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Abstract 

In interference tasks (e.g., Stroop, 1935), the difference between congruent and incongruent 

latencies (i.e., the “congruency” effect) is larger in trial blocks containing mostly congruent 

trials than in trial blocks containing mostly incongruent trials (the “proportion-congruent” (PC) 

effect). Although the PC effect has typically been interpreted as reflecting adjustments in 

attention towards/away from the task-irrelevant dimension (i.e., a conflict-adaptation strategy), 

recent research has suggested alternative accounts based on the learning of either 

contingencies (i.e., distractor-response associations) or of temporal expectancies (i.e., the 

typical response speed on previous trials), accounts in which conflict adaptation plays no role. 

Using the picture-word interference paradigm, we report data from two PC manipulations in 

which contingency learning was made impossible by using nonrepeated distractors (Experiment 

1A) or both nonrepeated distractors and responses (Experiment 1B). The classic PC effect 

emerged in both experiments. In addition, learning of temporal expectancies could not explain 

the present PC effects either, as results from trial-level analyses of Experiments 1A, 1B and a 

nonconflict version of Experiment 1B (Experiment 2) were inconsistent with the predictions of 

the temporal learning account of PC effects. These results suggest that conflict adaptation 

remains a credible explanation for PC effects. 

Keywords:  picture-word interference, conflict adaptation, proportion-congruent effect, 

contingency learning, temporal learning, congruency sequence effect 
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Public significance statement: This study shows that people can adapt their attention to deal 

with situations in which there is frequent distraction, and it rules out alternative interpretations 

for this behavior. 
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Adaptation to conflict frequency without contingency and temporal learning: Evidence from 

the picture-word interference task 

An established fact in cognitive research is that goal-oriented behavior requires some form of 

control for selection of appropriate responses in the face of conflict coming from task irrelevant 

information. What is less established, however, is whether control can be adaptively modulated 

in response to experience with conflict. With such a conflict adaptation mechanism, the 

cognitive control system would, presumably, not just resolve conflict, but also monitor conflict 

and adapt attention to relevant and irrelevant information accordingly (Botvinick, Braver, Barch, 

Carter, & Cohen, 2001).  

Manipulations of conflict frequency in interference tasks such as the Stroop (1935) task 

typically produce a pattern of results that is consistent with a conflict-adaptation explanation. 

In the classic (color-word) Stroop task, participants are required to name the ink color of a word 

while ignoring the word itself. A congruency effect typically arises, with faster (and often more 

accurate) responding to congruent items (e.g., the word RED in red color, REDred) than to 

incongruent items (e.g., the word RED in blue color, REDblue) (MacLeod, 1991). Of interest here 

is the fact that the magnitude of this effect varies as a function of experience with conflict.  

Specifically, situations in which the proportion of congruent items is high (i.e., infrequent 

conflict) elicit larger congruency effects than do situations in which the proportion of congruent 

items is low (i.e., frequent conflict) (e.g., Crump, Gong, & Milliken, 2006; Jacoby, Lindsay, & 

Hessels, 2003; Logan & Zbrodoff, 1979; for a review, see Bugg & Crump, 2012). These 

Proportion-Congruent (PC) effects are readily explained by a conflict-adaptation process. When 

conflict is frequent, there is regular demand for the control system to maintain attention 
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focused on the relevant dimension. Interference from the irrelevant dimension will thus be 

minimized, resulting in a reduced congruency effect. On the other hand, when conflict is 

infrequent, the benefit of focusing on the color is rarely reinforced. As a result, interference 

from the irrelevant dimension on the few incongruent items that are present results in a large 

congruency effect. 

Recent years, however, have witnessed a growing concern among researchers about the 

validity of conflict adaptation as an explanation for PC effects (Schmidt, 2013b; Schmidt, 

Notebaert, & van den Bussche, 2015). Such concern has its roots in the realization that, in 

speeded tasks, responding might be influenced by learned associations, or contingencies, 

between a stimulus and a motor response (Schmidt, Crump, Cheesman, & Besner, 2007; Musen 

& Squire, 1993), as well as by the formation of temporal expectancies for the emission of a 

response (Schmidt, 2013c). The reason these issues are relevant is that PC manipulations are 

typically confounded with contingency-learning biases as well as with temporal-learning biases 

(Schmidt, 2013c; Schmidt & Besner, 2008). As such, some combination of these factors when 

applied to the mechanisms involved in interference tasks appears to be able to explain the PC 

effects that are observed in those tasks without needing to posit a role for conflict (Kinoshita, 

Mozer, & Forster, 2011; Levin & Tzelgov, 2016). What is worth noting at this point is that, as will 

be described subsequently, these alternative accounts are essentially “facilitation” accounts.  

That is, their explanations for PC effects are based on the idea that some aspect of processing is 

facilitated as a result of participants gaining relevant information about the nature of the task. 

Hence, these accounts offer a radically different view of PC effects than that offered by the 

conflict-adaptation account, which is based on an interference-driven mechanism.  



Adaptation to conflict frequency 

6 
 

Contingency learning 

Contingency learning involves acquiring knowledge that two events tend to occur together (e.g., 

the presentation of the word RED typically requires the response “green”) and using that 

knowledge to facilitate responding (Beckers, De Houwer, & Matute, 2007). In color-word 

identification tasks in which the words used are not color names, contingency learning is 

presumed to explain why color identification is faster for a frequent word-color pair (= high-

contingency item, e.g., the word BRAG presented in green color 75% of the time) than for an 

infrequent word-color pair (= low-contingency item, e.g., the word BRAG presented in yellow 

color 25% of the time) (Schmidt et al., 2007; see also Musen & Squire, 1993). Essentially, 

according to contingency-learning accounts, participants implicitly learn contingencies between 

words and color responses, i.e., that specific words predict specific color responses (e.g., BRAG 

predicts green; Schmidt et al., 2007; see also Forrin & MacLeod, 2017; Lin & MacLeod, 2017), 

allowing them to respond more rapidly when the word appears in its most frequent color.  

The reason this issue is relevant for PC effects is that manipulating the proportion of congruent 

items in the Stroop task typically involves altering the frequency of specific word-color pairs as 

well. For example, PC experiments might involve a Mostly Congruent (MC) list in which the 

word RED appears in its congruent, red color 75% of the time and in the incongruent, blue color 

25% of the time, and a Mostly Incongruent (MI) list in which the word RED appears in the 

incongruent, blue color 75% of the time and its congruent, red color 25% of the time. Doing so, 

however, means that REDred is more frequent than REDblue in the MC list, whereas REDblue is 

more frequent than REDred in the MI list. If frequent word-color pairs elicit faster responses, 

participants might thus speed up on REDred in the MC list and REDblue in the MI list. Crucially, 



Adaptation to conflict frequency 

7 
 

fast responding to the congruent item REDred in the MC list will lead to a relatively large 

congruency effect, whereas fast responding to the incongruent item REDblue in the MI list will 

lead to a relatively small congruency effect. In other words, learning of word-color 

contingencies, rather than adaptation to conflict frequency, might be responsible for the 

difference in magnitude of congruency effects that is typically found in PC manipulations in the 

Stroop task (Schmidt & Besner, 2008). 

Importantly, the assumption that contingency learning is the only source of PC effects (Schmidt 

& Besner, 2008) implies that no PC effects should be observed in PC manipulations that control 

for contingency learning operations. In an effort to address this issue, a number of studies have 

been conducted that evaluate PC effects on contingency-controlled stimuli, that is, stimuli 

which are matched in contingency across MC and MI lists (Blais & Bunge, 2010; Bugg, 2014a; 

Bugg & Chanani, 2011; Bugg, Jacoby, & Toth, 2008; Gonthier, Braver, & Bugg, 2016; Hutchison, 

2011). The rationale is that if PC effects are driven by a mechanism of adaptation to list-wide 

conflict frequency, that mechanism should produce a PC effect for all stimuli, including the 

contingency-controlled stimuli. Results from those studies do provide at least partial support 

for this prediction, with PC effects on contingency-controlled stimuli being reported in a 

number of circumstances (Bugg, 2014a; Bugg & Chanani, 2011; Gonthier et al., 2016; Hutchison, 

2011), although not in all circumstances (Blais & Bunge, 2010; Bugg et al., 2008). Therefore, 

contingency learning by itself does not appear to offer a complete explanation of PC effects, 

allowing proponents of the conflict-adaptation account to argue that these contingency-

controlled PC effects, when obtained, likely reflect the action of a mechanism of adaptation to 
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conflict frequency (Bugg, 2014a). In contrast, Schmidt (2013c) has contended that those effects 

are better explained by a different, non-conflict learning process – temporal learning.  

Temporal learning 

While contingency learning is about using stimulus information to predict what to respond, 

temporal learning refers to the process of learning when to emit a response. Participants in 

speeded tasks are known to establish something like a time criterion for when to respond (i.e., 

the point in time at which they expect to respond) depending on the characteristics of the 

stimuli. For example, relatively easy stimuli are typically responded to faster when presented in 

a list where all of the stimuli are easy (i.e., a pure list) than when presented intermixed with 

harder items (i.e., a mixed list), suggesting that participants adapt their temporal expectations 

for response emission to the average difficulty experienced in the list (Lupker, Brown, & 

Colombo, 1997; Lupker, Kinoshita, Coltheart, & Taylor, 2003). Recently, Schmidt (2013c) 

extended this idea to explain PC effects in the Stroop task that have been obtained in the 

absence of biases created by contingency learning (Bugg, 2014a; Hutchison, 2011).  

According to Schmidt’s (2013c) temporal learning account, participants will develop a relatively 

fast temporal expectancy in an MC list (because most of the items in the list elicit relatively fast 

responses) and a relatively slower temporal expectancy in an MI list (because most of the items 

in the list elicit relatively slow responses). Participants will then use those temporal 

expectancies to anticipate when a response should be emitted. Specifically, congruent items, 

but not incongruent items, will speed up in the MC list because they can be processed rapidly 

enough to meet the fast temporal expectancy established for that list. As a result, the 
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congruency effect will be relatively large in the MC list. Conversely, in an MI list, participants 

anticipate responding late, and as a result, there will be less pressure on them to elicit fast 

responses to congruent items. This situation would cause slower latencies to congruent items in 

an MI list relative to congruent items in an MC list.  In contrast, according to Schmidt’s account, 

a speed-up could potentially be observed for incongruent items in an MI list because they can 

be processed fast enough to meet the (slower) temporal expectancy established for that list.  

The result would be a relatively small congruency effect. In practice, however, hard-to-process 

stimuli appear to be relatively insensitive to temporal expectancies, at least in some situations 

(Kinoshita & Mozer, 2006; Kinoshita, Mozer, & Forster, 2011), meaning that the slow temporal 

expectancy developed for the MI list may have little impact on incongruent items. In any case, 

the core claim here is that learning of temporal expectancies can inflate the congruency effect 

in the MC list in comparison to the congruency effect in the MI list. Thus, similar to contingency 

learning, temporal learning can explain differences in the magnitude of congruency effects 

across MC and MI lists without invoking any type of conflict-adaptation mechanism. 

