP3) and (ODE1)–(ODE2) are all satisfied. Therefore, model (40) defines
a unique global process in the sense of Definition 2.

Proof. Consider first (IP1). By (41), V is a smooth function and the exponential factor ensures all the
required boundedness conditions. We also have that ∥∇pV ∥L∞(R+×RN ×RN ;RN×N ) is bounded, proving the
first Lipschitz requirement in (IP1). Prove now the latter inequality:∫

RN
|∇x · (V (t, x, p1) − V (t, x, p2))| dx

≤
∫
B(p1,rp)∪B(p2,rp)

sup
p∈RN

∥∇p∇x · V (t, x, p)∥ dx ∥p2 − p1∥

proving also the latter requirement in (IP1).
To prove (IP2), compute:

∥m(t, ·, w)∥L∞(Rn;R) + TV (m(t, ·, w)) = max
B(0,rη)

|η| + ∥η′∥L1(B(0,rη);R) ;

∥m(t, ·, w1) −m(t, ·, w2)∥L1(Rn;R) ≤
∫
B(w1,rη)∪B(w2,rη)

sup
B(0,rη)

|η′|∥w2 − w1∥ dx

≤ O(1) ∥η′∥L∞(B(0,rη);R) ∥w2 − w1∥ .

Clearly, due to (43), (IP3) is immediate.

14
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F

The regularity required in (ODE1) is immediate. Pass to the Lipschitz estimate:

∥U(t, p1, ρ1) − U(t, p2, ρ2)∥
≤ ∥U(t, p1, ρ1) − U(t, p1, ρ2)∥ + ∥U(t, p1, ρ2) − U(t, p2, ρ2)∥
≤ ∥∇φ∥L∞(RN ;RN ) ∥ρ1 − ρ2∥L1(RN ;R) +

∇2φ ∗ ρ2


L∞(RN ;RN×N ) ∥p1 − p2∥ .

inally, the latter boundedness in (ODE2) is proved as follows:

sup
ρ∈Dρ

∥U(·, ·, ρ)∥ ≤ sup
ρ∈Dρ

∥∇φ∥L∞(RN ;RN ) ∥ρ∥L1(RN ;R)

completing the proof by the definition of Dρ.
By Proposition 3, the balance law in (40) defines a global process P1. Similarly, Proposition 1 ensures that

the ordinary differential equation in (40) generates a global process P2. Now, Propositions 2 and 4 ensure
that the global process P obtained from P1 and P2 through Theorem 2 yields a solution to the coupled
problem (40). □

4.2. Modeling vaccination strategies

Consider the model presented in [3, § 2]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ṡ = −ρS I S − p(t)

∂tV + ∂τV = −ρV I V
İ = (ρS S +

∫ T∗
0 ρV V )I − ϑ I − µ I

Ṙ= ϑ I + V (t, T∗)
V (t, 0) = p(t) .

(45)

It describes a population consisting of susceptibles, S = S(t), of infected that are also infective, I = I(t),
and recovered individuals, R = R(t). The vaccination rate is p = p(t) and vaccinated individuals need a
time T∗ to get immunized. More precisely, V = V (t, τ) is the number of individuals at time t vaccinated at
time t− τ , for τ ∈ [0, T∗]. Thus, at time T∗, vaccinated individual enter the R population.

The positive constants ρS , ϑ and µ quantify the infectivity rate, the recovery rate and the mortality rate,
respectively. The function ρV = ρV (τ) describes the infectivity rate of individuals vaccinated after time τ
from being dosed.

Note that model (45) is triangular, in the sense that the evolution of the R population results from that
of the other ones, without affecting them.

Model (45), once the R population is omitted, fits in the abstract framework presented in Section 2.
Indeed, with reference to the notation used in Section 3.1, we pose

U = R2 , W = L1([0, T∗];R) , u =
[
S
I

]
, w = V ,

f(t, u, w) =
[

−ρS u1 u2 − p(t)(
ρS u1 +

∫ T∗
0 ρV (τ)w(τ) dτ − ϑ− µ

)
u2

]
,

(46)

while with reference to Section 3.3, we set

U = L1([0, T∗];R)
W = R2 x = τ , u = V , w =

[
S
I

]
,

v(t, x) = 1
m(t, x, w) = −ρV (x)w2

q(t, x, w) = 0
b(t) = p(t) .

(47)

The well posedness of (45) now follows once we verify that Proposition 2 and Proposition 6 can be

applied.

15
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Proposition 12. Fix positive r, T∗, ρS and choose p ∈ BV(R+;R), ρV ∈ BV([0, T∗];R). Then, problem (45)
defines a unique global process P , in the sense of Definition 2, defined on all initial data

So, Io, Ro ∈ [0, r] and Vo ∈ L1([0, T∗];R+) with TV(Vo) + ∥Vo∥L∞(R;R) ≤ r . (48)

is Lipschitz continuous as a function of time and of the initial data, with respect to the Euclidean norm in
So, Io, Ro) and to the L1 norm in V .

roof. Verifying (ODE1) is immediate. The Lipschitz continuity required in (ODE2) follows from the
oundedness u ∈ DU , which is a closed ball in U = R2 and from the choice of ρV , see Section 3.1. Hence,
roposition 1 applies.
Conditions (BP1) and (BP3) are immediate. The first requirement in (BP2) follows from the choice

f ρV and the boundedness of DU . The second is ensured by the linearity of m and the boundedness of ρV .
ince p has bounded variation, (BP4) is satisfied on any bounded time interval. Hence, also Proposition 5
an be applied.

Then, Proposition 2 and Proposition 6, through Theorem 2, ensure the well posedness of the coupled
ystem (46)–(47).

We now verify the well posedness of the R component. From (45), using (77), we have

V (t, τ) =

⎧⎨⎩ Vo(τ + to − t) exp
(

−
∫ t
to
ρV (s) I(s) ds

)
if t≤ τ + to ,

p(t− τ) exp
(

−
∫ t
t−τ ρV (s) I(s) ds

)
if t > τ + to .

his shows that the map t ↦→ V (t, T∗) is sufficiently regular for the equation for R, namely Ṙ = ϑ I(t) +
(t, T∗), to be explicitly solved: R(t) = Ro +

∫ t
0 (I(s) + V (s, T∗)) ds. Thus, the full model (45) is well

posed. □

5. Technical details

5.1. Proofs for Section 2

Proof of Theorem 2. We begin by showing F is a local flow in the sense of Definition 1. F is continuous
as it is a pairing of two continuous functions. Further

F (0, to)(u,w) = (Pw(to, to)u, Pu(to, to)w) = (u,w) .

e prove the Lipschitz continuity in time and with respect to initial conditions of F :

d (F (τ1, to)(u1, w1), F (τ2, to)(u2, w2))
≤ dU (Pw1(to + τ1, to)u1, P

w1(to + τ1, to)u2) + dU (Pw1(to + τ1, to)u2, P
w2(to + τ1, to)u2)

+dU (Pw2(to + τ1, to)u2, P
w2(to + τ2, to)u2)

+dW (Pu1(to + τ1, to)w1, P
u1(to + τ1, to)w2) + dW (Pu1(to + τ1, to)w2, P

u2(to + τ1, to)w2)
+dW (Pu2(to + τ1, to)w2, P

u2(to + τ2, to)w2)
≤ (eCuδ + Cw δ) d ((u1, w1), (u2, w2)) + 2Ct |τ1 − τ2| .

Cuδ
hus F is indeed a local flow in the sense of Definition 1, with Lip(F ) = e + Cw δ + 2Ct.
16
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We now show that F satisfies the assumptions of Theorem 1. Consider (9):

d (F (kτ, to + τ) ◦ F (τ, to)(u,w), F ((k + 1)τ, to)(u,w))
= dU

(
PP

u(to+τ,to)w(to + (k + 1)τ, to + τ)Pw(τ, to)u, Pw (to + (k + 1)τ, to)u
)

(49)

+ dW

(
PP

w(to+τ,to)u(to + (k+1)τ, to + τ)Pu(to + τ, to)w,Pu (to + (k+1)τ, to)w
)
. (50)

e consider only the term (49), since the latter is entirely similar. By (6), we have

Pw (to + (k + 1)τ, to)u = Pw(to + (k + 1)τ, to + τ) Pw(to + τ, to)u,

hence, via (13) and (14),

dU

(
PP

u(to+τ,to)w(to + (k + 1)t, to + τ)Pw(to + τ, to)u, Pw (to + (k + 1)τ, to)u
)

≤ k τ Ct Cwτ . (51)

ombining (51) with the analogous estimate bounding (50), we end up with

d (F (kτ, to + τ) ◦ F (τ, to)(u,w), F ((k + 1)τ, to) (u,w)) ≤ k τ ω(τ)

here ω is as in (16). Thus (9) is satisfied.
We consider the second condition in Theorem 1, namely (10). Note that Euler polygonals for the local

ow F , see Definition 3, can be written recursively, as

F ε(τ, to)(u,w) = F (τ − kε, to + kε) ◦ F ε(kε, to)(u,w).