A critical piece of evidence in support of the temporal learning account of PC effects comes 

from statistical analyses of PC manipulations that take into account the role of temporal 

expectancies that individuals develop on a trial-by-trial basis. The idea for these analyses was 

first proposed by Kinoshita et al. (2011) within the framework of their Adaptation to the 

Statistics in the Environment (ASE) model of optimal response initiation and was then extended 

by Schmidt (2013a) in his Parallel Episodic Processing (PEP) model of color identification (see 

also Schmidt, De Houwer, & Rothermund, 2016). Although the two models were developed to 

explain different phenomena (relatedness proportion effects in masked priming in the case of 
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the ASE model, PC effects in regular Stroop paradigms in the case of the PEP model) and place 

emphasis on different aspects of response emission (adaptation to perceived difficulty in the 

case of the ASE model, rhythmic responding in the case of the PEP model), the models make 

similar assumptions. First, performance on the current trial is influenced by the participant’s 

knowledge of response times on the previous trials (i.e., the trial history), specifically the 

latencies on the most recent trials. Those latencies, especially the latency on the most recent 

trial (RT on trial n – 1), would function as an index of perceived task difficulty (in the ASE model) 

or as an index of the rhythm of responding (in the PEP model) that could be used to form an 

expectancy for response initiation latency on trial n. Thus, RT on trial n – 1 can function as an 

index of temporal expectancy for trial n, with a slower RT on trial n – 1 leading to a slower RT on 

trial n (Kiger & Glass, 1981; Taylor & Lupker, 2001). Second, as noted, easier stimuli are more 

prone to influences from trial history than harder stimuli (although this pattern is not inevitable: 

Kinoshita & Mozer, 2006; Kinoshita et al., 2011). The critical implication of these assumptions is 

that with easy stimuli strongly affected by RT on trial n – 1 (i.e., they will show a large slow-

down following a slower RT on trial n – 1) and hard stimuli only weakly affected by RT on trial n 

– 1 (i.e., they will not show a large slow-down following a slower RT on trial n – 1), difficulty 

effects (i.e., the time difference between hard and easy stimuli) will decrease as RT on trial n – 

1 increases.  

Evidence for this pattern has been obtained from experimental data that were analyzed using 

linear mixed-effects models. This class of models, unlike traditional means-based ANOVAs, 

allows one to evaluate the impact of RT on trial n – 1, a trial-level continuous predictor, on 

performance on trial n. In several investigations, use of those analyses revealed that difficulty 
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effects caused by visible or even subliminal distractors were modulated by trial history, with 

there being smaller effects when the RTs were slower on trial n – 1  (Huber-Huber & Ansorge, 

2017, 2018; Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman, 2016). Most 

importantly for the present discussion, the fact that congruency effects (and difficulty effects in 

general) are modulated by temporal expectancies is relevant for PC manipulations because fast 

RTs inevitably occur more frequently in MC lists than in MI lists. As faster RTs on trial n – 1 

result in larger congruency effects, MC lists will tend to produce larger congruency effects than 

MI lists independent of contingency-learning biases or a presumed conflict-adaptation 

mechanism.  

Support for the idea that temporal learning is at least partially responsible for PC effects comes 

from Schmidt’s (2013c) re-analysis of the data from Hutchison’s (2011) contingency-controlled 

items using the aforementioned linear mixed-effects model analyses. Those analyses not only 

replicated the finding originally reported by Hutchison (2011) of a significant PC effect, but also 

indicated that congruency effects decreased with increasing RT on trial n – 1. Furthermore, this 

decreased congruency effect was accompanied by a reduction (although not an elimination) of 

the value of the beta parameter for the PC effect (i.e., the interaction) in the model, suggesting 

that PC effects and temporal learning effects explain common variance in the data. Schmidt 

interpreted this finding as indicating that temporal learning has the potential of generating PC 

effects on its own, a point he reinforced by showing that his PEP model, in which temporal 

learning was an implemented mechanism but adaptation to conflict frequency was not, could 

simulate Hutchison’s (2011) results. At the very least, Schmidt’s analysis suggests that temporal 
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learning contributes to PC effects in contingency-controlled situations and, therefore, its role 

needs to be considered when analyses of PC manipulations are conducted. 

More recently, however, Cohen-Shikora, Suh, and Bugg (in press) challenged this conclusion. 

They noted that the critical interaction between congruency and RT on trial n – 1 reported by 

Schmidt (2013c) was obtained when the typical positively skewed RT distribution was 

normalized with an inverse transformation (invRT = -1000/RT) in order to accommodate the 

assumption made by linear mixed-effects models that the dependent variable be normally 

distributed. A somewhat neglected downside of this type of analysis procedure is that nonlinear 

transformations of the dependent variable systematically alter the pattern and size of 

interaction terms, casting doubt on the reliability of analyses of interactions (Balota, 

Aschenbrenner, & Yap, 2013).  

A solution to this problem is offered by generalized linear mixed-effects models, models which 

do not assume a normally distributed dependent variable and require, therefore, no RT 

transformation (Lo & Andrews, 2015). Using both inverse-transformed RTs in a linear mixed-

effects model and untransformed (i.e., raw) RTs in a generalized linear mixed-effects effects 

model, Cohen-Shikora et al. (in press) re-analyzed Hutchison’s (2011) dataset along with two 

additional datasets in which a PC manipulation had been implemented while controlling for 

contingencies (i.e., Bugg, 2014; Gonthier et al., 2016). They reported that Schmidt’s (2013c) 

finding that congruency effects decrease with increasing RT on trial n – 1 was only obtained 

with transformed data but not with untransformed data, with the latter data even providing 

evidence for the opposite pattern in some cases (i.e., congruency effects increased, rather than 

decreased, with increasing RT on trial n – 1). Furthermore, in all the datasets, the PC effect 
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remained significant when temporal learning indices were included in the analyses, even when 

the value of the beta parameter for that effect was reduced due to the introduction of those 

indices. Finally, attempts to improve indices of temporal learning (e.g., by using mean RT on the 

three most recent trials as a predictor in the analyses) also yielded little evidence for the 

temporal learning account.  

In sum, Cohen-Shikora et al.’s (in press) analyses suggest that previously reported evidence in 

support of the temporal learning explanation of the PC effect (Schmidt, 2013c) might have been 

biased due to the nonlinear transformation applied to RT data. Therefore, it would be advisable 

that research aiming to control for temporal learning avoids this bias by using a more 

appropriate statistical technique, such as generalized linear mixed-effects modelling.  

The present research 

Although conflict-adaptation and non-conflict learning mechanisms are not necessarily 

mutually exclusive (Abrahamse, Braem, Notebaert, & Verguts, 2016; Egner, 2014), there has 

been a mounting debate in recent years concerning whether the classic empirical markers of 

conflict adaptation are, in fact, actually produced by non-attentional learning biases (e.g., 

contingency learning, temporal learning), biases that are typically found in manipulations 

designed to investigate what are presumed to be conflict adaptation effects. For some 

researchers, such debate has culminated in the idea that conflict adaptation might be an 

illusion (Schmidt et al., 2015). The fact that conflict adaptation tests are routinely used in 

clinical settings (e.g., Abrahamse et al., 2016; Bonnin, Houeto, Gil, & Bouquet, 2010) hints at the 

profound consequences borne by this idea. Presumed markers of conflict adaptation have been 
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reported across the lifespan (e.g., Bugg, 2014a, 2014b) and across a variety of tasks (Bugg & 

Crump, 2012), with increasing reports coming from neuroimaging research (e.g., Braver, 2012; 

Sheth et al., 2012; West & Alain, 2000; Wilk, Ezekiel, & Morton, 2012), and these markers have 

been used in a number of diagnostic situations. An exact understanding of what these findings 

reflect is therefore crucial.  

Motivated by these considerations, the present research aimed to re-examine the PC effect 

while at the same time accounting for potential non-conflict learning confounds. Specifically, 

we were interested in providing an answer to the following question: Would evidence for 

adaptation to conflict frequency emerge when non-conflict learning biases are controlled for or 

removed from the design altogether? Some attempts undertaken in this direction suggest that 

the answer might be “yes” (Bugg, 2014a; Bugg & Chanani, 2011; Bugg & Hutchison, 2013; Bugg, 

Jacoby, & Chanani, 2011; Hutchison, 2011; Gonthier et al., 2016). However, much of that 

research fails to consider non-conflict learning biases in their entirety and/or is based on 

experiments that deviate considerably from the original PC paradigm (Schmidt, 2013b, 2014a). 

In addition, very few attempts have been made to control for temporal learning when analyzing 

PC effects (Cohen-Shikora et al., in press; Schmidt, 2013c).  

One primary objective of the present research was to examine adaptation to conflict frequency 

in a situation in which contingency learning could not contribute to the PC effect. According to 

Schmidt (2013a), learning of word-response contingencies is two-step process: First, on each 

trial participants encode information about the word, the color, and the response made into 

episodic memory. Second, any word presented on a subsequent trial will lead to the retrieval of 

past episodes involving that word, with facilitation occurring if the currently presented word 
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requires the same response as most of its previous occurrences. Note that repetition appears to 

be an important aspect of this process. Words need to be repeated at least a few times in the 

experiment in order for responses associated with them to be able to influence subsequent 

behavior (Lin & MacLeod, 2017). Because this process is based on learning a predictive 

association between a specific word and a specific response (Schmidt et al., 2007; but see 

Schmidt, Augustinova, & De Houwer, 2018), learning of word-response contingencies would 

thus seem to require repeating words in the relevant colors. In other words, contingency 

learning would be impossible without repeated word distractors.  

Based on these considerations, the present experiments examined whether PC effects emerge 

in a PC manipulation in a Stroop-like task where no contingency learning would be possible due 

to the fact that word distractors were never repeated (for a similar argument applied to a 

context-specific PC manipulation, see King, Korb, & Egner, 2012; see also Schneider, 2015, for a 

similar idea applied to cued task switching). Because only a limited set of words and colors can 

be used in the color-word Stroop task, a variant, the picture-word interference task, was used 

instead (note 1). Experiment 1 involved two picture-word interference tasks in which the 

proportion of congruent trials was manipulated in a list-wide fashion (for a similar manipulation 

in the picture-word interference task, see Bugg & Chanani, 2011). Experiment 1A required 

participants to categorize unrepeated target pictures paired with unrepeated word distractors. 

Participants in Experiment 1B were presented with the same materials but were required to 

name the pictures instead. To preview the results, regular PC effects were obtained in both 

tasks. 
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Another objective of the present experiments was to investigate the role of temporal learning 

in PC manipulations. To accomplish this goal, the data from Experiments 1A and 1B were 

analyzed using RT on trial n – 1 as an index of temporal expectancy in a mixed-effects model 

analysis, similar to those of Schmidt (2013c) and Kinoshita et al. (2011). However, similar to 

Cohen-Shikora et al. (in press), generalized linear mixed-effects models rather than linear 

mixed-effects models were used in these analyses.  The reason is that, as noted, RTs typically 

violate the assumption made by linear mixed-effects models of a normally distributed 

dependent variable, a problem many researchers, including Schmidt (2013c), addressed by 

normalizing RTs with an inverse transformation. However, as shown by Cohen-Shikora et al. (in 

press), this solution is inappropriate when the research interest lies in interaction terms, as 

those terms are typically altered by nonlinear transformations of the dependent variable. 

Generalized linear mixed-effects models, on the other hand, provide a better solution in that, 

making no assumption about the distribution of the dependent variable, they require no RT 

transformation and permit a clearer interpretation of interactions (Lo & Andrews, 2015). In 

addition to the analyses reported by Cohen-Shikora et al. (in press), the present analyses can 

thus shed further light on the questions of whether evidence for temporal learning will be 

maintained when a more appropriate statistical technique is used and, more crucially, how 

potential PC effects obtained in Experiments 1A and 1B relate to the effects of temporal 

learning. 