For any τ ∈ [0, δ] and for any (u,w), (ū, w̄) in U × W, we have

d (F (τ, to)(u,w), F (τ, to)(ū, w̄)) = dU (Pw(to + τ, to)u, P w̄(to + τ, to)ū)
+dW(Pu(to + τ, to)w,P ū(to + τ, to)w̄) .

For the first of these summands, by the triangle inequality, we have

dU
(
Pw(to + τ, to)u, P w̄(to + τ, to)ū

)
≤ eCuτ dU (u, ū) + Cw τ dW(w, w̄).

The second term is estimated analogously, leading to

d (F (τ, to)(u,w), F (τ, to)(ū, w̄)) ≤
(
eCuτ + Cw τ

)
d ((u,w), (ū, w̄)) . (52)

Estimate (52) is of use in the following:

d (F ε(τ, to)(u,w), F ε(τ, to)(ū, w̄))
≤
(
eCu(τ−kε) + Cw (τ − kε)

)
d (F ε(kε, to)(u,w), F ε(kε, to)(ū, w̄)) .

It remains to estimate the distance in the latter right hand side. We have for any k ∈ N \ {0},

F ε(kε, to)(u,w) = F (ε, to) F ε ((k − 1)ε, to) (u,w),

and thus using iteratively (52),

ε ε
(
Cuε

)k

d (F (kε, to)(u,w), F (kε, to)(ū, w̄)) ≤ e + Cw ε d ((u,w), (ū, w̄)) .

17
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Therefore,

d (F ε(τ, to)(u,w), F ε(τ, to)(ū, w̄))
≤
(
eCu(τ−kε) + Cw (τ − kε)

) (
eCuε + Cw ε

)k
d ((u,w), (ū, w̄)) .

ence, (10) is satisfied provided there exists a positive L such that for all ε > 0 and t ∈ [0, T ](
eCu(τ−kε) + Cw (τ − kε)

) (
eCuε + Cw ε

)k ≤ L,

here k = ⌊ τε ⌋. Indeed, since ea + b ≤ ea+b for all a, b ∈ R+, we have(
eCu(τ−kε) + Cw(τ − kε)

) (
eCuε + Cw ε

)k ≤ e(Cu+Cw)(τ−kε)
(
e(Cu+Cw)ε

)k
= e(Cu+Cw)τ

so that L = e(Cu+Cw)δ.
Finally, note that (17) directly follows from the definition (15) of F , together with the properties

Pw(to + τ, to)DU
to ⊆ DU

to+τ , which holds for all w ∈ W, and Pu(to + τ, to)DW
to ⊆ DW

to+τ , which holds for
ll u ∈ U . Therefore, with reference to (8), we have D3

to ⊇ (DU
to × DW

to ) and Condition 1. in Theorem 1
ompletes the proof of (18).

roof of Theorem 3. The continuity of F̂ is immediate. The Lipschitz continuity follows from the triangle
nequality and a Lipschitz constant is Lip(F̂ ) = L + max {Lip(Fw) , Lip(Fu)}. Hence, F̂ is a local flow
ccording to Definition 1.

Concerning the tangency condition, compute
1
τ
d
(
F̂ (τ, to)(u,w), F (τ, to)(u,w)

)
= 1
τ
dU (Fw(τ, to)u, Pw(to + τ, to)u)

+ 1
τ
dW (Fu(τ, to)w,Pu(to + τ, to)w)

nd the first order tangency condition (11) allows to complete the proof. □

.2. Proofs for Section 3.2

With reference to (23) and (26), introduce for t̄, t ∈ Î and x̄, x ∈ R+ the characteristics

t ↦→ X (t; t̄, x̄) solves
{
ẋ = v(t, x, w)
x(t̄) = x̄,

and t ↦→ T (x; x̄, t̄) solves
{
t′ = 1/v(t, x, w)
t(x̄) = t̄ ,

(53)

nd in the sequel we omit the dependence on w. The T characteristics are introduced now for completeness,
ut used only in Section 5.3. As is well known, see for instance [26, Lemma 5] and the references therein,
he unique solution to (23) is

u(t, x) = uo (X (to; t, x)) Ew(to, t, x) +
∫ t

to

q (s,X (s; t, x), w) Ew(s, t, x) ds (54)

here the characteristics X are defined by (53) and

Ew(τ, t, x) = exp
∫ t

τ

(m (s,X (s; t, x), w) − divv (s,X (s; t, x))) ds .

Below, we often use the substitution y ↔ x, where

y = X (t; to, x) with Jacobian J(t, y) = exp
(∫ to

t

∇ · v (s,X (s; τ, y)) ds
)
, (55)
for more details see for instance [26, Proof of Proposition 3].
18
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Lemma 1. Assume (IP1) holds and use the notation (53). Let u ∈ (L1 ∩BV)(Rn;R). Then, for all to, t ∈ Î∫
Rn

|u (X (t; to, x)) − u(x)| dx ≤ V∞

VL

(
eVL|t−to| − 1

)
TV(u) . (56)

his Lemma is an extension of [20, Lemma 2.3] to Rn. For the proof, refer to [19].
Define the parametrized mapping Pw by

Pw : A → U
(t, to, uo) ↦→ u(t) where u(t) is given by (54); (57)

elow, by (IP1) and (IP2), for all t, τ ∈ Î, x ∈ Rn and w ∈ W, we use the uniform estimate

0 ≤ Ew(τ, t, x) ≤ e(M∞+VL)|t−τ | . (58)

emma 2. For all w ∈ W, Pw in (57) is a global process according to Definition 2.

roof of Lemma 2. That Pw satisfies (4) is an immediate consequence of its definition (54). The
niqueness of the solution ensures that (6) is satisfied.

Fix to, t ∈ I, with to ≤ t, and ro ∈ Dto . It remains to show (5), that is, u(t) = Pw(t, to)uo ∈ Dt for each
∈ W.

1. We begin by showing that, if ∥uo∥L1(Rn;R) ≤ α1(to), then ∥u(t)∥L1(Rn;R) ≤ α1(t). Making use
of (IP2)–(IP3)–(25) –(54)–(55), see also [26, Proposition 3, (H3)],

∥u(t)∥L1(Rn;R)

≤
(

∥uo∥L1(Rn;R) + ∥q(·, ·, w)∥L1([to,t]×Rn;R)

)
exp

(∫ t

to

∥m(τ, ·, w)∥L∞(Rn;R) dτ
)

(59)

≤ (α1(to) +Q1(t− to)) eM∞(t−to)

≤ α1(t) ,

as required.
2. Assuming now that ∥uo∥L∞(Rn;R) ≤ α∞(to), we show that ∥u(t)∥L∞(Rn;R) ≤ α∞(t), We use (25)–(54),

see also [26, Proposition 3, (H4)], together with (IP1), (IP2), (IP3) and (58). Then,

∥u(t)∥L∞(Rn;R) ≤
(

∥uo∥L∞(Rn;R) +Q∞(t− to)
)
e(M∞+VL)(t−to)

≤ (α∞(to) +Q∞(t− to)) e(M∞+VL)(t−to)

≤ α∞(t) ,

as required.
3. Finally, we show that, if uo ∈ Dto , then TV (u(t)) ≤ αTV (t). We use (IP1)–(IP2)–(IP3)–(25)

–(54)–(55)–(58), see also [26, Formula (31)]:

TV (u(t)) ≤
[

TV(uo) +
∫ t

to

TV (q(s, ·, w)) ds (60)

+
(

∥uo∥L∞(Rn;R) +
∫ t

to

∥q(s, ·, w)∥L∞(Rn;R) ds
)

×
∫ t (

TV (m(s, ·, w)) + ∥∇∇ · v(s)∥L1(Rn;Rn)

)
ds
]
e(M∞+VL)|t−τ |
to

19
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Since uo ∈ Dto , by (24), TV(uo) ≤ αTV(to) and we have that (60) becomes

TV (u(t))

≤
[
αTV(to) +Q∞(t− to)

+
(
Re−(M∞+VL)(T−to) −Q∞e

(M∞+VL)to(T − to) +Q∞(t− to)
)

(M∞ + V1)(t− to)
]

×e(M∞+VL)(t−to)

≤ αTV(t) ,

completing the proof of (5). □

Proof of Proposition 3. We define the mapping Pw by (57). That this defines a process is a consequence
of Lemma 2.