To further strengthen the conclusions from those analyses, Experiment 2 was conducted to 

isolate potential effects of temporal learning from adaptation to conflict frequency in a conflict-

free picture naming task. As will be discussed below, trial-level analyses of Experiments 1A and 
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1B and results from Experiment 2 provide converging evidence that temporal learning does not 

appear to pose a challenge for conflict-adaptation interpretations of PC effects, at least with 

the materials and tasks used in the present experiments. 

Experiments 1A and 1B 

If repetitions of word distractors are necessary for learning associations between specific words 

and specific responses, learning of such associations should be impossible when word 

distractors are never repeated. Such a situation should thus allow researchers to examine 

potential effects of adaptation to conflict frequency in the absence of the contingency-learning 

confound that is typically found in classic PC manipulations using the color-word Stroop task 

(Melara & Algom, 2003; Schmidt & Besner, 2008). As noted, to this end, a picture-word 

interference task was used. In the picture-word interference task, participants are required to 

identify a picture while ignoring a word superimposed on it. Similar to the color-word Stroop 

task, two types of items were used in the task variant employed in the present set of 

experiments: Congruent items, with words specifying the name of the picture itself (e.g., the 

picture of a dog with the word DOG superimposed on it), and incongruent items, with words 

unrelated to the picture (i.e., belonging to a different semantic category than the picture’s), as 

well as not appearing as target pictures in the experiment (e.g., the picture of a dog had the 

unrelated word BED superimposed on it and no picture of a bed appeared in the experiment).  

Using a between-subject PC manipulation, participants were assigned to either an MI or an MC 

list. (note 2) Experiment 1A required participants to identify unrepeated target pictures paired 

with unrepeated word distractors as members of a semantic category and to respond vocally. 
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Participants in Experiment 1B were presented with the same materials but were required to 

name the pictures instead. Note that despite the materials being the same, the word distractors 

used are more relevant to picture naming than they are to categorization. For example, the 

word DOG should help more with naming the picture of a dog than it should help with 

categorizing a dog as an animal. Furthermore, unlike in picture naming, in picture 

categorization not only incongruent words but also congruent words are absent from the 

response set. Indeed, in a picture categorization task, Lupker and Katz (1981) obtained only a 

(nonsignificant) 12-ms difference between conditions that are analogous to the congruent and 

incongruent conditions of the present experiment. In contrast, picture naming was expected to 

elicit a much larger congruency effect because of the relevance of word distractors to the task 

(e.g., Underwood, 1976). Nonetheless, both picture categorization and picture naming were 

used in order to investigate whether the presence of PC effects might depend on the nature of 

the task and the basic magnitude of the congruency effect. 

In response to the suggestions of two reviewers of the initial version of the present paper, we 

examined not only the PC effect but also the congruency sequence effect, i.e., the finding that 

in interference tasks, congruency effects are larger following a congruent trial than following an 

incongruent trial (Gratton, Coles, & Donchin, 1992). Traditionally thought of as a marker of 

conflict adaptation (e.g., Botvinick et al., 2001), this finding, similar to the PC effect, has 

recently received several alternative interpretations (e.g., Hommel, Proctor, & Vu, 2004; Mayr, 

Awh, & Laurey, 2003), including a temporal learning interpretation (Schmidt & Weissman, 

2016). This temporal learning interpretation partially relies on the same interaction that is 

thought to be responsible for the PC effect (i.e., decreasing congruency effects with higher RT 
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on trial n – 1), an interaction that, crucially, Schmidt and Weissman (2016) observed when 

analyzing inverse RTs. As noted, such a situation makes the interpretation of interaction terms 

dubious. As such, our use of a generalized linear mixed model analysis, an analysis which 

permits usage of untransformed RTs, provided a valuable opportunity to assess whether the 

unreliability of the temporal learning interaction reported by Cohen-Shikora et al. (in press) in 

the context of the PC effect also applies in the context of the congruency sequence effect, 

another important marker of conflict adaptation. These additional analyses for Experiments 1A 

and 1B, along with a discussion of the control and the temporal learning account of the 

congruency sequence effect, can be found in the Appendix. 

Method 

Participants 

An a priori power analysis was performed using G*Power 3.1 (Faul, Erdfelder, Buchner, & Lang, 

2009) to calculate the sample size needed to have a power of .80 for obtaining a PC effect. 

Based on the effect size reported by Bugg and Chanani (2011) for a PC effect using contingency-

controlled items in a picture-word interference task, we determined that a minimum sample 

size of 32 participants would be needed. Forty-eight participants took part in Experiment 1A 

(picture categorization) and another 51 took part in Experiment 1B (picture naming). In 

Experiment 1B, 1 participant was removed due to an equipment failure and 2 more were 

removed because of an excessive number of errors and null responses (above 25%), leaving 48 

participants. Participants were all students at the University of Western Ontario aged 18–23 
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years (SD = 1.03) and had normal or corrected-to-normal vision. All were native English 

speakers. Their participation was compensated with course credit. 

Materials 

One hundred and twenty-five line drawings were sourced from the International Picture 

Naming Project (IPNP) database (Szekely et al., 2005). Nineteen pictures from the internet 

matching as closely as possible the style of the IPNP pictures were added to the set, for a total 

of 144 target pictures, 480 x 480 pixels in size. Of these, 36 represented an animal, 36 

represented a human being, 36 represented some type of food, and 36 represented a man-

made object. IPNP norms and pilot testing ensured that there was high agreement among 

English-speaking individuals on the semantic category and name of the pictures. One-hundred 

and forty-four English word distractors, different from the modal names of the pictures, were 

also selected. As with the target pictures, 36 denoted an animal, 36 a human being, 36 some 

type of food, and 36 a man-made object. The word distractors were matched in length and 

CELEX frequency (Baayen, Piepenbrock, & van Rijn, 1993) with the pictures’ modal names. Each 

picture was paired with the modal name of the picture (congruent item) and with an unrelated 

word belonging to one of the other three categories (incongruent item), with each of the 

incongruent categories being equally represented across items. For example, among the 36 

pictures of animals, 12 were paired with an unrelated word denoting a person, 12 with an 

unrelated word denoting food, and 12 with an unrelated word denoting an object. Powerpoint 

software was used to superimpose the word in 32-point Courier New font in the center of the 

picture. A light white glow around words’ letters was added to ensure the word was clearly 

visible. A sample of the stimuli used in Experiments 1A and 1B is presented in Figure 1. 
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-Figure 1 around here- 

Lists were constructed so that for half of the lists, 25% of the items were congruent (MI lists), 

and for the other half, 75% of the items were congruent (MC lists). Specifically, in the MI lists, 

36 pictures were presented with their congruent word, and 108 pictures with their incongruent 

word. Conversely, in the MC lists, 108 pictures were presented with their congruent word, and 

36 pictures with their incongruent word. Each of the semantic categories was equally probable 

among the congruent and among the incongruent items (e.g., in the MC list, 9 of the 36 

incongruent pictures were animals, 9 were human beings, 9 were food items, and 9 were 

objects, etc.). Similarly, each of the three semantic categories of incongruent word distractors 

was equally probable among incongruent items (e.g., in the MC list, 3 of the 9 incongruent 

animal pictures appeared with an unrelated word denoting a person, 3 with an unrelated word 

denoting a food item, and 3 with an unrelated word denoting an object).  

Lists were also counterbalanced so that each picture appeared with its congruent and 

incongruent word distractor in both MI and MC lists. To this end, the pictures were randomly 

divided into four sets, A, B, C, and D. In List 1 of the MC lists, pictures in sets A, B, and C would 

serve as congruent pictures and pictures in set D would serve as incongruent pictures. In List 2 

of the MC lists, pictures in sets A, B, and D would serve as congruent and pictures in set C would 

serve as incongruent, and so on. Construction of the MI lists was done similarly, with List 1 

having pictures in sets A, B, and C serving as incongruent and pictures in set D serving as 

congruent, etc. Pictures in each set included an equal number of pictures of animals, people, 

food, and objects. Overall, 4 MI and 4 MC lists were constructed. 
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Procedure 

Participants were tested individually in a quiet room, seated approximately 60 cm away from a 

monitor upon which the stimuli were presented. Each trial began with a fixation symbol (“+”) 

displayed for 500 ms in the center of the screen, followed by a picture with a word 

superimposed on it, displayed for 3000 ms or until the participant’s response. Responses were 

recorded with a microphone connected to the testing computer. Participants in Experiment 1A 

were instructed to categorize the picture using one of four semantic categories (ANIMAL, 

PERSON, FOOD, OBJECT) as responses. Care was taken to explain the differences between these 

categories in order to minimize potential ambiguities (e.g., living animals that are typically 

eaten by humans, such as chicken, being classified as food). Participants in Experiment 1B were 

instructed to name the picture instead. In both experiments, participants were told to ignore 

the word superimposed on the picture and respond as quickly and as accurately as possible. 

Participants were randomly assigned to one of the eight lists in Experiments 1A and 1B. Thus, 

each participant performed only one list for a total of 144 trials.  

Prior to the experiment, participants performed a practice session involving twelve items, 

different from the items in the experiment and mirroring the proportion of congruent items in 

the upcoming list. They received no feedback. Trials were presented in a different random 

order for each participant. DMDX (Forster & Forster, 2003) software was used to present the 

stimuli and collect the data. 
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Results 

In these and the following experiments using vocal responses, response waveforms were 

manually inspected with CheckVocal (Protopapas, 2007) to determine the accuracy of the 

response and the correct placement of timing marks. RTs were defined as the time interval 

between stimulus onset and the beginning of the vocal response. Errors were marked using a 

conservative criterion: Any response that was not the expected response was considered an 

error, no matter how close it was to the expected response (e.g., “people” instead of “person” 

for Experiment 1A, or “cop” instead of “policeman” in Experiment 1B). Prior to the analyses, 

invalid trials due to technical failures and responses faster than 300 ms or slower than the time 

limit (accounting for 0.4% and 2% of the data points in Experiments 1A and 1B, respectively) 

were discarded. For the latency analyses, trials for which an error was made on the current trial 

were discarded, as were the trials for which an error or a too-fast response (< 300 ms) or a too-

slow response (> 3000 ms) was made on the preceding trial. 

The latencies and the error rates were analyzed using generalized linear mixed-effects modeling 

in R version 3.4.3 (R Development Core Team, 2015), treating subjects and items (i.e., the target 

pictures) as random effects and treating Congruency (congruent vs. incongruent) and List Type 

(MI vs. MC) as within-subject and between-subject fixed effects, respectively (Baayen, 2008; 

Baayen, Davidson, & Bates, 2008). Prior to running the model, R-default treatment contrasts 

were changed to sum-to-zero contrasts (i.e., contr.sum) to help interpret lower-order effects in 

the presence of higher-order interactions (Levy, 2014; Singmann & Kellen, 2018). The model 

was fit by maximum likelihood with the Laplace approximation technique. The lme4 package, 
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version 1.1-15 (Bates, Mächler, Bolker, & Walker, 2015), was used to run the generalized linear 

mixed-effects model and obtain probability values.  

In the latency analyses, a generalized linear mixed-effects model was used instead of a linear 

mixed-effects model because generalized linear models, unlike linear models, do not assume a 

normally distributed dependent variable. Therefore, these models can accommodate the 

typically positively skewed distribution of raw RT data with there being no need to use non-

linear transformations, known to systematically alter interaction terms (Balota et al., 2013). A 

Gamma distribution was used to fit the raw RTs, with an identity link between fixed effects and 

the dependent variable (Lo & Andrews, 2015). Note that convergence tests for generalized 

linear mixed-effects models in the current version of lme4 tend to generate many false 

positives (Bolker, 2018). In the following, we report the data from the BOBYQA optimizer, which 

returned estimates that were equivalent to other optimizers but never issued convergence 

warnings. Unlike the error analyses, latency analyses included RT on trial n – 1 as a fixed effect 

to control for temporal learning (Schmidt, 2013c; Schmidt & Weissman, 2016). Standardized 

(i.e., centered and scaled) RTs on trial n – 1 were used instead of raw RTs in order to avoid 

spurious correlations between the intercept and the slope and to help evaluating and 

interpreting the model (Bolker, 2018; Kinoshita et al., 2011; Schielzeth, 2010). The statistical 

model for the latency analysis was: RT = glmer(RT ~ congruency * list_type * SprevRT + 

(1|subject) + (1|item), family = Gamma (link = “identity”), control = 

glmerControl(optimizer="bobyqa")). The statistical model for the error rate analysis was: 

Accuracy = glmer(accuracy ~ congruency * list_type + (1|subject) + (1|item), family = binomial, 

control = glmerControl(optimizer="bobyqa")). The mean RTs and error rates based on by-
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subject data for Experiments 1A and 1B are shown in Table 1. Scatterplots visualizing the 

relation between RT on trial n – 1 and the congruency effect on trial n are shown in Figure 2 for 

Experiment 1A and in Figure 3 for Experiment 1B. The data and R scripts used for the analyses 

are publicly available at https://osf.io/jnzgb/. 

-Table 1 around here- 

-Figures 2 and 3 around here- 

Experiment 1A (picture categorization) 

RT. There were significant main effects of Congruency (congruent faster than incongruent), ß = -

10.68, SE = 2.36, z = -4.53, p < .001, and RT on trial n – 1 (faster responses with lower RT on trial 

n – 1), ß = 23.85, SE = 2.82, z = 8.44, p < .001. The interaction between Congruency and List 

Type was significant as well, ß = -14.14, SE = 2.54, z = -5.56, p < .001, indicating that a classic PC 

effect was obtained, with a larger effect of Congruency in the MC (54 ms) than in the MI 

condition (-2 ms). Interestingly, the interaction between Congruency and RT on trial n – 1, 

indexing temporal learning, was not significant, ß = -1.62, SE = 2.61, z = -0.62, p = .54, but the 

three-way interaction between Congruency, List Type, and RT on trial n – 1 was, ß = 6.01, SE = 

2.60, z = 2.31, p = .021. 

To explore the three-way interaction, MC and MI lists were analyzed separately. MC lists 

showed both main effects of Congruency, ß = -24.89, SE = 3.52, z = -7.07, p < .001, and RT on 

trial n – 1, ß = 25.60, SE = 3.99, z = 6.42, p < .001, but no interaction between the two, ß = 4.51, 

SE = 3.75, z = 1.20, p = .23. In MI lists, on the other hand, RT on trial n – 1 was significant, ß = 

22.29, SE = 4.58, z = 4.86, p < .001, but Congruency was not, ß = 3.26, SE = 3.66, z = .89, p = .37. 
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Here, the interaction between Congruency and RT on trial n – 1 was significant, ß = -8.08, SE = 

3.91, z = -2.07, p = .039. Note, however, that the pattern of this interaction is the opposite of 

that predicted by temporal learning: As illustrated in Figure 2B, the congruency effect on trial n 

increased, rather than decreased, with higher latencies on trial n – 1. 

Error rates. Neither Congruency nor List Type was significant. The interaction between the two 

was marginal, ß = .17, SE = .10, z = 1.78, p = .075, indicating a tendency for the Congruency 

effect to be larger in the MC (1.3%) than in the MI condition (-.1%). 

Experiment 1B (picture naming) 

RT. There were significant main effects of Congruency (congruent faster than incongruent), ß = -

143.71, SE = 2.62, z = -54.80, p < .001, List Type (MI faster than MC), ß = 24.96, SE = 4.39, z = 

5.68, p < .001, and RT on trial n – 1 (faster responses with lower RT on trial n – 1), ß = 22.84, SE 

= 3.04, z = 7.51, p < .001. The only significant interaction was that between Congruency and List 

Type, ß = -23.64, SE = 2.89, z = -8.19, p < .001, indicating that a classic PC effect was obtained, 

with a larger effect of Congruency in the MC (342 ms) than in the MI condition (244 ms). 

Neither the interaction between Congruency and RT on trial n – 1, ß = -3.88, SE = 2.66, z = -1.46, 

p = .14, nor the three-way interaction between Congruency, List Type, and RT on trial n – 1, ß = 

-.18, SE = 3.01, z = -.06, p = .95, were significant.  

Error rates. There was a main effect of Congruency (congruent more accurate than 

incongruent), ß = 1.36, SE = .09, z = 14.71, p < .001. In addition, Congruency interacted with List 

Type, ß = .27, SE = .09, z = 3.00, p = .003, with the congruency effect being larger in the MC 

(13.0%) than in the MI condition (9.1%). 
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Discussion 

Both Experiment 1A and Experiment 1B produced clear PC effects in a situation where learning 

of direct associations between words and responses was impossible. Note that, as suggested by 

previous findings (Lupker & Katz, 1981), the basic congruency effect was much smaller in 

Experiment 1A (picture categorization: 26 ms) than in Experiment 1B (picture naming: 293 ms). 

However, the congruency effect was similarly modulated by conflict frequency across the two 

tasks, with MI lists in Experiment 1B showing a congruency effect reduced by 98 ms compared 

to MC lists, and Experiment 1A showing the elimination of the congruency effect in MI lists.  As 

discussed, a contingency learning account would not be able to explain these effects. 

Temporal learning also does not seem to offer a reasonable explanation for the present findings. 

In order for temporal learning to account for PC effects, one would need to find that 

congruency effects on trial n get smaller as RT on trial n – 1 increases, indicating that 

participants use previous experience in the task to form and adjust to temporal expectancies 

for responding in the way suggested by Schmidt (2013c). Using generalized linear mixed-effects 

models to fit raw RTs, robust main effects of RT on trial n – 1 were found, with overall slower 

responses on trial n as RT on trial n – 1 increases. These sequence effects are routinely reported 

in speeded tasks (Kinoshita et al., 2011; Taylor & Lupker, 2001). More importantly, no 

interaction between RT on trial n – 1 and the congruency effect on trial n was found in 

Experiment 1B, whereas a complicated pattern emerged in Experiment 1A. Specifically, in 

Experiment 1A, MI lists (but not MC lists) showed an interaction involving the opposite pattern 

than was expected from the temporal learning account: Larger congruency effects on trial n the 

higher the RT on trial n – 1. While the cause for this result is unclear, it should be noted that 
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Cohen-Shikora et al. (in press) also reported inconsistent temporal learning patterns across the 

three datasets they analyzed. (note 3) In general, it is safe to conclude from the overall pattern 

of results that temporal learning could not have produced, or even contributed to the 

production of, the PC effects reported here. 

In sum, Experiments 1A and 1B showed that PC effects emerge even in the absence of temporal 

learning and word-response contingencies, a finding that challenges the view that mechanisms 

of this sort provide a sufficient account of the PC effects that are reported in the literature and 

that adaptation to conflict frequency may not be a mechanism humans use (Schmidt, 2013b).  

To consolidate the idea that temporal learning has little to do with the PC effect obtained in 

Experiments 1A and 1B, Experiment 2 was conducted to disentangle conflict frequency from 

potential effects of temporal learning. Note that Schmidt’s (2013c) temporal learning account 

assumes that temporal expectancies for responding are altered as a result of any manipulation 

that induces appreciable differences in response rhythm. The type of manipulation which can 

accomplish such an alteration involves changes in the relative frequency of easy and hard 

stimuli, with the nature of the difficulty elicited by those stimuli playing little or no role. Since 

difficulty does not need to derive from conflict from an irrelevant dimension, temporal learning 

should not be specific to the type of task used in Experiments 1A and 1B, i.e., tasks where 

conflict/interference from an irrelevant dimension produces the difficulty effect. That is, 

according to the temporal learning account of PC effects, any task in which the proportion of 

easy and hard items is manipulated should produce differences in the temporal expectancies 

being formed for responses. As a result, the magnitude of difficulty effects should parallel the 

pattern observed for congruency effects in the PC effect: Smaller difficulty effects in lists where 
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most of the items are hard and larger difficulty effects in lists where most of the items are easy 

(Schmidt, 2013c, 2014a, 2016). Experiment 2 tested this prediction for the pictures used in 

Experiments 1A and 1B, which were presented without the superimposed words and modified 

in such a way that they were easier or harder to respond to. 

Experiment 2 

Following Schmidt’s procedure (2013c; Schmidt & Weissman, 2016), in Experiments 1A and 1B 

temporal learning was accounted for in the analyses by using RT on trial n – 1 as an index of 

temporal expectancy, with a lower RT on trial n – 1 indicating a faster temporal expectancy for 

trial n. However, the predicted interaction between congruency and RT on trial n – 1, with 

smaller congruency effects the higher the RT on trial n – 1, was not found. In fact, Experiment 

1A even produced evidence for a reversed interaction in MI lists, with larger congruency effects 

following higher RTs on trial n – 1. These results are in line with recent failures to obtain regular 

temporal learning effects using untransformed RTs (Cohen-Shikora et al., in press), suggesting 

that the nonlinear transformations reported in previously published papers (Huber-Huber & 

Ansorge, 2017, 2018; Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman, 2016) might 

have systematically biased the interaction of interest in the direction predicted by temporal 

learning.  

Statistical quirks aside, however, it must be acknowledged that supporters of temporal learning 

accounts have pointed out that RT on trial n – 1 is likely a noisy approximation of temporal 

expectancies (Kinoshita et al., 2011; Schmidt, 2013c), although several attempts, reported by 

Cohen-Shikora et al. (in press), to use a less noisy index (e.g., mean RT on the three most recent 
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trials) also failed to produce consistent evidence for the temporal learning account of the PC 

effect. In fact, one could argue that internally constructed temporal expectancies might deviate 

considerably from the measured response time on one or more of the preceding trials, an 

argument that might find support in the observation that time perception is often prone to 

biases (e.g., Taylor & Lupker, 2006, 2007). The implication is that the analyses performed for 

Experiments 1A and 1B might not provide the best means of determining whether temporal 

learning is a potential contributor to the PC effect observed in those experiments. 

A better way to deal with this issue might be found in another approach used by Schmidt 

(2013c, 2014a, 2016) in his attempts to demonstrate a potential role for temporal learning in 

the PC effect, an approach that does not require using any index of temporal expectancy in the 

analyses and thus avoids the potential problems associated with the noisiness of such measures. 

Relying on the assumption that temporal learning should operate similarly in interference tasks 

and in tasks in which difficulty does not derive from interference from an irrelevant dimension 

(e.g., perceptual tasks), this approach involves manipulating the proportion of easy items in a 

task of the latter type.  

Indeed, the existence of a temporal learning mechanism of the sort described by Schmidt 

(2013c) implies that any task in which the proportion of easy and hard items is manipulated 

should produce differences in the magnitude of effect sizes in ways that are compatible with 

the changes observed for congruency effects in the PC effect. Specifically, mostly easy (ME) lists 

(i.e., lists in which most of the items are relatively easy to process) will favor development of a 

fast temporal expectancy that can be met by items that allow fast responses (i.e., “easy” items), 

but not by items that are relatively hard to process (i.e., “hard” items). The result is a speed-up 



Adaptation to conflict frequency 

31 
 

for only the easy items and, hence, a large difficulty effect. Mostly hard (MH) lists (i.e., lists in 

which most of the items are relatively hard to process), on the other hand, will favor 

development of a slow temporal expectancy. Because participants anticipate responding 

relatively late, there will be no reason for them to speed up responses to easy items in this 

situation, causing them to produce longer latencies. In contrast, as noted, it is possible that 

latencies for hard items may decrease if they can be processed fast enough to meet the slower 

temporal expectancy, although, as Schmidt (2013c) has argued, those items tend to be 

insensitive to temporal expectancies (see also Kinoshita et al., 2011; Schmidt & Weissman, 

2016). The end result is that learning of temporal expectancies should produce larger difficulty 

effects in ME lists than in MH lists.  