It remains to show the three Lipschitz continuity estimates (12), (13), and (14).

1. Lipschitz continuity w.r.t initial data. By the linear structure of (23), from (59) we immediately have

∥Pw(t, to)(uo − ūo)∥L1(Rn;R) ≤ eM∞(t−to) ∥uo − ūo∥L1(Rn;R)

which is compatible with the choice of Cu in (24).
2. Lipschitz continuity in time. By direct computations based on (54), for t ≥ to:

∥Pw(t, to)uo − uo∥L1(R+;R)

≤
∫
Rn

|uo (X (to; t, x)) − uo(x)| Ew(to, t, x) dx

+
∫
Rn

∫ t

to

|q (τ,X (τ ; t, x), w)| Ew(τ, t, x) dτ dx+
∫
Rn

|uo(x)| |Ew(to, t, x) − 1| dx

and we consider the latter three terms separately. First, use (58) and Lemma 1, for t ≥ to,∫
Rn

|uo (X (to; t, x)) − uo(x)|Ew(to, t, x) dx ≤
∫
Rn

|uo (X (to; t, x)) − uo(x)| dx e(M∞+VL)(t−to)

≤ V∞ TV(uo) e(M∞+2VL)(t−to) (t− to) .

To deal with the second term, after using the coordinates (55) and (IP2)–(IP3), one finds∫
Rn

∫ t

to

|q (τ,X (τ ; t, x), w)| Ew(τ, t, x) dτ dx ≤ Q1 e
M∞(t−to) (t− to).

Finally, the third term follows by (58),∫
Rn

|uo(x)| |Ew(to, t, x) − 1| dx ≤ (M∞ + VL) ∥uo∥L1(Rn;R) e
(M∞+VL)(t−to)(t− to).

Adding up, we have

∥Pw(t, to)uo − uo∥L1(R+;R) ≤ V∞ TV(uo) e(M∞+2VL)(t−to) (t− to)

+Q1 e
M∞(t−to) (t− to)

+(M∞ + VL) ∥uo∥L1(Rn;R) e
(M∞+VL)(t−to)(t− to)
which agrees with the choice of Ct in (24).
20
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3. Lipschitz continuity w.r.t parameters. Thanks to (IP1), (IP2), and (IP3), the necessary computations
are a consequence of [26, (H5)].

4. Choice of T . The time T has to be chosen so that α1(0) > 0, α∞(0) > 0 and αTV(0) > 0. Clearly,
by (25), for T sufficiently small, these requirements are all met.

roof of Corollary 2. Note that the constants defined in (IP1), (IP2), and (IP3) do not depend on R.
oreover T has to be chosen such that α1(0) > 0, α∞(0) > 0 and αTV(0) > 0, which are equivalent to⎧⎪⎨⎪⎩

Re−M∞T −Q1T > 0
Re−(M∞+VL)T −Q∞T > 0
Re−(M∞+VL)T (1 − (M∞ + V1)T ) −Q∞T > 0.

The proof ends setting T = min
{

1
2(M∞+V1) ,

ln(2)
M∞+VL

}
, provided R is sufficiently big. □

roof of Proposition 4. The Lipschitz continuity of P ensured by Theorem 2 shows that P1 is
1–Lipschitz continuous, and hence in C0([to, T ]; L1(Rn;R)) as required.
We focus our attention now on the first item in Definition 6, the second being immediate. To ease reading,

or any test function φ ∈ C∞
c (]to, T [ × Rn;R) we introduce the notation

Iφ(u,w) = u ∂tφ+ u v · ∇xφ+ (m(·, ·, w)u+ q(·, ·, w))φ. (61)

e want to prove that, for any φ ∈ C∞
c (]to, T [ × Rn;R),∫

Rn

∫ T

to

Iφ (P (t, to)(uo, wo)) dt dx = 0.

e begin by discretizing the time domain. For a given k ∈ N \ {0} and i = 0, . . . , k, introduce ti =
to + i(T − to)/k and (ũi, w̃i) = P (ti−1, to)(uo, wo). Splitting the integral then gives∫ T

to

∫
Rn

Iφ (P (t, to)(uo, wo)) dx dt

=
k∑
i=1

∫ ti

ti−1

∫
Rn

(Iφ (P (t, ti−1)(ũi, w̃i)) − Iφ (F (t− ti−1, ti−1)(ũi, w̃i))) dx dt

+
k∑
i=1

∫ ti

ti−1

∫
Rn

Iφ (F (t− ti−1, ti−1)(ũi, w̃i)) dx dt . (62)

e compute the terms on the last two lines separately, our goal is to show that they both converge to zero
s k → ∞.

For the first,

Iφ (P (t, ti−1)(ũi, w̃i)) − Iφ (F (t− ti−1, ti−1)(ũi, w̃i))
= ∂tφ (P1(t, ti−1)(ũi, w̃i) − F1(t− ti−1, ti−1)(ũi, w̃i)) (63)

+
(
P1(t, ti−1)(ũi, w̃i)v(t, x, P2(t, ti−1)(ũi, w̃i))
−F1(t− ti−1, ti−1)(ũi, w̃i)v(t, x, F2(t− ti−1, ti−1)(ũi, w̃i))

)
·∇xφ (64)

+
(
m (t, x, P2(t, ti−1)(ũi, w̃i))P1(t, ti−1)(ũi, w̃i) (65)
−m (t, x, F2(t− ti−1, ti−1)(ũi, w̃i))F1(t− ti−1, ti−1)(ũi, w̃i)

)
φ (66)

+ (q (t, x, P (t, t )(ũ , w̃ )) − q (t, x, F (t− t , t )(ũ , w̃ )))φ. (67)
2 i−1 i i 2 i−1 i−1 i i
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Recall that the tangency condition (11) ensures

1
t− ti−1

∥P1(t, ti−1)(ũi, w̃i) − F1(t− ti−1, ti−1)(ũi, w̃i)∥L1(Rn;R) ≤ 2L
ln(2)

∫ t−ti−1

0

ω(ξ)
ξ

dξ

1
t− ti−1

dW (P2(t, ti−1)(ũi, w̃i), F2(t− ti−1, ti−1)(ũi, w̃i)) ≤ 2L
ln(2)

∫ t−ti−1

0

ω(ξ)
ξ

dξ

with L and ω defined as in (16), so that, considering (63),⏐⏐⏐⏐⏐
∫ ti

ti−1

∫
Rn

(∂tφ ) (P1(t, ti−1)(ũi, w̃i) − F1(t− ti−1, ti−1)(ũi, w̃i)) dx dt

⏐⏐⏐⏐⏐
≤ L

ln(2) ∥∂tφ∥L∞([0,T ]×Rn;R) (ti − ti−1)2
∫ ti−ti−1

0

ω(ξ)
ξ

dξ . (68)

onsidering the next term (64),∫ ti

ti−1

∫
Rn

[
P1(t, ti−1)(ũi, w̃i)v(t, x, P2(t, ti−1)(ũi, w̃i))

− F1(t− ti−1, ti−1)(ũi, w̃i)v(t, x, F2(t− ti−1, ti−1)(ũi, w̃i))
]

· ∇xφdtdx

=
∫ ti

ti−1

∫
Rn

[
P1(t, ti−1)(ũi, w̃i) − F1(t− ti−1, ti−1)(ũi, w̃i)

]
(69)

×v(t, x, P2(t, ti−1)(ũi, w̃i)) · ∇xφdtdx

+
∫ ti

ti−1

∫
Rn
F1(t− ti−1, ti−1)(ũi, w̃i)[

v(t, x, P2(t, ti−1)(ũi, w̃i)) − v(t, x, F2(t− ti−1, ti−1)(ũi, w̃i))
]

· ∇xφdtdx . (70)

or (69), using (IP1) and the same approach as for (68), we get⏐⏐⏐⏐⏐
∫ ti

ti−1

∫
Rn

[
P1(t, ti−1)(ũi, w̃i)−F1(t−ti−1, ti−1)(ũi, w̃i)

]
v(t, x, P2(t, ti−1)(ũi, w̃i)) · ∇xφdtdx

⏐⏐⏐⏐⏐
≤ L

ln(2) V∞ ∥∇xφ∥L∞([0,T ]×Rn;Rn) (ti − ti−1)2
∫ ti−ti−1

0

ω(ξ)
ξ

dξ . (71)

or the second term (70), using (IP1) again, we have,

⏐⏐ ∫ ti

ti−1

∫
Rn
F1(t− ti−1, ti−1)(ũi, w̃i)

×
[
v(t, x, P2(t, ti−1)(ũi, w̃i)) − v(t, x, F2(t− ti−1, ti−1)(ũi, w̃i))

]
· ∇xφdtdx

⏐⏐
≤ L

ln(2)R∥∇xφ∥L∞([0,T ]×Rn;Rn)VL(ti − ti−1)2
∫ ti−ti−1

0

ω(ξ)
ξ

dξ . (72)

ass to (65)–(66) and using again (63):∫ ti

ti−1

∫
Rn

⏐⏐ ( m (t, x, P2(t, ti−1)(ũi, w̃i))P1(t, ti−1)(ũi, w̃i)

−m (t, x, F2(t− ti−1, ti−1)(ũi, w̃i))F1(t− ti−1, ti−1)(ũi, w̃i)
)
φ
⏐⏐dxdt

≤
∫ ti

ti−1

∥m (t, ·, P2(t, ti−1)(ũi, w̃i)) −m (t, ·, F2(t− ti−1, ti−1)(ũi, w̃i))∥L1(Rn;R)

×∥P (t, t )(ũ , w̃ )∥ ∥φ∥ dt
1 i−1 i i L∞(Rn;R) L∞(Rn;R)
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T

+
∫ ti

ti−1

∥m (t, ·, F2(t− ti−1, ti−1)(ũi, w̃i))∥L∞(Rn;R)

×∥P1(t, ti−1)(ũi, w̃i) − F1(t− ti−1, ti−1)(ũi, w̃i)∥L1(Rn;R)∥φ∥L∞(Rn;R) dt

≤ MLR ∥φ∥L∞(Rn;R)

∫ ti

ti−1

dW (P2(t, ti−1)(ũi, w̃i), F2(t− ti−1, ti−1)(ũi, w̃i)) dt

+M∞∥φ∥L∞(Rn;R)

∫ ti

ti−1

∥P1(t, ti−1)(ũi, w̃i) − F1(t−ti−1, ti−1)(ũi, w̃i)∥L1(Rn;R) dt

≤ L

ln(2) (MLR+M∞)∥φ∥L∞(Rn;R) (ti − ti−1)2
∫ ti−ti−1

0

ω(ξ)
ξ

dξ . (73)

oncerning (67), the tangency condition (11) implies⏐⏐⏐⏐ ∫ ti

ti−1

∫
Rn

[q(t, x, P2(t, ti−1)(ũ, w̃)) − q(t, x, F2(t− ti−1, ti−1)(ũ, w̃))]φ(t) dxdt
⏐⏐⏐⏐

≤ L

ln(2) QL ∥φ∥L∞([to,T ]×Rn)(ti − ti−1)2
∫ ti−ti−1

0

ω(ξ)
ξ

dξ . (74)

omputing the sum over all time intervals, we get:

k∑
i=1

∫ ti

ti−1

∫
Rn

(Iφ (P (t, ti−1)(ũi, w̃i)) − Iφ (F (t− ti−1, ti−1)(ũi, w̃i))) dx dt

≤
k∑
i=1

[(68)] + [(71)] + [(72)] + [(73)] + [(74)]

≤ L

ln(2) C
∫ (T−to)/k

0

ω(ξ)
ξ

dξ (T − to)2

k
−→
k→+∞

0 ,

here C depends on the test function φ and the constants from (IP1)–(IP2)–(IP3).
Pass now to estimate (62). Temporarily, for i = 0, . . . , k, define (ui(t), wi(t)) = F (t − ti−1, ti−1)(ũi, w̃i).

hen ui(t) = P w̃i(t, ti−1)ũi, and thus it satisfies∫ ti

ti−1

∫
Rn

Iψ(ui(t), w̃i) dxdt = 0 ∀ψ ∈ C∞
c (]ti−1, ti[ × Rn;R) . (75)

hen, each summand in (62) can be estimated as follows:∫ ti

ti−1

∫
Rn

Iφ (F (t− ti−1, ti−1)(ũi, w̃i)) dxdt

=
∫ ti

ti−1

∫
Rn

Iφ (ui(t), w̃i) dxdt

+
∫ ti

ti−1

∫
Rn

[
(m(t, x, w̃i) −m(t, x, wi(t)))ui(t) + (q(t, x, w̃i) − q(t, x, wi(t)))

]
φ(t, x) dxdt

+
∫ ti

ti−1

∫
Rn
ui(t) (v(t, x, wi(t)) − v(t, x, w̃i)) · ∇xφdx dt

≤
∫ ti

ti−1

∫
Rn

Iφ (ui(t), w̃i) dxdt+ ∥φ∥L∞([to,T ]×Rn;Rn)
1
2(MLR+QL) C (ti − ti−1)2

+ ∥∇xφ∥ ∞ n n

1
VLR C (ti − ti−1)2 , (76)
L ([to,T ]×R ;R ) 2
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where C is the Lipschitz constant of t ↦→ w(t) and we used the equality w(ti−1) = w̃i. The latter two
ummands in (76) are treated as the terms above.

It can be shown that∫ ti

ti−1

∫
Rn

Iφ (ui(t), w̃i) dxdt =
∫
Rn

(ui(ti, x) φ(ti, x) − ui(ti−1, x) φ(ti−1, x)) dxdt .

efer to [19] for more details.
Passing to the sum (62), and remembering that ui(ti−1, x) = ũi = P1(ti−1, to)(uo, wo),

k∑
i=1

∫ ti

ti−1

∫
Rn

Iφ (ui(t), w̃i) dxdt ≤
k−1∑
i=1

(ti − ti−1) 2L
ln(2)

∫ ti−ti−1

0

ω(ξ)
ξ

dξ ∥φ(ti)∥L∞(Rn;R)

≤ 2L
ln(2) ∥φ∥L∞([to,T ];Rn;R) (T − to)

∫ (T−to)/k

0

ω(ξ)
ξ

dξ

−→
k→+∞

0,

s required. □

.3. Proofs for Section 3.3

Similar to the previous sections, for each w ∈ W the unique solution to (26) in the sense of Definition 7
s

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uo (X (to; t, x)) Ew(to, t, x)

+
∫ t

to

q (τ,X (τ ; t, x), w) Ew(τ, t, x) dτ x≥ X (t; to, 0)

b (T (0; t, x)) Ew (T (0; t, x), t, x)

+
∫ t

T (0;t,x)
q (τ,X (τ ; t, x), w) Ew(τ, t, x) dτ x <X (t; to, 0)

(77)

here now
Ew(τ, t, x) = exp

∫ t

τ

(m (s,X (s; t, x), w) − ∂xv (s,X (s; t, x))) ds . (78)

orking under the assumptions of Proposition 5, we define the parametrized mapping Pw, which we propose
s a process, by

Pw : A → U
(t, to, uo) ↦→ u(t) where u(t) is given by (77); (79)

here A is generated by the sets Dt as given by (28).

emma 3. The mapping Pw as defined in (79) is a process in the sense of Definition 2.

he proof is in [19].

roof of Proposition 5. The mapping Pw, as given by (79), is a process for any w ∈ W by Lemma 3.
t remains to show that Pw is a Lipschitz process on U parametrized by w ∈ W, i.e., it satisfies (12), (13),
nd (14), with Cu, Ct and Cw given by (28).