Schmidt (2013a) did, in fact, obtain evidence of such a Proportion-Easy (PE) effect in a number 

of studies where no irrelevant dimension was used (Schmidt, 2013c, 2014a, 2016). For example, 

in a letter identification task Schmidt (2014a) found, as would be expected, shorter latencies for 

high-contrast letters (“easy” items) than for low-contrast letters (“hard” items). Most 

importantly, the size of this difficulty effect was modulated by the proportion of easy items in 

the list, with larger difficulty effects in ME lists than in MH lists, similar to the PC effect in the 

Stroop task. Although this finding is not crucial evidence that the mechanism driving PC effects 

in the Stroop task and PE effects in non-conflict tasks is the same, it does suggest that temporal 

learning might play an important role in determining PC effects (Schmidt, 2013c). Specifically, 

this approach provides a proof of principle that a PC-like effect can be obtained even when little 

or no conflict is present in the task, suggesting that the mechanism responsible for this PC-like 

effect might also be operating when conflict is present, e.g., in Stroop paradigms. 
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The goal of Experiment 2 was to examine a similar, non-conflict situation with the pictures used 

in Experiments 1A and 1B. Similar to Schmidt’s (2013c, 2014a, 2016) use of high-contrast and 

low-contrast letters, high-resolution and low-resolution pictures were used as easy and hard 

items, respectively, and participants were assigned to a ME list where most of the pictures had 

a high resolution, or a MH list where most of the pictures had a low resolution. Following 

Schmidt’s (2013c) temporal learning account, it was hypothesized that easy items would be 

responded to faster in ME than MH lists, and hard items would be responded to faster (or, at 

least, no more slowly) in MH than ME lists. As a result, a PE effect would be obtained, with ME 

lists showing a larger difficulty effect than MH lists. 

It is important to note, however, that a different outcome could be expected from an 

alternative temporal learning account, specifically, one derived from the literature on blocking 

effects (Chateau & Lupker, 2003; Lupker et al., 1997, 2003; Kinoshita & Mozer, 2006; Rastle, 

Kinoshita, Lupker, & Coltheart, 2003; Taylor & Lupker, 2001). Blocking effects refer to the 

finding that when relatively easy and relatively hard items are mixed in a block (i.e., a “mixed” 

block, typically with 50% easy and 50% hard stimuli), latencies tend to be more homogeneous 

compared to latencies for easy versus hard items presented by themselves in “pure” blocks (i.e., 

blocks where all of the stimuli are either easy or hard). Specifically, there is a mixing cost for 

easy stimuli (i.e., slower latencies for easy stimuli in mixed blocks than in pure easy blocks) and 

a mixing benefit for hard stimuli (i.e., faster latencies for hard stimuli in mixed blocks than in 

pure hard blocks). Lupker and collaborators interpreted this pattern as evidence that 

participants in speeded tasks establish a time criterion representing the time at which they 

expect, and will attempt, to initiate a response. Importantly, the placement of the time 
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criterion is dependent upon the characteristics of the stimuli in the block: The criterion will be 

set early in a pure easy block, late in a pure hard block, and in an intermediate position in a 

mixed block.  

This reasoning can be easily extended to comparisons among mixed lists varying in the 

proportion of easy items. That is, in ME lists, the criterion will be placed relatively early 

(although not as early as in a pure easy list), whereas in MH lists it will be placed relatively late 

(although not as late as in a pure hard list). As a result, both easy and hard items should be 

responded to faster in ME lists than in MH lists. In other words, under the assumption that 

adjustments of time criterion are similar for easy and hard items, one might expect main effects 

of difficulty (easy faster than hard) and list type (ME faster than MH), but not necessarily their 

interaction, i.e., difficulty effects may be equivalent in ME and MH lists. Of importance, the 

latter pattern (i.e., similar adjustments of the time criterion for easy and hard items) typically 

emerges in word naming tasks but not in (button-press) lexical decision tasks (in which only 

easy items appear to be affected by adjustments of time criterion), even when using the same 

items in the two tasks (Kinoshita & Mozer, 2006). Since the present experiments used naming, 

and blocking effects occur for pictures and words alike (Lupker et al., 2003), the expectation 

would be that the interaction predicted by the temporal learning account would not arise in the 

task investigated in Experiment 2 (i.e., picture naming). 
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Method 

Participants 

An a priori power analysis was performed using G*Power 3.1 (Faul et al., 2009) to calculate the 

sample size needed to have a power of .80 for obtaining a PE effect. Based on the effect size 

reported by Schmidt (2013c) for a PE effect in a letter identification task, we determined that a 

minimum of 68 participants would be needed. One hundred and twelve participants took part 

in the experiment. Nineteen participants were removed because of an excessive number of 

errors and null responses (above 25%), leaving 93 participants. They were all students at the 

University of Western Ontario aged 18–27 years (SD = 1.21) and had normal or corrected-to-

normal vision. All were native English speakers. They received either $10 or course credit for 

their participation. 

Materials 

The materials were derived from those used in Experiments 1A and 1B. The congruent pictures 

with their superimposed word removed functioned as high-resolution, easy items. The 

incongruent pictures with their superimposed word removed were degraded by resizing them 

to a quarter of their size and then inflating them back to their original size with Bulk Resize 

Photos (https://bulkresizephotos.com), thus resulting in a lower-resolution image. Those 

pictures functioned as low-resolution, hard items. Other than high-resolution and low-

resolution pictures replacing the congruent and incongruent pictures, respectively, lists and 

counterbalancing of the items were identical to those in Experiments 1A and 1B, resulting in 

four ME lists and four MH lists. 



Adaptation to conflict frequency 

35 
 

Procedure 

The procedure was identical to that in Experiment 1B, with the exception that, of course, 

superimposed words were not mentioned in the instructions, and participants were simply 

required to name the pictures as quickly and as accurately possible. 

Results 

Analyses were performed in the same way as was done for Experiments 1A and 1B with the 

exception that the factor Congruency was replaced with the factor Difficulty (easy vs. hard) and 

the two levels of the factor List Type were ME and MH instead of MC and MI. In addition, in line 

with previous PE manipulations (Schmidt, 2013c, 2014a, 2016), RT on trial n – 1 was not 

included as a predictor in the latency analysis because there is no need to control for temporal 

learning in this context: Any differences between difficulty effects across the two list types 

should be produced by the learning of temporal expectancies induced by the Difficulty factor 

itself. (note 4) 

Prior to the analyses, invalid trials due to equipment failures and responses faster than 300 ms 

or slower than the time limit, accounting for 3.3% of the data points, were discarded. Since RT 

on trial n – 1 was not used as a predictor in the latency analysis, only trials where an error was 

made on the current trial were discarded. The mean RTs and error rates are presented in Table 

2. The data and R scripts used for the analyses are publicly available at https://osf.io/jnzgb/. 

RT. There were significant main effects of Difficulty (easy faster than hard), ß = -31.74, SE = 2.19, 

z = -14.53, p < .001, and List Type (faster responses in the ME than the MH condition), ß = -

17.29, SE = 3.05, z = -5.67, p < .001. However, Difficulty and List Type did not interact, ß = -.57, 



Adaptation to conflict frequency 

36 
 

SE = 1.94, z = -.29, p = .77, reflecting equivalent effects of Congruency in the ME (64 ms) and 

MH lists (65 ms). 

Error rates. The only significant effect was that of Difficulty, ß = .36, SE = .04, z = 9.99, p < .001. 

Discussion 

In the present experiment, the difficulty of pictures, instead of word-picture congruency, was 

manipulated by using high- and low-resolution pictures, similar to the high- and low-contrast 

letters used by Schmidt (2013c, 2014a, 2016). Unlike Schmidt’s results, however, difficulty 

effects were not any larger in lists where most of the trials were easy than in lists where most 

of the trials were hard. In fact, the magnitude of difficulty effects was identical in the two 

conditions, thus failing to replicate the pattern predicted by Schmidt’s temporal learning 

account. Note, however, that the type of list participants were assigned to – ME or MH – did 

have an effect, with overall faster latencies in ME than MH lists. Thus, this pattern seems more 

consistent with the time criterion account (Lupker et al., 1997), according to which ME and MH 

lists should lead to relatively early and late time criteria, respectively, affecting latencies for 

easy and hard items in a similar way, at least in a naming situation. Most importantly, this 

pattern is consistent with the analyses performed for Experiments 1A and 1B in indicating that 

temporal learning may have little or no role in modulating difficulty effects in both interference 

and non-interference tasks. 

General Discussion 

Do humans adapt to conflict frequency? Recently, some researchers cast doubt on this idea by 

pointing out that PC effects in the Stroop task might be caused by factors other than conflict 
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adaptation, namely, word-response contingency learning and temporal learning (Schmidt, 

2013b). The present research addressed this question using a picture-word interference task 

where contingencies were eliminated and temporal learning was controlled for. Clear, 

contingency-free PC effects emerged in both picture categorization (Experiment 1A) and picture 

naming (Experiment 1B) tasks, a finding that challenges the view that contingency learning is a 

critical factor driving PC effects in the Stroop task. Similarly, the analysis of the impact of trial n 

– 1 latency challenges the view that temporal learning has an important role in producing PC 

effects. Together, these results clearly demonstrate that it is not the case that PC effects are 

unobservable when those factors are controlled for (Schmidt, 2013b; Schmidt & Besner, 2008). 

It must be noted that although the color-word and picture-word interference tasks are thought 

to reflect the same underlying processes (see note 1), one important difference between the 

typical color-word Stroop task used in the literature and the picture-word interference task 

used here is that the former, but not the latter, elicits response interference. That is, in most 

implementations of the color-word Stroop task, incongruent words are also used as responses 

(e.g., the word YELLOW is presented in an experiment in which yellow color targets are also 

used), whereas incongruent word distractors were not responses in either Experiment 1A nor 

Experiment 1B (e.g., BED appeared as a word distractor for the picture of a dog but not as a 

target picture). Using distractors that are not used as responses is known to reduce 

interference from the irrelevant dimension in both color-word and picture-word interference 

tasks (Lupker & Katz, 1981; Proctor, 1978), suggesting that response interference, among other 

factors, contributes to Stroop and Stroop-like effects (La Heij, 1988). As such, what the results 

of Experiments 1A and 1B provide is evidence for adaptation to conflict frequency even in a 
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situation in which conflict was likely less intense than in a typical Stroop task because response 

interference was playing little, if any, role.  

It is also important to acknowledge, however, that recent findings, published as the present 

research was in progress, suggest that learning of contingencies might occur at a more abstract 

level than previously thought. Schmidt et al. (2018) reported two color identification 

experiments in which words belonging to three different semantic categories were used as 

distractors, each category being predictive of one color. Similar to the experiments reported 

here, each individual word was presented only once, thus eliminating individual word-response 

contingencies. A category-based contingency effect was observed, with faster and more 

accurate responses when a category item was presented in the color in which most of the other 

items of that category were presented. Note that although the present experiments were 

designed to eliminate individual word-response contingencies, they allowed for category-based 

contingency learning. For example, words denoting animals were mostly associated with 

pictures of animals in MC lists, whereas they were equally associated with each of the four 

semantic categories in MI lists. Thus, participants in MC lists potentially could have used the 

category of the word distractor to predict the response, leading to a speed-up on high-

contingency congruent items and therefore, an inflated congruency effect in MC lists.  

An account of this sort, however, seems to be unlikely for a couple of reasons: First, the effects 

reported by Schmidt et al. (2018) (11 ms and a nonsignificant 2 ms in their Experiments 1 and 2, 

respectively) seem too small to offer a convincing alternative interpretation of the present 

findings (note that classic word-response contingency-learning effects are on the order of 40-60 

ms: e.g., Lin & MacLeod, 2017; Schmidt et al., 2007). Second, while the possibility of using the 
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category of the word distractor to predict the response might be tenable for Experiment 1A, 

where the response was a category name itself, applying this idea to Experiment 1B would 

imply that a rather complicated mechanism was in place: Participants in MC lists would have 

had to have used the congruent word distractor to predict the category of the picture, which 

would then have helped them retrieve the name of the picture (i.e., a name > category > name 

route). However, since congruent word distractors are the name of the picture, it is unclear 

why following this name > category > name route would be of any benefit for performance. 

Finally, it has long been established that pictures are categorized faster than words are (e.g., 

Lupker & Katz, 1982; Smith & Magee, 1980), and as such, using the category of word distractors 

to predict the category of the target pictures would be somewhat counterproductive in a 

speeded task. As such, adaptation to conflict frequency seems, at present, a much better 

explanation for the PC effects obtained here. 

The Present Results from the Perspective of Bugg’s (2014a) AATC Hypothesis 

When considering the implications of the conclusion that a conflict-adaptation strategy is likely 

responsible for the results we obtained, one thing that is potentially important to note is that 

unlike classic PC manipulations in the Stroop task, Experiments 1A and 1B presented 

participants with a situation where learning of word-response contingencies was not an option 

at all, as the identity of word distractors could not be used to predict the response. Hence, 

conflict adaptation may have been essentially the only strategy available for dealing with 

conflict.  Such is not the case, however, when engaging in routine activities in everyday life (e.g., 

driving to one’s workplace). Those situations typically involve attending to a task in the face of 

stimuli that, re-occurring in time, become predictive of certain events (e.g., the fuel light on the 
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car’s dashboard signaling it is time to re-fuel). It is thus critical to understand how control over 

action is implemented in situations where a contingency-learning option is available. 

In response to this concern, Bugg (2014a) proposed the Associations as Antagonists to Top-

Down Control (AATC) hypothesis to explain how the employment of contingency-learning and 

conflict-adaptation mechanisms is regulated. According to this hypothesis, the availability of 

reliable stimulus–response associations moderates the engagement of top-down mechanisms 

of conflict adaptation. Specifically, no adaptation to conflict frequency would take place if 

contingencies can be used to guide responding most of the time. Conflict adaptation would be, 

in other words, a last resort used by the control system only when learning contingencies – the 

default mode driving control engagement – is not feasible.  

To provide some support for this hypothesis, Bugg (2014a) divided color-word Stroop stimuli 

into two sets, a “context” set and a “transfer” set, and manipulated conflict frequency and 

contingency learning for the context set only (transfer words were contingency-unbiased, 

appearing with congruent and incongruent colors an equal number of times). The transfer 

items were intermixed in the same list with context items which were either mostly congruent 

or mostly incongruent, so that transfer stimuli appeared in either a mostly congruent list (when 

mixed with MC context items) or in a mostly incongruent list (when mixed with MI context 

items). Crucially, in one version of Bugg’s experiments, both MC and MI context items allowed 

learning of contingencies, making contingency learning a very effective strategy. In contrast, in 

another version of Bugg’s experiments, only MC context items allowed learning of 

contingencies, as MI context items were constructed such that there were no contingencies to 

learn (i.e., each of four words was presented equally often in each of four colors). Thus, 
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contingency learning was, overall, not a very useful strategy in this version of her experiments. 

Consistent with the AATC hypothesis, Bugg obtained PC effects for transfer items (i.e., evidence 

for a conflict-adaptation strategy being applied when responding to those items) in the second 

version of her experiments, i.e., when learning of contingencies was possible for only a subset 

of the context items (i.e., the context MC items). When learning of contingencies was possible 

for context items in both the MC and the MI list (i.e., when such a strategy was much more 

useful) there was no evidence of adoption of a conflict-adaptation strategy for the transfer 

items (for a counterargument, see Schmidt, 2014b).  

Extending the AATC hypothesis to the paradigm used here, the implication for the results of 

Experiments 1A and 1B is straightforward: Adaptation to conflict frequency occurred not in 

spite of contingency learning being impossible, but because it was impossible. That is, 

contingency-controlled PC effects (i.e., clear markers of conflict adaptation) were obtained 

because there were no contingency biases at all, and adaptation to conflict frequency was the 

only remaining good option for maximizing performance in the task.  

Implications of the Present Research for Temporal Learning Accounts 

In addition to examining adaptation to conflict frequency, the present research also sheds some 

light on the mechanism of temporal learning. This general form of learning assumes that 

participants in speeded tasks form temporal expectancies for emission of a response and, most 

critically, in Schmidt’s (2013c) conceptualization, they adjust to those expectancies by speeding 

up on the trials in which they can produce a latency that matches the established expectancy. 

Although some evidence exists in favor of this mechanism (Kinoshita et al., 2011; Schmidt, 
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2013c, 2014a, 2016; Schmidt & Weismann, 2016), there is virtually no support for it in the 

present data. That is, the use of generalized linear mixed-effects models, a statistical technique 

that requires no transformation of the dependent variable (Lo & Andrews, 2015), failed to 

produce the predicted reduction of congruency effects with increasing RT on trial n – 1 in 

Experiments 1A and 1B. These results are consistent with those of Cohen-Shikora et al. (in 

press), who failed to obtain regular temporal learning effects using untransformed RTs in 

generalized linear mixed-effects models for a number of datasets, including Hutchison’s (2011), 

the dataset which Schmidt first re-analyzed (with transformed RTs as the dependent variable) 

to make a case for temporal learning.  

Because temporal learning is indexed by an interaction (i.e., that between RT on trial n – 1 and 

congruency on trial n), the present results and Cohen-Shikora et al.’s results raise the suspicion 

that temporal-learning interactions reported in previously published papers (Huber-Huber & 

Ansorge, 2017, 2018; Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman, 2016) were 

created by the use of nonlinear transformations of the dependent variable, an operation that is 

routinely performed in linear mixed-effects modelling. It is important to again note that, 

although these transformations do a decent job of accommodating the assumption made by 

linear mixed-effects models that the dependent variable be normally distributed, they affect 

the size and the pattern of interactions (Balota et al., 2013). Generalized linear mixed-effects 

models, requiring no RT transformation, provide researchers with a safer technique to search 

for interactions, a technique that, moving forward, is well worth considering when interactions 

represent the main research interest (e.g., Yang, Chen, Spinelli, & Lupker, in press). 



Adaptation to conflict frequency 

43 
 

Another example of the present data failing to support Schmidt’s (2013c) version of a temporal 

learning account can be found in the results of Experiment 2.  In that experiment, congruent 

and incongruent items were replaced with easy and hard items, items not requiring the filtering 

out of irrelevant information as is required by interference stimuli. The results suggested that 

Schmidt’s version of temporal learning was not at work in this situation (i.e., when vocal 

responding to multiple pictures is required). That is, unlike similar investigations in a button-

press letter identification task utilizing low-contrast (i.e., hard) and high-contrast (i.e., easy) 

letters as stimuli (Schmidt, 2013c, 2014a, 2016), the proportion of easy stimuli in the list did not 

influence the size of the difficulty effect. As the main point of Experiment 2 was to investigate 

the potential contribution of temporal learning to the PC effects found in Experiments 1A and 

1B, the obvious question Experiment 2’s results raise is whether it is possible to reconcile them 

with Schmidt’s (2013c, 2014a, 2016) findings that manipulating frequency of difficulty does 

alter the magnitude of difficulty effects.  

One important difference between Experiment 2 and Schmidt’s (2013c, 2014a, 2016) 

experiments is the nature of the identification that is required (naming of multiple pictures vs. 

button-press identification of a limited set of letters). As mentioned above, button-press lexical 

decision and word naming tend to show different patterns of blocking effects, with naming 

showing equivalent benefits for both easy and hard items in a block containing mainly easy 

items, whereas button-press lexical decision typically produces an asymmetric pattern, with 

large benefits for easy items but not for hard items in a block containing mainly easy items 

(Kinoshita & Mozer, 2006). Extending this idea to proportion-easy manipulations, it is easy to 

see how a vocal-responding situation where easy and hard items are influenced by the 
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frequency of difficulty in the same way will result in no proportion-easy effect, whereas a 

manual-responding situation where easy items are influenced by frequency of difficulty, but 

hard items much less so, will likely result in a proportion-easy effect.  

Note that manual and vocal identification do differ in various ways. For example, manual 

responding generally constrains the number of responses available, whereas vocal responding, 

as in the present experiments, allows for multiple responses. Furthermore, a button press 

response requires participants to make a forced choice and commit to it, whereas a vocal 

response involves a gradual accumulation of evidence (e.g., Perea & Carreiras, 2003). As a 

result, participants might develop different subjective error estimates in the two situations. 

That is, their confidence in being able to give the correct response with sufficient time might 

not be the same.  

Indeed, response confidence was the very factor that Kinoshita and Mozer (2006) held 

responsible for the different patterns of blocking effects observed in word naming and lexical 

decision tasks. In those tasks, high-frequency and low-frequency words were used as easy and 

hard items, respectively. Importantly, participants in a word-naming task can be assumed to be 

relatively confident about their response, even for hard items, but such may not be the case for 

the same hard items in lexical decision, for which a certain degree of uncertainty might remain 

even when a response is made (i.e., you know you will eventually name “glabrous” acceptably, 

but do you know for sure you will correctly classify it as a word or a nonword?).  

The story changes, however, if the low-frequency words that are used, despite being harder 

than the high-frequency words, are familiar enough for participants to confidently classify as 
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words. Using these kinds of low-frequency words, Kinoshita and Mozer (2006) obtained the 

pattern usually found in naming, equivalent effects for low- and high-frequency words. 

Kinoshita and Mozer explained these findings in term of their ASE model. Simply put, the ASE 

model predicts that when an item is so hard that participants may never (i.e., even if they had 

no time pressure) be completely confident about their response, participants will not wait extra 

time in pure hard, compared to mixed, blocks, as doing so will not significantly improve 

accuracy. As a result, they will respond before they are entirely confident in pure hard blocks 

and no mixing benefit will be observed for those stimuli. When, however, hard items can still be 

responded to confidently given more time, it will be worth it to wait the extra time to 

confidently produce an accurate response, which will result in longer latencies in hard blocks 

and, hence, a mixing benefit. 