1. Lipschitz Continuity w.r.t. Initial Data. Consider two initial data u1, u2 ∈ D, to, t ∈ I with to < t, and
w ∈ W.
To begin, assume that x ∈ [0, σ(t)[. Then, it is easy to see from (77) that

w w
|P (t, to)u1 − P (t, to)u2|(x) = 0,
24
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as b, q and m are independent of the choice of initial data uo. Similarly, for x ∈ [σ(t),+∞[,

|Pw(t, to)u1 − Pw(t, to)u2|(x) = |u1(X (to; t, x)) − u2(X (to; t, x))| Ew(to, t, x).

Thus, using the substitution y = X (to; t, x),

dU (Pw(t, to)u1, P
w(t, to)u2) =

∫ +∞

σ(t)
|u1(X (to; t, x)) − u2(X (to; t, x))|Ew(to, t, x) dx

≤ eM∞(t−to)∥u1(0) − u2(0)∥L1(R+;R) .

2. Lipschitz Continuity w.r.t. Time. Consider uo ∈ D, to, t ∈ I, and w ∈ W.
We have

dU (Pw(t, to)uo, uo) ≤ ∥Pw(t, to)uo − uo∥L1([0,σ(t)[;R+)
+∥Pw(t, to)uo − uo∥L1([σ(t),+∞[;R+) .

(80)

Focusing on the first term of (80), using (77), (BP1), (BP2), (BP3), (BP4), and that uo ∈ D,

∥Pw(t, to)uo − uo∥L1([0,σ(t)[;R+)

≤
∫ σ(t)

0
|b(T (0; t, x))Ew(T (0; t, x), t, x) − uo(x)| dx

+
∫ σ(t)

0

∫ t

T (0;t,x)
|q(τ,X (τ ; t, x), w)Ew(τ, t, x)| dτ dx

≤ v̂(B1 + ∥uo∥L∞(R+;R) +Q1)eM∞(t−to)(t− to)

+
∫ t

to

v(y, 0)|uo(X (t; 0, y))||e
∫ t

y
m(s,X (s;y,0),w)ds − e

∫ t

y
∂xv(s,X (s;y,0))ds| dy

≤ v̂(B1 +R+Q1)eM∞T (t− to) + v̂R(M∞ + VL)(t− to)2e(M∞+VL)(t−to) .

For the second term of (80), once again from (77),

∥Pw(t, to)uo − uo∥L1([σ(t),+∞[;R+)

≤
∫ +∞

σ(t)
|uo(X (to; t, x))Ew(to, t, x) − uo(x)| dx+

∫ +∞

σ(t)

∫ t

to

|q(τ,X (τ ; t, x), w)|Ew(τ, t, x) dτ dx

≤
[
v̂TV(uo;R+) +M∞∥uo∥L1(R+;R) +Q1

]
eM∞(t−to)(t− to)

≤ [v̂R+M∞R+Q1] eM∞(t−to)(t− to) ,

where we used the BV estimates in [19].
Concluding, we thus have

dU (Pw(t, to)uo, uo) ≤ [v̂(B1 + 2R+R(M∞ + VL)T ) +M∞R+Q1] eM∞T (t− to).

3. Lipschitz Continuity w.r.t. Parameters. Consider uo ∈ D, to, t ∈ I and w1, w2 ∈ W.
We have

dU (Pw1(t, to)uo, Pw2(t, to)uo) ≤ ∥Pw1(t, to)uo − Pw2(t, to)uo∥L1([0,σ(t)[;R+)

+ ∥Pw1(t, to)uo − Pw2(t, to)uo∥L1([σ(t),+∞[;R+)
(81)
25
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F

T

For the first term of (81),

∥Pw1(t, to)uo − Pw2(t, to)uo∥L1([0,σ(t)[;R+)

≤
∫ σ(t)

0
|b(T (0; t, x))| |Ew1(T (0; t, x), t, x) − Ew2(T (0; t, x), t, x)| dx (82)

+
∫ σ(t)

0

∫ t

T (0;t,x)
|q(τ,X (τ ; t, x), w1) − q(τ,X (τ ; t, x), w2)| Ew1(τ, t, x) dx (83)

+
∫ σ(t)

0

∫ t

T (0;t,x)
|q(τ,X (τ ; t, x), w2)| |Ew2(τ, t, x) − Ew1(τ, t, x)| dx . (84)

ocussing first on (82), we use (BP2), and get∫ σ(t)

0
|b (T (0; t, x))| |Ew1(T (0; t, x), t, x) − Ew2(T (0; t, x), t, x)| dx

≤ B∞e
M∞(t−to)

∫ t

to

∫ t

y

v(y, 0)|m(s,X (s; y, 0), w1) −m(s,X (s; y, 0), w2)| dsdy

≤ B∞MLe
M∞(t−to)(t− to)dW(w1, w2) .

For (83), using (BP3),∫ σ(t)

0

∫ t

T (0;t,x)
|q(τ,X (τ ; t, x), w1) − q(τ,X (τ ; t, x), w2)| Ew1(τ, t, x) dτ dx

≤ QL v̂ e
M∞(t−to) dW(w1, w2) .

Finally, for (84), we have∫ σ(t)

0

∫ t

T (0;t,x)
|q(τ,X (τ ; t, x), w2)| |Ew2(τ, t, x) − Ew1(τ, t, x)| dτ dx

≤ Q∞e
M∞(t−to)

∫ t

to

∫ σ(τ)

0

∫ t

τ

|m(s,X (s; τ, ξ), w1) −m(s,X (s; τ, ξ), w2)| dsdξ dτ

≤ Q∞e
M∞(t−to)

∫ t

to

∫ t

τ

∫ X (s;τ,0)

X (s;to,0)
|m(s, y, w1) −m(s, y, w2)| dsdy dτ

≤ Q∞MLe
M∞(t−to) 1

2(t− to)2dW(w1, w2) .

hus,

∥Pw1(t, to)uo − Pw2(t, to)uo∥L1(J1;R+)

≤
[
B∞ML + v̂QL + 1

2Q∞ML(t− to)
]
eM∞(t−to)(t− to)dW(w1, w2) .

(85)

Focusing now on the second term of (81), we have

∥Pw1(t, to)uo − Pw2(t, to)uo∥L1([σ(t),+∞[;R)

≤
∫ +∞

σ(t)
|uo (X (to; t, x))||Ew1(to, t, x) − Ew2(to, t, x)| dx (86)

+
∫ +∞

σ(t)

∫ t

to

|q(τ,X (τ ; t, x), w1) − q(τ,X (τ ; t, x), w2)|Ew1(τ, t, x) dτ dx (87)

+
∫ +∞ ∫ t

|q(τ,X (τ ; t, x), w2)||Ew1(τ, t, x) − Ew2(τ, t, x)| dτ dx . (88)

σ(t) to
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Looking at term (86),∫ +∞

σ(t)
|uo(X (to; t, x))| |Ew1(to, t, x) − Ew2(to, t, x)| dx

≤ ∥uo∥L∞(R+;R)e
M∞(t−to)

∫ +∞

0

∫ t

to

|m(s,X (s; to, y), w1) −m(s,X (s; to, y), w2)| dsdx

≤ MLRe
M∞(t−to)(t− to)dW(w1, w2) .

ext, for the term (87),∫ +∞

σ(t)

∫ t

to

|q(τ,X (τ ; t, x), w1) − q(τ,X (τ ; t, x), w2)|Ew1(τ, t, x) dτ dx

≤ eM∞(t−to)
∫ t

to

∫ +∞

σ(τ)
|q(τ, y, w1) − q(τ, y, w2)| dy dτ

≤ QLe
M∞(t−to)(t− to)dW(w1, w2).

inally, for term (88),∫ +∞

σ(t)

∫ t

to

|q(τ,X (τ ; t, x), w2)||Ew1(τ, t, x) − Ew2(τ, t, x)| dτ dx

≤ Q∞e
M∞(t−to)

∫ t

to

∫ +∞

σ(t)

∫ t

τ

|m(s,X (s; τ, ξ), w1) −m(s,X (s; τ, ξ), w2)| dsdξ dτ

≤ 1
2MLQ∞e

M∞(t−to)(t− to)2dW(w1, w2) .

hus, combining these estimates together we have

∥Pw1(t, to)uo − Pw2(t, to)uo∥L1(J1;R+)

≤
[
MLR+QL + 1

2MLQ∞(t− to)
]
eM∞(t−to)dW(w1, w2) .