One could certainly argue there might be parallels between the two situations examined by 

Kinoshita and Mozer (2006) and the two situations created by the present Experiment 2 versus 

Schmidt’s (2013c, 2014a, 2016) experiments, parallels which might explain the difference 

between the data patterns in the latter two situations. Although it seems unlikely that 

participants in Experiment 2 were completely confident about their responses to all low-

resolution pictures, it is important to note that participants were presented with stimuli which 

often had multiple acceptable responses (in fact, several of the responses marked as errors 

with the conservative criterion adopted here were actually fairly acceptable responses, e.g., 

“tool” instead of “screwdriver”, “swimming” instead of “swimmer”, etc.). In addition, since 

participants were not given feedback, as is typical in naming tasks, they were never informed 

that they were making “errors” in many situations. In turn, this inability to know when errors 
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were being made might have led them to assume that their responses were likely acceptable 

and to conclude that given enough time, they would confidently respond to both easy items 

(i.e., high-resolution pictures) and hard items (i.e., low-resolution pictures). Therefore, the 

situation in the present Experiment 2 would be much more like that in a standard naming task, 

implying that one would expect a speed-up for both easy and hard items in the easy block. 

In contrast, participants in Schmidt’s experiments were regularly given feedback, and were 

presented with stimuli which had only one acceptable response among a limited set of 

responses. Thus, participants in Schmidt’s experiments had a better idea about how well (or 

badly) they were performing. Therefore, it is possible that those participants were, in some 

cases, constantly unsure about the accuracy of their responses to hard items (i.e., low-contrast 

letters). In turn, this situation could have reduced the impact of frequency of difficulty 

selectively for hard items, as predicted by the ASE model, thus producing the pattern of 

blocking effects often found in lexical decision tasks, i.e., the differences in the magnitude of 

the difficulty effects in ME and MH lists that he observed. An examination of the role of 

response modality, size of the response set, and feedback in the high/low contrast letter 

identification paradigm would likely help shed light on the reason why the present results and 

Schmidt’s differ so remarkably. (note 5) 

Conclusion 

To conclude, the reported data make a good case for the existence of a conflict-adaptation 

mechanism in humans. Far from being a mere illusion, such a mechanism might be an 

important resource in coping with tasks that require some degree of distraction suppression. 
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While learning about what to respond (contingency learning) and when to do it (temporal 

learning) might be crucial aspects in goal-oriented behavior, learning how to respond (i.e., 

learning the appropriate attentional strategy to achieve the desired goal) is another human 

ability that should be acknowledged. 
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Footnotes 

1. Note that while there has been some debate in the literature as to whether interference 

effects in the picture-word interference task reflect the same underlying cognitive 

processes as interference effects in the color-word Stroop task (Dell’Acqua, Job, 

Peressotti, & Pascali, 2007), abundant support exists for a functional equivalence of the 

two paradigms (Lupker, 1979; Schnur & Martin, 2012; Starreveld & La Heji, 2017; van 

Maanen, van Rijn, & Borst, 2009), suggesting that the picture-word interference task can 

afford substantially larger target, distractor, and response sets than the color-word 

Stroop task without otherwise altering the cognitive processes engaged in the original 

paradigm. 

2. Proportion of congruent items was manipulated between-subjects because of the 

limited number of items available. 

3. Following a suggestion of one of the reviewers of an earlier version of this paper, we ran 

an additional analysis in an attempt to determine whether part of what would seem to 

be noise in Experiment 1A might have resulted from response speed varying across 

categories. Such variability could potentially have affected the temporal learning 

process and, consequently, PC effects. Indeed, participants were slower with the animal 

(930 ms), food (927 ms), and object (949 ms) categories than with the person category 

(830 ms), the category that also elicited the smallest overall congruency effect (5 ms vs. 

44 ms, 27 ms, and 30 ms for animal, food, and object categories, respectively). However, 

there was no obvious relationship between the overall category latency (and/or the 

overall congruency effect within a category) and the size of the PC effect (i.e., the RT 
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difference between the congruency effect in the MC list and the congruency effect in 

the MI list) that the category elicited (person: 22 ms; animal: -8 ms; food: 147 ms; object: 

60 ms). Do note, however, that there was, unavoidably, considerable noise in this 

analysis, presumably due to the fact that there were very few observations (9 or less) in 

some of the cells. 

4. The model with RT on trial n – 1 as an additional predictor did not alter the pattern of 

results reported (i.e., there were main effects of Difficulty and List Type but no 

interaction between them). For the interested reader, there was a main effect of RT on 

trial n – 1 (with higher RT on trial n – 1 leading to longer latencies on trial n) but no 

interaction between Difficulty and RT on trial n – 1. None of the other interactions were 

significant either. 

5. It is important to appreciate the fact that the present discussion rests on the assumption 

that a temporal-learning mechanism is responsible for the pattern reported by Schmidt 

(2013c, 2014a, 2016) in the letter identification task. However, as recognized by Schmidt 

(2013c), this assumption may not be correct: If low-contrast letters are thought as 

stimuli creating a relatively high level of perceptual conflict, a mechanism of adaptation 

to the frequency of perceptual conflict could also explain his data (e.g., if participants 

squint more their eyes in the list containing mostly low-contrast letters, the contrast 

effect will be reduced). At the same time, the results from Experiment 2 constrain this 

putative conflict-adaptation mechanism in that they suggest that not all forms of 

stimulus degradation (e.g., the resolution of an image) engender a kind of perceptual 

conflict that people can adapt to. 
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Appendix 

Examining the Impact of Temporal Learning on the Congruency Sequence Effect  

 

The congruency sequence effect refers to the finding that, in interference tasks, congruency 

effects are larger following a congruent trial than following an incongruent trial (Gratton et al., 

1992). The traditional, control-based account of this effect (Botvinick et al., 2001) holds that 

experiencing conflict during an incongruent trial would lead participants to focus attention to 

the target dimension, thus reducing interference on subsequent trials; conversely, experiencing 

little or no conflict during a congruent trial would lead to relaxed attention, thus increasing 

interference on subsequent trials. Like the control account of the PC effect, this explanation has 

also faced some challenges: For example, in most paradigms, repetitions of stimulus features 

from one trial to the next seem to contribute to the congruency sequence effect (e.g., Hommel 

et al., 2004; Mayr et al., 2003), although a congruency sequence effect is still observed when 

this confound and others are removed (e.g., Schmidt & Weissman, 2014; Weissman, Jiang, & 

Egner, 2014). 

Recently, however, Schmidt and Weissman (2016) proposed that the congruency sequence 

effect observed when potential confounds are accounted for is best interpreted as being the 

result of a temporal learning mechanism rather than the result of a conflict-adaptation 

mechanism. This temporal learning explanation is similar to the one proposed for PC effects. 

Following a trial in which a fast response was emitted (typically, a congruent trial), participants 

will develop a relatively fast temporal expectancy which will speed up responding to a 

subsequent item that could be processed rapidly enough to meet that fast temporal expectancy 
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(a situation typically occurring on a congruent trial). Because this speed-up will typically benefit 

congruent items but not incongruent items, the result will be an inflated congruency effect 

following a congruent trial, consistent with the pattern of the congruency sequence effect. 

Conversely, following a trial in which a slow response was emitted (typically, an incongruent 

trial), participants will develop a relatively slow temporal expectancy. This temporal expectancy 

could potentially speed up responding to a subsequent slow item that could be processed fast 

enough to meet that slower temporal expectancy (a situation typically occurring on an 

incongruent trial), although this result may not be observed in practice because, as noted, 

temporal expectancies often have little impact on hard-to-process stimuli (Kinoshita & Mozer, 

2006; Kinoshita et al., 2011). In any case, the point is that following an incongruent stimulus, 

there is a potential speed-up for incongruent items. However, in comparison to what happens 

when the preceding response was fast, there would be no pressure to produce faster responses 

for fast (i.e., congruent) items.  The result would be a congruency effect which should be, if 

anything, relatively small – again, consistent with the pattern of the congruency sequence 

effect. In sum, a temporal learning mechanism of this sort would seem capable of creating a 

pattern of results that mimics the congruency sequence effect with no need to assume a 

conflict adaptation mechanism. 

To support their temporal learning interpretation of the congruency sequence effect, Schmidt 

and Weissman (2016) re-analyzed Schmidt and Weissman’s (2014) data, a confound-minimized 

study of the congruency sequence effect in the prime-probe task, using RT on trial n – 1 as an 

index of temporal expectancy for trial n in a linear mixed-effects model analysis. They reasoned 

that the finding of an interaction between RT on trial n – 1 and congruency on trial n whereby 
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congruency effects diminish with higher RT on trial n – 1 would be evidence that a temporal 

learning mechanism is being used. Indeed, they obtained not only such an interaction but also a 

reduction (although not an elimination) of the value of the beta parameter for the congruency 

sequence effect (i.e., the interaction between congruency and congruency on trial n – 1) in the 

model. Using similar reasoning as that used by Schmidt (2013c) for the PC effect, Schmidt and 

Weissman (2016) interpreted these results as indicating that temporal learning can generate a 

congruency sequence effect on its own, an idea they reinforced by successfully simulating the 

experimental data with an upgraded version of Schmidt’s (2013c) PEP model in which temporal 

learning was an implemented mechanism but trial-to-trial conflict adaptation was not. 

However, a fundamental problem with Schmidt and Weissman’s (2016) results is that, similar to 

what done by Schmidt (2013c) in the context of the PC effect, RTs were inverse-transformed to 

accommodate the assumption of a normally distributed dependent variable made by linear 

mixed-effects models. As noted, such a transformation can substantially alter the pattern of 

interactions and thus casts serious doubts on the interpretation of interactions, including the 

critical interaction between RT on trial n – 1 and congruency, the interaction that indexes 

temporal learning. In the following, we present additional analyses of Experiments 1A and 1B to 

examine whether the problems that emerged for the temporal learning explanation of the PC 

effect when a more appropriate analysis is used (i.e., generalized linear mixed-effects models 

with untransformed RTs; Cohen-Shikora et al., in press) also emerge when considering the 

congruency sequence effect. 
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Results 

The analyses were based on the same data as those used for the analyses reported in the main 

text of the article, with the exception that trials for which an error was made on the preceding 

trial were removed from both the latency and the error analyses, as is standard for analyses of 

congruency sequence effects. Furthermore, in order to minimize the impact of feature and 

response repetitions (Hommel et al., 2004), for Experiment 1A (picture categorization) we 

removed the trials in which the category of the picture (and hence, the correct response) on 

trial n matched the category of the picture (and correct response) on trial n – 1 (e.g., the picture 

of dog preceded by the picture of a cat, with both pictures requiring the response ANIMAL). The 

statistical models were also the same as those used for the analyses reported in the main text 

of the article, with the exception that Congruency on trial n – 1 was included as an additional 

fixed effect. The mean RTs and error rates for by-subject data for these analyses of Experiments 

1A and 1B are presented in Tables 3 and 4, respectively. 

-Table 3 around here- 

Experiment 1A (picture categorization) 

RT. There was a main effect of RT on trial n – 1 (faster responses with lower RT on trial n – 1), ß 

= 24.01, SE = 3.42, z = 7.01, p < .001, but not Congruency, ß = -3.86, SE = 3.31, z = -1.16, p = .25. 

The interaction between Congruency and List Type, i.e., the PC effect, was significant, ß = -8.73, 

SE = 3.49, z = -2.51, p = .012. Congruency on trial n – 1 marginally interacted with List Type, ß = 

6.75, SE = 3.52, z = 1.92, p = .055, indicating that in MC lists responses tended to be overall 

faster when trial n – 1 was incongruent, a pattern that was reversed in MI lists. Most 
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importantly, Congruency on trial n – 1 and Congruency did not interact, ß = -2.63, SE = 3.44, z = 

-.76, p = .47, although there was a marginal three-way interaction between Congruency on trial 

n – 1, Congruency, and List Type, ß = -5.52, SE = 3.30, z = -1.68, p = .094. As in the analysis 

presented in the main text of the article, there was also a three-way interaction between 

Congruency, List Type, and RT on trial n – 1, ß = 7.29, SE = 3.29, z = 2.21, p = .027.  