(89)

ue to the assumption uo ∈ D, we have ∥uo∥L1(R+;R) ≤ R. Hence, substituting (85) and (89) into (81), and
s (t− to) < T , we get

dU (Pw1(t, to)uo, Pw2(t, to)uo) ≤ Cw(t− to)dW(w1, w2) (90)

here Cw is as in (28), as required. □

roof of Proposition 6. For fixed to ∈ I, uo ∈ U , and w ∈ W, define by Π(to,uo,wo) : {(s, so) ∈ [to, T ]2 :
≥ so} × U → U to be the process with s ↦→ Π(to,uo,wo)(s, so)ρo being the solution of⎧⎪⎨⎪⎩

∂tρ+ ∂x (v(t, x) ρ) = m̄(t, x) ρ+ q̄(t, x) (t, x) ∈ [so, T ] × R+

ρ(t, 0) = bo(t) t∈ [so, T ]
ρ(so, x) = ρo(x) x∈ R+

(91)

ith m̄ and q̄ the given by (31). For notational simplicity, we write Π(to,uo,wo) = Π when the (to, uo, wo)
when no confusion arises.

The mapping Π is Lipschitz continuous with respect to time and initial data, for some constant L > 0,
as m̄ and q̄ satisfy correspondingly (BP2) and (BP3), which do not explicitly depend on w.
By this construction, t ↦→ Π(to,uo,wo)(t, to)uo is the solution of (30).
27



R.M. Colombo, M. Garavello and M. Tandy Nonlinear Analysis 232 (2023) 113290

a

w
c

5

L

T

P

R

W
t

From [20, Theorem 2.9], we haveu(t) − Π(to,uo,wo)(t, to)uo


L1(R+;R)

≤ L
∫ t
to

lim infh→0+
1
h

u(τ + h) − Π(to,uo,wo)(τ + h, τ)u(τ)


L1(R+;R) dτ

= L
∫ t
to

lim infh→0+
1
h

P1(τ + h, τ)P (τ, to)(uo, wo) − Π(to,uo,wo)(τ + h, τ)u(τ)


L1(R+;R) dτ .

Thus it suffices to show, for any 0 ≤ to ≤ τ ∈ [0, T ], that

lim inf
h→0+

1
h

P1(τ + h, τ)P (τ, to)(uo, wo) − Π(to,uo,wo)(τ + h, τ)u(τ)


L1(R+;R) = 0.

The tangency condition (11) ensures that

1
h

P1(τ + h, τ)u(τ) − PP2(τ,to)(uo,wo)(τ + h)u(τ)


L1(R+;R)
≤ O(1)

∫ h

0

ω(ξ)
ξ

dξ → 0

s h → 0.
Further, it can be shown, using formula (77), thatPP2(τ,to)(uo,wo)(τ + h, τ)u(τ) − Π(to,uo,wo)(τ + h, τ)u(τ)


L1(R+;R)

≤ O(1)h2,

ith the constant O(1) depending on the constants laid out in (BP1)–(BP4), R and T . Thus this also
onverges to zero as h → 0, completing our proof. □

.4. Proofs for Section 3.4

emma 4. The mapping µ defined by (35) in Proposition 8 is narrowly continuous.

he proof is in [19].

roof of Proposition 8. The Narrow Continuity: This is a consequence of Lemma 4.
Distributional Solution: To simplify calculations we define, for a test function φ ∈ (C1 ∩ W1,∞)([to, T ] ×

;R),

Iφ(µ,w) =
∫
R+

(∂tφ(·, x) + b(·, µ, w)(x)∂xφ(·, x) − c(·, µ, w)(x)φ(·, x)) dµ(·, x)

+
∫
R+

(∫
R+

φ(·, x)d[η(·, µ, w)(y)](x)
)
dµ(·, y).

By a density argument, it suffices to check the integral equality in Definition 8 for φ ∈ C1
c([to, T ]×R+;R).

e discretize the time domain. For a spacing k ∈ N, and i = 0, . . . , k, we introduce the grid points
i = to + i(T−to)

k , and the associated (µ̃i, w̃i) = P (ti−1, to)(uo, wo). We then split the integral,∫ T

to

Iφ (P (t, to)(µo, wo)) dt

=
k∑
i=1

∫ ti

ti−1

[Iφ (P (t, ti−1)(µ̃i, w̃i)) − Iφ (F (t− ti−1, ti−1)(µ̃i, w̃i)) ]  
A1,i(t)

dt (92)

+
k∑
i=1

∫ ti

ti−1

Iφ (F (t− ti−1, ti−1)(µ̃i, w̃i))  dt . (93)

A2,i(t)

28



R.M. Colombo, M. Garavello and M. Tandy Nonlinear Analysis 232 (2023) 113290

i

W

W

f

Our first goal is to demonstrate that (92) vanishes in the limit k → ∞. Focusing on A1,i, we split the
ntegral to get

A1,i(t)

=
∫
R+

∂tφ(t, x) d(P1(t, ti−1)(µ̃i, w̃i) − F1(t− ti−1, ti−1)(µ̃i, w̃i)) (x) (94)

+
∫
R+

b (t, P (t, ti−1)(µ̃i, w̃i)) (x)∂xφ(t, x) dP1(t, ti−1)(µ̃i, w̃i) (x)

−
∫
R+

b(t, F (t− ti−1, ti−1)(µ̃i, w̃i))(x)∂xφ(t, x) dF1(t− ti−1, ti−1)(µ̃i, w̃i) (x) (95)

+
∫
R+

c(t, F (t− ti−1, ti−1)(µ̃i, w̃i))(x)φ(t, x) dF1(t− ti−1, ti−1)(µ̃i, w̃i) (x)

−
∫
R+

c(t, P (t, ti−1)(µ̃i, w̃i))(x)φ(t, x) dP1(t, ti−1)(µ̃i, w̃i) (x) (96)

+
∫
R+

(∫
R+

φ(t, x) d[η(t, P (t, ti−1)(µ̃i, w̃i))(y)] (x)
)

dP1(t, ti−1)(µ̃i, w̃i) (y)

−
∫
R+

(∫
R+

φ(t, x) d[η(t, F (t− ti−1, ti−1)(µ̃i, w̃i))(y)] (x)
)

(97)

dF1(t− ti−1, ti−1)(µ̃i, w̃i) (y) .

e now deal with each of these terms separately. To simplify the notation we will set

Pi(t) ≡ (µi,P (t), wi,P (t)) = P (t, ti−1)(µ̃i, w̃i),
Fi(t) ≡ (µi,F (t), wi,F (t)) = F (t− ti−1, ti−1)(µ̃i, w̃i) .

(98)

e will make extensive use of the relation (11), which gives

d(Pi(t), Fi(t)) ≤ 2L
ln 2(t− ti−1)

∫ t−ti−1

0

w(ξ)
ξ

dξ (99)

or L as in (16). For (94),⏐⏐⏐⏐⏐
∫
R+

∂tφ(t, x) d (µi,P (t) − µi,F (t)) (x)

⏐⏐⏐⏐⏐ ≤ ∥∂tφ∥W1,∞(R+;R)dM (µi,P (t), µi,F (t))

≤ ∥∂tφ∥W1,∞(R+;R)
2L
ln 2(t− ti−1)

∫ t−ti−1

0

ω(ξ)
ξ

dξ .