The three-way interactions were explored by analyzing MC and MI lists separately. In MC lists, 

the main effects of Congruency on trial n – 1 (faster responses when trial n – 1 was 

incongruent), ß = 10.46, SE = 5.08, z = 2.06, p = .040, Congruency (congruent faster than 

incongruent), ß = -11.96, SE = 5.03, z = -2.38, p = .017, and RT on trial n – 1, ß = 24.86, SE = 5.54, 

z = 4.49, p < .001, were all significant. In addition, there was a marginal interaction between 

Congruency on trial n – 1 and Congruency, ß = -9.36, SE = 5.19, z = -1.80, p = .071. This 

interaction indicates a regular congruency sequence effect, with a tendency for the congruency 

effect to be reduced following an incongruent trial (5 ms) compared to the congruency effect 

following a congruent trial (50 ms). Note that this reduction occurred because responses to 

incongruent trials were faster when following another incongruent trial (928 ms) than when 

following a congruent trial (970 ms), ß = 39.70, SE = 17.71, z = 2.24, p = .025, whereas 

Congruency on trial n – 1 had no impact on congruent trials, ß = 2.15, SE = 10.38, z = .21, p = .84. 

Note that, as in the analysis reported in the main text of the article, Congruency and RT on trial 

n – 1 did not interact, ß = 5.90, SE = 5.49, z = 1.07, p = .28, suggesting that there was no 

temporal learning mechanism being used. 

In MI lists, the only significant effect was RT on trial n – 1, ß = 22.29, SE = 4.58, z = 4.86, p < .001. 

In particular, there was neither an interaction between Congruency on trial n – 1 and 
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Congruency, ß = 2.43, SE = 5.48, z = .51, p = .61, nor a numerical tendency for a congruency 

sequence effect. Similar to the analysis reported in the main text of the article, there was a 

tendency for congruency effects to increase with higher RT on trial n – 1, which is the reverse of 

the pattern predicted by the temporal learning account (i.e., decreasing congruency effects 

with higher RT on trial n – 1). However, the interaction between Congruency and RT on trial n – 

1 was not significant in this analysis, ß = -7.17, SE = 5.48, z = -1.31, p = .19. 

Error rates. Both Congruency, ß = .26, SE = .16, z = 1.67, p = .096, and List Type, ß = -.31, SE = .18, 

z = -1.69, p = .091, were marginally significant, with congruent items showing a tendency to 

elicit less errors than incongruent items and MC lists showing a tendency to elicit more errors 

than MI lists. Congruency on trial n – 1 was significant, ß = .42, SE = .16, z = 2.64, p = .008, 

indicating that participants were more accurate following a congruent trial (1.6%) than an 

incongruent trial (3.2%). No other effect reached significance. 

-Table 4 around here- 

Experiment 1B (picture naming) 

RT. The main effects of Congruency (congruent faster than incongruent), ß = -143.42, SE = 3.44, 

z = -41.74, p < .001, Congruency on trial n – 1 (faster responses following an incongruent trial), 

ß = 15.27, SE = 3.56, z = 4.29, p < .001, List Type (MI faster than MC), ß = 22.68, SE = 7.63, z = 

2.97, p = .003, and RT on trial n – 1 (faster responses with lower RT on trial n – 1), ß = 30.80, SE 

= 4.32, z = 7.13, p < .001, were all significant. Congruency and List Type interacted, ß = -20.67, 

SE = 4.12, z = -5.02, p < .001, indicating a regular PC effect. Congruency also interacted with 

Congruency on trial n – 1, ß = -11.79, SE = 3.62, z = -3.26, p = .001. This interaction indicates a 
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regular congruency sequence effect, with a reduced congruency effect following an 

incongruent trial (274 ms) than following a congruent trial (307 ms). Again, the main reason for 

this reduction was that responses to incongruent trials were faster when following another 

incongruent trial (1060 ms) than when following a congruent trial (1083 ms), ß = 54.11, SE = 

11.71, z = 4.62, p < .001. In contrast, Congruency on trial n – 1 had no impact on congruent 

trials, ß = 6.96, SE = 8.32, z = .84, p = .40. 

There was also an interaction between Congruency on trial n – 1 and RT on trial n – 1, ß = 11.89, 

SE = 4.64, z = -2.56, p = .010, with lower RT on trial n – 1 producing a larger speed-up for 

responses on trial n if trial n – 1 was congruent than if it was incongruent, and a marginal 

interaction between Congruency and RT on trial n – 1, ß = -7.44, SE = 3.97, z = -1.87, p = .061, 

with a tendency for congruency effects to increase with higher RT on trial n – 1. The former 

interaction seems consistent with the idea that fast temporal expectancies produced by easy-

to-process stimuli (i.e., congruent) have a larger impact on performance than do slower 

temporal expectancies produced by hard-to-process stimuli (i.e., incongruent; Schmidt & 

Weissman, 2016). On the other hand, the finding that congruency effects increased with higher 

RT on trial n – 1 reflects, once again, the reverse of the pattern predicted by the temporal 

learning account, according to which higher RT on trial n – 1 should reduce congruency effects. 

Error rates. Congruency (congruent more accurate than incongruent) was the only significant 

effect, ß = 1.28, SE = .11, z = 11.28, p < .001. 
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Conclusion 

Similar to what was found for the PC effect, temporal learning does not seem to provide a 

convincing explanation for the congruency sequence effect in the present dataset. According to 

the temporal learning account, a congruency sequence effect should emerge as a consequence 

of a mechanism whereby congruency effects decrease with higher RT on trial n – 1. However, in 

an analysis in which untransformed RTs were used (thus avoiding potential problems associated 

with nonlinear transformations of the dependent variable), we found, if anything, marginal 

evidence for the opposite pattern (i.e., congruency effects increasing with higher RT on trial n – 

1) in Experiment 1B and a numerical tendency in the same direction in the MI list of Experiment 

1A. While this situation suggests that no temporal learning mechanism was being used, a 

regular congruency sequence effect emerged nonetheless.  

It is worth noting that in the present analyses, not only temporal learning was controlled for but 

also feature and response repetitions were either removed (Experiment 1A) or minimal to 

begin with (i.e., there were no response repetitions in Experiment 1B because each trial 

required a different response). Therefore, we are inclined to interpret the congruency sequence 

effect that was obtained as resulting from a trial-to-trial conflict-adaptation mechanism 

(Botvinick et al., 2001), with recent experience with conflict leading to focused attention, 

thereby decreasing interference, and recent experience with little or no conflict leading to 

relaxed attention, thereby increasing interference. This explanation would be consistent with 

the finding that the congruency sequence effect was mainly caused by facilitation for 

incongruent trials following another incongruent trial, a pattern that would reflect reduced 

interference when interference has recently been dealt with. This explanation would also seem 
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to accommodate the fact that in the MI list in Experiment 1A, no congruency sequence effect 

was obtained. The high number of incongruent trials produced a complete elimination of the 

congruency effect in that list, suggesting that there was little conflict to adapt to. Indeed, it 

seems reasonable to assume that some amount of conflict is necessary in order for a trial-to-

trial conflict adaptation mechanism to be operable. The core claim, in any case, is that not only 

the PC effect but also the congruency sequence effect, another important marker of conflict 

adaptation, emerges when potential confounds are accounted for, and most importantly, 

temporal learning does not seem to offer a convincing alternative to a control-based 

interpretation of this effect.  
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Table 1  

Mean RTs and Percentage Error Rates (and corresponding Standard Errors) for Experiments 1A 

and 1B 

 

 RTs Error rates 

Congruency MC list MI list MC list MI list 

 

Experiment 1A 

    

   Congruent 893 (24) 912 (31) 1.4 (.3) 2.1 (.6) 

   Incongruent 947 (24) 910 (37) 2.7 (.6) 2 (.4) 

 

   Congruency Effect 54 -2 1.3 -.1 

 

Experiment 1B 

    

   Congruent 764 (26) 797 (21) 1.1 (.3) 2 (.9) 

   Incongruent 1106 (38) 1041 (22) 14 (1.7) 11.2 (.9) 

 

   Congruency Effect 342 244 12.9 9.2 
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Table 2  

Mean RTs and Percentage Error Rates (and corresponding Standard Errors) for Experiment 2 

 

 RTs Error rates 

Difficulty ME list MH list ME list MH list 

Easy 908 (17) 948 (20) 9.1 (.5) 9.6 (.8) 

Hard 972 (19) 1013 (18) 15 (1.1) 14.8 (.6) 

 

Difficulty Effect 64 65 5.8 5.1 
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Table 3  

Mean RTs and Percentage Error Rates (and corresponding Standard Errors) for the Congruency-

Sequence-Effect Analysis of Experiment 1A  

 

 RTs Error rates 

Congruency MC list MI list MC list MI list 

 

Previous Congruent 

    

   Congruent 920 (25) 931 (36) 1.3 (.3) .8 (.8) 

   Incongruent 970 (25) 913 (37) 2.7 (.7) 2 (.8) 

 

   Congruency Effect 50 -18 1.4 1.2 

 

Previous Incongruent 

    

   Congruent 923 (24) 935 (32) 3.9 (.8) 2.7 (.7) 

   Incongruent 928 (32) 938 (39) 4.3 (1.7) 2.2 (.5) 

 

   Congruency Effect 5 3 .4 -.5 
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Table 4  

Mean RTs and Percentage Error Rates (and corresponding Standard Errors) for the Congruency-

Sequence-Effect Analysis of Experiment 1B  

 

 RTs Error rates 

Congruency MC list MI list MC list MI list 

 

Previous Congruent 

    

   Congruent 762 (27) 791 (26) 1 (.3) 2.6 (2.1) 

   Incongruent 1111 (40) 1054 (26) 15.3 (2.1) 11.4 (1.5) 

 

   Congruency Effect 349 263 15.2 8.8 

 

Previous Incongruent 

    

   Congruent 770 (24) 802 (22) 1.3 (.5) 2 (.8) 

   Incongruent 1083 (42) 1037 (23) 8.5 (2) 11 (1.1) 

 

   Congruency Effect 313 235 7.2 9 
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Figure 1 

Sample Stimuli Used in Experiments 1A and 1B 

 

Note. Represented are congruent items (panel A), and incongruent items (panel B) for each of 

the four categories (ANIMAL, PERSON, FOOD, and OBJECT). In this sample, the pictures of the 

elephant and the shovel come from the International Picture Naming Project (Szekely et al., 

2005) whereas the pictures of the astronaut and bacon were sourced from the internet. 
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Figure 2 

The Impact of RT on Trial n – 1 on Congruency Effects on Trial n in Experiment 1A 

 

Note. The scatterplots represent the relation between RT on trial n – 1 and congruency effects 

on trial n in the MC list (panel A), and in the MI list (panel B). Individual observations for 

congruent and incongruent trials are marked with triangles and circles, respectively. Regression 

slopes for the congruent condition and for the incongruent condition are marked with solid and 

dashed lines, respectively. 
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Figure 3 

The Impact of RT on Trial n – 1 on Congruency Effects on Trial n in Experiment 1B 

 

Note. The scatterplots represent the relation between RT on trial n – 1 and congruency effects 

on trial n in the MC list (panel A) and in the MI list (panel B). Individual observations for 

congruent and incongruent trials are marked with triangles and circles, respectively. Regression 

slopes for the congruent condition and for the incongruent condition are marked with solid and 

dashed lines, respectively.  

 