Next, for (95), calling Lb = supt∈[0,T ],w∈W Lip(b(t, ·, w)),⏐⏐⏐⏐⏐
∫
R+

b(t, Pi(t))(x)∂xφ(t, x) dµi,P (t)(x) −
∫
R+

b(t, Fi(t))(x)∂xφ(t, x) dµi,F (t)(x)

⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐ ∫

R+

[b(t, Pi(t))(x) − b(t, F (t, ti−1)(µ̃i, w̃i))(x)] ∂xφ(t, x) dµi,P (t)(x)

+
∫
R+

b(t, Fi(t))(x)∂xφ(t, x) d (µi,P (t) − µi,F (t)) (x)
⏐⏐⏐⏐

≤ ∥∂xφ∥W1,∞(R+;R)(RLb +RL̂+B) 2L
ln 2(t− ti−1)

∫ t−ti−1

0

ω(ξ)
ξ

dξ .
29
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F

C

a

T
t

Repeat the same calculations for (96) and set Lc = supt∈[0,T ],w∈W Lip (c(t, ·, w)),⏐⏐⏐⏐⏐
∫
R+

c(t, Fi(t))(x)φ(t, x) dwi,F (t)(x) −
∫
R+

c(t, Pi(t))(x)φ(t, x) dµi,P (t)(x)

⏐⏐⏐⏐⏐
≤ ∥φ∥W1,∞(R+;R)(RLc +RL̂+ C) 2L

ln 2(t− ti−1)
∫ t−ti−1

0

ω(ξ)
ξ

dξ .

inally, for the term (97), we find⏐⏐⏐⏐ ∫
R+

(∫
R+

φ(t, x) d[η(t, Pi(t))(y)](x)
)
dµi,P (t)(y)

−
∫
R+

(∫
R+

φ(t, x) d[η(t, Fi(t))(y)](x)
)
dwi,F (t)(y)

⏐⏐⏐⏐
≤ ∥φ∥W1,∞(R+;R)R

⎛⎜⎝ sup
t∈[0,T ]
w∈W

Lip(η(t, ·, w)) + L̂+ E

⎞⎟⎠ 2L
ln 2(t− ti−1)

∫ t−ti−1

0

ω(ξ)
ξ

dξ .

ombining these four estimates together, we have for a constant C, independent of k,⏐⏐⏐⏐⏐
k∑
i=1

∫ ti

ti−1

A1,i(t) dt

⏐⏐⏐⏐⏐ ≤ C
k∑
i=1

(ti − ti−1)2

2

∫ T −to
k

0

ω(ξ)
ξ

dξ → 0 as k → +∞.

Now,

A2,i(t) = Iφ (F (t− ti−1, ti−1)(µ̃i, w̃i))
= Iφ (µi,F (t), w̃i)

+
∫
R+

(b(t, µi,F (t), wi,F (t))(x) − b(t, µi,F (t), w̃i)(x))∂xφ(t, x) dµi,F (t)(x)

+
∫
R+

(c(t, µi,F (t), w̃i)(x) − c(t, µi,F (t), wi,F (t))(x))φ(t, x) dµi,F (t)(x)

+
∫
R+

(∫
R+

φ(t, x) d[η(t, µi,F (t), wi,F (t))(y) − η(t, µi,F (t), w̃i)(y)](x)
)
dµi,F (t)(x)

nd hence

A2,i(t) ≤ Iφ (µi,F (t), w̃i)

+ L̂R
(

2∥φ∥W1,∞,(R+;R) + ∥∂xφ∥W1,∞,(R+;R)

) 2L
ln 2(t− ti−1)

∫ t−ti−1

0

ω(ξ)
ξ

dξ . (100)

he second term will thus converge to zero in the summation. Hence we concentrate on the summation of
he first term.

In the next calculation, we will use the fact∫
R+

φ(T, x) d(µk,F (T ) − P1(T, to)(uo, wo)) (x)

=
∫
R+

φ(T, x) d(F1(T − tk−1, tk−1)P (tk−1, to)(uo, wo) − P1(T, tk−1)P (tk−1, to)(uo, wo)) (x)

≤ ∥φ(T )∥W1,∞(R+;R)
2L
ln 2

T − to
k

∫ T −to
k

0

ω(ξ)
ξ

dξ → 0, as k → ∞.
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w

c

5

P
c

D

F

Focusing on the summation of the first term in (100)
k∑
i=1

∫ ti

ti−1

Iφ (µi,F (t), w̃i) dt =
k∑
i=1

(∫
R+

φ(ti, x) dµi,F (ti)(x) −
∫
R+

φ(ti−1, x) dµ̃i(x)
)

=
∫
R+

φ(T, x) dµT,F (T )(x) −
∫
R+

φ(to, x) dµo(x)

+
k∑
i=1

(∫
R+

φ(ti, x) d(µi,F (ti) − µ̃i+1)(x)
)

−→
k→+∞

∫
R+

φ(T, x) d(P1(T, to)(uo, wo))(x) −
∫
R+

φ(to, x) dµo(x),

here we use that
k∑
i=1

(∫
R+

φ(ti, x) d(µi,F (ti) − µ̃i+1)(x)
)

≤ ∥φ∥W1,∞(R+;R)
2L
ln 2T

∫ T −to
k

0

ω(ξ)
ξ

dξ −→
k→+∞

0,

ompleting the proof. □

.5. Proofs for Section 3.5

roof of Proposition 10. We assume for simplicity that both processes Pu and Pw share the same
onstants Cu, Cw, Ct in (12)–(13)–(14).

The properties of P ensured by Theorem 2 show that P1 ∈ C0([to, T ]; L1(Rn;R)) as required by
efinition 9.
Introduce the following notation. For any k ∈ R and φ ∈ C∞

c (Î × R;R+), denote

Iφ,k(u,w) =
∫
R

[|u− k| ∂tφ+ qk(u,w) ∂xφ] dx ,

qk(u,w) = sign(u− k) (f(u,w) − f(k,w)) .

ix N ∈ N \ {0} and, for every i ∈ {0, . . . , N}, define ti = to + iT−to
N and, for t ∈ [ti−1, T ],

(ũi, w̃i) = P (ti−1, to)(uo, wo) ,
P̄i(t, x) ≡ (ui,P (t, x), wi,P (t)) = P (t, ti−1)(ũi, w̃i)(x) ,
F̄i(t, x) ≡ (ui,F (t, x), wi,F (t)) =

(
P w̃i (t, ti−1) ũi(x), P ũi (t, ti−1) w̃i

)
.

(101)

We now prove in 2 steps that∫ T

to

Iφ,k(P (t, to) (uo, wo)) dt ≥
∫
R

|P1 (T, to) (uo, wo) − k|φ(T, x) dx

−
∫
R

|uo(x) − k|φ(0, x) dx .
(102)

Step 1: We prove the inequality∫ T

to

Iφ,k(P (t, to) (uo, wo)) dt ≥ lim sup
N→+∞

N∑
i=1

∫ ti

ti−1

Iφ,k(ui.F (t), w̃i) dt . (103)

To this aim, write∫ T

to

Iφ,k(P (t, to) (uo, wo)) dt =
∫ T

to

∫
R

|P1 (t, to) (uo, wo)(x) − k|∂tφ(t, x) dx dt (104)

+
∫ T ∫

qk (P (t, to) (uo, wo)(x)) ∂xφ(t, x) dx dt (105)

to R
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We proceed towards the estimate of (104). For every i ∈ {1, . . . , N} and k ∈ R, using (11) with
L and ω given by (16), we have⏐⏐⏐⏐⏐

∫ ti

ti−1

∫
R

[|ui,P (t, x) − k|∂tφ(t, x) − |ui,F (t, x) − k|∂tφ(t, x)] dx dt

⏐⏐⏐⏐⏐
≤
∫ ti

ti−1

∫
R

|ui,P (t, x) − ui,F (t, x)|∂tφ(t, x) dx dt

≤ L

ln(2)
(T − to)2

N2 ∥∂tφ∥L∞([to,T ]×R;R)

∫ T −to
N

0

ω(ξ)
ξ

dξ .

Therefore, the term (104) is estimated as:∫ T

to

∫
R

|P1 (t, to) (uo, wo)(x) − k| ∂tφ(t, x) dx dt

=
N∑
i=1

∫ ti

ti−1

∫
R

|ui,P (t, x) − k| ∂tφ(t, x) dx dt

≥
N∑
i=1

[∫ ti

ti−1

∫
R

|ui,F (t, x) − k| ∂tφ(t, x) dx dt
]

− L

ln(2)
(T − to)2

N
∥∂tφ∥L∞([to,T ]×R;R)

∫ T −to
N

0

ω(ξ)
ξ

dξ

and the last term converges to 0 as N → +∞. Thus, the term (104) is estimated as follows:

[(104)] ≥ lim sup
N→+∞

N∑
i=1

∫ ti

ti−1

∫
R

|ui,F (t, x) − k| ∂tφ(t, x) dx dt . (106)

We pass now to the term (105). For every i ∈ {1, . . . , N} and k ∈ R, since qk is Lipschitz
continuous [27, Lemma 3] and using (11), Lf from (CL2), L and ω from (16),∫ ti

ti−1

∫
R
qk
(
P̄i(t, x)

)
∂xφ(t, x) dx dt−

∫ ti

ti−1

∫
R
qk(ui,F (t, x), w̃i) ∂xφ(t, x) dx dt

≤ Lf
2L

ln(2) ∥∂xφ∥L∞([to,T ]×R;R)

∫ ti

ti−1

(t− ti−1)
∫ t−ti−1

0

ω(ξ)
ξ

dξ dt

+Lf
∫ ti

ti−1

∫
R

|ui,F (t, x) − k| · dW(wi,P (t), w̃i) · |∂xφ(t, x)| dx dt

≤ Lf
2 ∥∂xφ∥L∞([to,T ]×R;R)

(
Lf Ct(R+ k) + 2L

ln(2)

∫ T −to
N

0

ω(ξ)
ξ

dξ
)

(T − to)2

N2 .

Therefore, (105) is estimated as∫ T

to

∫
R
qk (P (t, to) (uo, wo)(x)) ∂xφ(t, x) dx dt

≥
N∑
i=1

∫ ti

ti−1

∫
R
qk(ui,F (t, x), w̃i) ∂xφ(t, x) dx dt

− Lf
2 ∥∂xφ∥L∞([to,T ]×R;R)

(
Lf Ct(R+ k) + 2L

ln(2)

∫ T −to
N

0

ω(ξ)
ξ

dξ
)

(T − to)2

N2
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and the last term converges to 0 as N → +∞. Thus,

[(105)] ≥ lim sup
N→+∞

N∑
i=1

∫ ti

ti−1

∫
R
qk(ui,F (t, x), w̃i) ∂xφ(t, x) dx dt . (107)

Combining (106) and (107), the proof of Step 1, namely (103), is completed.
Step 2: Now we prove that

lim inf
N→+∞

N∑
i=1

∫ ti

ti−1

Iφ,k(ui.F (t), w̃i) dt

≥
∫
R

|P1(T, to)(uo, wo)(x) − k|φ(T, x) dx−
∫
R

|uo(x) − k|φ(to, x) dx
(108)

Fix i ∈ {1, . . . , N}. For ε > 0 sufficiently small, consider χε ∈ C∞
c (]ti−1, ti[; [0, 1]) such that χε(t) = 1 for

t ∈ [ti−1 +ε, ti−ε] and define φε = φ ·χε. Then, by Definition 9 and the choice of χε, we have that for every
ε > 0 sufficiently small, ∫ ti

ti−1

Iφε,k(ui,F (t, x), w̃i) dt ≥ 0.

This implies that∫ ti

ti−1

Iφ,k(ui.F (t), w̃i) dt ≥
∫ ti

ti−1

Iφ−φε,k(ui.F (t), w̃i) dt

=
∫ ti

ti−1

∫
R

|ui,F (t, x) − k|∂t (φ− φε) (t, x) dx dt (109)

+
∫ ti

ti−1

∫
R
qk(ui,F (t, x), w̃i) ∂x(φ− φε)(t, x) dx dt (110)

for every ε > 0 sufficiently small. Moreover the continuity in time of ui,F implies that

lim
ε→0+

[(109)] =
∫
R

|ui,F (ti, x) − k|φ(ti, x) dx−
∫
R

|ui,F (ti−1, x) − k|φ(ti−1, x) dx ,

while, by the Dominated Convergence Theorem, we deduce that

lim
ε→0+

[(110)] = lim
ε→0+

∫ ti

ti−1

∫
R
qk(ui,F (t, x), w̃i) ∂x(φ− φε)(t, x) dx dt = 0.

Therefore, we get ∫ ti

ti−1

Iφ,k(ui.F (t), w̃i) dt

≥
∫
R

|ui,F (ti, x) − k|φ(ti, x) dx−
∫
R

|ui,F (ti−1, x) − k|φ(ti−1, x) dx .

Summing over i, we obtain that
N∑
i=1

∫ ti

ti−1

Iφ,k(ui.F (t), w̃i) dt

≥
N∑
i=1

∫
R

|ui,F (ti, x) − k|φ(ti, x) dx−
N∑
i=1

∫
R

|ui,F (ti−1, x) − k|φ(ti−1, x) dx

=
∫
R

|uN,F (T, x) − k|φ(T, x) dx−
∫
R

|uo(x) − k|φ(to, x) dx (111)

+
N−1∑ ∫

R
(|ui,F (ti, x) − k| − |ui+1,F (ti, x) − k|) φ(ti, x) dx . (112)
i=1
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W

S

We now estimate the first term in (111):∫
R

|uN,F (T, x) − k|φ(T, x) dx−
∫
R

|P1(T, to)(uo, wo)(x) − k|φ(T, x) dx

=
∫
R

(|F1(T − tN−1, tN−1)(ũN−1, w̃N−1)(x) − k| − |P1(T, to)(uo, wo)(x) − k|)φ(T, x) dx

and, using L and ω as in (16), we get⏐⏐⏐⏐∫
R

(|F1(T − tN−1, tN−1)(ũN−1, w̃n−1)(x) − k|−|P1(T, to)(uo, wo)(x) − k|)φ(T, x) dx
⏐⏐⏐⏐

≤
∫
R

⏐⏐F1(T − tN−1, tN−1)P (tN−1, to)(uo, wo)(x)

−P1(T, tN−1)P (tN−1, to)(uo, wo)(x)
⏐⏐φ(T, x) dx

≤ 2L
ln(2)

T − to
N

∫ T −to
N

0

ω(ξ)
ξ

dξ

→ 0 as N → +∞ .

e now estimate (112) using (101) and (11)

N−1∑
i=1

∫
R

||ui,F (ti, x) − k| − |ui+1,F (ti, x) − k||φ(ti, x) dx

≤
N−1∑
i=1

∫
R

|ui,F (ti, x) − ui+1,F (ti, x)|φ(ti, x) dx

≤ ∥φ∥L∞([to,T ]×R;R)

N−1∑
i=1

P w̃i(ti, ti−1)ũi − P1(ti, ti−1)ũi


L1(R;R)

≤ 2L
ln 2∥φ∥L∞([to,T ]×R;R)(T − to)

∫ (T−to)/N

0

ω(τ)
τ

dτ

→ 0 as N → +∞ .

The obtained estimates for (111) and (112), as N → +∞, proved Step 2, namely (108). □
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[27] S.N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81 (123) (1970)

228–255.
35

http://refhub.elsevier.com/S0362-546X(23)00082-2/sb2
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb2
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb2
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb3
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb3
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb3
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb4
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb4
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb4
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb5
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb5
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb5
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb6
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb6
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb6
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb7
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb7
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb7
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb8
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb9
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb9
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb9
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb10
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb10
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb10
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb11
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb11
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb11
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb12
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb12
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb12
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb13
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb14
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb15
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb16
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb16
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb16
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb17
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb17
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb17
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb18
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb18
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb18
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
https://arxiv.org/abs/2211.01853
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb20
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb20
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb20
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb21
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb21
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb21
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb22
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb22
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb22
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb22
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb22
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb23
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb23
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb23
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb24
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb24
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb24
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb25
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb26
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb26
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb26
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb27
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb27
http://refhub.elsevier.com/S0362-546X(23)00082-2/sb27

	On the coupling of well posed differential models
	Introduction
	Definitions and Abstract Results
	General Cauchy Problems
	Ordinary Differential Equations
	The Initial Value Problem for a Renewal Equation
	The Boundary Value Problem for a Linear Balance Law
	Measure Valued Balance Laws
	Scalar NonLinear Conservation Laws

	Specific Coupled Problems
	Predators and Prey
	Modeling Vaccination Strategies

	Technical Details
	Proofs for Section 2 
	Proofs for Section 3.2
	Proofs for  Section 3.3 
	Proofs for Section 3.4 
	Proofs for Section 3.5 

	Declaration of Competing Interest
	Acknowledgments
	References


